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Optimization and sampling algorithms play a central role
in science and engineering as they enable finding optimal
predictions, policies, and recommendations, as well as ex-
pected and equilibrium states of complex systems. The
notion of “optimality” is formalized by the choice of an
objective function, while the notion of an “expected” state
is specified by a probabilistic model for the distribution
of states. Optimizing rugged objective functions and sam-
pling multimodal distributions is computationally chal-
lenging, especially in high-dimensional problems. For this
reason, many optimization and sampling methods have
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been developed by researchers working in disparate fields
such as Bayesian statistics, molecular dynamics, genetics,
quantum chemistry, machine learning, weather forecast-
ing, econometrics, and medical imaging.

State-of-the-art algorithms for optimization and sam-
pling often rely on ad-hoc heuristics and empirical tuning,
but some unifying principles have emerged that greatly fa-
cilitate the understanding of these methods and the com-
munication of algorithmic innovations across scientific
communities. This article is concerned with one such prin-
ciple: the use of gradient flows, and discretizations thereof,
to design and analyze optimization and sampling algo-
rithms. The interplay between optimization, sampling,
and gradient flows is an active research area and a thor-
ough review of the extant literature is beyond the scope of
this article.1 Our goal is to provide an accessible and lively
introduction to some core ideas, emphasizing that gradi-
ent flows uncover the conceptual unity behind several ex-
isting algorithms and give a rich mathematical framework
for their rigorous analysis.

1AMS Notices limits to 20 the references per article; we refer to [GTSA20,
CLGL+20,GIHLS20] for further pointers to the literature.
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We present motivating applications in section 1. Sec-
tion 2 is focused on the gradient descent approach to opti-
mization and introduces fundamental ideas such as pre-
conditioning, convergence analysis, and time discretiza-
tion of gradient flows. Sampling is discussed in section 3
in the context of Langevin dynamics viewed as a gradient
flow of the Kullback–Leibler (KL) divergence with respect
to (w.r.t) the Wasserstein geometry. Some modern appli-
cations of gradient flows for sampling are discussed in sec-
tion 4, followed by concluding remarks in section 5.

1. Motivating Applications
We outline two applications in Bayesian statistics and
molecular dynamics that illustrate some important chal-
lenges in optimization and sampling.
1.1. Bayesian statistics. In Bayesian statistics [GCSR95],
an initial belief about an unknown parameter is updated
as data becomes available. Let 𝜃 denote the unknown pa-
rameter of interest belonging to the parameter spaceΘ and
let 𝜋0(𝜃) denote the prior distribution reflecting our initial
belief. Furthermore, let 𝑦 be the observed data also belong-
ing to an appropriate space 𝒴. Then Bayes’s rule identifies
the distribution of 𝜃 conditioned on the data 𝑦:𝜋(𝜃|𝑦) ∝ 𝜋(𝑦|𝜃)𝜋0(𝜃), (1.1)

where ∝ indicates that the right-hand side should be nor-
malized to define a probability distribution. Here 𝜋(𝑦|𝜃)
is called the likelihood function and 𝜋(𝜃|𝑦) is called the pos-
terior distribution. Bayesian inference on 𝜃 is based on the
posterior, which blends the information in the prior and
the data.

The choice of prior and likelihood is a modeling task
which, perhaps surprisingly, is often not themost challeng-
ing aspect of Bayesian inference. The main challenge is to
extract information from the posterior since (i) it typically
does not belong to a standard family of distributions, un-
less in the restrictive case of conjugate models [GCSR95];
(ii) the parameter 𝜃 can be high dimensional; and (iii) the
normalizing constant ∫Θ 𝜋(𝑦|𝜃)𝜋0(𝜃) 𝑑𝜃 in (1.1) (known
as the marginal likelihood) is rarely available and it can be
expensive to compute. These practical hurdles inform the
design of optimization and sampling algorithms to find
posterior statistics.

Of particular importance is the posterior mode or max-
imum a posteriori (MAP) estimator𝜃MAP ≔ argmax𝜃 𝜋(𝜃|𝑦).
Many optimization algorithms for MAP estimation start
from an initial guess 𝜃0 and produce iterates {𝜃𝑛}𝑁𝑛=1 by
discretizing a gradient flowwith the property that 𝜃𝑛 ≈ 𝜃MAP

for large 𝑛. Such gradient flows in parameter space will be
discussed in section 2.

Computing MAP estimators is closely related to classic
regularization techniques such as penalized least squares
and Tikhonov regularization [SAST18]. In order to fully
leverage the Bayesian framework, it is often desirable to
consider other posterior statistics such as mean, variance,
credible intervals, and task-specific functional moments,
which can be written in the form𝔼𝜋(⋅|𝑦)[𝜙(𝜃)] ≔ ∫𝜙(𝜃)𝜋(𝜃|𝑦) 𝑑𝜃,
where 𝜙 is a suitable test function. Since 𝜃 is often high
dimensional, the standard approach to compute these ex-
pectations is to useMonte Carlo [Liu01]: obtain𝑁 samples{𝜃𝑛}𝑁𝑛=1 from the posterior 𝜋(𝜃|𝑦), and then approximate𝔼𝜋(⋅|𝑦)[𝜙(𝜃)] ≈ 1𝑁 ∑𝑛 𝜙(𝜃𝑛).
While Monte Carlo integration is in principle scalable to
high dimensions, the task of generating posterior sam-
ples is still highly nontrivial. To that end, one may con-
sider sampling 𝜃𝑛 ∼ 𝜌𝑛, where the sequence {𝜌𝑛}𝑁𝑛=1 arises
from discretizing a gradient flow with the property that𝜌𝑛 ≈ 𝜋(⋅|𝑦) for large 𝑛. Such gradient flows in the space
of probability distributions will be discussed in sections 3
and 4.

