Generating Plugs and Data Sockets for
Plug-and-Play Database Web Services

Arihant Jain', Curtis Dyreson![0000—0003—-0236-1515]
Bhowmick2[0000—0003—1957—-8016]

, and Sourav S

! Department of Computer Science, Utah State University, Logan UT, USA
arihant25jain@gmail.com,curtis.dyreson@usu.edu
https://www.usu.edu/cs/people/CurtisDyreson/

2 Nanyang Technological University, Singapore
assourav@ntu.edu.sg
https://personal.ntu.edu.sg/assourav/

Abstract. We propose a novel system for creating data plugs and sock-
ets for plug-and-play database web services. We adopt a plug-and-play
approach to couple an application to a database. In our approach a de-
signer constructs a “plug,” which is a simple specification of the output
produced by the service. If the plug can be “played” on the database
“socket” then the web service is generated. Our plug-and-play approach
has three advantages. First, a plug is portable. A plug can be played on
any data source to generate a web service. Second, a plug is reliable. The
database is checked to ensure that the service can be safely and correctly
generated. Third, plug-and-play web services are easier to code for com-
plex data since a service designer can write a simple plug, abstracting
away the data’s real complexity. We describe a system for plug-and-play
web services and experimentally evaluate the system.

Keywords: Web services - Databases - Plug-and-play

1 Introduction

Web services are a common technology for transferring data between a web server
and an application. As shown in Figure 1 a web service is a bridge between an
application and a database with a coupling on both ends. The application cou-
pling is between the code in the application and the web service. A web service
provides (or accepts) data formatted in a specific shape, which is usually a hi-
erarchy since the data is typically formatted in JSON or XML, and could be
further transformed using GraphQL. The second coupling is between the web
service and the back-end database, which we will call the database coupling. The
database coupling maps flat, relational data in the database to the shape (hier-
archy) used by the service; it is typically an object-relational mapping (ORM).

We observed that the design and construction of the application and database
couplings could be improved in (at least) three ways. First, the application cou-
pling is rigid. The web service constructs data to a specific shape. We will call

0

applications

ORM

[S

web service

JSON/XML i

database server

application coupling
buydnos asbqoipp

Fig. 1. Couplings in a web service

this shape a data socket. An application also needs data in a specific shape, which
we will call a data plug. If the data plug does not fit the data socket then the
application is unable to couple to the web service. Rigidity reduces application
portability. Second, both couplings are brittle, changes to a data plug or data
socket, i.e., changes to the database, application, or web service, may break an
existing coupling. Brittleness “pins” both the database schema (how the data
is organized) and the application (which uses the schema to construct queries),
limiting their evolution. Third, the application and database couplings are static.
That is, an application can only choose among the data sockets pre-defined by
the database coupling. Complicating the problem is that the application coupling
and database coupling are specified using separate technologies.

This paper proposes a plug-and-play approach to web service construction
to make the couplings more flexible, resilient to change, and dynamic. We call
our plug-and-play web service creator AUTOREST. Suppose that a biodiversity
application wants visualize a taxonomic hierarchy from data stored in a biodiver-
sity database. There are many such databases [1] hosted by various biodiversity
platforms such as Symbiota2, Specify, or Arctos, to which the application could
couple. The databases have the same kinds of data but different schemas. The
designers of the taxonomic hierarchy viewer application describe its data needs
as a set of data plugs. AUTOREST either constructs data sockets from the
database to fit each of the data plugs or describes how the construction will fail
(lose information).

As an example, suppose that as part of the visualization of the taxonomic hi-
erarchy the application consumes data about journal articles related to scientific
names, grouping titles and DOIs of articles below the names. Additionally the
application would like to translate the keys in the key/value pairs in the data
(this translation is optional) from English to Spanish. The application designer
would give the data plug specification shown in Figure 2 for growing a new web
service to provide the data. The GET service endpoint for providing the data
would (if possible to construct) provide data formatted as shown in Figure 3.

This paper is organized as follows. The next section describes the architecture
of AUTOREST. We then describe some experiments that explore two variants
of AUTOREST. Related work is described in Section 4. The paper concludes in
Section 5.

