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We study a class of Metropolis–Hastings algorithms for target measures
that are absolutely continuous with respect to a large class of non-Gaussian
prior measures on Banach spaces. The algorithm is shown to have a spec-
tral gap in a Wasserstein-like semimetric weighted by a Lyapunov function.
A number of error bounds are given for computationally tractable approxima-
tions of the algorithm including bounds on the closeness of Cesáro averages
and other pathwise quantities via perturbation theory. Several applications il-
lustrate the breadth of problems to which the results apply such as various
likelihood approximations and perturbations of prior measures.

1. Introduction. The goal of this article is to study convergence rates and stability to
perturbations of a class of Metropolis–Hastings (MH) algorithms for sampling target mea-
sures that are absolutely continuous with respect to an underlying non-Gaussian measure.
Targets in this class naturally arise as posterior measures in Bayesian inverse problems with
non-Gaussian priors. We show that under general conditions, the algorithms of interest to
us have a dimension-independent spectral gap with respect to a transport semimetric on the
space of probability measures. Furthermore, we present a general perturbation result stating
that the invariant measure of the algorithm depends continuously on perturbations of the pro-
posal kernel and acceptance ratio. We also give bounds on the closeness of Cesáro averages
and other pathwise quantities from the perturbed transition kernel.

Let H be a separable Banach space with norm ‖ · ‖ and P(H) denote the space of Radon
probability measures on H, assigning measure 1 to the whole space. Consider μ,ν ∈ P(H)

satisfying

(1)
dν

dμ
(u)= 1

Z
exp

(−�(u)
)
, u ∈H,

where � :H �→R is a measurable function and Z = μ(exp(−�)) is a normalizing constant,
and for any measure μ and function ϕ, μ(ϕ) := ∫

H ϕ(u)μ(du). In Bayesian inference, the
measure ν is precisely the posterior measure, which is absolutely continuous with respect
to the prior measure μ. In applications such as Bayesian inverse problems and uncertainty
quantification, our goal is often to estimate integrals of the form ν(ϕ) for a function of interest
ϕ : H→ X where X is a separable Hilbert space with norm ‖ · ‖X . Since this integral is
often intractable we approximate it using n−1 ∑n

k=1 ϕ(Uk), where the sequence {Uk}nk=1 are
distributed according to ν as n→∞.

We are primarily interested in the setting where we cannot sample from ν directly but we
can sample from μ. Then an algorithm is needed that can approximately sample ν. A common
approach constructs a Markov transition operator P with invariant measure ν, then collects
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paths Uk ∼ Pk−1δu0 starting from a fixed initial condition U0 = u0. Because it is not pos-
sible to simulate paths numerically on an infinite-dimensional state space, in practice finite-
dimensional approximations to the exact algorithm are used. A well-known example of such
an algorithm is the preconditioned Crank–Nicholson (pCN) algorithm [6]; a MH algorithm
for μ that is absolutely continuous with respect to a Gaussian measure. In this article, we
consider a generalization of the pCN algorithm, called the RCAR algorithm, that generalizes
this assumption to non-Gaussian prior measures.

The remainder of this section is organized as follows: We recall the RCAR algorithm in
Section 1.1 and give an overview of our main results in Section 1.2. Relevant literature to
our work is discussed in Section 1.3 followed by a concrete running example in Section 1.4
which is used throughout the article to demonstrate our theoretical results and conditions in
a practical setting. An outline of the article is given in Section 1.5.

1.1. The RCAR algorithm. The MH algorithm we study utilizes a proposal akin to a
random coefficient autoregressive proposal (RCAR), defined as follows.

DEFINITION 1 (RCAR-MH kernel). Given a function � : H �→ R, a transition kernel
K(u, ·), and an innovation measure λ ∈ P(H), the RCAR-MH transition kernel P is defined
as

(2) P(u,dv) :=Q(u,dv)α(u, v)+ δu

∫
H

(
1− α(u,w)

)
Q(u,dw), u ∈H,

with proposal transition kernel

(3) Q(u, ·) :=K(u, ·) ∗ λ,
and acceptance ratio function

(4) α(u, v) := 1∧ exp
(
�(u)−�(v)

)
.

The RCAR-MH family of kernels defined above are commonly encountered in the design
of MH algorithms. The form (2) is often referred to as the lazy chain representation of P .
The first term accounts for the proposal of a new point v ∼Q(u, ·) that is then accepted with
probability α(u, v) and the chain moves from u to v. The second term accounts for the event
where the proposed point v is rejected and the chain remains at u.

We summarize the RCAR algorithm in Algorithm 1 for reference. Many common MH
algorithms such as the random walk (RW) algorithm [42] and pCN [6] fall within the RCAR-
MH family. In both RW and pCN the measure λ is taken to be an appropriate Gaussian
measure. The kernel K = δu for RW, while K = δβu for a constant β ∈ (0,1) in the case of
pCN.

Consider the measure ν defined in (1) with μ ∈ P(H). It was shown in [23], Theorem 2.1,
that under mild conditions on � , the measure ν is an invariant measure of P provided that Q
is reversible with respect to μ, that is,

(5)
∫
A
Q(u,B)μ(du)=

∫
B
Q(u,A)μ(du),

for Borel sets A,B ∈H.

Algorithm 1 Generic RCAR-MH
1. Set j = 0 and choose U0 ∈H.
2. At iteration j propose Wj+1 = ζj+1 + ξj+1 where ζj+1 ∼K(Uj , ·) and ξj+1 ∼ λ.
3. Set Uj+1 =Wj+1 with probability α(Uj ,Wj+1).
4. Otherwise set Uj+1 =Uj .
5. Set j ← j + 1 and return to step 2.



SPECTRAL GAPS AND ERROR ESTIMATES FOR MH 1829

The article [23] presents multiple numerical experiments demonstrating the ability of
RCAR to sample the target measures ν that arise as posterior measures in Bayesian inverse
problems with non-Gaussian priors. The RCAR algorithm is widely applicable since appro-
priate proposal kernels Q can be identified for many commonly used probability distributions
such as Gaussian, Laplace and Gamma (together with their extensions to infinite-dimensional
measures). However, as yet no analysis of RCAR convergence rates and existence/uniqueness
of invariant measures of P has been performed. In general, ensuring that Q is μ-reversible
depends on the choice of λ and K in relation to μ and is often the most difficult aspect of
designing new MH algorithms, especially when H is infinite-dimensional [6, 23]. However,
μ-reversibility of Q only ensures that ν is an invariant measure of P . The primary goal of
this article is to analyze the convergence properties of P , showing the existence and unique-
ness of an invariant measure to which convergence occurs at an exponential rate. We further
justify the use of perturbed/finite-dimensional versions of the algorithm by providing general
perturbation bounds.

1.2. Overview of main results. We now give a brief survey of our main results with sim-
plified technical assumptions. Details of these results are presented in Sections 3 and 4. Let
P be an RCAR-MH kernel as in Definition 1 with a transition kernel K and innovation mea-
sure λ. Our first result concerns the existence of a spectral gap for P in certain semimetrics
implying exponential convergence to a unique invariant measure; throughout we will use the
term “spectral gap” in topologies other than L2, consistent with [18, 19].

For q ≥ 1 and η,ω, θ > 0 define the semimetric

(6) d̃q(u, v) :=
[(

1∧ (1+ η‖u‖ + η‖v‖)q‖u− v‖
ω

)(
2+ θ‖u‖q + θ‖v‖q)]1/2

,

for points u, v ∈H. We refer to d̃q as a semimetric since it does not satisfy the triangle in-
equality but satisfies other metric axioms. This semimetric further induces a transport semi-
metric

(7) d̃q(ν1, ν2) := inf
π∈ϒ(ν1,ν2)

∫
H×H

d̃q(u, v)π(du,dv) ∀ν1, ν2 ∈ P(H),

where ϒ(ν1, ν2) denotes the space of all couplings between probability measures ν1, ν2. We
let P 1(H; d̃q)⊂ P(H) denote the subspace of probability measures on H for which d̃q(·,0) is
integrable. Then our first main result states that the RCAR-MH kernel has a unique invariant
measure to which exponential convergergence occurs in d̃q .

MAIN RESULT 1. Suppose λ has bounded moments of degree p ≥ 1 and the Lipschitz
constant of � does not grow faster than ‖ · ‖q for some integer q ≤ p. Then under regularity
conditions on K and for an appropriate choice of the constants η, ω, θ it holds that:

(a) There exist constants (γ, n) ∈ (0,1)×N so that

(8) d̃q
(
Pnν1,Pnν2

)≤ γ d̃q(ν1, ν2) ∀ν1, ν2 ∈ P 1(H; d̃q).
(b) P has a unique invariant measure ν ∈ P 1(H; d̃q).
(c) If Q is μ-reversible then ν coincides with the target measure (1).

Detailed statement and proof of this result is presented in Section 3 where we give a de-
tailed statement of the underlying assumptions on � and K required to prove the three state-
ments as well as the detailed versions of these results. The proofs are further postponed to
Appendix A.
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It was shown in [23] that the RCAR algorithm satisfies detailed balance whenever (5) holds
and so has unique invariant measure ν given by (1). In Section 3.2 we present an alternative
proof of the fact that P has a unique invariant measure by showing that P is Feller, implying
that P has a unique invariant measure under more general conditions than (5). However,
without (5) one cannot guarantee that the invariant measure is the target ν in (1); see also
Remark 3.

Our second main result concerns the perturbation properties of RCAR-MH kernels. In
many applications, such as when H is a function space, the RCAR algorithm cannot be im-
plemented exactly since it is not possible to simulate K and λ, and one resorts to numerical
approximations by discretization or direct approximations of � , K or λ. To this end, we pro-
vide bounds on the approximation error resulting from using perturbations Pε of an RCAR-
MH kernel P . We characterize closeness of the invariant measure(s) of Pε to ν, as well as
the similarity of the dynamics of Uk ∼ Pkδu0 to Uε

k ∼ Pk
ε δu0 for u0 ∈H. We emphasize that

while the main result below is stated for RCAR-MH kernels, the results we prove in Sec-
tion 4 are indeed more general and are applicable to any P that satisfies the conditions of
the weak Harris’ theorem (see Proposition 1) below. Before proceeding further let us recall
the Lipschitz seminorm with respect to the semimetric d̃q on (Bochner) measurable functions
ϕ :H→X for a separable Hilbert space X :

(9) |||ϕ|||
d̃q
:= sup

u�=v

‖ϕ(u)− ϕ(v)‖X
d̃q(u, v)

.

MAIN RESULT 2. Suppose that the conditions of Main Result 1 hold and let Pε be a
Markov transition kernel on H. Suppose that ‖ · ‖q is a common Lyapunov function (see
Definition 3) for P and Pε for sufficiently small ε so that

P‖u‖q ≤ κ‖u‖q +K, Pε‖u‖q ≤ κ‖u‖q +K,

for constants (κ,K) ∈ (0,1)× (0,+∞), and that there exists a bounded function ψ :R+ �→
R+ for which

d̃q(Pεδu,Pδu)≤ψ(ε)
(
1+ ‖u‖q/2)

.

(a) Then there exists a constant C1 > 0 independent of ε > 0 so that

d̃q(ν, νε)≤ C1ψ(ε)
[
1+ νε

(‖ · ‖q/2)]
,

where ν is the unique invariant measure of P and νε is any invariant measure of Pε .
(b) Let X be a separable Hilbert space with norm ‖ · ‖X and ϕ :H �→ X be ν-Bochner

measurable and satisfy |||ϕ|||
d̃q

<+∞. Then there exist constants Cj ≥ 0, j = 2, . . . ,4, inde-
pendent of n≥ 2 and ε > 0, such that

E

∥∥∥∥∥1

n

n−1∑
k=0

ϕ
(
Uε
k

)− ν(ϕ)

∥∥∥∥∥
X
≤
|||ϕ|||

d̃q

1− γ

(
C2ψ(ε)+C3

ψ(ε)

n
+C4

1√
n

)
,

where Uε
k ∼ Pk−1

ε δu0 for any initial state u0 ∈H.

We present detailed versions of the above statements together with our underlying assump-
tions on P , Pε in Section 4. Detailed proofs of those results are postponed to Appendix B.
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1.3. Relevant literature. The convergence rate results we give here rely on the existence
of Lyapunov functions of P and Pε to control stochastic stability. The use of Lyapunov func-
tions has been important at least since [21], and their application to convergence analysis
of Markov chains is developed in great detail in the influential text of Meyn and Tweedie
[36]; see also the more recent text of Douc et al. [14]. In the Markov chain Monte Carlo
(MCMC) literature, convergence is often studied by showing a form of Harris’ classic theo-
rem [20], which states that a Markov chain is uniquely ergodic if there exists a set satisfying
an analogue of Doeblin’s condition, perhaps holding only for the n-step kernel Pn for some
n < +∞, that is visited infinitely often. One typically proves Harris’ result by showing a
minorization condition for Pn on sublevel sets of the Lyapunov function [44]; an elementary
proof can be found in [17]. Example applications of such “drift and minorization” arguments
to MH algorithms can be found in [25, 35, 43].

Proofs of Harris’ theorem utilizing a Lyapunov condition typically guarantee exponential
convergence toward the unique invariant measure in a total variation (TV) metric weighted
by the Lyapunov function [17]. When the state space is high or infinite-dimensional, such TV
metrics are a poor choice because probability measures on infinite-dimensional spaces have a
tendency to become mutually singular after small perturbations [4]. Due to this phenomenon
it is typically not possible to couple two copies of a Markov chain such that they move
to exactly the same point with positive probability, even over multiple steps. However, for
measures on Banach spaces one can typically show a topological irreducibility condition,
that is, that the two copies draw together over time in an appropriate (semi)metric, at least
when initialized inside of sublevel sets of a Lyapunov function.

We study convergence of the RCAR algorithm on infinite-dimensional Banach spaces us-
ing the “weak Harris” theorem of Hairer et al. [18]. This can be viewed as an extension of the
ordinary Harris theorem to transport semimetrics. These semimetrics are designed to induce
a topology on bounded sets such that the topological irreducibility condition holds. An appli-
cation of the weak Harris’ theorem to the pCN algorithm can be found in [19], wherein it is
proved that pCN has a dimension-independent spectral gap. As the pCN algorithm is a spe-
cial case of RCAR with a Gaussian innovation λ and a deterministic kernel K(u, ·)= δβu, our
results for dimension-independent spectral gap of RCAR can be viewed as a generalization
of [19].

Our approximation theory on the other hand is inherently different from [19]. Rather than
showing analogous spectral gap results for discretizations of the algorithm and then showing
that the invariant measures are close as in [8, 33], we instead utilize perturbation bounds as
in [27] to bound the distance between the invariant measures by the n-step approximation
error between the exact kernel P and the approximation Pε . Perturbation theory for MCMC
is also studied in [37, 38, 45], but these results are not well suited to our infinite-dimensional
state space setting, since they require the triangle inequality which is typically not satisfied
by the transport semimetrics that we work with. The perturbation bounds we obtain have the
advantage of controlling all of the quantities of interest in terms of the spectral gap of the ker-
nel P and a pointwise bound on the approximation error of the approximate kernel Pε . We
further apply these results to cases where the innovation λ or the kernel K cannot be exactly
simulated, using arguments similar in spirit to those used to prove convergence rates for dis-
cretization of MH proposal kernels in [27] but technically much more involved. Rather than
changing norms to L2(ν) to obtain a central limit theorem, we proceed in the tradition of [16,
30, 31, 34] and give variation bounds using the Poisson equation. This gives approximation
error bounds to ν, as well as approximation error bounds for pathwise quantities for both P
and Pε for elements of the function space {ϕ : |||ϕ|||

d̃q
<+∞}, without requiring any direct

analysis of Pε or νε . This technique is related to classical Martingale and potential methods
[41].
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We highlight that our purpose here is to show error bounds that are independent of di-
mension and allow us to obtain rates for the error in quantities of interest, not to produce
quantitative estimates of the number of steps necessary to achieve a particular accuracy. All
of the bounds we give for approximate versions of the algorithm depend only on the spec-
tral gap of the exact kernel P , and the pointwise accuracy of the approximate kernel Pε as
well as the constants in its Foster–Lyapunov condition. While the former is independent of
dimension, the latter two quantities relating to Pε typically improve as ε→ 0 and Pε draws
closer to P . This behavior contrasts with the typical performance of “drift and minorization”
bounds in weighted TV norms for finite-dimensional problems where the spectral gap tends
to vanish as dimension increases (see e.g., [40]). In a sense, the dimension-independence
of our results can be attributed to choosing a semimetric that is better adapted to high or
infinite-dimensional spaces than weighted TV.

It is worth noting that one can typically obtain sharper numerical estimates of mixing or
relaxation times using geometric inequalities, such as log-Sobolev, Cheeger and Poincaré
inequalities. A thorough review of these techniques and their application to MH algorithms
is given in [13]. More recent work applying geometric inequalities to obtain sharp bounds
for mixing times of MH on bounded subsets of R

d can be found in [11, 12]. Geometric
inequalities are combined with Lyapunov arguments to obtain sharper estimates of relaxation
times for MH on R in [26]. At the time of this writing, we are not aware of analogous results
for infinite-dimensional MH.

1.4. An illustrative example in nonlinear regression. We now outline the details of a
running example that is used throughout the article to give context to the main ideas and as-
sumptions in our analysis. The motivation for this example is the semi-supervised regression
(SSR) problem [2, 15]; the task of inferring a function on a graph from indirect and limited
observations of its values on a subset of the nodes. In the large graph limit, as the number of
vertices tend to infinity, the SSR problem converges to a nonlinear regression problem where
a nonlinear transformation of a latent function is observed at a few points and the goal is to
recover the latent function.