To relate the discussion above to subsequent develop-
ments, we note that dropping the data 𝑦 from the notation,
the posterior density can be written as𝜋(𝜃) = 1𝑍 exp(−𝑉(𝜃)), (1.2)

where 𝑍 = ∫Θ 𝜋(𝑦|𝜃)𝜋0(𝜃) 𝑑𝜃 is the marginal likelihood
and 𝑉 ∶ Θ × 𝒴 → ℝ is the negative logarithm of the poste-
rior density.
1.2. Molecular dynamics. Another important source of
challenging optimization and sampling problems is statis-
tical mechanics, and in particular the simulation of molec-
ular dynamics (see chapter 9 in [Liu01]). According to
Boltzmann and Gibbs, the positions 𝑞 and momenta 𝑝 of
the atoms in a molecular system of constant size, occupy-
ing a constant volume, and in contact with a heat bath (at
constant temperature), are distributed according to𝜋(𝑞, 𝑝) = 1𝑍 exp(−𝛽(𝑈(𝑞) + 𝐾(𝑝))), (1.3)

where 𝑍 is a normalizing constant known as the partition
function, 𝛽 represents the inverse temperature, 𝑈 is a po-
tential energy describing the interaction of the particles in
the system, and 𝐾 represents the kinetic energy of the sys-
tem. Letting 𝜃 ≔ (𝑞, 𝑝),we canwrite the Boltzmann–Gibbs
distribution (1.3) in the form (1.2), with𝑉(𝜃) = −𝛽(𝑈(𝑞) + 𝐾(𝑝)). (1.4)

As in Bayesian statistics, it is important to determine
the most likely configuration of particles (i.e., the mode of𝜋), along with expectations of certain test functions w.r.t.
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the Boltzmann distribution. These two tasks motivate the
need for optimization and sampling algorithms that ac-
knowledge that the potential 𝑈 is often a rough function
with many local minima, that the dimension of 𝑞 and 𝑝 is
large, and that finding the normalizing constant 𝑍 is chal-
lenging.

2. Optimization
In this section we discuss gradient flows for solution of the
unconstrained minimization problem

minimize 𝑉(𝜃) s.t. 𝜃 ∈ Θ, (2.1)

where 𝑉(𝜃) is a given objective function. Henceforth we
takeΘ ≔ ℝ𝑑 unless otherwise noted. As guiding examples,
consider computing themode of a posterior or Boltzmann
distribution by minimizing 𝑉 given by (1.2) or (1.4). The
methods described in this section are applicable beyond
the specific problem of finding the modes, however, this
interpretation will be of particular interest in relating the
material in this section to our discussion of sampling in
section 3.
2.1. Gradient systems. One of the most standard ap-
proaches to solve (2.1) is gradient descent, an optimization
scheme that is based on the discretization of the gradient
system ̇𝜃𝑡 = −∇𝑉(𝜃𝑡), 𝑡 > 0, (2.2)

with user-defined initial value 𝜃0; throughout this article∇𝑉(𝜃𝑡) will denote the gradient of the function 𝑉 at the
point 𝜃𝑡, which will be tacitly assumed to exist wherever
needed.

While equation (2.2) is perhaps the most popular for-
mulation of the continuous-time gradient descent dynam-
ics, the equivalent integral form below reveals more trans-
parently some of its properties:

𝑉(𝜃𝑡) = 𝑉(𝜃𝑠) − 12 ∫𝑡
𝑠 |∇𝑉(𝜃𝑟)|2𝑑𝑟 − 12 ∫𝑡

𝑠 | ̇𝜃𝑟|2𝑑𝑟, (2.3)

for all 𝑡 ≥ 𝑠 > 0. Indeed, notice that from (2.3) it is appar-
ent that 𝑉(𝜃𝑡) ≤ 𝑉(𝜃𝑠) for 𝑠 ≤ 𝑡, i.e., the value of the func-
tion 𝑉 decreases in time, and in all but a few trivial situa-
tions the decrease is strict. Another advantage of the refor-
mulation (2.3) (or its inequality form (2.5) below) is that
it can be adapted to more general settings with less math-
ematical structure than the one needed to make sense of
(2.2). In particular, (2.3) can be used to motivate a notion
of gradient flow in arbitrary metric spaces; see [AGS08] for
an in-depth discussion of this topic.

Proposition 2.1. Suppose 𝑉 is a 𝐶1 function. Then (2.2) and
(2.3) are equivalent and they both imply|∇𝑉(𝜃𝑡)|2 = | ̇𝜃𝑡|2. (2.4)

Proof. By Cauchy–Schwarz and Young’s inequalities, for
any 𝑡 > 0 it holds that−⟨∇𝑉(𝜃𝑡), ̇𝜃𝑡⟩ ≤ |∇𝑉(𝜃𝑡)|| ̇𝜃𝑡|≤ 12 |∇𝑉(𝜃𝑡)|2 + 12| ̇𝜃𝑡|2,
and both inequalities are equalities iff −∇𝑉(𝜃𝑡) = ̇𝜃𝑡.
Therefore,

𝑉(𝜃𝑡) = 𝑉(𝜃𝑠) +∫𝑡
𝑠 ⟨∇𝑉(𝜃𝑟), ̇𝜃𝑟⟩𝑑𝑟

≥ 𝑉(𝜃𝑠) − 12 ∫𝑡
𝑠 |∇𝑉(𝜃𝑟)|2𝑑𝑟 − 12 ∫𝑡

𝑠 | ̇𝜃𝑟|2𝑑𝑟,
and equality holds iff −∇𝑉(𝜃𝑡) = ̇𝜃𝑡 for all 𝑡 > 0. The
identity |∇𝑉(𝜃𝑡)|2 = | ̇𝜃𝑡|2 follows directly from (2.2). □

Notice that the relationship ̇𝜃𝑡 = −∇𝑉(𝜃𝑡) is only re-
quired in proving the energy dissipation inequality

𝑉(𝜃𝑡) ≤ 𝑉(𝜃𝑠) − 12 ∫𝑡
𝑠 |∇𝑉(𝜃𝑟)|2𝑑𝑟 − 12 ∫𝑡

𝑠 | ̇𝜃𝑟|2𝑑𝑟, (2.5)

since the reverse inequality is a consequence of Cauchy–
Schwarz. Notice further that (2.2) implies (2.4), but in
general the converse statement is not true. For example,
the flow ̇𝜃𝑡 = ∇𝑉(𝜃𝑡) satisfies (2.4), but in general does not

satisfy (2.2). Likewise, (2.2) implies
𝑑𝑑𝑡𝑉(𝜃𝑡) = −|∇𝑉(𝜃𝑡)|2

(which follows directly from the chain rule), but not con-
versely. Indeed, in ℝ2 we may take 𝐴 to be any orthogonal

matrix and consider ̇𝜃𝑡 = −𝐴2∇𝑉(𝜃𝑡) so that
𝑑𝑑𝑡𝑉(𝜃𝑡) =−|∇𝑉(𝜃𝑡)|2 but (2.2) is not, in general, satisfied. This di-

gression illustrates that equation (2.3) captures in one sin-
gle identity of scalar quantities the vectorial identity (2.2),
even if it is not as intuitive as other scalar relations.
2.2. A note on convergence. Despite the fact that gradi-
ent descent satisfies the energy dissipation property, it is in
general not true that as time goes to infinity the dynamics
(2.2) converge to a global minimizer of (2.1). This could
happen for different reasons. First, the problem (2.1) may
not have a minimizer (e.g., take 𝑉(𝜃) = 𝑒−𝜃 for 𝜃 ∈ ℝ).
Second, ∇𝑉 may have critical points associated with sad-
dle points or local optima of 𝑉 as we illustrate in the next
example.

