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ABSTRACT

Open knowledge, including open data and publicly available
knowledge bases, offers a rich opportunity for data scien-
tists for analysis and query answering, but comes with big
obstacles due to the diverse, noisy, and incomplete nature
of its data eco-system. This paper proposes a vision for en-
abling approximate QUery answering over Open Knowledge
(Quok), with a focus on supporting analytic tasks that in-
volve identifying relevant data and computing aggregations.
We define the problem, outline a system architecture, and
discuss challenges and approaches to taming the uncertainty
and incompleteness of open knowledge.
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1 INTRODUCTION

Data analytics has been well established in business and
finance, traditionally operating over a single database or
data warehouse with a small (sub-)set of well-designed and
content-curated tables. With modern data science, this has
been changing on both application areas and data landscapes.
Today, data scientists are active on much wider use cases,
from life sciences and environmental studies (energy, traffic,
climate, ecosystems) all the way to humanities and social sci-
ences. In many settings, the analyst is faced with a large data
lake of highly diverse tables or even dataset-search [5, 11, 20]
results from the Internet, and would like to quickly join and
aggregate relevant pieces for exploration, knowledge dis-
covery and intellectual insight. The underlying Open Data
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comprises ad-hoc datasets, reference repositories, spread-
sheets and web tables from web and cloud sources, with
formats from relational and JSON to HTML and CSV [19].

As an example, consider an environmental protection re-
searcher Zoe who wants to analyze the emissions distribu-
tion of greenhouse gas per US state. The Open Data habitat
offers a variety of datasets with such emission results. How-
ever, these finer sources are likely noisy and incomplete,
and come with ad-hoc schemas in the form of hand-crafted
column headers (some with informative names, others with
generic and useless strings). Then, Zoe may also face the
following tasks:

1. Identifying relevant tables in the open data lake, and
selecting their relevant rows.

2. Interpreting table headers in order to identify joinable
columns and relevant join paths.

3. Identifying columns for grouping and aggregation, and
evaluating relevant aggregates (sum, cnt, avg, etc.).

Each of these steps would be a straightforward SQL-for-
OLAP exercise if all contents were clean, complete and inte-
grated into a single database. The challenges in our setting,
though, are to cope with the large scale of ad-hoc choice
of datasets with hardly interpretable metadata and a ma-
jor amount of noisy or missing values, the sheer number of
join paths we may find and the expensive execution of join.
Fortunately, since analytic tasks often involve aggregations
where trends and relative comparisons can already be in-
sightful, there is hope for success by adopting the paradigm
of approximate query processing (AQP) [1, 7, 14].

There is a wealth of techniques for efficient and effec-
tive AQP over single databases, such as sampling-based ap-
proaches [3, 13] and sketch-based algorithms [9, 10]. These
techniques aim to strike a balance between answer accu-
racy and computational cost. This paper, on the other hand,
explores the state-of-the-art for the nascent theme of approx-
imate answering of aggregate queries over Open Knowledge,
that is, large knowledge bases (KB) and data lakes (DL) with
vastly diverse habitats of noisy and incomplete tables.


https://doi.org/10.1145/3597465.3605227
https://doi.org/10.1145/3597465.3605227
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597465.3605227&domain=pdf&date_stamp=2023-07-21

HILDA ’23, June 18, 2023, Seattle, WA, USA

Input: the query >

KB Discovery
. Fuel
| want to compute the City State Type
average emissions of greenhouse “New York | New York W

gas for each US state.

Data Collection

Philadelphia|[Pennsylvania CO2
oo : SanJose | California  N20

= { Seattle Washington HFCs
Researcher Zoe e :

at1; i
RN

Mengqi Zhang, Pranay Mundra, Chukwubuikem Chikweze, Fatemeh Nargesian, and Gerhard Weikum

|:"> Approximate Query Answering
- | Emissions
25.4M

DL Discovery

over noisy, uncertain
and incomplete data

oo
W |
<

IN

| ol =
=

Figure 1: System Overview.