EXAMPLE 1 (Nonlinear regression). Let T be the unit circle and H=H 1(T) the Sobolev
space of weakly differentiable functions on the unit circle with square integrable first deriva-
tives. Suppose u† ∈ H 1(T) is the ground truth function from which the following data is
measured:

y ∈R
m, yj = tanh

(
u†(xj )

)+ εj .

Here {xj }mj=1 are fixed points in T and the εj
i.i.d.∼ N(0, σ 2) with variance σ > 0. Since H 1(T)

is embedded in C(T) by the Sobolev embedding theorem [1], then the pointwise evaluation
of u† is well defined.

Now consider the inverse problem of inferring the function u† from an instance of the
data y. To solve the problem we write Bayes’ rule [47] in the following form:

(10)
dν

dμ
(u)= 1

Z(y)
exp

(−�(u;y)), Z(y)=
∫
L2(T)

exp
(−�(u;y))μ(du),

where � is the likelihood potential, μ is the prior probability measure and ν is the posterior
measure. Since the εj are Gaussian we ascertain that the likelihood potential �(u;y) is given
by

�(u;y)= 1

2σ 2

m∑
j=1

∣∣tanh
(
u(xj )

)− yj
∣∣2.
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As for the prior measure μ we take

(11) μ= Law

{ ∞∑
j=1

ajηjφj

}
,

where {ηj }∞j=1
i.i.d.∼ Gamma(1/5,1) random variables with Lebesgue density f (t)= 1

�(1/5) ×
t1/5−1 exp(−t)1(0,∞)(t) for t ∈ R. The φj are the DB12 wavelet basis [10] normalized in
L2(T) with scaling function φ0 and

φ2k+m(t)= 2k/2φ
(
2kt −mk

)
, k = 1,2, . . . ,mk = 0,1,2, . . . ,2k − 1,

with φ denoting the DB12 mother wavelet. Finally, the coefficients {aj }∞j=1 are chosen as

a1 = 1 and a2k+mk
= 2−2k.

Our choice of the aj and the laws of ηj together with the regularity of the DB12 wavelets
ensure that μ has full support on the subspace of H 1(T) consisting of functions with positive
wavelet coefficients.

In order to sample the resulting posterior we employ [23], Algorithm 4, an instance of the
RCAR algorithm for the prior μ. For a fixed β ∈ (0,1) we take

K(u, ·)= Law

{ ∞∑
j=1

τj 〈u,φj 〉L2(T)φj

}
, {τj }∞j=1

i.i.d.∼ Beta
(
β/5, (1− β)/5

)
,

with 〈·, ·〉L2(T) denoting the L2(T)-inner product. We then define the innovation λ as

(12) λ= Law

{ ∞∑
j=1

aj ξjφj

}
, ξj

i.i.d.∼ Gamma
(
(1− β)/5,1

)
.

It then follows from [23], Theorem 3.4, that the resulting proposal kernel Q as in (3) is μ-
reversible, implying that the RCAR-MH kernel P is ν-reversible in this example.

Figure 1 depicts an example application of the RCAR-MH algorithm described above for
recovering a function u† with sparse and positive wavelet coefficients; the details of this
experiment are summarized in Section 5.1. Here we truncate the infinite sum in (11) up to
N terms. Figure 1(a) shows the ground truth function u† together with the measurements y

and the resulting posterior mean obtained from RCAR-MH samples with N = 128 wavelet
modes. Figure 1(b) shows the average MH acceptance ratio as a function of the step size

FIG. 1. Representative numerical results for Example 1. (a) The ground truth function u† together with the
measurements y and the RCAR-MH estimate of the posterior mean. (b) The acceptance ratio of RCARC-MH as a
function of the parameter β for different number of wavelet modes N .
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parameter β for various choices of N (the dimension of the inference parameter). The inde-
pendence of the acceptance ratio from the dimension N is a telltale sign of the dimension-
independent convergence properties of RCAR-MH. Similar behavior was also observed in
the numerical experiments considered in [23].

1.5. Outline of the article. We dedicate Section 2 to preliminary results and definitions
that are used throughout the article and fix our notation. In Section 3 we give results pertaining
to the convergence properties of RCAR-MH kernels which together constitute the detailed
version of Main Result 1. Analogously Section 4 contains our main perturbation results for
Markov kernels that satisfy the conditions of weak Harris’ theorem constituting the detailed
statement of Main Result 2. We consider several applications of our results in Section 5, and
dedicate Section 6 to conclusion and offer some thoughts on future directions. Appendices A–
C contains the technical proofs of key results that are not included in the main text.

2. Preliminaries. We gather here some preliminary results on ergodic theorems and the
weak Harris’ theorem as well as some notation and terminology that is used throughout the
article. Results on ergodicity, most notably the weak Harris’ theorem are reviewed in Sec-
tion 2.1 while further notation is outlined in Section 2.2.

2.1. Results on ergodicity. We study convergence in the context of the weak Harris theo-
rem of [18], which is an extension of the classical Harris’ theorem to Wasserstein-type notions
of distance defined in terms of lower semi-continuous semimetrics referred to as “distance-
like” in [18].

DEFINITION 2. A function d :H×H �→ R is distance-like if it is positive, symmetric,
lower semi-continuous and d(u, v)= 0 iff u= v.

Nonnegative functions that satisfy all of the metric axioms save the triangle inequality are
often referred to as semimetrics, and we also adopt this terminology. Thus, a distance-like
function is a lower semi-continuous semimetric. Given a distance-like function d , we can
extend it to a Wasserstein or transport-like positive function on P(H) via

(13) d(μ1,μ2) := inf
π∈ϒ(μ1,μ2)

∫
H×H

d(u, v)π(du,dv),

where we recall ϒ(μ1,μ2) is the space of all couplings of μ1 and μ2, i.e., the space of
measures π ∈ P(H×H) whose marginals on the first and second variables coincide with μ1
and μ2 respectively. We also introduce the subspace P 1(H;d)⊂ P(H) as

(14) P 1(H, d) :=
{
μ ∈ P(H)

∣∣∣ ∫
H
d(u,0)μ(du) <+∞

}
,

following the standard notation for Wasserstein topologies [50].
Given a distance-like function d we also introduce the space Lip(d) consisting of functions

that are Lipschitz continuous with respect to d . More precisely, for a separable Hilbert space
X with norm ‖ · ‖X , define

(15) Lip(d) := {
ϕ :H �→X : |||ϕ|||d <+∞}

,

where

(16) |||ϕ|||d := sup
u�=v

‖ϕ(u)− ϕ(v)‖X
d(u, v)

.

Observe that the definition in (9) is just a specific example of (16) with the choice of d =
d̃q defined in (6). We now define some properties of P that together give the weak Harris
theorem.
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DEFINITION 3. A function V :H �→ R is a Lyapunov function for a Markov transition
kernel P if there exist (κ,K) ∈ (0,1)× (0,+∞) so that

(PV )(u)≤ κV (u)+K ∀u ∈H.

Lyapunov functions are a standard way to control tail behavior of P . We further require
that when initiated from two d-nearby points, we can couple two copies of the Markov chain
evolving according to P such that they draw together in one step.

DEFINITION 4. A distance-like function d :H×H→[0,1] is contracting for a Markov
operator P if there exists γ1 ∈ (0,1) so that

d(Pδu,Pδv)≤ γ1d(u, v) whenever d(u, v) < 1.

The assumption that d is capped at 1 is entirely innocuous; for details see [18], Remark 4.7.
Finally, we will need a type of topological irreducibility on sublevel sets of V reminiscent of
Doeblin’s condition [36], Section 16.2.1, in the classical TV theory of convergence.

DEFINITION 5. For every R > 0 the sublevel sets S(R) := {u | V (u) < R} of V are d-
small for a distance-like function d :H×H→[0,1] if there exists γ2(R) ∈ (0,1) and n ∈N

so that,

sup
u,v∈S(R)

d
(
Pnδu,Pnδv

)≤ γ2(R).

In some cases it is possible to show that Definitions 4 and 5 hold with n = 1, but it is
imperative for our technical results to use Definition 5 with a sufficiently large n. Given a
distance-like function d , we define a new weighted distance-like function

(17) d̃(u, v) := [
d(u, v)(2+ θV (u)+ θV (v)

] 1
2 ,

for a parameter θ > 0. Observe that the d̃q semimetric introduced in (6) is a particular ex-
ample of (17) with V (u)= ‖u‖q and d(u, v)= 1 ∧ ω−1(1+ η‖u‖ + η‖v‖)q‖u− v‖. Once
again we use the same notation to denote the induced semimetric d̃ on P(H) and in turn the
subspace P 1(H; d̃) as in (14). The following is a discrete-time version of [18], Theorem 4.8,
that is more natural for our setting. Although [27] shows this condition in the case where
n = 1 in Definition 5, the extension to general n is a minor modification of their argument;
and indeed, of the continuous-time result in [18].

PROPOSITION 1 ([18], Theorem 4.8 and [27], Theorem 3.9). Suppose d is contracting
for P , and P has a continuous Lyapunov function V with d-small level sets. Then there exist
constants (γ, θ, n) ∈ (0,1)× (0,+∞)×N such that

d̃
(
Pnδu,Pnδv

)≤ γ d̃(u, v) ∀u, v ∈H.

We refer to the constant 1− γ as the d̃-spectral gap of P .

Next we recall the definition of a Feller Markov operator. Let C(H) and Cb(H) denote the
spaces of continuous functions and continous and bounded functions on H respectively.

DEFINITION 6. A Markov operator P is Feller if Pϕ ∈ C(H) for every ϕ ∈ Cb(H). That
is, P is Feller if and only if u �→ P(u, ·) is continuous in the topology of weak convergence.

By [18], Corollary 4.11, if P is Feller and the distance-like function d satisfies some mild
conditions, Proposition 1 also implies the existence of a unique invariant measure for P .
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2.2. Notation. We gather some notation for future reference. Throughout Sections 3 H is
a separable Banach space with norm ‖ · ‖. In the applications in Section 5, we take H to be a
separable Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉. In either case H∗ denotes the
dual of H. Throughout, BR(v)⊂H denotes the closed ball in the topology of ‖ · ‖ of radius
R > 0 centered at v. We say that a measure μ ∈ P(H) has bounded moments of degree p

whenever ‖ ·‖p ∈ L1(μ). At various points we also consider a second separable Hilbert space
X with norm ‖ · ‖X and inner product 〈·, ·〉X . Furthermore, we often use the notation μ(ϕ)

to denote the integral
∫
H ϕ(u)μ(du) which is understood in the Bochner sense whenever

ϕ :H→X . We also use the standard notation Eξ to denote expectation of a random variable
ξ and P(A) to denote the probability of an event A. The measure with respect to which this
probability is computed will be clear from context.

3. Convergence theory for RCAR. In this section we gather our main theoretical results
pertaining to the convergence properties of RCAR-MH kernels as in Definition 1, constituting
a detailed version of Main Result 1. We gather our main assumptions on the potential � and
the kernel K in Section 3.1, using Example 1 throughout to give context to our assumptions.
We then outline Theorems 1, 2 and 3 which, in turn, identify a Lyapunov function for P ,
show that P is contracting for an appropriate semimetric, and that P has a unique invariant
measure. We postpone the proofs of these theorems to Appendix A and only summarize the
important details and implications of our results.

3.1. Assumptions on the potential � and the kernel K. Following Definition 1 the
RCAR-MH kernel P requires three main ingredients: the potential function � , which is
used to define the acceptance ratio function α; the kernel K; and, the innovation measure λ.
In order to prove Main Result 1 we need the function � and the kernel K to satisfy certain
regularity and growth assumptions. As we will discuss below and also in Section 5.3, some
of these conditions are rather strict and technical. Our only requirement for the innovation
measure λ is that it has moments of degree p ≥ 1.

ASSUMPTION 1. The function � :H �→R satisfies one or more of the following condi-
tions:

(a) (locally bounded from above) For every R > 0 there exists a constant M1(R) ≥ 0 so
that

�(u)≤M1 ∀u ∈ BR(0).

(b) (locally bounded from below) There exist constants q,M2,M3 ≥ 0 so that

�(u)≥M3 −M2 log
(
1+ ‖u‖q) ∀u ∈H.

(c) (increasing in the tail) For every β̃, b̃ ∈ (0,1) there exist strictly positive constants
R0(β̃, b̃),M4(β̃, b̃) > 0 so that ∀u ∈ BR0(0)

c

inf
v∈B

b̃(1−β̃)‖u‖(β̃u)
exp

(
�(u)−�(v)

)≥M4.

(d) (locally Lipschitz) There exist constants L> 0 and q ≥ 0 so that∣∣�(u)−�(v)
∣∣≤ L

(
1∨ ‖u‖q ∨ ‖v‖q)‖u− v‖ ∀u, v ∈H.

These assumptions are morally equivalent to the assumptions on the potential in [19].
Assumption 1(a) and (b) ensure that whenever μ has bounded moments of degree p ≥ 1
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then the measure ν as in (1) is well defined for any q ≤ p [22], Theorem 4.3. In the con-
text of Bayesian inverse problems the function � is a negative log-likelihood function and
often these assumptions are easily satisfied. For example, for additive noise models [22], Sec-
tion 4.1, the constants M3 and M2 can be taken as zero and Assumption 1(a) can be verified
so long as the forward map is bounded. Assumption 1(d) is a regularity condition controlling
the rate at which the Lipschitz constant of � can grow. This condition is also commonly
encountered in the literature on Bayesian inverse problems and can be verified in many ap-
plications [22].

Assumption 1(c), however, is not common and amounts to � being an increasing function
in the tails which, as discussed in Section 5.3, may not hold for many benchmark problems in
statistics and inverse problems. Although a simple workaround can be devised using our per-
turbation theory in Section 4. Hence, replacing Assumption 1(c) with a weaker assumption
could be an interesting generalization of the current work that is highly relevant to applica-
tions. A slightly different version of this assumption also appears in [19], where the radius
of the ball over which the infimum is computed is left as a general function r(‖u‖). In the
special case of the pCN algorithm one can simply choose the constant function r(‖u‖)= c.
However, our analysis reveals that for RCAR algorithms with non-Gaussian priors one really
needs the radius to grow with ‖u‖. Thus we explicitly state the assumption in this way. Sim-
ply put, the reason is that RCAR proposals concentrate less strongly around the point β̃‖u‖
than the Gaussian proposals in pCN, making it more difficult to prove contractive properties
of P .

Next we collect a set of assumptions on the kernel K.

ASSUMPTION 2. Consider the Markov transition kernel K and let ζu ∼ K(u, ·). Then
one or more of the following conditions hold:

(a) (almost sure contraction) ‖ζu‖< ‖u‖ a.s. ∀u ∈H.
(b) (local concentration) There exist constants 0 < b0 < β0 < 1 and ε0 > 0 so that

P
[‖ζu − β0u‖ ≤ b0(1− β0)‖u‖]≥ ε0 ∀u ∈H.

(c) (contracting couplings) For all u, v ∈H there exists a coupling �u,v ∈ ϒ(Kδu,Kδv)

so that

‖ζu − ζv‖< ‖u− v‖ a.s. for (ζu, ζv)∼�u,v,

and there exists a uniform constant βc ∈ (0,1) so that

sup
u,v∈H,u�=v

∫
H×H ‖ζu − ζv‖�u,v(dζu,dζv)

‖u− v‖ ≤ βc.

Unlike the assumptions on � , our assumptions on K do not have an analogue in [19] since
our class of algorithms is considerably more general than pCN. Assumption 2(a) requires
K(u, ·) to behave like a random linear operator (matrix) that shrinks and possibly rotates
the vector u. Assumption 2(b) ensures that K(u, ·) dedicates positive probability mass to a
neighborhood of a point β0u for some β0 < 1; ensuring that ζu can get sufficiently close to
β0u. Assumption 2(c) is perhaps the most consequential due to the fact that our technical
arguments rely on couplings between measures Kδu and Kδv such that they contract in one
step. This contractive property is important for handling several technical difficulties that
arise in proving the d-contraction and d-smallness conditions in the weak Harris’ theorem
(Proposition 1). In the pCN algorithm, Kβ(u, ·)= δβu is just a delta measure at βu for β < 1,
so the existence of this coupling is trivial, unlike the RCAR algorithm in general. Let us return
to Example 1 and verify that Assumptions 1 and 2 hold for the RCAR algorithm presented in
that example.
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EXAMPLE 1 (Continued). As tanh is smooth, globally Lipschitz and bounded, and � is
quadratic, we immediately have that Assumption 1(a), (b) and (d) hold; in fact, � is globally
Lipschitz. It remains to check condition (c). For a fixed u let v ∈ B

b̃(1−β̃)‖u‖
H1(T)

(β̃u) for

β̃, b̃ ∈ (0,1), where we used ‖ · ‖H 1(T) to denote the H 1(T) Sobolev norm. Using the fact
that tanh(·) ∈ (−1,1) we can write

2σ 2(
�(u)−�(v)

)
=

m∑
j=1

∣∣tanh
(
hu(xj )

)∣∣2 − ∣∣tanh
(
hv(xj )

)∣∣2
− 2yj

[
tanh

(
hu(xj )

)− tanh
(
hv(xj )

)]≥−4
m∑

j=1

|yj | −m.

Thus, Assumption 1(c) holds with M4 = exp(−4‖y‖1 −m).
Now recall the kernel K given by

K(u, ·)= Law

{ ∞∑
j=1

τj 〈u,φj 〉L2(T)φj , τj
i.i.d.∼ Beta

(
β/5, (1− β)/5

)}
,

for β ∈ (0,1). Since Beta(β/5, (1− β)/5) is supported on (0,1) and has bounded moments
of all degrees we can directly verify, using Markov’s inequality, that K satisfies Assump-
tion 2(a).