Example 2.2. Consider the double well potential

𝑉(𝜃) = 38𝜃4 − 34𝜃2, 𝜃 ∈ ℝ, (2.6)

so that∇𝑉(𝜃) = 32𝜃(𝜃2−1).Notice that 𝜃 = 0 is an unstable
equilibrium of (2.2), which corresponds to a local maxi-
mum of 𝑉. For each local minima 𝜃 = ±1 of 𝑉 there is an
associated subregion in the space of parameters (known as
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Figure 1. Five trajectories of the one-dimensional gradient
system (2.2) with double well potential (2.6). The objective 𝑉
has critical points at 𝜃 = 0 and 𝜃 = ±1. The intervals (0,∞) and(−∞, 0) are basins of attraction for 𝜃 = 1 and 𝜃 = −1,
respectively.

a basin of attraction) such that any initial condition 𝜃0 cho-
sen in this subregion leads the gradient dynamics toward
its corresponding local minimizer, see Figure 1.

Suitable assumptions on 𝑉 prevent the existence of lo-
cal minimizers that are not global and also imply rates
of convergence. One such assumption is the Polyak–
Lojasiewic (PL) condition [KNS16]:

𝛼(𝑉(𝜃) − 𝑉∗) ≤ 12 |∇𝑉(𝜃)|2, ∀𝜃 ∈ Θ, (2.7)

where 𝑉∗ = inf𝜃∈Θ 𝑉(𝜃) and 𝛼 > 0 is a constant. Note that
the PL condition readily implies that any stationary point𝜃∗ of 𝑉 is a global minimizer, since

𝛼(𝑉(𝜃∗) − 𝑉∗) ≤ 12 |∇𝑉(𝜃∗)|2 = 0.
Under the PL condition we can easily obtain a conver-

gence rate for continuous-time gradient descent.

Proposition 2.3. Suppose 𝑉 satisfies (2.7). Then,𝑉(𝜃𝑡) − 𝑉∗ ≤ (𝑉(𝜃0) − 𝑉∗) exp(−2𝛼𝑡), ∀𝑡 ≥ 0. (2.8)

Proof. Using condition (2.7) in equation (2.5) and recall-
ing (2.4) we conclude that

𝑉(𝜃𝑡) − 𝑉∗ ≤ (𝑉(𝜃0) − 𝑉∗) − 2𝛼∫𝑡
0 (𝑉(𝜃𝑟) − 𝑉∗)𝑑𝑟.

The result follows by Gronwall’s inequality. □

One can verify the PL condition under various assump-
tions on the function 𝑉 [KNS16]. Here we present, as an
important example, the case of 𝛼-strong convexity. For𝛼 > 0, one says that𝑉 is 𝛼-strongly convex if for any 𝜃, 𝜃′ ∈ Θ
it holds that𝑉(𝑡𝜃 + (1 − 𝑡)𝜃′) ≤𝑡𝑉(𝜃) + (1 − 𝑡)𝑉(𝜃′) − 𝛼2 𝑡(1 − 𝑡)|𝜃 − 𝜃′|2,

Figure 2. Level curves of a two-dimensional potential of the
form 𝑉(𝜃) = 𝛼1𝜃21 + 𝛼2𝜃22 with 0 < 𝛼1 ≪ 𝛼2. The anisotropy of
this potential causes the gradient system (2.2) to converge
slowly.

for all 𝑡 ∈ [0, 1]. This condition can be shown to be equiv-
alent to𝑉(𝜃′) ≥ 𝑉(𝜃) + ⟨∇𝑉(𝜃), 𝜃′ − 𝜃⟩ + 𝛼2 |𝜃′ − 𝜃|2, ∀𝜃, 𝜃′ ∈ Θ,
from which we can see, after minimizing both sides w.r.t.𝜃′, that 𝑉∗ ≥ 𝑉(𝜃) − 12𝛼|∇𝑉(𝜃)|2, (2.9)

which is equivalent to (2.7). From this we conclude that𝛼-strong convexity implies the PL condition with the same
constant 𝛼.

Note that strong convexity is a stronger condition than
the PL condition. For example, the function 𝑉(𝜃) = 12𝜃21
(where 𝜃 = (𝜃1, 𝜃2)) satisfies the PL condition with 𝛼 = 1,
but it is not strongly convex.
2.3. Choice of the metric. Let us consider a function of
the form 𝑉(𝜃) = 𝛼1𝜃21 + 𝛼2𝜃22, where 𝜃 = (𝜃1, 𝜃2) ∈ ℝ2.
Suppose that 0 < 𝛼1 ≪ 𝛼2 and that 𝛼1 is very close to zero,
as in Figure 2. We can now apply Proposition 2.3 with 𝛼 =𝛼1, but since we assumed 𝛼1 is small we see that the right-
hand side of (2.8) decreases very slowly. This suggests that
gradient descent may take a long time to reach 𝑉 ’s global
minimum when initialized arbitrarily.

The poor behavior of gradient descent described above
arises whenever there are regions of points away from the
minimizer at which the gradient of𝑉 is very small. One ap-
proach to remedy this issue is to introduce a more general
version of gradient descent that accelerates the dynamics
in those regions where the gradient of 𝑉 is small. This is
the goal of preconditioning. Let 𝐻 ∶ Θ → 𝒮𝑑++ be a con-
tinuous field of positive definite matrices, i.e., a function
that assigns to every point 𝜃 ∈ Θ a 𝑑 × 𝑑 positive definite
matrix 𝐻(𝜃). The preconditioned gradient descent dynamics
induced by 𝐻 is defined as:̇𝜃𝑡 = −𝐻(𝜃𝑡)−1∇𝑉(𝜃𝑡), 𝑡 > 0. (2.10)

Observe that (2.10) coincides with the original gradient
descent dynamics (2.2) when 𝐻 is constant and equal to
the 𝑑 × 𝑑 identity matrix. On the other hand, when 𝑉 is
convex and twice differentiable, choosing 𝐻(𝜃) = ∇2𝑉(𝜃),
the Hessian of 𝑉 , results in a continuous-time analog of
Newton’s algorithm. In the example in Figure 2, we can di-

rectly compute ∇2𝑉 = (2𝛼1 00 2𝛼2), i.e., the Hessian is a
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fixed matrix since the potential 𝑉 is quadratic. Substitut-
ing this choice of 𝐻 in (2.10) for that example gives the
dynamics ̇𝜃𝑡 = −𝜃𝑡, a scheme that achieves a much faster
convergence rate.