[{ "el nombre cientifico" : "scientific name",
"los articulos" : [{"titulo": "title",
IIDOIII: IIDOIII}] }]

Fig. 2. A plug-and-play web service specification

[{ "el nombre cientifico" : "Canis lupus",
"los articulos" : [{ "titulo" : "From the Past to the Present: Wolf Phylogeography",
"DOI" : "10.3389/fevo.2016.00134" 1},
{ "titulo" : "...",
"DOI" : "..." },
.o 13,
{ "el nombre cientifico" : "...", ... }, ...]

Fig. 3. Data returned by the constructed service

2 AUTOREST Architecture

In this section we describe the architecture of AUTOREST. This section de-
scribes each step in the generating a data plug and socket.

2.1 Getting Started

AUTOREST has a GUI written in Python, though AUTOREST is primarily
written in Java. The code is publicly available from github: https://github.
com/cdyreson/autorest. AUTOREST provides an interface to connect to a
database and harvest the metadata, e.g., the schema, from the database.

2.2 Association Multigraph Construction

AUTOREST next creates an association multigraph. An edge in the graph is a
foreign key relationship (it is undirected since the edge can be traversed in either
direction) and a node is a table. Attributes for a table are associated with the
node. We use foreign keys because they are available in the schema.

2.3 Parsing the Plug

The plug is parsed, creating an abstract syntax tree (AST). We use ANTLR
to parse the plug and walk the AST to perform other actions. AUTOREST
matches the plug to the association multigraph by first matching names in the
plug to attributes associated to nodes in the graph. A name may match multiple
nodes. For each match, AUTOREST builds the spanning tree from the leaves
of the plug (the plug specifies a hierarchy) to the root using the principle of
closeness to associate parents with children. Closeness can be described as the
property that two data items are related if they are connected (by a path) and

| images
statuses P g
taxon ID > D
thority ID > taxon ID copyright
> 20 tf R scientific name] t
is synonym axon ID
parent taxon ID
synonym ID URL
l thumbnail URL
descriptions occurrences
taxon ID)
authority ID collection code collectors
a s D
description tazon ID <-|_
source locale name
basis of record affiliation
authorities T
authority ID collections
| name code
URL name
manager

Fig. 4. Reduced schema of the Symbiota2 database

that no shorter paths that connect items of the same type exists [6,16]. In the
context of relational databases the type of a datum is the domain (an attribute
in a relation) to which it belongs. This matching creates a closest spanning tree,
which is traversed using an inorder walk to generate a path that connects the
data. Since a name may match multiple nodes in the graph and multiple edges
could connect a pair of nodes, there could be several paths for a plug. The next
step determines the best path.

2.4 Finding Closest Paths

There can be several possible paths between two tables in a database. To find
the closest path we use a modified breadth-first search algorithm to find all the
shortest paths between the two tables. There are several cases of how queries
are processed as described in the remainder of this section.

Case: Single table plug Suppose we want to create a simple web service that
returns an orders key and status information from the Symbiota2 database using
the plug shown in Figure 5. We process the plug as described previously. After
processing, we have data for the SELECT and ORDER BY keywords. To create a
query we need to find the join conditions between the columns in the database.
In this section, we will discuss the algorithm we use to process queries to generate
paths or join conditions for the query.

For a given search query we first begin with the first column and then we
find the relation to the next column. For the example query, it is locale and
basis of record, respectively. Looking at the schema in Figure 4 we see that
both columns are in the same table. To get the data for the FROM keyword, all we
need is the name of the table. Our algorithm generates the SQL query shown in
Figure 6. Similarly, if the query had more columns from the same table then we
would only need to add the column names to the SELECT and ORDER BY clauses.

4

[{ "where": "locale", "basis": "basis of record" }]

Fig. 5. Simple, single table plug

SELECT DISTINCT locale, 'basis of record'
FROM occurrences
ORDER BY locale, 'basis of record'

Fig. 6. SQL for the single table plug shown in Figure 5

Case: Multi-table plug Suppose we want to create a web service to find the
scientific names of taxa and information about the images for each taxon,
then we would use the plug given in Figure 7. Again we get the data for SELECT
and ORDER BY from the initial processing stages of the search query. Next we need
to find the relation among the different columns in the query. As described earlier
we start with finding the relation for scientific name and the next column URL.
These columns are from different tables. So we build the join condition between
tables, taxa and images and create a query-specific path resulting in the SQL
query shown in Figure 8. The reason we are use left joins is if there were taxa
that do not have any images then we would not get their scientific names in
the result set.