Next we check Assumption 2(b). Let β0, b0 ∈ (0,1). Then by Markov’s inequality once
more,

P
[‖ζu − β0u‖2

H 1(T)
> b2

0(1− β0)
2‖u‖2

H 1(T)

]≤ E‖ζu − β0u‖2
H 1(T)

b2
0(1− β0)2‖u‖2

H 1(T)

.

Following [7], Section 2, we characterize the H 1(T) norm via the DB12 wavelets

(18) ‖u‖2
H 1(T)

=
∞∑
j=1

j2〈u,φj 〉2L2(T)
.

By this expression and Fubini we have

E‖ζu − β0u‖2
H 1(T)

= E

∞∑
j=1

j2(τj − β0)
2〈u,φj 〉2L2(T)

= ‖u‖2
H 1(T)

E(τ1 − β0)
2.

To this end,

P
[‖ζu − β0u‖2

H 1(T)
> b2

0(1− β0)
2‖u‖2

H 1(T)

]≤ E(τ1 − β0)
2

b2
0(1− β0)2

.

Since τ1 is a Beta random variable we can always choose constants b0, β0 ∈ (0,1) so that
E(ζ1 − β0)

2 < b2
0(1− β0)

2. For example, choosing β0 to be arbitrarily small we can simply
choose b2

0 > Eζ 2
1 . This ensures that

P
[‖ζu − β0u‖H 1(T) ≤ b0(1− β0)‖u‖H 1(T)

]≥ ε0 > 0.

It remains to verify Assumption 2(c). We will construct the coupling �u,v explicitly. Take
u, v ∈ H 1(T) and draw an i.i.d sequence {τj }∞j=1 where τj ∼ Beta(β/5, (1 − β)/5). Then
define ζu and ζv via

ζu =
∞∑
j=1

τj 〈u,φj 〉L2(T)φj , ζv =
∞∑
j=1

τj 〈v,φj 〉L2(T)φj .
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That is, the two chains use the same draw of the τj ’s. Then a straightforward calculation
using (18), Jensen’s inequality and Fubini gives

E‖ζu − ζv‖H 1(T) ≤
(
E‖ζu − ζv‖2

H 1(T)

)1/2 = (
E τ 2

1
)1/2‖u− v‖H 1(T).

Thus, Assumption 2(c) holds with βc =
√
E τ 2

1 =
√

β(β+5)
6 where we used well-known ex-

pressions for the second raw moment of τ1 [28].

3.2. Statement of main results: Convergence of RCAR-MH kernels. In this section we
present our main theoretical results pertaining to the convergence properties of RCAR-MH
kernels P that together constitute Main Result 1. Theorem 1 gives families of Lyapunov
functions for P . This Lyapunov function is then used to define the family of semimetrics d̃q
as in (6) with respect to which a uniform spectral gap exists according to Theorem 2. Finally,
Theorem 3 shows that P is Feller and hence has a unique invariant measure.

THEOREM 1. Let P be an RCAR-MH kernel as in Definition 1 and suppose Assump-
tions 1(c) and 2(a), (b) are satisfied by the function � and the kernel K respectively, and
that the innovation measure λ ∈ P(H) has bounded moments of integer degree p ≥ 1. Then
V (u)= ‖u‖p is a Lyapunov function for P .

REMARK 1. One can easily check that the above theorem further implies that any poly-
nomial of the form V (u)=∑p

j=0 aj‖u‖j with coefficients aj ≥ 0 is also a Lyapunov function
of P .

We present the proof of Theorem 1 in Appendix A.1 using a direct argument akin to
the proof of Lyapunov functions in [19]. This result states that the choice of the Lyapunov
function is tied to the tail decay of λ so long as � is increasing in the tails following Assump-
tion 1(c).

The choice of the Lyapunov function V is crucial since Proposition 1 gives the existence of
a spectral gap in the d̃ semimetrics which in turn depend on the choice of Lyapunov functions;
recall (17). To this end, we introduce a family of semimetrics with respect to which P has a
uniform spectral gap.

For ω,η > 0 define

(19) dq(u, v) := 1∧ (1+ η‖u‖ + η‖v‖)q‖u− v‖
ω

,

and in turn the V -weighted semimetric

(20) d̃q(u, v) := [
dq(u, v)

(
2+ θV (u)+ θV (v)

)] 1
2 ,

for any Lyapunov function V of P following (17). Note, dq(u, v) behaves similarly to 1 ∧
‖u− v‖, except that nearby points in 1∧‖u− v‖ become further away from each other in dq

as they get further away from the origin. Recall that dq and d̃q are just specific choices of the
distance-like function d in Definition 2 and its V -weighted analogue in (17) that appear in
the statement of the weak Harris theorem. In fact, d̃q is the same metric introduced in (6) with
the choice V (u) = ‖u‖q . With the d̃q semimetric identified we can present our next result,
showing that RCAR-MH kernels have uniform d̃q spectral gaps.

THEOREM 2. Let P be an RCAR-MH kernel as in Definition 1 and suppose � satis-
fies Assumption 1 with q ≥ 0, K satisfies Assumption 2, and the innovation λ ∈ P(H) has
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bounded moments of integer degree p ≥ 1∨ �q�. Let d̃q be as in (20) with a Lyapunov func-
tion V of the form

(21) V (u)=
p∑

j=0

aj‖u‖j ,

with coefficients ap > 0 and aj ≥ 0 for 0≤ j < p. Then there exist constants (θ,ω,η,n, γ ) ∈
(0,+∞)3 ×N× (0,1) such that

(22) d̃q
(
Pnδu,Pnδv

)≤ γ d̃q(u, v).

This theorem is a detailed statement of Main Result 1(a) once we note that the bound (22)
can be readily extended from point masses δu, δv to general measures ν1, ν2 ∈ P 1(H; d̃q) by
the following remark.

REMARK 2. Observe that d̃q : P 1(H; d̃q) × P 1(H; d̃q) �→ R+ is convex in both of its
arguments and so,

d̃q
(
Pnν1,Pnν2

)≤ ∫
H×H

d̃q
(
Pnδu,Pnδv

)
π(du,dv),

for any coupling π ∈ ϒ(ν1, ν2). In fact, this is true with d̃q replaced with other transport
distance-like functions [18], page 246.

The complete proof of Theorem 2 is given in Appendix A.2. Our method of proof relies
on the weak Harris theorem (Proposition 1) which in turn requires us to show that dq is
contracting for P and that the level sets of V are dq -small; these are shown in Propositions 3
and 4 respectively. To prove that dq is contracting for P we need to choose the parameters
η,ω/ηq > 0 to be sufficiently small depending on the constants appearing in Assumptions 1
and 2 as well as the tail decay of λ. The integer n then emerges in the proof of dq -smallness
of the V level sets and depends on the choice of V as well as the parameters ω, η and the tail
decay of λ.

For our third and final set of main theoretical results we show that P has a unique invariant
measure. By [18], Corollary 4.11, the weak Harris theorem guarantees the existence of a
unique invariant measure if P is Feller (recall Definition 6) and there exists a complete metric
d̄ on H such that d̄ ≤√

dq . Observe that for q ≥ 0,

dq(u, v)= 1∧ω−1(
1+ η‖u‖ + η‖v‖)q‖u− v‖,√

dq(u, v)≥
√

1∧ω−1‖u− v‖,
and the right side is a complete metric since ‖u − v‖ is a complete metric. Thus to prove
existence and uniqueness of invariant measures of P we simply need to verify that it is indeed
a Feller kernel, this result constitutes the claim in Main Result 1(b) which we summarize in
Corollary 1 below.

THEOREM 3. Let P be an RCAR-MH kernel as in Definition 1 and suppose Assump-
tions 1(a), (b), (d) and 2(a), (c) are satisfied by � and K, and λ ∈ P(H) has bounded mo-
ments of degree q . Then P is Feller.

We prove this result in Appendix A.3 using direct arguments relying on the dominated
convergence theorem and the assumptions on K and � .
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COROLLARY 1. Suppose the conditions of Theorems 1, 2 and 3 are satisfied. Then P
has a unique invariant measure.

REMARK 3. It is important to note that existence of a unique invariant measure of P does
not guarantee that the invariant measure coincides with the target measure ν defined in (1).
To ensure that ν is indeed the invariant measure we still require P to be ν-reversible, which
in turn holds whenever Q is μ-reversible [23]. Unfortunately the latter is difficult to establish
for general choices of μ and requires explicit balancing of K and λ to achieve μ-reversibility
of Q.

EXAMPLE 1 (Continued). The measure λ defined in (12) has bounded moments of all
degrees [23], Theorem 3.1, and so we may take V (u)= ‖u‖p

H 1(T)
for any p ≥ 2 as the Lya-

punov function. Furthermore, we already verified that � satisfies Assumption 1(b) with q = 0
and so we may choose the semimetrics,

(23)
d0(u, v)= 1∧ ‖u− v‖H 1(T)

ω
,

d̃0(u, v)= [
d0(u, v)

(
2+ θ‖u‖2

H 1(T)
+ θ‖v‖2

H 1(T)

)] 1
2 .

Application of Theorems 1 through 3 together with the weak Harris theorem (Proposition 1)
then yield that P has a uniform d̃0 spectral gap for appropriate choices of the constants ω, θ .
Moreover, P has a unique invariant measure and by [23], Theorem 3.4, that invariant measure
is precisely the Bayesian posterior ν defined in (10)

4. Perturbation theory for MH kernels. In this section we present our perturbation
analysis of MH kernels that amounts to a detailed statement of Main Result 2. Our per-
turbation theory is much more general than the present application to RCAR-MH kernels,
hence we present it for more general kernels P0 and corresponding perturbations Pε . As the
notation suggests, the approximation parameter ε controls the quality of the approximating
kernel—akin to discretization resolution—so that Pε → P0 in an appropriate sense as ε→ 0.

Our results are of practical interest for two key reasons: First, simulation can only be
done in finite dimensions and therefore approximations of the acceptance ratio α(u, v) are
unavoidable in practice when H is a function space, as is the case in Example 1. Second, in
some cases the innovation measure λ or the kernel K may be intractable or costly to simulate.

The difficulty in obtaining approximation results using semimetrics such as d̃q in (20)
is the fact that these semimetric do not satisfy the triangle inequality. However, a “weak”
triangle inequality is still satisfied; see Lemma 1 below. Fortunately, the weak triangle in-
equality allows us to bound the approximation error of Pε in a similar manner as if d̃q were a
metric. Throughout this section, we will often use the generic notation d and d̃ for a distance-
like function and its V -weighted version, since these perturbation results hold in general for
Markov kernels P0 that satisfy the weak Harris theorem. When we verify assumptions or
apply results to RCAR-MH, we will make the specific choice of dq and d̃q .

In Section 4.1 we identify general assumptions on the kernels P0 and Pε followed by our
main perturbation theorems in Section 4.2, with the proofs postponed to Appendix B.

4.1. Assumptions on the kernels P0 and Pε . Let us first collect our assumptions on the
MH kernel P0 and the distance-like function d .

ASSUMPTION 3. Let P0 be a Markov transition kernel on P(H). Then one or more of
the following hold:
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(a) d :H×H �→ [0,1] is a distance-like function on H.
(b) P0 is contracting for d .
(c) P0 has a continuous Lyapunov function V .
(d) For θ > 0 define d̃ as in (17) using d and V . Then d̃ satisfies a weak triangle inequality

(24) d̃(u, v)≤G
[
d̃(u,w)+ d̃(w, v)

] ∀u, v,w ∈H,

where G> 0 is a uniform constant.
(e) P0 has a unique invariant measure ν0 ∈ P 1(H; d̃).
(f) There exists an integer n≥ 1 and a constant γ ∈ (0,1) so that

d̃
(
Pn

0 δu,Pn
0 δv

)≤ γ d̃(u, v) ∀u, v ∈H.

Observe that conditions (b), (c), (f) are automatically satisfied if P0 satisfies the weak Har-
ris’ theorem (Proposition 1) and so by proving that P0 has a spectral gap one automatically
verifies these assumptions. Moreover, the d̃q semimetrics defined in (20) satisfy condition (d)
by Lemma 1 below, and so the above assumptions on P0 are naturally satisfied in the setting
of Section 3.2 and for RCAR-MH kernels.

LEMMA 1. Define d̃q as in (20) and let p,q ≥ 0 be integers and V (u)=∑p
j=0 aj‖u‖p

with ap > 0 and aj ≥ 0 for j = 0, . . . , p − 1. Then there exists G(θ,p, q,ω,η, aj ) > 0 so
that

(25) d̃q(u, v)≤G
(
d̃q(u,w)+ d̃q(w, v)

) ∀u, v,w ∈H.

See Appendix B.1 for the proof. Next we collect assumptions on the family of approximate
kernels Pε following [27].

ASSUMPTION 4. Let P0 be a Markov transition kernel on P(H) with Lyapunov function
V , and let d be a distance-like function on P(H) and define d̃ using d and V as in (17). Then
there exists a constant ε0 > 0 so that the family of transition kernels Pε satisfy:

(a) For every ε ∈ (0, ε0) there exist constants (κε,Kε) ∈ (0,1)× (0,+∞) so that

PεV (u)≤ κεV (u)+Kε ∀u ∈H.

(b) There exists a bounded function ψ(ε) :R+ �→R+ so that

(26) d̃(P0δu,Pεδu)≤ψ(ε)
(
1+√

V (u)
) ∀u ∈H.

Note that our assumptions on Pε are far less stringent in comparison to P0. Simply put
condition (a) requires P0 and Pε to have the same Lyapunov function while (b) requires
control on the one step error between P0 and Pε . In fact, Pε is not required to have a unique
invariant measure or satisfy any contractive properties directly. This flexibility allows access
to larger classes of approximate kernels and makes our perturbation theory conveninet to
apply since there are fewer conditions to check. In comparison, more direct methods such as
the perturbation analysis of [19] prove the convergence properties of P0 and Pε separately
and then show that the invariant measures are close to each other.

EXAMPLE 1 (Continued). We now consider an approximation of the kernel P for the
nonlinear regression problem and verify the above assumptions. Suppose the likelihood po-
tential � is replaced with the numerical approximation � ◦�N where �N denotes the L2

projection on the span of the first N wavelets φ0, . . . , φN . We let ε = 1/N and define the per-
turbed kernel Pε as the identical RCAR-MH kernel to P with the accept/reject probability

αε(u, v) := 1∧ exp
(
�(�Nu)−�(�Nv)

)
.
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A straightforward application of Theorem 1 reveals that both P and Pε share the same Lya-
punov functions of the form V (u)=∑p

j=1 aj‖u‖pH 1(T)
with positive coefficients aj and con-

stants κε = κ , Kε =K , thus Assumption 4(a) is verified easily.
Assumption (b) can be verified via a coupling argument. Fix u ∈ H 1(T) and let πu ∈

ϒ(Pδu,Pεδu) be an optimal coupling that achieves d0(Pδu,Pεδu). Then by Cauchy–
Schwarz we have that

(27)

d̃0(Pδu,Pεδu)
2

≤
∫
H 1(T)×H 1(T)

d0(v,w)
(
2+ θV (v)+ θV (w)

)
πu(dv,dw),

≤ d0(Pδu,Pεδu)

∫
H 1(T)×H 1(T)

(
2+ θV (v)+ θV (w)

)
πu(dv,dw),

≤ d0(Pδu,Pεδu)
[
2+ 2θ

(
κV (u)+K

)]
.

It is thus sufficient to bound d0(Pδu,Pεδu). Now consider a coupling of Pδu and Pεδu where
both chains propose a new point u∗ = ζu+ ξ where ζu ∼K(u, ·) and ξ ∼ λ. We then generate
a uniform random variable ς and one chain accepts u∗ when ς < α(u,u∗) while the other
chain accepts if ς < αε(u,u

∗). Since this coupling is not necessarily optimal we have

(28)

d0(Pδu,Pεδu)≤ E
[
d0

(
u∗, u∗

)
P(both chains accept)

]
+E

[
d0

(
u∗, u

)
P(only one chain accepts)

]
+E

[
d0(u,u)P(both chains reject)

]
≤ E

[
P(only one chain accepts)

]
.

Moreover, since (1 ∧ exp) is Lipschitz and we already showed that � is globally Lipschitz
we have

P(only one chain accepts)≤ ∣∣�(
u∗

)−�
(
�Nu∗

)∣∣≤ L
∥∥u∗ −�Nu∗

∥∥
H 1(T)

≤ L‖I −�N‖H 1(T)

∥∥u∗∥∥H 1(T).

Now since ‖ζu‖H 1(T) ≤ ‖u‖H 1(T) by Assumption 2 and triangle inequality we have
‖u∗‖H 1(T) ≤ ‖u‖H 1(T) + ‖ξ‖H 1(T). Substituting back into (28) gives

d0(Pδu,Pεδu)≤ L‖I −�N‖H 1(T)E
[‖u‖H 1(T) + ‖ξ‖H 1(T)

]
≤ C1‖I −�N‖H 1(T)

(
1+ ‖u‖H 1(T)

)
,

for some constant C1 > 0. To this end we have shown that

d̃0(Pδu,Pεδu)
2 ≤ C2‖I −�N‖H 1(T)

(
1+ Ṽ (u)

)
,

where C2 > 0 and Ṽ (u) = (1 + ‖u‖H 1(T) + ‖u‖H 1(T)V (u)). Noting that Ṽ is also a poly-
nomial of ‖u‖H 1(T) with positive coefficients then verifies Assumption 4(b) with Lyapunov
function Ṽ and ψ(ε)= C3‖I −�N‖1/2

H 1(T)
for a constant C3 > 0.