The reader may wonder if we could have in fact chosen𝐻 = 1𝑟𝐷2𝑉 for large constant 𝑟 in order to induce a system
that converges to equilibrium at a faster rate. However, as
implied by our discussion in section 2.4 and, specifically,
Remark 2.6 there is no benefit in doing so, as the cost of
discretizing becomes correspondingly higher; rescaling the
Hessian may be simply interpreted as a change of units.
In general, there is a natural tension between accelerating
continuous-time dynamics by changing the metric of the
space, and producing accurate time discretizations for the
resulting flows; see [GTSA20] for a related discussion in
the context of sampling algorithms. In a similar vein, we
notice that the superior convergence rate and affine invari-
ance of Newton’s algorithm comes at the price of utilizing
the Hessian matrix ∇2𝑉 , which in many applications can
be prohibitively costly to compute or store. To this end,
constructing matrix fields 𝐻(𝜃) that are good proxies for
the Hessian and that can be computed efficiently is the
goal of preconditioning. Perhaps the most well-known
family of such algorithms is the family ofQuasi-Newton al-
gorithms [NW99] and in particular the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm, which approximates
the Hessian using gradients calculated at previous iterates.
2.3.1. Geometric interpretation. As a step toward introduc-
ing the material in section 3, here we give a geometric in-
terpretation of equation (2.10). Specifically, we will show
that (2.10) can still be understood as a gradient descent
equation but w.r.t. a different metric on the parameter
space Θ. For this purpose it is convenient to recall that a
Riemannian manifold (ℳ, 𝑔) is amanifoldℳ endowedwith
a family of inner products 𝑔 = {𝑔𝜃}𝜃∈ℳ (often referred to
as the metric), one for each point on the manifold, and
which can be used to measure angles between vectors at
every tangent plane ofℳ. We will use 𝒯𝜃ℳ to denote the
tangent plane at a given 𝜃 ∈ ℳ. The standard example of a
Riemannianmanifold isℳ = ℝ𝑑 with 𝑔𝜃 the Euclidean in-
ner product at every point. More general examples of Rie-
mannian manifolds with ℳ = ℝ𝑑 can be generated from
a field of positive definite matrices 𝐻. Consider the family
of inner products:𝑔𝜃(𝑢, 𝑣) ≔ ⟨𝐻(𝜃)𝑢, 𝑣⟩, 𝑢, 𝑣 ∈ ℝ𝑑,
where ⟨⋅, ⋅⟩ denotes the standard Euclidean inner product.
Notice that 𝑔𝜃 is indeed an inner product since𝐻(𝜃) is pos-
itive definite. In what follows we often suppress the depen-
dence of 𝑔 on 𝜃 for brevity.

We nowproceed to define the notion of the gradient of a
function 𝐹 defined over an arbitrary Riemannianmanifold.
Let (ℳ, 𝑔) be a Riemannian manifold and let 𝐹 ∶ ℳ → ℝ

be a smooth enough function. The gradient of 𝐹 at the
point 𝜃 ∈ ℳ relative to the metric 𝑔, denoted ∇𝑔𝐹(𝜃), is
defined as the vector in𝒯𝜃ℳ for which the following iden-
tity holds: 𝑑𝑑𝑡𝐹(𝛾(𝑡))||𝑡=0 = 𝑔(∇𝑔𝐹(𝜃), ̇𝛾(0)) (2.11)

for any differentiable curve 𝛾 ∶ (−𝜀, 𝜀) → ℳ with 𝛾(0) = 𝜃;
by ̇𝛾(0)wemean the velocity of the curve 𝛾 at time 0, which
is an element in 𝒯𝜃ℳ. In the example of ℳ = ℝ𝑑 with
inner products induced by a field𝐻 (whichwe denote with𝑔𝐻), we have that𝑑𝑑𝑡𝑉(𝛾(𝑡))||𝑡=0 = ⟨∇𝑉(𝜃), ̇𝛾(0)⟩= ⟨𝐻(𝜃)𝐻(𝜃)−1∇𝑉(𝜃), ̇𝛾(0)⟩= 𝑔(𝐻(𝜃)−1∇𝑉(𝜃), ̇𝛾(0)),
for any curve 𝛾 ∶ (−𝜀, 𝜀) → ℳ with 𝛾(0) = 𝜃, from where it
follows that ∇𝑔𝐻𝑉(𝜃) = 𝐻(𝜃)−1∇𝑉(𝜃), where we recall ∇
denotes the usual gradient in ℝ𝑑.

In this light, (2.10) can be interpreted as a gradient de-
scent algorithm, only that the gradient is taken w.r.t. a
metric that is different from the standard Euclidean one.
In section 3, where we discuss sampling, we will return to
some of the insights that we have developed in this section.
In particular, in order to define gradient descent dynamics
of a functional over a manifold we need to specify two in-
gredients: 1) an energy 𝑉 to optimize, and 2) a metric 𝑔𝜃
under which we define the gradient. For the last item, it
will be convenient to have a clear understanding of how
to represent smooth curves in the manifold of interest and
characterize their velocities appropriately. Indeed, equa-
tion (2.11) explicitly relates the metric 𝑔𝜃 of the manifold,
the target energy 𝑉 , the rate of change of the energy along
arbitrary smooth curves 𝛾, and the gradient ∇𝑔𝑉 of the en-
ergy relative to the chosen metric.
2.3.2. Geodesic convexity. There are analogous conditions
to the PL and strong convexity assumptions discussed in
section 2.1 that guarantee the convergence of the flow
(2.10) toward global minima of 𝑉 . First, write (2.10) as
an energy dissipation equality of the form

𝑉(𝜃𝑡) = 𝑉(𝜃𝑠) − 12 ∫𝑡
𝑠 |∇𝑔𝑉(𝜃𝑟)|2𝜃𝑟𝑑𝑟 − 12 ∫𝑡

𝑠 | ̇𝜃𝑟|2𝜃𝑟𝑑𝑟,
(2.12)

where we have used | ⋅ |2𝜃 to denote 𝑔𝜃(⋅, ⋅). The equiva-
lence between (2.10) and (2.12) follows from an identical
argument as in Proposition 2.1 applied to an arbitrary in-
ner product. The analogous PL condition in the precondi-
tioned setting takes the form:𝛼(𝑉(𝜃) − 𝑉∗) ≤ 12 |∇𝑔𝑉(𝜃)|2𝜃, (2.13)

which generalizes the PL condition in the Euclidean setting
to general inner products and gradients.