2 SYSTEM OVERVIEW

Figure 1 illustrates our proposed architecture. We are given
a data lake £, a knowledge base K, and a query Q =
{H,G, T, agg}, where H is a categorical attribute, called sub-
ject attribute, G is a group-by attribute, T is a numerical
attribute, called aggregate attribute, and agg is an aggregate
function applicable on T. The goal is to compute the aggre-
gate of T over attribute G, namely (yG,agg(T) oy (K, L),CI),
where CI refers to the confidence interval. For example, in
the query of Figure 1, City and Fuel Type are the subject
attributes, State is the group-by attribute, Emissions is the
aggregate attribute, and Average is the aggregate function.

The framework consists of two main steps: 1) fusing the
data of KB and DL to obtain relevant and necessary data
for query answering in an efficient way and 2) computing
approximate aggregates in the presence of noisy, incomplete,
and uncertain data.

3 RESEARCH CHALLENGES

Data Collection: The first step is to integrate heterogeneous
and noisy data of the lake with the knowledge base and con-
struct a dataset containing subject, aggregate, and group-by
attributes. Due to the sheer size of data and space of integra-
tion, we develop a framework for obtaining a random sample
from this space where we can analyze confidence intervals
on calculated aggregates. This involves first performing KB
discovery, that is extracting the entities related to the subject
and group-by attributes. Next, during DL discovery, the sys-
tem fuses the data obtained from KB with datasets in DL. The
goal is to obtain numerical values of the aggregate attributes
for all or at least a subset of entities found for subject and
group-by attributes in KB. This step involves relevant dataset
discovery [20, 25] and navigating the join graph of DL [26]
to find ways of integrating datasets. The first challenge is the
pruning of the space of all possible join queries (join paths).
To deal with the sheer number of join queries and expensive
joins, we propose two optimizations. Since syntactic [25] and
semantic join [18] discovery techniques may result in a large
number of false positives, we will leverage table represen-
tation learning techniques [15] to identify meaningful joins

and prune the space. Second, we develop a practical tech-
nique with provable guarantees for sampling over the union
of joins for the problem of union sampling [12]. The goal is
to ensure the uniformity of samples without generating and
executing the complete join graph.

Approximate Query Answering over Uncertain and
Incomplete Data: The data collection step may generate
incomplete or uncertain data. For example, the data lake
may return multiple emission values for a specific city. The
main challenge is to approximate aggregates in the presence of the
incompleteness of results as well as inaccuracies and uncertain-
ties in the data collection phase, rising from the lack of standard
formatting and semantics. To handle uncertainty, one simple way
is to assign evidence scores to extracted tuples and incorporate
the score in aggregation. In addition, in some scenarios, the ex-
tracted data is incomplete. For example, neither KB nor DL may
contain the emissions value for some cities. We call such cases
known unknowns and rely on the rich body of research on miss-
ing value imputation [2, 16] to predict one value [21] or a range of
values [4, 23] for missing value in the aggregate attributes. Alter-
natively, we may consider multiple underlying data generators for
the values of an attribute mitigating the potential bias regarding
all values being from the same distribution.

The incompleteness may impact the subject attribute. For ex-
ample, some cities that exist in the real world may not exist in
the KB or DL. Therefore, the data collection fails to return their
emissions. Such cases are called unknown unknowns. Chung et
al. proposed a technique for estimating the number and values of
the missing data items by considering the overlap between different
data sources [8]. The idea is based on the Species Accumulation
Curve in Ecology [24], where the intuition is that the rate of discov-
ery of new species decreases as the cumulative effort of the search
increases. Meanwhile, Chao et al. proposed approximating the num-
ber of unknown unknowns based on the sample coverage [6, 8],
such that when the number of duplicates is greater than the number
of singletons, the sample coverage is higher, indicating that the
sample is more complete. Then, the Good Turing estimator [17, 22]
can be applied to estimate the sample coverage. To handle unknown
unknowns, we consider random samples obtained from join queries
generated during data collection as input data sources and adopt
the Good Turing estimator [17, 22] and sample coverage techniques
to compute aggregates and their confidence intervals.
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