4.2. Statement of main results: Perturbation theory for MH kernels on Banach spaces.
We are now ready to present our main theoretical results pertaining to perturbations of
Markov kernels on Banach spaces. Our first result is a generalization of [27], Theorem 3.13,
to Banach spaces that allows us to bound the distance between the the invariant measure(s)
of P0 and Pε . A similar argument is used to bound the distance between invariant measures
of a Markov transition kernel and its perturbation in [18].
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THEOREM 4. Suppose Assumptions 3 and 4 are satisfied. Then there exists a function
ϑ(n) :N �→ [0,∞) so that for each k > 0 such that γ �k/n� <G−1 we have

(29) d̃(ν0, νε)≤ Gψ(ε)ϑ(k)

1−Gγ �k/n�
(
1+ ν0(

√
V )∧ νε(

√
V )

) ∀u, v ∈H,

where ν0, νε ∈ P 1(H; d̃) are the invariant measure of P0 and any invariant measure of Pε ,
respectively.

We prove this theorem in Appendix B.2. Note that the invariant measure νε need not be
unique, though the Lyapunov condition for Pε in Assumption 4(a) guarantees there exists at
least one. The function ϑ(n) appears in our bound due to the fact that d̃ satisfies the weak
triangle inequality (25) with a constant G > 0 that is possibly bigger than 1. To overcome
this difficulty we choose k > n sufficiently large so that Gγ �k/n� < 1, where γ is the n step
spectral gap of P0 in Assumption 3(b). We then take ϑ(k) = C

∑k
j=1 G

j(C∗γ )�j/n� <∞
with constants C∗,C > 0 depending on the Lipschitz constant of P0 and the growth rate of
V . Noting that Gϑ(k)/(1−Gγ �k/n�) <+∞ is a constant independent of ε and by taking d̃q
as our semimetric we obtain the detailed version of Main Result 2(a).

We can further extend the error bound (29) to a practical error bound between the expec-
tation of d̃-Lipschitz functions under ν0 and νε .

COROLLARY 2. Suppose the conditions of Theorem 4 are satisfied. Let X be a separable
Hilbert space with norm ‖ · ‖X and consider a d̃-Lipschitz function f :H→ X satisfying
‖f (u)− f (v)‖X ≤ d̃(u, v) ∀u, v ∈H. Then we have,

(30)
∥∥ν0(f )− νε(f )

∥∥
X ≤

Gϑ(k)

1−Gγ �k/n�
ψ(ε)

(
1+ ν0(

√
V )∧ νε(

√
V )

)
.

PROOF. Since the argument is short we present it here. Let π be an optimal coupling
between ν0 and νε which exists following [50], Theorem 4.1. Then∫

H×H
d̃(u, v)π(du,dv)≥

∫
H×H

∥∥f (u)− f (v)
∥∥
Xπ(du,dv)

≥
∥∥∥∥∫

H
f (u)dν −

∫
H
f (v)νε(dv)

∥∥∥∥
X
.

The last step follows from Jensen’s inequality. �

Note that the assumption that f is d̃-Lipschitz is not very restrictive given that such an f

is continuous but ‖f (u)‖X can grow as fast as the Lyapunov function V (u).
We continue to derive practical error bounds pertaining to Markov kernels and their per-

turbations, turning our attention to pathwise properties of realizations of the Markov chains.
More precisely we bound the error of finite-time Cesáro averages from Pε and expectations
under ν0 for real valued d̃-Lipschitz functions. Our bounds are desirable as they are a major
improvement over standard arguments using the weak triangle inequality. This is a conse-
quence of the fact that the d̃-Lipschitz seminorm ||| · |||

d̃
obeys the triangle inequality even

when d̃ does not, indeed for functions f,g :H �→X ,

(31)

|||f + g|||
d̃
= sup

u�=v

‖f (u)+ g(u)− f (v)− g(v)‖X
d̃(u, v)

≤ sup
u�=v

‖f (u)− f (v)‖X + ‖g(u)− g(v)‖X
d̃(u, v)

= |||f |||
d̃
+ |||g|||

d̃
.

Our next main result bounds the mean error of pathwise estimates from Pε with respect to
expected values under the exact target ν0.
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THEOREM 5. Suppose Assumptions 3 and 4 are satisfied and let X be a separable
Hilbert space. Then for Uε

k ∼ Pk−1
ε δu0 and for any function ϕ :H �→ X with |||ϕ|||

d̃
< +∞

we have:

(a) There exist positive constants C1,C2,C3 > 0 that are independent of n but depend on
θ , κε , Kε , γ and V (u0) such that

E

∥∥∥∥∥1

n

n−1∑
k=0

ϕ
(
Uε
k

)− ν0(ϕ)

∥∥∥∥∥
X
≤ |||ϕ|||

d̃

1− γ

(
C2ψ(ε)+C3

ψ(ε)

n
+C4

1√
n

)
.

(b) There exist constants C4,C5,C6 > 0 independent of n but depending on θ , κε and Kε

such that ∥∥∥∥∥E1

n

n−1∑
k=0

ϕ
(
Uε
k

)− ν0(ϕ)

∥∥∥∥∥
X
≤ |||ϕ|||

d̃

1− γ

(
C4ψ(ε)+C5

ψ(ε)

n
+ C6

n

)
.

The complete proof is given in Appendix B.3. To prove part (a) we utilize an approach
similar to that of [16]. The complication is that because ϕ is X -valued rather than R-valued,
we need to prove that the potential

∑∞
k=0 Pkϕ is a solution to the Poisson equation; this result

is of course well known for real-valued ϕ. The inner product structure on X is used only once,
to control the expected ‖ · ‖X -norm of a Martingale. While it is possible to control this term
without the inner product structure, in most applications in statistics and Bayesian inverse
problems the functions of interest are Hilbert-space valued, so the result above is sufficiently
general. Let us now return to Example 1 once more to apply Theorems 4 and 5 to obtain error
bounds on the approximate posteriors and the posterior Césaro average.

EXAMPLE 1 (Continued). We already verified that RCAR-MH kernel P and the approx-
imate kernel Pε obtained by discritizing the likelihood potential � via projection onto the
first N wavelet bases. Then a direct application of Theorem 4 yields a bound of the form

d̃0(ν, νε)≤ C1‖I −�N‖1/2
H 1(T)

,

where C1 > 0 is a constant independent of N and we recall that we defined ε = 1/N and
ν denotes the true posterior measure. Let us also consider the function ϕ : u �→ u and apply
Theorem 5(a) to obtain an error bound on the pathwise Cesáro averages of the discretized
RCAR-MH algorithm:

E

∥∥∥∥∥1

n

n−1∑
k=0

Uε
k − ν(ϕ)

∥∥∥∥∥
H 1(T)

≤ C2

(
‖I −�N‖1/2

H 1(T)
+ 1√

n

)
,

where C2 > 0 is independent of N,n ≥ 1. To this end, both the error between the invariant
measures and the Cesáro averages of the RCAR-MH algorithm are controlled by the square
root of the H 1(T)-operator norm of I −�N . The Cesáro average is also controlled by the
standard Monte Carlo rate n−1/2.

5. Applications. Here we discuss a number of applications of our main theoretical re-
sults from Sections 3 and 4 with a particular focus on approximations of the RCAR algorithm.
We start in Section 5.1 by providing a detailed explanation of the numerical experiments pre-
sented in Figure 1 and pertaining to Example 1. In Section 5.2 we consider an application of
the pCN algorithm where the Karhunen–Loéve modes of the prior are perturbed. Finally, in
Section 5.3 we discuss the practicality of Assumption 1(c).
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5.1. Details of numerical experiments in Figure 1. To generate Figure 1 we utilized the
RCAR algorithm of [23] tailored for gamma random variables (see in particular Algorithm 6
of that article). The function u† depicted in Figure 1(a) is the function obtained by setting
the first, fourth, eighth and sixteenth DB12 wavelet coefficients equal to 2 while the rest of
the coefficients are zero. That is, our u† is sparse in the DB12 wavelet basis and its nonzero
coefficients are positive so that it is consistent with our choice of the prior μ which constrains
the wavelet coefficients to be positive. The posterior mean in Figure 1(a) was computed by
truncating the prior at N = 128 wavelet modes and running the chain for 105 iterations with
parameter β = 0.9 and with a burn-in of 5× 104.

Figure 1(b) was generated by varying N , β over the indicated ranges and running the
RCAR algorithm for the same data y shown in Figure 1(a). Each data point on Figure 1(b)
was generated by running the chain for 105 iterations with burn-in of 5×104 over five restarts
of the chain with random initial conditions from the prior. The acceptance ratios for the five
restarts were then averaged to obtain a data point in the figure. The restarts were performed to
reduce the effect of the initial condition of the chain and other random effects on the reported
values.

5.2. pCN with approximate Karhunen–Loéve expansions. We now consider a perturba-
tion example where the pCN algorithm of [6] is applied with a perturbed prior covariance.
More precisely, consider the same nonlinear regression problem as Example 1 but this time
we wish to recover u† ∈Hs(�) where �⊂ R

d and Hs(�) is a Sobolev-type space. Let φj

be the Neumann eigenfunctions (normalized in L2(�)) of the standard Laplacian operator on
�, that is, they solve the problems

−�φj = cjφj in �,

∇φj · n= 0 on ∂�,

where n is the unit outward pointing normal vector on ∂� and the cj ≥ 0 are the eigenvalues
of �. Indeed, one can verify that � is positive semi-definite and self-adjoint and so c0 = 0,
with the corresponding eigenfunction φ0 being a constant on �, while the cj > 0 for j ≥ 1.
Now for integer s > 0 consider the spaces Hs(�)⊂L2(�) defined as

Hs(�) :=
{
u ∈L2(�) : ‖u‖2

Hs (�) :=
∞∑
j=0

(1+ cj )
s〈u,φj 〉2L2(�)

<+∞
}
.

It is known (see [15], Lemma 7.1) that for any s > 0 it holds that Hs(�) ⊂ Hs(�) where
Hs(�) denotes the standard Sobolev space of index s on �. Then an application of the
Sobolev embedding theorem [1] yields Hs(�) ⊂ C(�) for s > d/2. Thus the nonlinear re-
gression problem in Example 1 is well defined for functions u† ∈Hs(�) for s > d/2; which
we assume holds henceforth. An identical reasoning to Example 1 then verifies Assumption 1.

Now define the prior measure μ as

μ= Law

{ ∞∑
j=0

ajηjφj

}
,

where ηj
i.i.d.∼ N(0,1) and aj = (1+ cj )

−k with k > s. Let u∼ μ and write

‖u‖2
Hs (�) =

∞∑
j=0

(1+ cj )
−kη2

j .

Observe that E(1+ cj )
−kη2

j = (1+ cj )
−k and E(1+ cj )

−2kη4
j = 3(1+ cj )

−2k . By Weyl’s

law cj � j2/d so that (1+ cj )
−k � j−2k/d . Since we assumed that k > s > d/2 we infer that
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j=0(1 + cj )

−k < +∞ and
∑∞

j=0(1 + cj )
−2k < +∞. Kolmogorov’s two series theorem

then yields that ‖u‖2
Hs (�) <+∞ a.s. So our prior is supported on Hs(�) as desired.

Since μ is Gaussian our RCAR-MH algorithm reduces to the pCN algorithm, that is, for a
step size β ∈ (0,1) we take the kernel K(u, ·)= δβu and the innovation measure

λ= Law

{ ∞∑
j=0

aj ξjφj

}
, ξj

i.i.d.∼ N
(
0,

(
1− β2))

.

These choices yield the pCN kernel

(32)

P(u,dv)= α(u, v)(δβu ∗ λ)(dv)
+ δu

∫
H1(�)

(
1− α(u,w)

)
(δβu ∗ λ)(dw).

Since pCN is a special case of RCAR we readily verify, by the same calculations presented
for Example 1, that pCN satisfies the conditions of the weak Harris’ theorem and so has a
d̃0-spectral gap, where we recall the semimetrics d0, d̃0 defined in (23) with the H 1(T) norms
replaced with Hs(�) norms and possibly different constants (θ,ω).

Let us now consider a perturbation of pCN by replacing the eigenpairs (cj , φj ) with per-
turbations (cεj , φ

ε
j ) for a parameter ε > 0. We have in mind applications where we can only

compute (cj , φj ) numerically, using for example a finite element method, since the domain �

can have complicated geometry. We further assume for brevity that there exists a sufficiently
small constant ε0 > 0 so that for all ε ∈ (0, ε0) we have cεj � j2/d and the φε

j are normalized

in L2(�) and linearly independent such that span{φε
j } ⊆H1(�).

Our goal is to obtain an error bound between the true posterior ν and the limit distribution
νε of the perturbation of pCN that utilizes the eigenpairs (cεj , φ

ε
j ) rather than the exact pairs

(cj , φj ). To this end, define the perturbed innovation measure

λε = Law

{ ∞∑
j=0

aεj ξjφ
ε
j

}
, ξj

i.i.d.∼ N
(
0,

(
1− β2))

,

where aεj = (1+ cεj )
−k as well as the corresponding perturbed pCN kernel

(33)

Pε(u,dv)= α(u, v)(δβu ∗ λε)(dv)
+ δu

∫
H1(�)

(
1− α(u,w)

)
(δβu ∗ λε)(dw).

Repeating the same calculation we did for μ in the above yields that λε is a Gaussian
measure supported on H1(�) for all ε ∈ (0, ε0) and so has bounded moments of all orders
and so by Theorem 1 any function of the form V (u) = ‖u‖pH1(T)

for p ≥ 1 is a Lyapunov
function for Pε and so Assumption 4(a) is satisfied. Thus it remains to verify Assumption 4(b)
before we can apply Theorem 4 to bound d̃0(ν, νε). Following this argument, we obtain the
following proposition, the proof of which is postponed to Appendix C.

PROPOSITION 2. Consider the above setting with the pCN kernel P as in (32) and the
perturbation Pε introduced in (33). Suppose that the following conditions hold:

(a) There exists a common Lyapunov function V for P , Pε so that

PV (u)≤ κV (u)+K, PεV (u)≤ κεV (u)+Kε ∀u ∈H1(�),

and furthermore

κ ∨ sup
ε∈(0,ε0)

κε ∈ (0,1) and K ∨ sup
ε∈(0,ε0)

Kε ∈ [0,+∞).
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(b) It holds that the sequences {aj‖φj‖2
Hs (�)}, {aj‖φj − φε

j‖Hs (�)} and {|aj −
aεj |‖φj‖Hs (�)} belong to  1.

Then ∀ε ∈ (0, ε0) and for any u ∈Hs(�) it holds that

d̃0(Pδu,Pεδu)
2 ≤ Cψ(ε)

[
1+ V (u)

] ∀u ∈H 1(T),

where C > 0 is a constant independent of ε and

ψ(ε)=
[( ∞∑

j=0

aj
‖φj − φε

j‖2
Hs (�)

‖φj‖2
Hs (�)

)1/2

+
( ∞∑
j=0

|aj − aεj |2
a2
j

‖φj‖2
Hs (�)

)1/2]
.

An application of Theorem 4 then yields the existence of a constant C > 0 so that

d̃0(ν, νε)≤ C
√
ψ(ε)

which is the desired result.

REMARK 4. The above proposition identifies conditions on approximations schemes for
the eigenpairs {aj ,φj } in connection with our choice of the prior μ. Most notably, the con-
dition that {|aj − aεj |‖φj‖Hs (�) ∈  1 requires the absolute error in computing the eigenvalues
cj to decay rapidly since the {‖φj‖Hs (�)} is not summable (higher frequency eigenfunc-
tions have larger Sobolev norms). However, one can get around this difficulty simply by
prescribing a different sequence aj that can be implemented exactly. For example, by tak-
ing aj = (1+ bj )

−k for another sequence of numbers bj � j−2/d . It can be verified that the
resulting prior will still be a Gaussian supported on Hs(�) but with a different covariance
operator. The conditions ({aj‖φj‖2

Hs (�)}, {aj‖φj − φε
j‖Hs (�)}) ∈  1 can be viewed as guide-

lines for choosing the index k > s according to the regularity of the φj and accuracy of our
numerical scheme for computing the φε

j . Note that we expect the sequence ‖φj −φε
j‖Hs (�) to

grow since the error of standard numerical schemes for computing eigenfunctions grows with
their frequency due to their growing Hs(�) norms. Thus, choosing a larger index k allows us
to control this approximation error.

REMARK 5. Note that the above bound can also be viewed as an error bound between
two posteriors ν, νε that arise from two Gaussian priors μ and με . Indeed, our calculations
yield a method for controlling the distance between posterior measures in terms of prior per-
turbations, a contemporary topic in the theory of Bayesian inverse problems [46]. Admittedly,
our method is inefficient as it goes through the construction of a Markov chain that converges
to the two posteriors. Regardless, such posterior perturbation bounds are often difficult to
achieve, essentially due to the Feldman–Hajek theorem [3], Section 2.7, which implies that
perturbations of Gaussian prior measures can often lead to mutually singular priors and in
turn mutually singular posteriors. Classic stability analyses of Bayesian inverse problems
utilize TV or Hellinger distances [9, 22, 24, 48] and, due to the singularity of the posterior
measures, one has no hope of obtaining a useful error bound in those topologies. Our calcu-
lations above, and similarly the results of [46], suggest that transport (semi-)metrics hold the
key for stability analysis of posterior measures due to prior perturbations.

5.3. Practicality of Assumption 1. We dedicate this subsection to a discussion of the rel-
evance of Assumption 1 in practical applications. The conditions (a), (b) and (d) are standard
in the theory of Bayesian inverse problems and can be verified for large classes of inverse
problems such as deconvolution, phase retrieval, porous medium flow, etc. [9, 22, 24, 47,
48]. The condition (c) however is not crucial to ensure the existence and uniqueness of the
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target measure ν, but it is central to Theorems 1 and 2. We need this condition to make sure
that � is uniformly increasing when sufficiently far from the origin. Intuitively this means
that if the chain is far away then the probability of accepting a proposal that is even farther
away decays uniformly. While we verified Assumption 1(c) for Example 1, it does not hold
even in simple linear inverse problems, as we now demonstrate with an example in deconvo-
lution [23, 51].