JUNE/JULY 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 909



To introduce an appropriate notion of convexity that
allows us to generalize the results of section 2.1 we need
to introduce a few more ideas from Riemannian geome-
try. Given a Riemannian manifold (ℳ, 𝑔), we define the
geodesic distance 𝑑𝑔 induced by the metric 𝑔 as:

𝑑2𝑔(𝜃, 𝜃′) = inf𝑡∈[0,1]↦(𝛾𝑡,𝛾̇𝑡)∫1
0 | ̇𝛾𝑡|2𝛾𝑡𝑑𝑡. (2.14)

Wewill say that 𝛾 ∶ [0, 1] → ℳ is a constant speed geodesic
between 𝜃 and 𝜃′ if 𝛾 is a minimizer of the right-hand side
of the above expression. Equivalently, a constant speed
geodesic between 𝜃 and 𝜃′ is any curve with 𝛾(0) = 𝜃 and𝛾(1) = 𝜃′ such that 𝑑𝑔(𝛾(𝑠), 𝛾(𝑡)) = |𝑡 − 𝑠|𝑑𝑔(𝜃, 𝜃′) for all𝑠, 𝑡 ∈ [0, 1]. The advantage of the latter definition is that it
is completely described in terms of the distance function𝑑𝑔 and in particular does not require explicit mention of
the Riemannian structure of the space.

We can nowdefine the notion of𝛼-geodesic convexity. We
say 𝑉 ∶ ℳ → ℝ is 𝛼-geodesically convex if for all 𝜃, 𝜃′ ∈ℳ there exists a constant speed geodesic 𝛾 ∶ [0, 1] → ℳ
between them, such that𝑉(𝛾(𝑡)) ≤ 𝑡𝑉(𝜃)+(1−𝑡)𝑉(𝜃′)− 𝛼2 𝑡(1−𝑡)𝑑𝑔(𝜃, 𝜃′)2, (2.15)
for all 𝑡 ∈ [0, 1].
Notice that 𝛼-geodesic convexity reduces to 𝛼-strong

convexity when (ℳ, 𝑔) is an Euclidean space. Also, it can
be shown that 𝛼-geodesic convexity for 𝛼 > 0 implies
the generalized PL condition (2.13) (see Lemma 11.28 in
[Bou23]), which in turn implies, following the proof of
Proposition 2.3, exponential decay rates for the energy 𝑉
along its gradient flow, in direct analogy with Proposition
2.3.

Remark 2.4. Equation (2.14) relates the distance function𝑑𝑔 with the family of inner products 𝑔. This formula is very
useful as it allows us to recover the metric 𝑔 from its dis-
tance function 𝑑𝑔. This observation will be relevant when
discussing the formal Riemannian structures on spaces of
probability measures in the context of sampling in section
3.3.1.

2.4. Time discretizations.
2.4.1. Standard gradient descent. In this section we discuss
how to obtain practical optimization algorithms by dis-
cretizing the gradient system (2.2) in time. First, the explicit
Euler scheme gives the standard gradient descent iteration𝜃𝑛+1 = 𝜃𝑛 − 𝜏∇𝑉(𝜃𝑛). (2.16)

In numerical analysis of differential equations, 𝜏 > 0 is
interpreted as a small time-step; then, if (2.16) and (2.2)
are initialized at the same point 𝜃0, it holds that 𝜃𝑛 ≈ 𝜃𝑡 for𝑡 = 𝑛𝜏. In the optimization context of interest, 𝜏 is referred
to as a learning rate and it is insightful to note that (2.16)

can be defined variationally as

𝜃𝑛+1 = argmin𝜃(⟨∇𝑉(𝜃𝑛), 𝜃 − 𝜃𝑛⟩ + 12𝜏 |𝜃 − 𝜃𝑛|2).
Thus, 𝜃𝑛+1 is found by minimizing 𝑉(𝜃𝑛) + ⟨∇𝑉(𝜃𝑛), 𝜃 −𝜃𝑛⟩ + 12𝜏 |𝜃 − 𝜃𝑛|2, noticing that the first two terms form the
first order approximation of the objective 𝑉 around the
most recent iterate 𝜃𝑛. In practice, the learning rate may be
chosen adaptively using a line search [NW99].

Compared to the continuous-time setting, energy dis-
sipation and convergence of the explicit Euler scheme re-
quire further assumptions on the function 𝑉 . The follow-
ing proposition is analogous to Proposition 2.8 but relies
on a smoothness assumption on the gradient of 𝑉 addi-
tional to the PL condition.

Proposition 2.5. Suppose that𝑉 has 𝐿-Lipschitz gradient, has
minimum 𝑉∗, and satisfies the PL condition. Then the gradient
descent algorithm defined by (2.16) with step-size 𝜏 ≔ 1𝐿 has a
linear convergence rate. More precisely, it holds that

𝑉(𝜃𝑛+1) − 𝑉∗ ≤ (1 − 𝛼𝐿)𝑛(𝑉(𝜃0) − 𝑉∗). (2.17)

Proof. A classical result in convex analysis ensures that the
assumption that ∇𝑉 is 𝐿-Lipschitz implies

𝑉(𝜃𝑛+1) ≤ 𝑉(𝜃𝑛) + ⟨∇𝑉(𝜃𝑛), 𝜃𝑛+1 − 𝜃𝑛⟩ + 𝐿2 |𝜃𝑛+1 − 𝜃𝑛|2.
Using (2.16), we then deduce that

𝑉(𝜃𝑛+1) ≤ 𝑉(𝜃𝑛) − 12𝐿|∇𝑉(𝜃𝑛)|2,
which combined with the PL condition gives𝑉(𝜃𝑛+1) − 𝑉∗ ≤ 𝑉(𝜃𝑛) − 𝑉∗ − 𝛼𝐿(𝑉(𝜃𝑛) − 𝑉∗)

= (1 − 𝛼𝐿)(𝑉(𝜃𝑛) − 𝑉∗).
The result follows by induction. □

From the proof of Proposition 2.5we see that, under the𝐿-smoothness condition and assuming that the step size 𝜏
is sufficiently small, the explicit Euler scheme dissipates
the energy 𝑉 . Moreover, this condition helps us quantify
the amount of dissipation in one iteration of the scheme
in terms of the norm of the gradient of 𝑉 at the current
iterate.