Case: Multi hierarchy plug Suppose that the plug is as given in Figure 9.
Finding paths in a hierarchical query differs from a flat query since we need
to find paths between parents and children in the plug. For the example query,
we find the relation between scientific name and locale, and similarly after
than between scientific name and URL. The query generated for this plug is
shown in Figure 10. We create the hierarchical structure from the result set after
executing the query. Since the result is ordered by nodes higher in the hierarchy,
the hierarchy can be constructed in a streaming fashion from the result.

Case: Multiple-path plug There could be multiple shortest paths connecting
two relations, for example for the plug given in Figure 11 one path is

taxa - descriptions - authorities
while another is given below.
taxa - statuses - authorities

Such a situation is quite likely to occur in a database with several relationship
types between a pair of entity types.

To enable the user to choose the best path, AUTOREST visualizes the paths.
In this visualization on the full Symbiota2 schema (rather than the reduced
and simplified schema used previously) there are seven paths that connect the
authorities and taxa tables. The visualization enables a developer to choose

[{ "taxon": "scientific name", "image": "URL",
"copyright": "copyright", "thumbnail": "thumbnail URL" }]

Fig. 7. Multi-table plug

SELECT DISTINCT taxa.'scientific name', images.URL,
images.copyright, images.'thumbnail URL'
FROM taxa LEFT JOIN images USING ('taxon ID')
ORDER BY taxa.'scientific name', images.URL,
images.copyright, images.'thumbnail URL'

Fig. 8. Generated SQL query for plug in Figure 7

a path other than the one AUTOREST deems as best (lowest cost/most infor-
mation retained).

We measure the desirability of the web service on the basis of rows returned,
which is an indicator of the completeness of the plug computation. The more
rows being returned from a query implies that less data is being lost with the
join condition. The rows can be either counted by executing the query and then
counting the rows (e.g., using EXPLAIN ANALYZE) or by estimating the number
of rows (e.g., using EXPLAIN). AUTOREST shows the estimated number of rows
and also presents the user with a graphical representation of the path of the join
condition in the database.

Finally, to maximize completeness a user can choose to perform the union
of alternative paths. We do not automatically detect when a union will improve
the completeness since the query subsumption problem (figuring out if a query
produces a subset of another query) is also NP-complete. Rather we leave it to
the designer to choose to union alternatives.

2.5 Creating the Service

In our implementation, we auto generate a Python script using the Flask frame-
work to create the web service.

3 Evaluation

In this section we describe the results of several experiments to evaluate AUTOR-
EST. The evaluation measures the feasibility of plug-and-play web services. We
explore two alternatives in cost estimation in an SQL query compiler while cre-
ating a web service using AUTOREST.

We performed our experiments on a desktop machine with an i7-4770 CPU
with a clock speed of 3.40GHz and 16GB of DDR3 memory. The OS used is
Ubuntu 18 LTS, 64-bit and the Java version used is version 11. We performed
the experiments using the Postgres DBMS version 12. We used an out-of-the box

[{ "taxon": "scientific name", "occurrences": [{ "locale" : "locale" }],
"images": [{ "URL" . "URL"}] }]

Fig. 9. A multi-hierarchy plug

SELECT DISTINCT taxa.'scientific name', occurrences.locale, images.URL
FROM taxa LEFT JOIN occurrences USING ('taxon ID')

LEFT JOIN images USING ('taxon ID')
ORDER BY taxa.'scientific name', occurrences.locale, images.URL

Fig. 10. SQL for the multi-hierarchy plug of Figure 9

version of both Postgres and Java, with no adjustments made for performance
tuning, such as increasing cache memory size. The experiments used a standard
relational benchmark database, TPC-H [15]. We used TPC-H rather than Sym-
biota2 since we wanted to experiment with different database sizes (in a later
experiment).