Let H = H 1(T) once more and consider G : H 1(T) �→ R
m a bounded linear operator of

the form (
G(u)

)
j := (g ∗ u)(xj ),

with g ∈ C∞(T) a smooth kernel and distinct points xj ∈ T. Let u† ∈H 1(T) be the ground
truth function giving rise to the data yj = G(u†)+ εj where εj ∼N(0,1). These assumptions
induce the quadratic likelihood potential

�(u;y) := 1

2

∥∥G(u)− y
∥∥2

2.

In light of the smoothing effect of (g ∗ ·) we can readily see that Assumption 1(c) cannot
be verified: Let u be a point that has large H 1(T) norm and evaluate �(u). Then add to u a
highly oscillatory function δu with small amplitude that will increase the Sobolev norm of
u significantly. Since convolution is linear we have g ∗ (u + δu) = g ∗ u + g ∗ δu and the
perturbation (g ∗ δu)(xj ) to the observed data y|u will be small; meaning that �(u+ δu) is
close to �(u). Then the probability of accepting a move towards u+ δu is not guaranteed to
decrease uniformly.

This suggests that Assumption 1(c) is too restrictive. But we claim that a slight modi-
fication of the prior μ or the likelihood � can remedy this problem in many applications
including deconvolution. For a choice of b̃ and β̃ let c = b̃(1− β̃). Pick R0 > 0 and define
the perturbed likelihood potential

�ε(u;y) :=�(u;y)+max
{
0, ε‖u‖2 −R2

0
}
,

where ε > 0 is a fixed constant satisfying

ε >
2c2

1− c2 ‖G‖2,

with ‖G‖ denoting the operator norm of G. Then for any u ∈ BR0(0)
c and v ∈ Bc‖u‖(0) we

have

2σ 2(
�ε(u;y)−�ε(v;y))= ∥∥G(u)− y

∥∥2
2 + ε‖u‖2 − ∥∥G(v)− y

∥∥2
2 − ε‖v‖2

≥ ε‖u‖2 − (
2‖G‖2 + ε

)‖v‖2 − 2‖y‖2
2

≥ ε‖u‖2 − c2(
2‖G‖2 + ε

)‖u‖2 − 2‖y‖2
2

= (
ε− c2(

2‖G‖2 + ε
))‖u‖2 − 2‖y‖2

2.

The above lower bound is a second order polynomial of ‖u‖ with a positive leading
coefficient—due to the lower bound on ε—and so �ε satisfies Assumption 1(c) for any choice
of b̃, β̃ ∈ (0,1) and R0 > 0.

It can be verified that this modification of � will result in a perturbation to the posterior
ν that is controlled by the parameter ε, the radius R0 and the tails of μ. Define the perturbed
posterior

dνε
dμ

(u)= 1

Zε(y)
exp

(−�ε(u)
)
.
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Using direct computations akin to the proof of [22], Theorem 5.2, we can then show ∃C > 0
such that

dTV(νε, ν)≤ C

∫
{‖u‖

H1≥R0}
(
ε‖u‖2

H 1 −R0
)
μ(du),

where dTV denotes the usual TV metric on P(H 1(T)). In other words, so long as μ has
bounded moments of degree at least two the TV distance between νε and ν can be made
arbitrarily small by choosing a large R0.

This perturbation of the likelihood �ε can also be viewed as a modification of the prior
μ, which results in including the term min{0, ε‖u‖2

H 1 − R2
0} in the MH acceptance ratio. In

other words, because we use a proposal kernel that preserves the original prior, an additional
factor (not involving the likelihood potential �) shows up in the MH acceptance probability.
Regardless of the interpretation, this example illustrates that while Assumption 1(c) may be
difficult to verify in some examples, it often holds for a small perturbation of the problem.
Since the term min{0, ε‖u‖2−R2

0} is zero near the origin, the dynamics of the Markov chain
are entirely unchanged in a ball around the origin. Since we can take R0 as large as we like, in
practice, this means that the RCAR algorithm corresponding to this perturbation is virtually
identical to the original algorithm and the modification is needed only to control tail behavior
necessary to prove exponential rates of convergence. These observations may also be taken
as a sign that Assumption 1(c) is an artifact of our method of proof and can be relaxed to a
more realistic assumption. This would be an interesting direction for future research.

6. Conclusion. In this article we analyzed the convergence properties of a class of MH
algorithms on infinite-dimensional Banach spaces that use an RCAR type proposal kernel Q
with a likelihood ratio acceptance probability. We showed that under very general conditions
on the likelihood potential � and the proposal kernel Q the algorithms have a spectral gap
with respect to an appropriate Wasserstein-type semimetric d̃q which implied exponential
convergence to the target measure ν in (1). Our results generalize the dimension-independent
spectral gaps of [19] to a larger class of algorithms applicable to non-Gaussian prior mea-
sures.

Results showing spectral gaps in infinite dimensions are of particular interest in studying
the computational complexity of MCMC. Often, a spectral gap on the infinite-dimensional
space ensures that the variance of time-averaging estimators for finite-dimensional—and
therefore computationally tractable—approximations of the Markov kernel is uniformly
bounded as a function of dimension. Thus the computational complexity of the algorithm
is simply a function of its per-step simulation cost. The results given here and those of [19]
thus imply that RCAR algorithms are among the simplest MCMC algorithms whose com-
putational complexity depends on dimension only through the per-step computational cost.
This is of course a special feature of the Ornstein–Uhlenbeck-like proposal, as the random
walk MH algorithm is known to have dimension-dependent spectral gap. It remains to be
seen whether more sophisticated algorithms can also be designed to have similarly attractive
dimensional scaling properties.

We further developed a general perturbation theory for approximations of MH algorithms;
showing error bounds for computationally tractable approximations of the algorithm that is
arguably more direct than previous works while offering similar error estimates. Our main
result here was that given an exact MH kernel P0, an approximation Pε and an appropriate
semimetric d , the distance between the invariant measures of P0 and Pε can be bounded in
terms of the one-step error d(P0δu,Pεδu)—an error bound that can often be shown using
coupling arguments. We further applied our perturbation theory to the RCAR algorithm and
obtained error bounds for various approximations including discretization of the likelihood
potential � by Galerkin projections as well as approximation of the prior μ.
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Our success in applying the weak Harris’ theorem and perturbation theory to this large
collection of Markov chains suggests the broad utility of this approach to studying Markov
chains on infinite-dimensional state spaces and computationally tractable approximations
thereof. The tendency of probability measures on infinite-dimensional spaces to be mutually
singular limits the utility of traditional weighted TV norms in these settings. This suggests at
the usefulness of alternative metrics such as the Wasserstein-type semimetrics employed here
for studying sequences of problems of increasing dimension, which describes many applica-
tions of interest in modern statistics and stochastic dynamics.

APPENDIX A: PROOF OF CONVERGENCE RESULTS FROM SECTION 3

A.1. Proof of Theorem 1. We recall two technical lemmata that are useful in the proof
of Theorem 1 as well as the rest of the appendix.

LEMMA 2. For every ! ∈ P(H), there exists sufficiently large R > 0 so that
!(BR(0)) > 0.

LEMMA 3. Let w,v ∈H. Then for s ≥ 0

‖w+ v‖s ≤ 2s
(‖w‖s + ‖v‖s).

PROOF. When s ∈ (0,1) the inequality follows from the identity (a + b)s ≤ as + bs for
positive real numbers a and b. The case with s > 1 follows from [49], Corollary 3.1. In fact,
the constant 2s is not optimal and can be replaced by 1 ∨ 2s−1, but it makes for convenient
notation. �

Let us outline a roadmap of the proof that follows the proof strategy of [19]. Two cases
are considered: u ∈ BR(0) and the complement of this event. The first case is dispensed with
using moment conditions on λ and K to bound supu∈BR(0)(PV )(u). The second case is more
difficult. Here we pick an event A such that P(A) > 0 uniformly for all u ∈ BR(0)c and prove
the existence of a uniform constant κ̃ ∈ (0,1) so that

(PV )(u)≤ κ̃P(A)V (u)+
∫
Ac

{
V (u)∨ V (ζu + ξ)

}
K(u,dζu)λ(dξ),

and show that the integral term on the right hand side is uniformly bounded as well. In [19],
conditional on u ∈ BR(0)c, the event A= {ξ ∈ Br(βu) : ξ ∼ μβ} is considered. Because the
potential is (eventually) increasing in the tails, the probability of accepting conditional on A

can be uniformly bounded away from 0. Further, because the pCN proposal is centered at βu
for some constant β ∈ (0,1), this event always has positive probability when λ is Gaussian.
This, combined with control of the moments of λ and the fact that when rejection occurs, V
does not increase, is enough to prove that V contracts far from the origin for pCN. Our proof
uses the event

A= {‖ζu − β0u‖< b0(1− β0)‖u‖ ∩ ‖ξ‖< b1‖ζ‖ : ξ ∼ λ, ζu ∼K(u,dζu)
}
.

The key difference is that we must now consider the behavior of ξ and ζu together, and con-
trol them simultaneously to ensure that the acceptance probabilities conditional on A can be
uniformly bounded from below when u is far from the origin. This introduces complications
in the second part of the argument.
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PROOF OF THEOREM 1. Fix R > 0 and u ∈ BR(0) then, using Assumption 2(a) and
Lemma 3 we have

sup
u∈BR(0)

(PV )(u)= sup
u∈BR(0)

∫
H
V (v)α(u, v)Q(u,dv)

+ V (u)

(
1−

∫
H
α(u, v)Q(u,dv)

)
≤ sup

u∈BR(0)
V (u)+

∫
H
V (v)Q(u,dv)

≤Rp + sup
u∈BR(0)

∫
H×H

‖ζu + ξ‖pK(u,dζu)λ(dξ)

≤Rp + 2p sup
u∈BR(0)

∫
H×H

(‖ζu‖p + ‖ξ‖p)
K(u,dζu)λ(dξ)

≤Rp + 2p sup
u∈BR(0)

‖u‖p +
∫
H
‖ξ‖pλ(dξ)

≤Rp + 2pRp +C0 ≡K1.

Now consider u ∈ BR(0)c, 1 > β0 > b0 > 0, as in Assumption 2(b) and define A to be the
event

A := {‖ζu − β0u‖ ≤ b0(1− β0)‖u‖,‖ξ‖< b1‖ζu‖ : ζu ∼K(u,dζu), ξ ∼ λ
}
,

where b1 ∈ (0,1) is a constant to be specified. Observe that in the event of A we have that
‖ζu‖ ≥ (β0 − b0(1− β0))‖u‖> 0. Thus, by the independence of ζu and ξ we have

P[A|u] ≥ P
[‖ζu − β0u‖ ≤ b0(1− β0)‖u‖]P[‖ξ‖< b1

(
β0 − b0(1− β0)

)
R

]
.

By Assumption 2(b) we have

P
[‖ζu − β0u‖ ≤ b0(1− β0)‖u‖]≥ ε0.

On the other hand, for fixed 1 > β0 > b0 > 0 and b1 it follows from Lemma 2 that if R

is sufficiently large then P[‖ξ‖ < b1(β0 − b0(1 − β0))R] ≥ ε1 > 0. To this end, P[A|u] ≥
ε0ε1 > 0. Furthermore, we have that in the event of A

‖ζu + ξ‖p ≤ [
(1+ b1

(
β0 − b0(1− β0)

)‖ζu‖]p
≤ [

(1+ b1
(
β0 − b0(1− β0)

)(
β0 + b0(1− β0)

)]p‖u‖p
≤ κ1‖u‖p.

Now if b1 is sufficiently small then κ1 < 1. In summary given b0, β0 ∈ (0,1), which depend
on the kernel K, we choose b1 so that κ1 < 1 and then we choose R large enough so that
ε0ε1 > 0. It then follows that in the event of A we have V (ζu + ξ)≤ κ1V (u). Now we have

(PV )(u)≤ P(A)
[
P(accept|A)κ1V (u)+ P(reject|A)V (u)

]
+

∫
Ac

{
V (ζu + ξ)∨ V (u)

}
K(u,dζu)dλ(ξ)

= P(A)
[(

1− (1− κ1)
)
P(accept|A)

]
V (u)

+
∫
Ac

{
V (ζu + ξ)∨ V (u)

}
K(u,dζu)dλ(ξ)

≤ κ2P(A)V (u)+
∫
Ac

{
V (ζu + ξ)∨ V (u)

}
K(u,dζu)dλ(ξ),
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where κ2 = (1− (1− κ1))P(accept|A). Since � satisfies Assumption 1(c), given β̃ ∈ (0,1)
we can take R > R0 which implies P(accept |A) > 0 uniformly for all u ∈ BR(0)c and so it
follows that κ2 < 1 uniformly over BR(0)c. It remains to bound the last integral:∫

Ac

{
V (ζu + ξ)∨ V (u)

}
K(u,dζu)dλ(ξ)

=
∫
Ac
‖ζu + ξ‖p ∨ ‖u‖pK(u,dζu)λ(dξ)

≤
∫
Ac

(‖ζu‖ + ‖ξ‖)p ∨ ‖u‖pK(u,dζu)λ(dξ)

≤
∫
Ac

(‖u‖ + ‖ξ‖)pK(u,dζu)λ(dξ)

=
∫
Ac

p∑
k=0

(
p

k

)
‖u‖p−k‖ξ‖kλ(dξ)

= ‖u‖pP(
Ac)+ p∑

k=1

(
p

k

)
‖u‖p−k

∫
Ac
‖ξ‖kλ(dξ)

≤ ‖u‖pP(
Ac)+ (1− κ2)ε0ε1

2
‖u‖p +K2,

where we used Assumption 2(a) to bound ‖ζu‖ by ‖u‖, and the last step followed because
the second term in the penultimate line is a polynomial in ‖u‖ of order p − 1. Since R > 1,
this term can be bounded by c‖u‖p +K2 for any c > 0, where K2 depends on c but not u.
Substituting the above result back into the bound on (PV )(u) gives

(PV )(u)≤
(
κ2P(A)+ P

(
Ac)+ (1− κ2)ε0ε1

2

)
V (u)+K2

≤
[
1− (1− κ2)ε0ε1 + (1− κ2)ε0ε1

2

]
V (u)+K2

≤ κV (u)+K2,

for κ = 1− (1−κ2)ε0ε1
2 ∈ (0,1), which does not depend on u. Setting K =K1 +K2 we obtain

the desired result

(PV )(u)≤ κV (u)+K ∀u ∈H. �

A.2. Proof of Theorem 2. The proof of this theorem follows from Theorem 1 and
Propositions 1, 3 and 4, which together establish that the n-step kernel Pn is contracting
for dq and the level sets of the Lyapunov functions V (u)=∑p

j=0 aj‖u‖j are dq -small.
First, let us define the notation

(34) d∗(u, v) := (1+ η‖u‖ + η‖v‖)q‖u− v‖
ω

, u, v ∈H,

for q,η,ω > 0. Recall that by (19) we simply have dq(u, v)= 1∧ d∗(u, v). We then have the
following auxiliary lemma concerning d∗ and dq .

LEMMA 4. Let q ≥ 0. Then dq and d∗ satisfy the following properties:

(a) If η, dq(u, v) < 1 then

ηq
(
1+ ‖u‖ + ‖v‖)q‖u− v‖<ω and

ηq

ω
‖u− v‖ ≤ dq(u, v).
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(b) Let u, v, ζu, ζv ∈H such that

dq(u, v) < 1 and ‖ζu‖ ≤ ‖u‖ and ‖ζv‖ ≤ ‖v‖.
Define proposals u∗, v∗ as in (35). Then

d∗(u∗, v∗)
d∗(u, v)

≤ (
1+ 2η‖ξ‖q)‖ζu − ζv‖

‖u− v‖ .

PROOF. Statement (a) follows from the fact that dq(u, v) = d∗(u, v) whenever
dq(u, v) < 1. Then assuming η < 1 we have the series of inequalities

ηq

ω
‖u− v‖ ≤ ηq(1+ ‖u‖ + ‖v‖)q

ω
‖u− v‖

≤ (1+ η‖u‖ + η‖v‖)q
ω

‖u− v‖ = dq(u, v) < 1,

from which the statements follow. Now (b) can be proven directly by the following calcula-
tion:

d∗
(
u∗, v∗

)= 1

ω

(
1+ η‖ζu + ξ‖ + η‖ζv + ξ‖)q‖ζu − ζv‖

≤ 1

ω

(
1+ η

(‖ζu‖ + ‖ξ‖)+ η
(‖ζv‖ + ‖ξ‖))q‖ζu − ζv‖

=
(

1+ η(‖ζu‖ + ‖ξ‖)+ η(‖ζv‖ + ‖ξ‖)
1+ η‖u‖ + η‖v‖

)q ‖ζu − ζv‖
‖u− v‖ d∗(u, v)

≤ (
1+ 2η‖ξ‖)q ‖ζu − ζv‖

‖u− v‖ d∗(u, v). �

We are now ready to show that P is dq -contracting for appropriate choices of ω, η in (19).

PROPOSITION 3 (Contracting for dq ). Suppose conditions of Theorem 2 are satisfied.
Then P is contracting for dq if η,ω/ηq > 0 are sufficiently small.