As an alternative discretization, one can consider the im-
plicit Euler scheme:𝜃𝑛+1 = 𝜃𝑛 − 𝜏∇𝑉(𝜃𝑛+1), (2.18)

which coincides with the first order optimality conditions
for 𝜃𝑛+1 = argmin𝜃(𝑉(𝜃) + 12𝜏 |𝜃 − 𝜃𝑛|2). (2.19)

It follows directly from the definition of the implicit Euler
scheme that it satisfies a dissipation inequality analogous
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to (2.5) without imposing any additional smoothness con-
ditions on 𝑉 . However, an important caveat is that deter-
mining 𝜃𝑛+1 from 𝜃𝑛 requires solving a new optimization
problem (2.19) or finding a root for the (in general) non-
linear equation (2.18). On the other hand, from a theoret-
ical perspective the implicit Euler scheme, or minimizing
movement scheme as it is called in [AGS08], is an impor-
tant tool for proving existence of gradient flow equations
in general metric spaces; see Chapters 1–2 in [AGS08].
2.4.2. Discretizations and preconditioning. One possible
time discretization for (2.10) is given by𝜃𝑛+1 = 𝜃𝑛 − 𝜏𝐻(𝜃𝑛)−1∇𝑉(𝜃𝑛),
which is a direct adaptation of (2.16) to the precondi-
tioned setting. Proposition 2.5 can be readily adapted us-
ing the PL condition and 𝐿-smoothness of 𝑉 relative to the
geometry induced by the field 𝐻.

Remark 2.6. In line with the discussion at the end of sec-
tion 2.3, we notice that the effect of scaling the field𝐻 by a
constant 1/𝑟 is to scale the constants in both the PL condi-
tion and the 𝐿-smoothness condition by a factor of 𝑟. The
net gain in (2.17) from rescaling the metric is thus null.

Another possible time discretization for (2.10) when
the function 𝐻 is the Hessian of a strictly convex functionℎ ∶ Θ → ℝ (not necessarily equal to the objective function𝑉) is the mirror descent scheme:

{𝑧𝑛+1 = 𝑧𝑛 − 𝜏∇𝑉(𝜃𝑛),𝜃𝑛+1 = (∇ℎ)−1(𝑧𝑛+1). (2.20)

The idea in mirror descent is to update an associated mir-
ror variable (a transformation of 𝜃 by a mirror map, in
this case ∇ℎ) using a gradient step, as opposed to directly
updating the variable 𝜃 as in the standard explicit Euler
scheme. Using a Taylor approximation of (∇ℎ)−1 around𝑧𝑡 we see that 𝜃𝑛+1 = (∇ℎ)−1(𝑧𝑛 − 𝜏∇𝑉(𝜃𝑛))≈ 𝜃𝑛 − 𝜏𝐻(𝜃𝑛)−1∇𝑉(𝜃𝑛),
revealing whymirror descent can be regarded as an approx-
imation of (2.10) when 𝐻 is the Hessian of ℎ.

It is worth remarking that the update rule (2.20) has the
following variational characterization:𝜃𝑛+1 ≔ argmin𝜃∈Θ(⟨∇𝑉(𝜃𝑛), 𝜃⟩ + 1𝜏𝐷ℎ(𝜃‖𝜃𝑛)), (2.21)

where the function 𝐷ℎ(𝜃‖𝜃′) has the form𝐷ℎ(𝜃‖𝜃′) ≔ ℎ(𝜃) − ℎ(𝜃′) − ⟨∇ℎ(𝜃′), 𝜃 − 𝜃′⟩,
and is often referred to as Bregman divergence. This varia-
tional characterization was discovered and used in [BT03]
to deduce convergence properties of mirror descent. No-
tice that the strict convexity of ℎ guarantees that the func-
tion 𝐷ℎ(⋅‖⋅) is non-negative and zero only when both of

Figure 3. Five trajectories of Langevin dynamics with double
well potential 𝑉 given by (2.6).

its arguments coincide. Bregman divergences thus play a
similar role to the one played by the quadratic function12 | ⋅ − ⋅ |2 in the variational form of the standard explicit
Euler scheme.

3. Sampling
While direct sampling from certain distributions, e.g.,
Gaussians, may be rather straightforward, sampling from a
general target distribution can be challenging, especially in
high-dimensional settings. In this section we consider the
problem of sampling a target density 𝜋(𝜃) ∝ exp(−𝑉(𝜃)).
As guiding examples, one may consider sampling a poste-
rior or Boltzmann distribution, see (1.2)–(1.3). We start
by introducing Langevin dynamics in section 3.1, a sto-
chastic differential equation that resembles the gradient
system (2.2), but which incorporates a Brownian motion
that makes the solution trajectories {𝜃𝑡}𝑡≥0 random. In sec-
tion 3.2 we present some results that state that, under suit-
able assumptions, the density 𝜌𝑡 of 𝜃𝑡 converges to the
desired target density 𝜋 as 𝑡 → ∞. In section 3.3 we dis-
cuss how the Langevin dynamics define a gradient flow in
the space of probability distributions. Finally, section 3.4
discusses how to use discretizations of Langevin dynamics
to obtain practical sampling algorithms. Our presentation
here parallels that of section 2.
3.1. Langevin dynamics. Consider the overdamped
Langevin diffusion [Pav14]𝑑𝜃𝑡 = −∇𝑉(𝜃𝑡) 𝑑𝑡 + √2𝑑𝐵𝑡, (3.1)

where {𝐵𝑡}𝑡≥0 is a Brownian motion on Θ = ℝ𝑑. Langevin
dynamics can be interpreted as a stochastic version of the
gradient descent dynamics (2.2). This is illustrated in the
following example, which also provides intuition on the
connection between Langevin dynamics and sampling.

Example 3.1. Consider Langevin dynamics with the dou-
ble well potential 𝑉 introduced in (2.6). Figure 3 shows
five trajectories, initialized as in Figure 1. For each 𝑡 > 0,𝜃𝑡 is now a random variable, whose Lebesgue density will
be denoted by 𝜌𝑡 in what follows. Figure 4 shows an
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Figure 4. Histograms of 𝜌𝑡 at 𝑡 = 0.25, 0.5, 50. For large 𝑡, 𝜌𝑡 is
close to the target density 𝜋 ∝ 𝑒−𝑉 .
approximation of 𝜌𝑡 for 𝑡 ∈ {0.25, 0.5, 50} obtained by
simulating 𝑁 = 105 solution trajectories. Notice that
at 𝑡 = 50, 𝜌𝑡 is exceedingly close to the target density𝜋(𝜃) ∝ exp(−𝑉(𝜃)), so that 𝜃𝑡 can be viewed as a sample
from 𝜋. Thus, while 𝜃𝑡 is random due to the Brownian mo-
tion, the density 𝜌𝑡(𝜃) is larger at points 𝜃 where 𝑉(𝜃) is
small. □