For the first experiment the TPC-H database generator was used to generate
a database 10MB in size. We manually created seven plugs based on TPC-
H queries, which are in the test section of the implementation package. The
experiment measures the total time to create the web service, from input of
the plug to completion of code creation. We tested using EXPLAIN vs. EXPLAIN
ANALYZE to resolve shortest paths queries. The difference between EXPLAIN vs
EXPLAIN ANALYZE is that the former estimates the cost of a query from database
statistics, while the latter runs the query capturing the actual cost. Estimating
query cost is much faster than running a query and measuring the cost. Figure 12
plots the cost of generating the web service for each plug. The plugs increase in
complexity from plug one to plug seven, and therefore in cost. The experiment
also shows that using EXPLAIN ANALYZE is more expensive for complex plugs,
for plugs six and seven it is more than double the cost.

EXPLAIN ANALYZE takes more time, but it is unclear if it is producing a “bet-
ter” result. The quality differences between EXPLAIN and EXPLAIN ANALYZE can
be measured by examining how close the former comes to estimating the num-
ber of rows in the query result, which is what we use for gauging completeness
and ranking paths. Figure 13 shows the percent difference in the queries cor-
responding to the seven plugs. The query size estimator in Postgres accurately
predicts the size of the result for most of the queries, only query 2 shows signifi-
cant differences. We observed that sometimes the query estimator overestimates
the number of output rows for queries that involve DISTINCT, which eliminates
duplicate rows from the query result.

We also measured the time to produce the first result. Pagination is typically
used for web services, so the time to the first result is essentially the time to
produce the first page. Figure 14 shows the difference in the cost of computing
the first result vs. the complete result using EXPLAIN.

[{ "scientific name": "scientific name", "editors": "editors" }]

Fig. 11. A multiple path plug

100 - .
g, g
g 501 £ os0F 7
OFII:I:H:I:H:“:”:DDD L o= = - - _— _— _|
1 3 5 7 i 3 5 7
Query Query
Fig. 12. Timing EXPLAIN vs. EXPLAIN Fig. 13. Percentage difference of num-
ANALYZE on seven plugs of increasing ber of rows in EXPLAIN vs EXPLAIN
complexity ANALYZE

The previous experiments used a relatively small database, so we were in-
terested in determining how the size of the database impacted the time taken.
Figure 15 plots the time difference between EXPLAIN and EXPLAIN ANALYZE for
the seven plugs on databases of increasing size. The results show that as the
database size increases, the time difference also increases, which means that
EXPLAIN ANALYZE takes longer with larger databases. We have only included
results from the initial five queries as the time difference in the last two queries
is extremely large.

4 Related Work

Related work falls into two categories, existing tools for web services creation
and peer-reviewed research. We cover the tools first.

There are API-side tools to create or document a client’s view of a web
service, that is, a program interface and documentation e.g., the Swagger User
Interface editor [13]. API-side tools like GraphQL can be further applied to
process the data returned by a web service, but lack the database construction
of the service as described in this paper. There are also tools to create the
DBMS-side of the web service. A canonical tool in this category is Doctrine [5].
AUTOREST combines the API-side and DBMS-side construction.

Plug-and-play web services are a technique for easing the burden of con-
structing a hierarchy from a database, which has been investigated previously
in various ways. The problem of constructing a hierarchy from relational data
is simplified by storing the hierarchical data in a relational database [11,14] or
key /value store, such as MongoDB. The main challenge addressed in this paper is
how to transform (flat) relational tables to hierarchical data (JSON), which is a

00 First result !
0 Bcomplete result

60 -

35
40 -

2.5

Time [s]

70 MB
50 MB

gL L L l:l‘lj D‘D D‘D DH L 05 30 MB

T
2 3 4 5 6 7 1 2 3 4 5
Web service

20 L5

Time difference in seconds

Query

Fig. 15. Difference between EXPLAIN

Fig. 14. Timing first result vs complete
and EXPLAIN ANALYZE

result set

different problem than how to transform hierarchical data to hierarchical data [6,
10,12,16]. Codd famously proposed transforming hierarchical data to relational
data [4], which is the paradigm that has dominated much of the database litera-
ture. Web service composition [3] is another way of changing the shape, through
the process of composing existing web services. Such compositions are prone to
brittleness [8]. AUTOREST grows a web service rather than composing existing
services; composition does not address how to create a hierarchy from tables.