Our proof strategy is as follows: Since the dq semimetric for measures is defined as the
infimum over couplings, naturally our argument relies on showing that there exists a coupling
for which the desired contraction property holds when the two chains start close to each
other. Our approach shares some similar features with [19], as well as with earlier work.
The proof in [19], Sections 3.1.2 and 3.2.2, uses a “basic” or “same-noise” coupling of pCN
proposals that is well known in coupling of diffusion processes (see, e.g., [32]), along with
utilizing the same uniform random variable to make the accept-reject decision for the two
coupled chains. This coupling has also appeared in the statistics literature, where it is used
for convegence diagnosis [29], page 164. We use a different coupling in our proof. More
precisely, we consider two chains starting at (u, v) and propose

u∗ = ζu + ξ, v∗ = ζv + ξ,

where (ζu, ζv)∼�u,v , the coupling in Assumption 2(c). and ξ ∼ λ. we then utilize the same
uniform random number ς to make the accept/reject decision; recall Algorithm 1. The exis-
tence of a ‖ · ‖-contractive coupling �u,v is necessary at this point as without this condition
the dq -contraction condition can easily fail.

With the above coupling at hand our proof then proceeds by considering three possible
outcomes to show the desired contractility results: either both chains accept, both reject, or
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one rejects and one accepts. As is the case in proving these properties for the MH algorithms
such as pCN, the last case is the hardest, since in principle the two components can land far
from one another in dq . In our setting the argument is somewhat lengthy since we need to
control both ζu and ζv as well as the innovation ξ at the same time.

PROOF. Pick u, v ∈H so that dq(u, v) < 1 implying that (1+ η‖u‖+ η‖v‖)q‖u− v‖<
ω and fix β ∈ (0,1). Let �u,v ∈ ϒ(Kδu,Kδv) be the coupling in Assumption 2(c). We then
define π0 ∈ ϒ(Pδu,Pδv) the basic coupling between the u and v chains by the following
procedure. Draw (ζu, ζv)∼�u,v , ξ ∼ λ, and consider proposals

(35) u∗ = ζu + ξ, v∗ = ζv + ξ.

Then draw ς ∼ U([0,1]) and accept u∗ if ς ≤ α(u,u∗) and accept v∗ if ς ≤ α(v, v∗). That is,
the two chains use the same innovation ξ and uniform random variable ς for the accept-reject
step.

Now pick R > 0 sufficiently large so that R − 1 >R0 where R0 is as in Assumption 1(c).
We will present the proof for two cases where u, v ∈ BR(0) and u, v ∈ BR−1(0)c. Note that
if ω/ηq < 1 we can guarantee

(36)

{
u, v ∈H : dq(u, v) < 1

}
= {

u, v ∈ BR(0) : dq(u, v) < 1
}∪ {

u, v ∈ BR−1(0)
c : dq(u, v) < 1

}
.

To see this take u, v ∈ H such that dq(u, v) < 1 and consider the nontrivial case where u,
v do not belong to the same set BR(0). Without loss of generality let u ∈ BR(0) and v ∈
BR(0)c ⊂ BR−1(0)c. By Lemma 4(a) we have ‖u − v‖ < ω

ηq
< 1 and so u ∈ B1(v). But

{u : v ∈ BR(0)c and u ∈ B1(v)} = BR−1(0)c and so u, v ∈ BR−1(0)c.
Let us proceed with the proof starting with the case where u, v ∈ BR(0). Let D be the

event where ‖ξ‖ ≤ R and ‖ζu − ζv‖< β̃‖u− v‖ where β̃ ∈ [βc,1) and βc is the constant in
Assumption 2(c). Due to independence of (ζu, ζv) and ξ we have

P(D)= P
(‖ξ‖ ≤R

)
P

(‖ζu − ζv‖< β̃‖u− v‖).
By Lemma 2 P(‖ξ‖ ≤R) > 0 if R is sufficiently large. Furthermore, by Markov’s inequality

P
(‖ζu − ζv‖ ≥ β̃‖u− v‖)≤ E‖ζu − ζv‖

β̃‖u− v‖ ≤ βc

β̃
< 1.

Thus, P(D)≥ ε1 > 0 uniformly for all u, v ∈ BR(0). Recalling that dq ≤ 1, we have

dq(Pδu,Pδv)≤
∫
H×H

dq(s, t)π0(ds,dt)

≤
∫
D

[
P(both accept|ζu, ζv, ξ)dq(

u∗, v∗
)

+ P(both reject|ζu, ζv, ξ)dq(u, v)]�u,v(dζu,dζv)λ(dξ)

+
∫
Dc

[
dq

(
u∗, v∗

)∨ dq(u, v)
]
�u,v(dζu,dζv)λ(dξ)

+ P(only one is accepted)

=: T1 + T2 + T3.

Bound on T1. Since P(both accept|ζu, ζv, ξ)≤ 1− P(both reject|ζu, ζv, ξ) then

T1 ≤
∫
D

[
P(both accept|ζu, ζv, ξ)dq(

u∗, v∗
)

+ [
1− P(both accept|ζu, ζv, ξ)]dq(u, v)]�u,v(dζu,dζv)λ(dξ)



1856 B. HOSSEINI AND J. E. JOHNDROW

=
∫
D
P(both accept|ζu, ζv, ξ)[dq(

u∗, v∗
)− dq(u, v)

]
�u,v(dζu,dζv)λ(dξ)

+ P(D)dq(u, v).

By the definition of the set D and Lemma 4(b) we can write

T1 − P(D)dq(u, v)

≤
∫
D
P(both accept|ζu, ζv, ξ)[(1+ 2ηR)qβ̃ − 1

]
dq(u, v)�u,v(dζu,dζv)λ(dξ).

By Assumption 1(a) and (b) P(both accept|ζu, ζv, ξ) ≥ ε2 ≥ 0 uniformly for all u, v ∈
BR(0) and so

T1 ≤ P(D)
[
1+ ε2

(
(1+ 2ηR)qβ̃ − 1

)]
dq(u, v)

= P(D)(1− κ).

Bound on T2. Using Lemma 4(b) and Assumption 2(c) we can write

T2 = P
(
Dc)

E
(
dq

(
u∗, v∗

)∨ dq(u, v)|Dc)
≤ dq(u, v)E

(
1∨ dq(u

∗, v∗)
dq(u, v)

∣∣∣Dc

)

≤ dq(u, v)E

(
1∨ (

1+ 2η‖ξ‖)q ‖ζu − ζv‖
‖u− v‖

∣∣∣Dc

)
≤ dq(u, v)E

((
1+ 2η‖ξ‖)�q�|Dc)

≤ dq(u, v)E
(
1+C

(
2η‖ξ‖)�q�|Dc)

≤ dq(u, v)
(
P

(
Ac)+ η�q�CR

)
,

where C > 0 depends on �q� and is bounded following the binomial expansion formula.
Then CR > 0 is a bounded constant due to the fact that λ has bounded moments of degree
p ≥ �q�.

Bound on T3. Using Lemma 3, Assumption 2(c), and Lemma 4(a) we have

T3 =
∫
H

∫
H×H

P[only one is accepted|ζu, ζv, ξ ]�u,v(dζu,dζv)λ(dξ)

=
∫
H

∫
H×H

P
[
ς between α

(
u,u∗

)
and α

(
v, v∗

)|ζu, ζv, ξ ]
�u,v(dζu,dζv)λ(dξ)

≤
∫
H

∫
H×H

∣∣�(u)−�(v)
∣∣+ ∣∣�(ζu + ξ)−�(ζv + ξ)

∣∣�u,v(dζu,dζv)λ(dξ)

≤ L
(
1∨ ‖u‖q ∨ ‖v‖q)‖u− v‖

+L

∫
H

∫
H×H

(
1∨ ‖ζu + ξ‖q ∨ ‖ζv + ξ‖q)‖ζu − ζv‖�u,v(dζu,dζv)λ(dξ)

≤ LRq‖u− v‖ +L

∫
H

∫
H×H

[
1∨ 2q

(‖ζu‖q + ‖ξ‖q)∨ 2q
(‖ζv‖q + ‖ξ‖q)]

× ‖ζu − ζv‖�u,v(dζu,dζv)λ(dξ)

≤ LRq‖u− v‖
+L

∫
H

∫
H×H

(
1+ 2qRq + 2q‖ξ‖q)‖ζu − ζv‖�u,v(dζu,dζv)λ(dξ)
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≤ LRq‖u− v‖ +L

∫
H

(
1+ 2qRq + 2q‖ξ‖q)

βc‖u− v‖λ(dξ)

≤ LRq‖u− v‖ +Lβc‖u− v‖
∫
H

1+ 2qRq + 2q‖ξ‖qλ(dξ)

≤ L
ω

ηq
C′Rdq(u, v).

Here C′R > 0 is a uniform constant independent of u, v which is bounded since λ has bounded
moments of degree p ≥ �q�. Putting together the bounds for T1, T2 and T3 we finally have

dq(Pδu,Pδv)

≤ [
P(D)

[
1+ ε2

(
(1+ 2ηR)qβ̃ − 1

)]+ P
(
Dc)+ η�q�CR + η−qωLC′R

]
dq(u, v).

Since ε2 ∈ (0,1), β̃ < 1, and R > 0 are uniform constants, we can choose η sufficiently small
so that 1+ ε2((1+ 2ηR)qβ̃ − 1) < 1. The constants CR,C

′
R > 0 are also uniform and so we

can choose η and ω/ηq sufficiently small so that the term inside the square brackets is less
than one which gives the desired result

dq(Pδu,Pδv)≤ γ1dq(u, v),

for some γ1 ∈ (0,1).
Let us now consider the case where u, v ∈ BR−1(0)c. The method of proof is very similar

to the first case where u, v ∈ BR(0) and so we only highlight the differences. Let D̃ be the
event where ‖ξ‖ ≤ R − 1 and ‖ζu − ζv‖ ≤ β̃‖u− v‖ where as before β̃ ∈ [βc,1). The same
argument as before yields that P(D̃) ≥ ε3 > 0. Furthermore, using the same argument as
before we can write

dq(Pδu,Pδv)≤
∫
D̃

[
P(both accept|ζu, ζv, ξ)dq(

u∗, v∗
)

+ P(both reject|ζu, ζv, ξ)dq(u, v)]�u,v(dζu,dζv)λ(dξ)

+
∫
D̃c

[
dq

(
u∗, v∗

)∨ dq(u, v)
]
�u,v(dζu,dζv)λ(dξ)

+ P(only one is accepted)

=: T ′1 + T ′2 + T ′3.
By the same argument used to bound T1 we have

T ′1 ≤ P(D̃)
[
1+ ε4

((
1+ 2η(R − 1)

)q
β̃ − 1

)]
dq(u, v),

where here ε4 is a constant so that P(both accept|ζu, ζv, ξ) ≥ ε4 uniformly over D̃. By As-
sumption 1(c) ε4 > 0 uniformly for all u, v ∈ BR−1(0)c. Furthermore, we bound T ′2 identi-
cally to T2,

T ′2 ≤ dq(u, v)
(
P

(
D̃c)+ η�q�CR−1

)
,

using Lemma 4(b) and Assumption 2(b); and bound T ′3 identically to T3,

T ′3 ≤
Lω

ηq
C′R−1dq(u, v),

using Lemmata 3 and 4(a) as well as Assumption 2(c). In the above bounds CR−1,C
′
R−1 > 0

are uniform constants since λ has bounded moments of degree p ≥ �q�. Thus, we have the
bound

dq(Pδu,Pδv)≤ [
P(D̃)

[
1+ ε4

((
1+ 2η(R− 1)

)q
β̃ − 1

)]
+ P

(
D̃c)+ η�q�CR−1 + η−qωLC′R−1)

]
dq(u, v).
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Once again choosing η and ω/ηq sufficiently small we obtain

dq(Pδu,Pδv)≤ γ2dq(u, v),

for some constant γ2 ∈ (0,1). Combining our results for the two cases of u, v ∈ BR(0) and
u, v ∈ BR−1(0)c we have the desired bound

dq(Pδu,Pδv)≤ (γ1 ∨ γ2)dq(u, v). �

PROPOSITION 4 (dq -small V level-sets). Suppose the conditions of Theorem 2 are sat-
isfied and let S(R)= {u | V (u)≤ R} for some R > 0. Then there exists an integer n≥ 1 and
a constant γ̃2 ∈ (0,1) so that

dq
(
Pnδu,Pnδv

)≤ γ̃2 ∀u, v ∈ S(R).

Following a similar approach to [19], we prove this proposition using the coupling intro-
duced in the proof of Proposition 3 and conditioning on the event that the coupled proposals
are accepted n times in a row. The probability of this event is uniformly bounded away from
zero on sublevel sets of V following Assumption 1(a), (b), which is critical in making the
argument. Using the fact that the sublevel sets of V have finite diameter we then show that if
n is sufficiently large then eventually the coupled chains draw within dq -distance one.

PROOF. Fix R > a0 and let R∗ > 0 be the solution of the equation
∑p

j=0 ajR
j∗ −R = 0;

note that R∗ is unique so long as aj ≥ 0 and there is at least one coefficient aj > 0 as it is the
root of a monotone polynomial on (0,+∞). Let π0 be the basic coupling used in the proof
of Proposition 3. We use (uk, vk) to denote the chain after step k with initial points u0 = u,
v0 = v ∈ S and denote the innovation at each step with ξk . Fix β̃ ∈ [βc,1) and consider the
events Dk for k = 1, . . . , n where ‖ζuk−1 − ζvk−1‖ < β̃‖uk−1 − vk−1‖ and ‖ξk‖ < r/n for
some constant r > 0 to be specified. The events Dk are similar to the event D from the proof
of Proposition 3.

Let E be the event that the the proposals u∗k = ζu∗k−1
+ ξk and v∗k = ζv∗k−1

+ ξk are accepted
n times in a row conditioned on the intersection of the events Dk . Thus, conditional on E we
have

(37)

dq(un, vn)≤ (1+ η‖un‖ + η‖vn‖)q
ω

‖un − vn‖

≤ β̃n(1+ η‖u‖ + η‖v‖ + 2ηr)q

ω
‖u− v‖

≤ (1+ 2ηR∗ + 2ηr)q
β̃n

ω
diamS,

where we used diamS := supu,v∈S ‖u− v‖ to denote the diameter of S. Choosing

n=
⌈

1

log β̃
log

(
ω

2(1+ 2ηR∗ + 2ηr)q diamS

)⌉
conditional on E, we have d(un, vn) < 1/2 and so

sup
u,v∈S(R)

dq
(
Pnδu,Pnδv

)≤ P(E)
1

2
+ (

1− P(E)
)
< 1.

It remains to show that P(E) > 0. By Lemma 2 we can choose r large enough that
P(‖ξk‖ ≤ r/n) > 0 uniformly for all k. Furthermore, using an identical argument as in the
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proof of Proposition 3 to show P(D) > 0, we can use Assumption 2(b) and Markov’s inequal-
ity to show that P(‖ζuk−1−ζvk−1‖ ≤ β̃‖uk−1−vk−1‖) > 0 uniformly for all k = 1, . . . , n. This
follows because all pairs (uk, vk) are contained within BR∗+r (0). Thus there exists ε > 0 so
that

inf
u0,v0∈S(R)

inf
k∈{1,...,n}P

(
Dk

∣∣∣∣ k−1⋂
j=1

Dj

)
≥ ε > 0.

Let I =⋂n
k=1 Dk . Then by the law of total probability

inf
u0,v0∈S(R)

P(I )≥ εn > 0.

On the other hand, by Assumption 1(a) and (b), � is bounded above and below on bounded
sets and so

inf
u0,v0∈S(R)

P(E | I ) > 0.

Putting together the above lower bounds we obtain the desired result:

inf
u0,v0∈S(R)

P(E)= inf
u0,v0∈S(R)

P(I )P(E | I ) > 0. �

PROOF OF THEOREM 2. Propositions 3 and 4 show that dq is contracting for P and that
the sublevel sets of the V are dq -small; recall Definitions 4 and 5. Furthermore by Theorem 1
and Remark 1 we have that the function V as in (21) is a continuous Lyapunov function for P .
An application of Proposition 1 then completes the proof. �

A.3. Proof of Theorem 3. We present a direct proof of the Feller property showing that
for any sequence uj → u and any function ϕ ∈ Cb(H) we have that Pϕ(uj )→ Pϕ(u). The
main difficulty in the proof is the fact that the kernel K(u, ·) depends on the point u in a
nontrivial manner. To make matters more complicated we have to deal with integrals of the
form

∫
H ϕ(x)α(uj , x)K(uj ,dx) that we wish to show converge to

∫
H ϕ(x)α(u, x)K(u,dx);

that is, both the integrand and the measure depend on the sequence uj and so the dominated
convergence theorem cannot be applied directly. However, by Assumption 2(c) we know that
as uj → u we can construct a coupling �uj ,u of the random variables ζj ∼K(uj , ·) and ζ ∼
K(u, ·) in such way that ζj → ζ a.s. This yields the weak convergence of �uj ,u to the trivail
coupling (Id×Id)"K(u, ·). Using this property, the boundedness of ϕ, Lipschitz continuity of
α due to Assumption 1(d) and more standard applications of dominated convergence theorem
we can then prove the desired result.

PROOF. Let ϕ ∈ Cb(H), our goal is to show that Pϕ ∈C(H). By (2) we have that

Pϕ(u)=
∫
H

∫
H
ϕ(ζ + ξ)α(u, ζ + ξ)K(u,dζ )λ(dξ)

+ ϕ(u)

∫
H

(
1− α(u, ζ + ξ)

)
K(u,dζ )λ(dξ)

=: T1(u)+ T2(u).