3.2. A note on convergence. It is natural to ask whether
the law {𝜌𝑡}𝑡≥0 of a given stochastic process converges to
an invariant distribution 𝜋. For the Langevin diffusion, the
positive answer illustrated in Example 3.1 holds under suit-
able assumptions on 𝑉 that are analogous to the PL and
strong convexity conditions in section 2. A natural way to
study the long-time behavior of 𝜌𝑡 is to derive a differen-
tial equation for its evolution. To that end, one may char-
acterize the time derivative of the action of 𝜌𝑡 on suitable
test functions 𝜙 ∶ Θ → ℝ. More precisely, we compute𝑑𝑑𝑡 ∫𝜙(𝜃)𝑑𝜌𝑡(𝜃), which is a standard derivative of a func-
tion from the real line to itself. For the Langevin diffusion
(3.1) it can be proved that:𝑑𝑑𝑡 ∫Θ 𝜙(𝜃)𝑑𝜌𝑡(𝜃) = −∫Θ∇𝜙⋅∇(𝑉 +log(𝜌𝑡))𝑑𝜌𝑡(𝜃), (3.2)∀𝑡 > 0, ∀𝜙 ∈ 𝐶∞𝑐 (Θ). The above condition is the weak for-
mulation of the Fokker–Planck equation:𝜕𝑡𝜌𝑡 = div(𝜌𝑡∇(𝑉 + log(𝜌𝑡))) ≕ ℒ𝜌𝑡. (3.3)

From now on we interpret (3.3) in its weak form (3.2).
We observe that 𝜋 ∝ 𝑒−𝑉 is a stationary point of the

dynamics (3.3). That is, if we initialize the dynamics at𝜌0 = 𝜋, then 𝜌𝑡 ≔ 𝜌0 for all 𝑡 > 0 is a solution to the equa-
tion. The next result describes the long-time behavior of a
solution to the Fokker–Planck equation when initialized
at more general 𝜌0.
Theorem 3.2. Let 𝜌𝑡 be the solution to the Fokker–Planck
equation with 𝜌0 ∈ 𝐿2(𝜋−1), where 𝐿2(𝜋−1) is the 𝐿2 space
with the weight function 𝜋−1. Suppose that there is 𝛼 > 0
such that the following Poincaré inequality holds: for every

𝑓 ∈ 𝐶1 ∩ 𝐿2(𝜋) that has zero mean under 𝜋, it holds that𝛼‖𝑓‖2𝐿2(𝜋) ≤ ‖∇𝑓‖2𝐿2(𝜋). Then it holds that‖𝜌𝑡 − 𝜋‖𝐿2(𝜋−1) ≤ 𝑒−𝛼𝑡‖𝜌0 − 𝜋‖𝐿2(𝜋−1).
Proof. Define 𝑢𝑡 by 𝜌𝑡 = 𝑢𝑡𝜋.We can verify that𝜕𝑡𝑢𝑡 = −∇𝑉 ⋅ ∇𝑢𝑡 + div(∇𝑢𝑡), 𝑢0 = 𝜌0𝜋−1.
Therefore, the zero-mean function 𝑢𝑡 − 1 satisfies𝜕(𝑢𝑡 − 1)𝜕𝑡 = ℒ(𝑢𝑡 − 1). (3.4)

Multiplying by (𝑢𝑡 − 1)𝜋, integrating, and using that by
assumption 𝛼‖𝑢𝑡 − 1‖2𝐿2(𝜋) ≤ ‖∇𝑢𝑡‖2𝐿2(𝜋), we deduce that12 𝑑𝑑𝑡‖𝑢𝑡 − 1‖2𝐿2(𝜋) ≤ −𝛼‖𝑢𝑡 − 1‖2𝐿2(𝜋). (3.5)

Gronwall’s inequality gives the desired result. □

The above result implies that, as time 𝑡 goes to infin-
ity, the distribution 𝜌𝑡 converges toward the target density𝜋 ∝ 𝑒−𝑉 exponentially fast. The notion of convergence im-
plied by Theorem 3.2, however, is not as strong as other
notions such as the convergence in KL divergence that will
be discussed in the next section. In particular, Theorem 3.2
should be contrasted with the discussion in section 3.3.2.
3.3. Choice of objective and metric. Here we discuss a
concrete variational interpretation for the Langevin system
(3.3). In essence, this entails viewing sampling as an opti-
mization algorithm (in particular, as a gradient flow) that
aims at recovering the target density 𝜋. As discussed to-
ward the end of section 2.3, to realize this interpretation
it is important to identify precisely the geometric objects
involved in the definition of a gradient flow (energy, met-
ric, etc.). In all subsequent sections, ℳ will be the space
of probability measures overΘ, which we will denote with𝒫(Θ), and 𝐹 will be the KL divergence relative to 𝜋, which
we recall is defined as:𝐷KL(𝜈‖𝜋) ≔ ∫Θ log( 𝜈(𝜃)𝜋(𝜃))𝜈(𝜃) 𝑑𝜃, (3.6)

whenever 𝜈 is absolutely continuous w.r.t. 𝜋 and𝐷KL(𝜈‖𝜋) = ∞ otherwise. Different choices of metric over𝒫(Θ) will induce different evolution equations (recall our
discussion of preconditioning in the context of optimiza-
tion over the parameter space Θ), and thus different op-
timization schemes. In section 3.3.1 we discuss a spe-
cific geometric structure for 𝒫(Θ) that realizes the Fokker–
Planck equation of the Langevin diffusion as a gradient
flow of 𝐹, and in section 4 we discuss other gradient flow
structures that motivate other sampling algorithms.

Remark 3.3. It holds that 𝐷KL(𝜈‖𝜋) ≥ 0 for all 𝜈, and equal-
ity holds if and only if 𝜈 = 𝜋. In particular, the unique
minimizer of 𝜈 ∈ 𝒫(Θ) ↦ 𝐷KL(𝜈‖𝜋) is the target 𝜋. Al-
though trivial, this observation motivates variational infer-
ence—see [LCB+22] and references therein—a method for
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producing tractable proxies for 𝜋 that relies on the mini-
mization of 𝐷KL(⋅‖𝜈) over a user-chosen family of tractable
distributions. □

Remark 3.4. If 𝜋 has a density w.r.t. the Lebesgue measure
that is proportional to 𝑒−𝑉 , then 𝐷KL(𝜈‖𝜋) < ∞ implies
that 𝜈 is also absolutely continuous w.r.t. the Lebesgue
measure. In that case we will abuse notation slightly and
use 𝜈 to also denote 𝜈’s corresponding density. In partic-
ular, when we write log(𝜈) it is understood that 𝜈 is inter-
preted as the density function w.r.t. Lebesgue measure of
the measure 𝜈.
3.3.1. KL and Wasserstein. Following a series of seminal
works that started with a paper by Jordan, Kinderlehrer,
and Otto in the late 90s (see sections 8.1. and 8.2. in
[Vil03]) we will interpret equation (3.3) as the gradient
flow of the energy 𝐹 w.r.t the Wasserstein metric. Given𝜌, 𝜌′ ∈ 𝒫(Θ) with finite second moments, their Wasser-
stein distance𝑊2(𝜌, 𝜌′) is given by

𝑊22 (𝜌, 𝜌′) ≔ minΥ∈Γ(𝜌,𝜌′)∫Θ×Θ |𝜃 − 𝜃′|2𝑑Υ(𝜃, 𝜃′), (3.7)

where Γ(𝜌, 𝜌′) is the set of couplings between 𝜌 and 𝜌′, i.e.
the set of Borel probability measures on the product spaceΘ × Θ with first and second marginals equal to 𝜌 and 𝜌′,
respectively.