Data can be integrated from one or more source schemas to a target schema
by specifying a mapping to carry out a specific, fixed transformation of the
data [2]. Once the data is in the target schema, there is still the problem of
queries that need data in a hierarchy other than the target schema. In some
sense schema mediators integrate data to a fixed schema, which is the starting
point for what plug-and-play web services aims to do. The different problem leads
to a difference in techniques used to map or transform the data. For instance
tuple-generating dependencies (TGDs) are a popular technique for integrating
schemas [7,9]. Part of a TGD is a specification of the source hierarchy from
which to extract the data. Specifying the source will not work for plug-and-play
web services, which must be agnostic about the source.

5 Conclusion

We built a system called AUTOREST to provide plug-and-play web services.
AUTOREST generates a web service from a simple JSON specification of the
output of the service. We described how the specification is used to compute
the hierarchical output from relational tables and how attributes are related in
a association multigraph. AUTOREST essentially eliminates the need for any
prior coding knowledge to create a web service, and also enables fast web service
creation. This paper describes how AUTOREST is implemented and gives an
experimental evaluation.

100 MB

Database size

Acknowledgements

This work was supported in part by the National Science Foundation under
Award No. DBI-1759965, Collaborative Research: ABI Development: Symbiota2:
Enabling greater collaboration and flexibility for mobilizing biodiversity data.
Opinions, findings and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect those of NSF.

References

10.

11.

12.

13.

14.

15.

16.

Ball-Damerow, J., Brenskelle, L., Barve, N., Soltis, P., Sierwald, P., Bieler, R.,
Lafrance, R., Arifio, A., Robert, G.: Research applications of primary biodiversity
databases in the digital age. PLOS ONE 14, €0215794 (09 2019)

Bhide, M., Agarwal, M., Bar-Or, A., Padmanabhan, S., Mittapalli, S., Venkat-
achaliah, G.: XPEDIA: XML ProcEssing for Data Integration. PVLDB 2(2), 1330—
1341 (2009)

Chan, P.P.W., Lyu, M.R.: Dynamic web service composition: A new approach in
building reliable web service. In: AINA. pp. 20-25 (2008)

Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. CACM
13(6), 377-387 (1970)

Doctrine: Object relational mapper [online]. https://www.doctrine-project.
org/projects/orm.html (2019), (Accessed on 07/23/2019)

Dyreson, C.E., Bhowmick, S.S.: Querying XML Data: As You Shape It. In: ICDE.
pp. 642-653 (2012)

Fagin, R., Haas, L., Hernandez, M., Miller, R., Popa, L., Velegrakis, Y.: Clio:
Schema Mapping Creation and Data Exchange. In: LNCS 5600. pp. 198-236 (2009)
Hu, T., Guo, M., Guo, S., Ozaki, H., Zheng, L., Ota, K., Dong, M.: Mttf of com-
posite web services. In: ISPA. pp. 130-137 (2010)

Jiang, H., Ho, H., Popa, L., Han, W.S.: Mapping-driven XML Transformation. In:
WWW. pp. 1063-1072 (2007)

Krishnamurthi, S., Gray, K.E., Graunke, P.T.: Transformation-by-Example for
XML. In: PADL. pp. 249-262 (2000)

Liu, Z.H., Hammerschmidt, B., McMahon, D.: Json data management: Supporting
schema-less development in rdbms. In: SIGMOD. pp. 1247-1258. ACM (2014)
Pankowski, T.: A High-Level Language for Specifying XML Data Transformations.
In: ADBIS. pp. 159-172 (2004)

Swagger.io: Swagger ui [online]. https://swagger.io/tools/swagger-ui/ (2019),
(Accessed on 07/23/2019)

Tatarinov, 1., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang,
C.: Storing and Querying Ordered XML using a Relational Database System. In:
SIGMOD Conference. pp. 204-215 (2002)

TPC.org: Tpc-h homepage [online]. https://tpc.org/tpch/ (2019), (Accessed on
07/22/2019)

Zhang, S., Dyreson, C.E.: Symmetrically Exploiting XML. In: WWW. pp. 103-111
(2006)

10