In order to prove that P is Feller we need to show that T1, T2 are continuous. We establish
this for T1, as it is the more complicated of the two functions, the argument for T2 will follow
from very similar steps but simpler since the function ϕ appears outside of the integral.
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Let {uj } be a sequence of points in H converging to u and let �uj ,u be the coupling in
Assumption 2(c) between K(uj , ·) and K(u, ·). We then have, for fixed ξ ∈H that

(38)

∣∣∣∣∫H ϕ(ζj + ξ)α(uj , ζj + ξ)K(uj ,dζj )−
∫
H
ϕ(ζ + ξ)α(u, ζ + ξ)K(u,dζ )

∣∣∣∣
=

∣∣∣∣∫H×H
ϕ(ζj + ξ)α(uj , ζj + ξ)− ϕ(ζ + ξ)α(u, ζ + ξ)�uj ,u(dζj ,dζ )

∣∣∣∣
≤

∫
H×H

∣∣ϕ(ζj + ξ)
∣∣∣∣α(uj , ζj + ξ)− α(u, ζ + ξ)

∣∣�uj ,u(dζj ,dζ )

+
∣∣∣∣∫H×H

[
ϕ(ζj + ξ)− ϕ(ζ + ξ)

]
α(u, ζ + ξ)�uj ,u(dζj ,dζ )

∣∣∣∣
≤ ‖ϕ‖∞

∫
H×H

∣∣α(uj , ζj + ξ)− α(u, ζ + ξ)
∣∣�uj ,u(dζj ,dζ )

+
∫
H×H

∣∣ϕ(ζj + ξ)− ϕ(ζ + ξ)
∣∣�uj ,u(dζj ,dζ )

=: T ′j (ξ)+ T ′′j (ξ),

where in the last inequality we used ‖ϕ‖∞ := supu∈H |ϕ(u)|<+∞ since ϕ ∈ Cb(H) in the
first integral and also the fact that α is positive and bounded by 1 by definition, in the second
integral. We now aim to show that

∫
H T ′j (ξ) + T ′′j (ξ)λ(dξ)→ 0 as uj → u implying that

|T1(uj )− T1(u)| → 0.
By Assumption 1(d) the function α is Lipschitz in both of its arguments. In fact,∣∣α(u, v)− α(w, z)

∣∣≤ ∣∣α(u, v)− α(w,v)
∣∣+ ∣∣α(w,v)− α(w, z)

∣∣
≤ ∣∣�(u)−�(w)

∣∣+ ∣∣�(v)−�(z)
∣∣

≤ L
(
1∨ ‖u‖q ∨ ‖w‖q ∨ ‖v‖q ∨ ‖z‖q)(‖u−w‖ + ‖v− z‖).

Using the above bound together with Assumption 2(a), (d) and Lemma 3 we can write

(39)

1

‖ϕ‖∞T ′j (ξ)≤ L

∫
H×H

(
1∨ ‖u‖q ∨ ‖uj‖q ∨ ‖ζ + ξ‖q ∨ ‖ζj + ξ‖q)

× [‖uj − u‖ + ‖ζj − ζ‖]�uj ,u(dζj ,dζ )

< 2q+2L
(
1+ ‖u‖q + ‖uj‖q + ‖ξ‖q)‖uj − u‖.

Thus, integrating with respect to λ and using the hypothesis that λ has bounded moments of
degree q we obtain the bound

1

‖ϕ‖∞
∫
H
T ′j (ξ)λ(dξ) < 2q+2L‖uj − u‖

(
1+ ‖u‖q + ‖uj‖q +

∫
H
‖ξ‖qλ(dξ)

)
≤ 2q+2L

(
C + ‖u‖q + ‖uj‖q)‖uj − u‖,

for some constant C > 0. From this bound we deduce that∫
H
T ′j (ξ)λ(dξ)→ 0 as uj → u.

Now consider T ′′j (ξ). Let � ∗
u = (Id×Id)"K(u, ·) be the trivial coupling obtained by draw-

ing ζ ′ ∼ K(u, ·), setting ζ ′′ = ζ ′ and � ∗
u = Law{(ζ ′, ζ ′′)}. Our first step is to show that

�uj ,u ⇀� ∗
u ; converges in the weak sense. Let us equip the product space H×H with the
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norm ‖(u, v)‖ := ‖u‖ ∨ ‖v‖ and let ϕ′ ∈ Lip1(H×H)∩Cb(H×H). We then have that∣∣∣∣∫H×H
ϕ′(ζj , ζ )�uj ,u(dζj ,dζ )−

∫
H×H

ϕ′
(
ζ ′, ζ ′′

)
� ∗

u

(
dζ ′,dζ ′′

)∣∣∣∣
≤

∫
H×H

∣∣ϕ′(ζj , ζ )− ϕ′(ζ, ζ )
∣∣�uj ,u(dζj ,dζ )

+
∣∣∣∣∫H×H

ϕ′(ζ, ζ )�uj ,u(dζj ,dζ )−
∫
H×H

ϕ′
(
ζ ′, ζ ′′

)
� ∗

u

(
dζ ′,dζ ′′

)∣∣∣∣
=

∫
H×H

∣∣ϕ′(ζj , ζ )− ϕ′(ζ, ζ )
∣∣�uj ,u(dζj ,dζ )

+
∣∣∣∣∫H×H

ϕ′(ζ, ζ )K(u,dζ )−
∫
H×H

ϕ′
(
ζ ′, ζ ′

)
K

(
u,dζ ′

)∣∣∣∣
=

∫
H×H

∣∣ϕ′(ζj , ζ )− ϕ′(ζ, ζ )
∣∣�uj ,u(dζj ,dζ ).

Since ϕ′ has Lipschitz constant 1 we further have∫
H×H

∣∣ϕ′(ζj , ζ )− ϕ′(ζ, ζ )
∣∣�uj ,u(dζj ,dζ )≤

∫
H×H

‖ζj − ζ‖�uj ,u(dζj ,dζ )

≤ ‖uj − u‖,
where the last inequality follows from Assumption 2(d). Since ϕ′ was arbitrary an applica-
tion of Portmantheau theorem (see e.g., [5], 2.2.6) yields the weak convergence of �uj ,u to
� ∗

u . Returning to the definition of T ′′j (ξ) and recalling that ϕ ∈ Cb(H), we have for any fixed
ξ ∈H that T ′′j (ξ)→

∫
H×H |ϕ(ζ ′ + ξ)−ϕ(ζ + ξ)|� ∗

u (dζ
′,dζ )= 0 as uj → u, that is, the T ′′j

converge to 0 pointwise. The boundedness of ϕ also yields the boundedness of T ′′j . An ap-
plication of the dominated convergence theorem then yields

∫
H T ′′j (ξ)λ(dξ)→ 0 as desired.

�

APPENDIX B: PROOF OF PERTURBATION RESULTS FROM SECTION 4

B.1. Proof of Lemma 1.

PROOF. Observe that by Jensen’s inequality it is sufficient to show there exists G′ > 0
so that

dq(u, v)
(
2+ θV (u)+ θV (v)

)≤G′(dq(u,w)
(
2+ θV (u)+ θV (w)

)
+ dq(w, v)

(
2+ θV (w)+ θV (v)

))
.

Furthermore, by the hypothesis on V we have that dq(u, v)(2+ θV (u)+ θV (v)) is equiv-
alent to dp+q(u, v). In fact,

dq(u, v)
(
2+ θV (u)+ θV (v)

)
= 1

ω

(
2+ θ

p∑
j=0

aj
(‖u‖j + ‖v‖j ))(

1+ η‖u‖ + η‖v‖)q‖u− v‖

≤ C

ω

(
1+ η‖u‖ + η‖v‖)p+q‖u− v‖ = Cdp+q(u, v),



1862 B. HOSSEINI AND J. E. JOHNDROW

with C(θ, η,p, aj ) > 0. Conversely, by Lemma 3 and the assumption that ap > 0 we have

dp+q(u, v)= 1

ω

(
1+ η‖u‖ + η‖v‖)p+q‖u− v‖

≤ 22p

ω

(
1+ ηp‖u‖p + ηp‖v‖p)(

1+ η‖u‖ + η‖v‖)q‖u− v‖

≤ 22pC′

ω

(
1+ θ

p∑
j=0

aj
(‖u‖j + ‖v‖j ))(

1+ η‖u‖ + η‖v‖)q‖u− v‖

= cdq(u, v)
(
2+ θV (u)+ θV (v)

)
,

where once again c(θ, η,p, aj ) > 0. Thus it suffices if we prove the generalized triangle
inequality for the ds(u, v) semimetrics with s ∈N.

Let u, v,w ∈H and observe that if either dq(u,w) or dq(w, v) is equal to one then

dq(u, v)≤ dq(u,w)+ dq(w, v),

since dq(u, v) is capped at one, so the standard triangle inequality holds. Now suppose both
dq(u,w) and dq(w, v) are less than one, implying that ‖u−w‖<ω and ‖w− v‖<ω. Then
Lemma 3 and multiple applications of the triangle inequality we can write

ωdq(u, v)= (
1+ η‖u‖ + η‖v‖)q‖u− v‖

≤ (
1+ η‖u‖ + η‖w‖ + η‖v −w‖)q‖u−w‖
+ (

1+ η‖u−w‖ + η‖w‖ + η‖v‖)q‖w− v‖
≤ (

1+ η‖u‖ + η‖w‖ + ηω
)q‖u−w‖

+ (
1+ ηω+ η‖w‖ + η‖v‖)q‖w− v‖

≤ (1+ ηω)q
((

1+ η‖u‖ + η‖w‖)q‖u−w‖
+ (

1+ η‖w‖ + η‖v‖)q‖w− v‖).
Thus, we have

dq(u, v)≤ (1+ ηω)q
(
dq(u,w)+ dq(w, v)

)
. �

B.2. Proof of Theorem 4. Our strategy is to take k > n sufficiently large that Gγ �k/n� <
1, where γ is the n step spectral gap of P0 in Assumption 3(b) and C > 0 is the Lips-
chitz constant of Pn. With k as above we then take ϑ(k)= C

∑k
j=1 G

j(C∗γ )�j/n� <∞ with
C∗,C > 0 constants depending on the Lipschitz constant of P0 and growth of the Lyapunov
function V and show that d̃(Pk

ε δu,Pk
0δu) ≤ ϑ(k)ψ(ε)(1 + √

V (u)). The remainder of the
argument then generalizes this bound for point masses δu to a bound on d̃(Pk

ε μ1,Pk
0μ2) for

general measures μ1, μ2 and in turn for the invariant measures ν0, νε .
Before presenting the main proof we need an auxiliary lemma stating that Pk

0 is d̃-
Lipschitz in the initial condition of the chain.

LEMMA 5. Suppose Assumption 3(a), (b), (c) hold. Then for any integer k > 0 there
exists a constant C∗(k) > 0, so that

d̃
(
Pk

0 δu,Pk
0δv

)≤ C∗d̃(u, v) ∀u, v ∈H.
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PROOF. We consider two cases where d(u, v)= 1 and d(u, v) < 1.
Case 1: Suppose d(u, v) = 1. Then, letting πu,v ∈ ϒ(Pk

0 δu,Pk
0δv), we have, using the

Lyapunov condition and Jensen’s inequality

d̃
(
Pk

0 δu,Pk
0 δv

)2 ≤
∫
H×H

d̃2(x, y)πu,v(dx, dy)

=
∫
H×H

(
2+ θV (x)+ θV (y)

)
πu,v(dx, dy)

≤ 2+ θκk(V (u)+ V (v)
)+ θK

1− κ
,

d̃
(
Pk

0 δu,Pk
0 δv

)≤√
d(u, v)

√
2+ θV (u)+ θV (v)+√

d(u, v)

√
θK

1− κ

≤C∗d̃(u, v),
where C∗(k) is a universal constant that does not depend on u, v.

Case 2: If d(u, v) < 1, then because P0 is contracting for d it follows that Pk
0 is contracting

for d , and so

d̃
(
Pk

0 δu,Pk
0δv

)2

≤ inf
πu,v

∫
H×H

d(x, y)πu,v(dx, dy)

∫
H×H

(
2+ θV (x)+ θV (y)

)
πu,v(dx, dy)

≤ γ1d(u, v)

[
2+ θκk(V (x)+ V (y)

)+ θK

1− κ

]
,

d̃
(
Pk

0 δu,Pk
0δv

)
≤√

d(u, v)

[√
2+ θV (u)+ θV (v)+

√
θK

1− κ

]
≤ C∗d̃(u, v),

where C∗(k) > 0 is the same constant as in Case 1. �

PROOF OF THEOREM 4. Suppose initially that there exists a positive function ϑ(k) such
that for every k > 0

d̃
(
Pk
ε δu,Pk

0δu
)≤ ϑ(k)ψ(ε)

(
1+√

V (u)
)
.

We will show below that this is implied by the one-step error control and Lemma 5. For any
k > n we have by the weak triangle inequality

(40) d̃
(
Pk
ε δu,Pk

0δv
)≤Gγ �k/n�d̃(u, v)+Gψ(ε)ϑ(n)

(
1+√

V (u)
)
.

Choose k large enough that γ �k/n� < G−1 and put γ ∗ = γ �k/n�G < 1. By Remark 2 the
bound in (40) can be generalized to any two probability measures μ1,μ2 ∈ P 1(H; d̃) and so

d̃
(
Pk
ε μ1,Pk

0μ2
)≤ γ ∗d̃(μ1,μ2)+Gψ(ε)ϑ(n)

(
1+

∫
H

√
V dμ1

)
,

for some γ ∗ < 1. The integral in the last term appears after integrating the right hand side of
(40) with respect to the optimal coupling of μ1, μ2. Using the symmetry of d̃ and by putting
μ1 = νε and μ2 = ν0 and vice versa we have

d̃(ν0, νε)≤ Gψ(ε)ϑ(n)

1− γ ∗
(
1+ ν0(

√
V )∧ νε(

√
V )

)
.
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It remains to show the existence of ϑ(n). By Lemma 5 and (26) we have

d̃
(
Pk
ε δu,Pk

0δu
)

≤G
{
C∗γ �k/n�d̃

(
Pk−1

0 δu,Pk−1
ε δu

)+ψ(ε)
[
1+ (

Pk−1
ε δu

)
(
√
V )

]}
≤ψ(ε)

k∑
j=1

Gj (C∗γ )�j/n�[1+ (
Pk−1
ε δu

)
(
√
V )

]

≤ψ(ε)

k∑
j=1

Gj (C∗γ )�j/n�(1+ κ(k−j)/2
ε

√
V (u)+

√
Kε

1−√κε

)

≡ψ(ε)ϑ(k)
(
1+√

V (u)
)
,

where ϑ(k) <
√
Kε+1

1−√κε

∑k
j=1 G

j(C∗γ )�j/n� and C∗ is the constant in Lemma 5. �

B.3. Proof of Theorem 5. Our strategy employs the Poisson equation and Martin-
gale/potential methods. The argument is complicated by the fact that d̃ is not a metric, and
we seek to prove bounds for ϕ :H→ X for a separable Hilbert space X . This requires us
to first show that the potential

∑∞
k=0 Pkϕ solves the Poisson equation, by checking that the

potential converges to a well-defined limit and that P is a bounded linear operator in an ap-
propriate operator norm. We then are able to use the inner product and norm on H to make a
Martingale argument reminiscent of that in [16].

We prove three preparatory Lemmas that are used in the main proof. In what follows we
let X be a separable Hilbert space with norm ‖ · ‖X .

LEMMA 6. Suppose there exists a C <∞ and k ∈N such that

d̃
(
Pk

0 δu,Pk
0δv

)≤ Cd̃(u, v).

Then for any ϕ :H→X with |||ϕ|||
d̃
<∞,∥∥Pk

0ϕ(u)−Pk
0ϕ(v)

∥∥
X ≤ C|||ϕ|||

d̃
d̃(u, v).

PROOF. Since X is a Hilbert space,∥∥ϕ(u)− ϕ(v)
∥∥
X ≥

∣∣∥∥ϕ(u)∥∥X − ∥∥ϕ(v)∥∥X ∣∣
and so

(41) |||ϕ|||
d̃
= sup

u�=v

‖ϕ(u)− ϕ(v)‖X
d̃(u, v)

≥ sup
u�=v

|‖ϕ(u)‖X − ‖ϕ(v)‖X |
d̃(u, v)

= ∣∣∣∣∣∣‖ϕ‖X ∣∣∣∣∣∣
d̃
.

So then ∥∥∥∥∫
H
ϕ(x)

(
Pk

0 δu −Pk
0 δv

)
(dx)

∥∥∥∥
X

≤
∫
H

∥∥ϕ(x)∥∥X (
Pk

0 δu −Pk
0 δv

)
(dx)

≤ |||ϕ|||
d̃

inf
πu,v∈ϒ(Pk

0 δu,P
k
0 δv)

∫
H×H

d̃(x, y)πu,v(dx, dy)

≤ |||ϕ|||
d̃
Cd̃(u, v),

where the last inequality follows from the hypothesis of the lemma. �

This implies immediately that Pk
0 is a ||| · |||

d̃
contraction.
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COROLLARY 3. Let k be the smallest integer for which d̃(Pk
0 δu,Pk

0δv) < γ d̃(δu, δv),
then Lemma 6 immediately implies that∥∥Pkn

0 ν1ϕ −Pkn
0 ν2ϕ

∥∥
X ≤ γ n|||ϕ|||

d̃
d̃(ν1, ν2).

Furthermore, for j < k, combining Lemmas 6 and 5, we obtain∥∥Pkn
0 ν1ϕ −Pkn

0 ν2ϕ
∥∥
X ≤ C∗|||ϕ|||

d̃
d̃(ν1, ν2).

Finally, we show that for ||| · |||
d̃
-Lipschitz ϕ, the potential $∗ :H→X of ϕ is well defined,

has bounded ||| · |||
d̃

seminorm, and is a solution to the Poisson equation for ϕ.

LEMMA 7. Consider ϕ : H �→ X which is ν0-Bochner-measurable and with |||ϕ|||
d̃
<

+∞. Define ϕ̃ = ϕ − ν0(ϕ) and the potential function

(42) $∗ :=
∞∑
j=0

Pj
0 ϕ̃.

If P0 satisfies Assumption 3 it holds true that:

(a) There exists a uniform constant C0 > 0 so that∣∣∣∣∣∣$∗∣∣∣∣∣∣
d̃
<

C0|||ϕ|||d̃
1− γ

.

(b) $∗ is a solution to the Poisson equation

(P0 − I )$̂=−ϕ̃.

(c) $∗ :H→X is well defined pointwise.

PROOF. Let k be the smallest integer such that for all u, v ∈ X , d̃(Pk
0 δu,Pk

0 δv) <

γ d̃(u, v) for some γ < 1, which is finite because P0 satisfies Assumption 3(f).

(43)

∞∑
j=0

Pj
0 ϕ̃ =

k−1∑
j=0

Pj
0 ϕ̃ +

k−1∑
j=0

∞∑
i=1

P ik+j
0 ϕ̃,

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞∑
j=0

Pj
0 ϕ̃

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d̃

≤
k−1∑
j=0

∣∣∣∣∣∣Pj
0 ϕ̃

∣∣∣∣∣∣
d̃
+

k−1∑
j=0

∞∑
i=1

∣∣∣∣∣∣P ik+j
0 ϕ̃

∣∣∣∣∣∣
d̃

≤ kC∗|||ϕ|||
d̃
+ k|||ϕ|||

d̃

1− γ
= k

(
C∗ + 1

1− γ

)
|||ϕ|||

d̃
,

where the last line followed by observing |||ϕ̃|||
d̃
= |||ϕ|||

d̃
and applying Lemmas 6 and 5. This

concludes the proof of (a).
To prove (b) consider the space L1(X , ν0;X ) of ν0-Bochner-measurable functions f :

H→X satisfying ν0(‖f (·)‖X ) <∞, equipped with the norm

(44) ‖f ‖L1(ν0) =
∫
H

∥∥f (u)
∥∥
X ν0(du).

We now show that the series in (42) converges in L1(X , ν0;X ). By (41), |||ϕ|||
d̃
> |||‖ϕ‖X |||.

Notice that since |||ϕ|||
d̃
= |||ϕ − ϕ(0)|||

d̃
, it follows that∥∥ϕ(u)− ϕ(0)

∥∥
X =

∥∥ϕ(u)∥∥X ≤ |||ϕ|||d̃√
2+ θV (u),
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since d̃(u, v) <
√

2+ θV (u)+ θV (v) and V (0)= 0. Since ν0(V ) <∞, we have that for any
ϕ with |||ϕ|||

d̃
<∞

(45) ‖ϕ‖L1(ν0) = ν0
(∥∥ϕ(·)∥∥X )≤ |||ϕ|||

d̃
(
√

2+ θν0
√
V ).

Since L1(H, ν0;X ) is a Banach space [39], page 2, (45) means it is enough to show that
the sequence of partial sums $m =∑m

j=0 P
j
0ϕ is ||| · |||

d̃
-Cauchy, since this also implies it is

L1(ν0)-Cauchy. Define  = �m/k�, and ñ= �(n−m)/k�, so for n >m

|||$n −$m|||d̃ =
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
j=m+1

Pj
0 ϕ̃

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d̃

≤
n∑

j=m+1

∣∣∣∣∣∣Pj
0 ϕ̃

∣∣∣∣∣∣
d̃
≤ k|||ϕ|||

d̃

ñ∑
j=0

γ  +j ≤ kγ �m/k�

1− γ
|||ϕ|||

d̃
.

Therefore, the series in (42) converges in L1(ν0). Since ν0 is the unique invariant measure of
P0, and

|||P0|||∗d̃ := sup
|||ϕ|||

d̃
<1

∥∥∥∥∫
H
(P0ϕ)(u)ν0(du)

∥∥∥∥
X

≤ sup
|||ϕ|||

d̃
<1

∫
H

∥∥(P0ϕ)(u)
∥∥
X ν0(du)

<

∫
H
(P0

√
2+ θV )(u)ν0(du) <∞,

so that P0 is a bounded linear operator on the space of Lip(d̃) functions from H to X
equipped with the operator norm ||| · |||∗

d̃
. Thus we conclude that $∗ is a solution of the Poisson

equation for ν0-Bochner-measurable functions ϕ ∈ Lip(d̃).
Finally, we prove (c) by showing that $∗(u) converges in ‖ · ‖X . We have

∥∥$n(u)−$m(u)
∥∥
X =

∥∥∥∥∥
n∑

j=m+1

Pj
0 ϕ̃(u)

∥∥∥∥∥
X
=

∥∥∥∥∥
n∑

j=m+1

Pj
0ϕ(u)− ν0(ϕ)

∥∥∥∥∥
X

≤
n∑

j=m+1

∥∥Pj
0ϕ(u)− ν0(ϕ)

∥∥
X ≤ |||ϕ|||d̃

kγ �m/k�

1− γ
d̃(δu, ν0).

So the sequence is ‖ · ‖X -Cauchy for any u ∈H. �

We are now ready to present the complete proof of Theorem 5. We primarily focus on part
(a) as part (b) follows as a corollary of the calculations in the proof of (a).

PROOF OF THEOREM 5. (a) Define $=$∗ −$∗(0) for any ϕ :H→ X with |||ϕ|||
d̃
<

∞. By Lemma 7, |||$∗|||
d̃
<

C0|||ϕ|||d̃
1−γ

for some C0 <+∞, and $(u) is a well-defined element

of X for any u ∈H. So with C = C0|||ϕ|||d̃ (1− γ )−1, we have

(46)

∥∥$∗(u)−$∗(v)
∥∥
X ≤ C

√
2+ θV (u)+ θV (v),∥∥$∗(u)−$∗(0)

∥∥
X =

∥∥$(u)
∥∥
X ≤ C

√
2+ θV (u),

and furthermore |||$|||
d̃
= |||$∗|||

d̃
. Note that

(47) (P0 − I )$∗(u)= (P0 − I )$(u)=−ϕ̃(u),
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thus,

$∗(Uε
n

)−$∗(Uε
0
)= n−1∑

k=0

$∗(Uε
k+1

)−$∗(Uε
k

)= n−1∑
k=0

$
(
Uε
k+1

)−$
(
Uε
k

)

=
n−1∑
k=0

[
$

(
Uε
k+1

)−Pε$
(
Uε
k

)]+ n−1∑
k=0

(Pε − I )$
(
Uε
k

)

=
n−1∑
k=0

[
$

(
Uε
k+1

)−Pε$
(
Uε
k

)]

+
n−1∑
k=0

(P0 − I )$
(
Uε
k

)+ n−1∑
k=0

(Pε −P0)$
(
Uε
k

)
.

Using (47) and that $∗(Uε
n)−$∗(Uε

0 ) =$(Uε
n)−$(Uε

0 ) and defining the Martingale in-
crements mε

k+1 =$(Uε
k+1)−Pε$(Uε

k ) and the Martingale Mε
n =

∑n
k=1 m

ε
k , we have

(48)

1

n

n−1∑
k=0

ϕ
(
Uε
k

)− ν0(ϕ)= $(Uε
0 )−$(Uε

n)

n
+ 1

n
Mε

n +
1

n

n−1∑
k=0

(Pε −P0)$
(
Uε
k

)
=: T1 + T2 + T3.

Note that the quantity we now care about is

E

∥∥∥∥∥1

n

n−1∑
k=0

ϕ
(
Uε
k

)− ν0(ϕ)

∥∥∥∥∥
X
≤ E

[‖T1‖X + ‖T2‖X + ‖T3‖X ]
.

Let Fk be the filtration indexed by time k. We have with 〈·, ·〉X the X -inner product,

∥∥Mε
n

∥∥2
X =

〈
Mε

n,M
ε
n

〉
X =

n−1∑
k=0

n−1∑
j=0

〈
mε

k,m
ε
j

〉
X ,

E
∥∥Mε

n

∥∥2
X =

n−1∑
k=0

n−1∑
j=0

E
[
E

[〈
mε

k,m
ε
j

〉
X |Fj∧k

]]= n−1∑
k=0

E
[
E

[〈
mε

k,m
ε
k

〉
X |Fk

]]

=
n−1∑
k=0

E
[
E

[∥∥mε
k

∥∥2
X |Fk

]]≤ n−1∑
k=0

E
[
E

[
C2(

2+ θV
(
Uε
k+1

)) |Fk

]]

≤ C2

(
2n+ θ

n−1∑
k=0

E
[
κεV (Uk)+Kε

])

≤ C2

(
2n+ θ

n−1∑
k=0

κk
ε V (u0)+ Kε

1− κε

)
≤ C2

(
2n+ θ

V (u0)+ nKε

1− κε

)
,

which in turn implies that

E‖T2‖X = n−1
E

∥∥Mε
n

∥∥
X ≤ n−1(

E
∥∥Mε

n

∥∥2
X

)1/2

≤ n−1√nC

(
2+ θ

V (u0)/n+Kε

1− κε

)1/2

= C√
n

(
2+ θ

V (u0)/n+Kε

1− κε

)1/2
.
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Next we have

(49)

∥∥∥∥∥
n−1∑
k=0

(Pε −P0)$
(
Uε
k

)∥∥∥∥∥
X
≤

n−1∑
k=0

∥∥(Pε −P0)$
(
Uε
k

)∥∥
X

≤
n−1∑
k=0

Cψ(ε)
(
1+

√
V

(
Uε
k

))
,

E

∥∥∥∥∥
n−1∑
k=0

(Pε −P0)$
(
Uε
k

)∥∥∥∥∥
X
≤

n−1∑
k=0

Cψ(ε)
(
1+E

√
V

(
Uε
k

))

≤
n−1∑
k=0

Cψ(ε)

(
1+ κk/2

ε V (u0)+
√
Kε

1−√κε

)

= Cψ(ε)n

(
1+

√
κε/nV (u0)+√Kε

1−√κε

)
,

E‖T3‖X ≤ Cψ(ε)

(
1+

√
κε/nV (u0)+√Kε

1−√κε

)
.

Finally we have

(50)

∥∥$(
Uε

0
)−$

(
Uε
n

)∥∥
X ≤ C

√
2+ θV

(
Uε

0

)+ θV
(
Uε
n

)
≤ C(

√
2+√θ

(√
V

(
Uε

0

)+√
V

(
Uε
n

))
,

E‖T1‖X ≤ C

n

[√
2+√θ

(√
V

(
Uε

0

)+ κn/2
ε

√
V

(
Uε

0

)+ √
Kε

1−√κε

)]

≤ C

n

[√
2+√θ

(√
V

(
Uε

0

)(
1+ κn/2

ε

)+ √
Kε

1−√κε

)]
.

Putting together the bounds for E|T1|X , E|T2|X , E|T3|X we arrive at

E

∥∥∥∥∥1

n

n−1∑
k=0

ϕ
(
Uε
k

)− ν0(ϕ)

∥∥∥∥∥
X

≤ C

n

[√
2+√θ

(√
V

(
Uε

0

)(
1+ κn/2

ε

)+ √
Kε

1−√κε

)]

+ C√
n

(
2+ θ

V (u0)/n+Kε

1− κε

)1/2
+Cψ(ε)

(
1+

√
κε/nV (u0)+√Kε

1−√κε

)

= C0|||ϕ|||d̃
1− γ

(
C1ψ(ε)

(
1+ 1

n

)
+ C2√

n
+ C3

n

)
,

completing the proof of part (a).
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We now consider statement (b). We have from (48)∥∥∥∥∥E 1

n

n−1∑
k=0

ϕ
(
Uε
k

)− ν0(ϕ)

∥∥∥∥∥
X
=

∥∥∥∥∥E
(
$(Uε

0 )−$(Uε
n)

n

)

+ 1

n
EMε

n +
1

n

n−1∑
k=0

E(Pε −P)$
(
Uε
k

)∥∥∥∥∥
X

≤ 1

n
E

∥∥$(
Uε

0
)−$

(
Uε
n

)∥∥
X +

1

n

n−1∑
k=0

E
∥∥(Pε −P)$

(
Uε
k

)∥∥
X .

Now we can bound the first term using (50)

1

n
E

∥∥$(
Uε

0
)−$

(
Uε
n

)∥∥
X ≤

C

n

[√
2+√θ

(√
V

(
Uε

0

)(
1+ κn/2

ε

)+ √
Kε

1−√κε

)]

≡ 1

n

|||ϕ|||
d̃

1− γ
C4,

where once again C = C0
1−γ

|||ϕ|||
d̃
, and now using (49)

1

n

n−1∑
k=0

E
∥∥(Pε −P0)$

(
Uε
k

)∥∥
X ≤Cψ(ε)

(
1+

√
κε/nV (u0)+√Kε

1−√κε

)

≡ |||ϕ|||
d̃

1− γ
ψ(ε)

(
C5 + C6

n

)
. �

APPENDIX C: PROOF OF RESULTS IN SECTION 5

PROOF OF PROPOSITION 2. Repeating the same calculation as in (27) we have for any
u ∈H1(�),

d̃0(Pδu,Pεδu)
2 ≤ d0(Pδu,Pεδu)

[
2+ θ

(
(κ + κε)V (u)+ (K +Kε)

)]
.

Now let πu ∈ ϒ(Pδu,Pεδu) obtained as follows: draw ξj
i.i.d.∼ N(0, (1 − β2)) and set v =∑∞

j=0 aj ξjφj and vε =∑∞
j=0 a

ε
j ξjφ

ε
j and propose

u∗ = βu+ v, u∗ε = βu+ vε.

Next draw a uniform random variable ς , then the first (exact) chain accepts the proposal u∗
if ς < α(u,u∗) while the second (perturbed) chain accepts u∗ε if ς < α(u,u∗ε). Since this
coupling is not necessarily optimal we have that

(51)

d0(Pδu,Pεδu)≤ E
[
d0

(
u∗, u∗ε

)
P(both chains accept)

]
+E

[
d0

(
u∗, u

)
P(only first chain accepts)

]
+E

[
d0

(
u,u∗ε

)
P(only second chain accepts)

]
≤ E

[
d0

(
u∗, u∗ε

)
P(both chains accept)

]
+E

[
P(only one chain accepts)

]
.
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Since � is globally Lipschitz and 1∧ exp is also 1-Lipschitz it follows that

P(only one chain accepts)≤ ∣∣�(
u∗

)−�
(
u∗ε

)∣∣
≤ L

∥∥u∗ − u∗ε
∥∥
H1(�) = L‖v − vε‖Hs (�)

≤ L

(∥∥∥∥∥
∞∑
j=0

aj ξj
(
φj − φε

j

)∥∥∥∥∥
Hs (�)

+
∥∥∥∥∥
∞∑
j=0

(
aj − aεj

)
ξjφj

∥∥∥∥∥
Hs (�)

)

≤ L

∞∑
j=0

aj |ξj |
∥∥φj − φε

j

∥∥
Hs (�) +

∣∣aj − aεj
∣∣|ξj |‖φj‖Hs (�).

Now by the hypothesis that the sequences {aj‖φj − φε
j‖Hs (�)} and {|aj − aεj |‖φj‖Hs (�)}

belong to  1, Kolmogorov’s two series theorem yields that the above sum converges a.s.
Applying Cauchy–Schwarz we can write

P(only one chain accepts)

≤ L

( ∞∑
j=0

aj |ξj |2‖φj‖2
Hs (�)

)1/2( ∞∑
j=0

aj
‖φj − φε

j‖2
Hs (�)

‖φj‖2
Hs (�)

)1/2

+L

( ∞∑
j=0

a2
j |ξj |2

)1/2( ∞∑
j=0

|aj − aεj |2
a2
j

‖φj‖2
Hs (�)

)1/2

,

from which it follows that

EP(only one chain accepts)

≤ L

( ∞∑
j=0

aj‖φj‖2
Hs (�)E |ξj |2

)1/2( ∞∑
j=0

aj
‖φj − φε

j‖2
Hs (�)

‖φj‖2
Hs (�)

)1/2

+L

( ∞∑
j=0

a2
j E |ξj |2

)1/2( ∞∑
j=0

|aj − aεj |2
a2
j

‖φj‖2
Hs (�)

)1/2

≤ C1

[( ∞∑
j=0

aj
‖φj − φε

j‖2
Hs (�)

‖φj‖2
Hs (�)

)1/2

+
( ∞∑
j=0

|aj − aεj |2
a2
j

‖φj‖2
Hs (�)

)1/2]
.

Since {aj } ∈  2 and {aj‖φj‖2
Hs (�)} ∈  1. We further have, by a similar calculation as above,

that

d0
(
u∗, u∗ε

)= 1∧ ‖u∗ − u∗ε‖H1(�)

ω
= 1∧ ‖v∗ − v∗ε‖H1(�)

ω

≤ 1∧ 1

ω

( ∞∑
j=0

aj |ξj |2‖φj‖2
Hs (�)

)1/2( ∞∑
j=0

aj
‖φj − φε

j‖2
Hs (�)

‖φj‖Hs (�)2

)1/2

+ 1

ω

( ∞∑
j=0

a2
j |ξj |2

)1/2( ∞∑
j=0

|aj − aεj |2
a2
j

‖φj‖2
Hs (�)

)1/2

=: 1∧ T1 + T2.
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Thus it follows by Markov’s inequality that

Ed0
(
u∗, u∗ε

)≤ P(T1 + T2 ≥ 1)+ET1 + T2

≤ 2E(T1 + T2)

≤ 2C2

ω

[( ∞∑
j=0

aj
‖φj − φε

j‖2
Hs (�)

‖φj‖2
Hs (�)

)1/2

+
( ∞∑
j=0

|aj − aεj |2
a2
j

‖φj‖2
Hs (�)

)1/2]
.

Substituting the above bounds back into (51) we obtain

d0(Pδu,Pεδu)

≤ C

[( ∞∑
j=0

aj
‖φj − φε

j‖2
Hs (�)

‖φj‖2
Hs (�)

)1/2

+
( ∞∑
j=0

|aj − aεj |2
a2
j

‖φj‖2
Hs (�)

)1/2]
.

�
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