Formula (3.7), although simple, does not reveal the in-
finitesimal geometric structure of the Wasserstein space to
define gradients of functionals over 𝒫(Θ). What is miss-
ing is a representation of the distance𝑊 in a form similar
to (2.14). The next result by Benamou and Brenier (see
section 8.1. in [Vil03]) provides the missing elements.

Proposition 3.5. Let 𝜌, 𝜌′ ∈ 𝒫(Θ). Then
𝑊22 (𝜌, 𝜌′) = inf𝑡∈[0,1]↦(𝛾𝑡,∇𝜑𝑡)∫1

0 ∫Θ |∇𝜑𝑡(𝜃)|2𝑑𝛾𝑡(𝜃)𝑑𝑡
s.t.𝜕𝑡𝛾𝑡 + div(𝛾𝑡∇𝜑𝑡) = 0, (3.8)𝛾(0) = 𝜌, 𝛾(1) = 𝜌′.

The infimum in (3.8) is taken over all maps 𝑡 ∈ [0, 1] →(𝛾𝑡, ∇𝜑𝑡), where each pair (𝛾𝑡, ∇𝜑𝑡) consists of a measure𝛾𝑡 ∈ 𝒫(Θ) and a vector field of the form ∇𝜑𝑡 for a smooth𝜑𝑡 ∶ Θ → ℝ, that satisfy the continuity equation:𝜕𝑡𝛾𝑡 + div(𝛾𝑡∇𝜑𝑡) = 0, (3.9)

interpreted in weak form. Notice that the Fokker–Planck
equation (3.3) is a particular case of the continuity equa-
tion with 𝜑𝑡 = 𝑉 + log(𝜌𝑡). Inspired by equation (2.14)
(see also Remark 2.4) we can provide a geometric inter-
pretation of identity (3.8): the continuity equation (3.9)
provides a representation of curves in the formal mani-
fold ℳ = 𝒫(Θ). In this representation, the velocity of a

curve (tangent vector) at each point in the curve can be
identified with a vector field (over Θ) of the form ∇𝜑. Fur-
thermore, (3.8) motivates introducing an inner product at
each 𝜈 ∈ 𝒫(Θ) of the form:

𝑔𝜈(∇𝜑,∇𝜑′) ≔ ∫Θ∇𝜑(𝜃) ⋅ ∇𝜑′(𝜃) 𝑑𝜈(𝜃).
With the above geometric interpretation in place, we

may follow equation (2.11) and identify the gradient of𝐹(⋅) = 𝐷KL(⋅‖𝜋) at an arbitrary point 𝜈. For this purpose
take an arbitrary solution (𝛾𝑡, ∇𝜑𝑡) to the continuity equa-
tion (3.9) (i.e., take an arbitrary curve in ℳ) for which𝐹(𝛾𝑡) < ∞ and compute:𝑑𝑑𝑡𝐹(𝛾𝑡) = 𝑑𝑑𝑡 ∫Θ log ( 𝛾𝑡𝑒−𝑉 ) 𝑑𝛾𝑡(𝜃)

= ∫Θ∇𝜑𝑡 ⋅ ∇(𝑉 + log(𝛾𝑡)) 𝑑𝛾𝑡(𝜃)= 𝑔𝛾𝑡(∇𝜑𝑡, ∇(𝑉 + log(𝛾𝑡))).
In the above we have gone from the first line to the second
one using the weak form of the continuity equation; to go
from the second to third line we have used the definition
of 𝑔𝛾𝑡 .

From the above computation we conclude that the gra-
dient of 𝐹 (w.r.t. to the Wasserstein metric) at a point 𝜈 for
which 𝐹(𝜈) < ∞ takes the form∇(𝑉+log(𝜈)). In particular,
the curve in ℳ = 𝒫(Θ) whose velocity vector agrees with
the negative gradient of the functional 𝐹 takes the form of
the Fokker–Planck equation (3.3). In other words, (3.3)
can be interpreted as the gradient flow of 𝐹(⋅) = 𝐷KL(⋅‖𝜋)
w.r.t. the Wasserstein metric.

Remark 3.6. To some extent, the computations in this sec-
tion have been formal and some of the above derivations
have been left unjustified. These computations rely on a
formal adaptation of formula (2.2) to the setting of the
Riemannainmanifold𝒫(Θ) endowedwith theWasserstein
distance. For a rigorous treatment of the topics discussed
in this section the reader is referred to the second part of
the book [AGS08]. There, the notion of gradient flow in𝒫(Θ) is motivated by the dissipation identity (2.3) and
adapted to the metric space (𝒫(Θ),𝑊2).
Remark 3.7. At a high level, the ideas discussed in this sec-
tion can be used to propose flows aimed at solving varia-
tional inference problems like the ones briefly mentioned
in Remark 3.3. Indeed, following the geometric intuition
from projected gradient descent methods, where one uses
the projection of the negative gradient of the objective
onto the tangent plane of the constrained set to define
the projected gradient descent flow, one may consider the
projection of the negative gradient of the energy 𝐹 (w.r.t
Wasserstein) onto the tangent planes of the submanifold𝒢;
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naturally, in this setting the notion of (orthogonal) projec-
tion is taken w.r.t. the Riemannain metric underlying the
Wasserstein space. This idea has been recently explored in
[LCB+22] for certain families 𝒢 of tractable distributions.

3.3.2. Geodesic convexity of the relative entropy in the Wasser-
stein space. The definition of geodesic convexity intro-
duced in (2.15) can be readily adapted to the setting of
an energy defined over an arbitrary metric space, and in
particular to the setting of 𝒫(𝜃) endowed with the Wasser-
stein distance. Indeed, notice that equation (2.15) is
completely determined by the energy of interest, the dis-
tance function, and the notion of constant speed geodesic,
which in turn can be defined in terms of the distance func-
tion.

We have the following theorem by McCann relating the
convexity of the function 𝑉 with the 𝛼-geodesic convexity
of 𝐷KL(⋅‖𝜋) when 𝜋 ∝ 𝑒−𝑉 ; see Theorem 5.15. in [Vil03].

Theorem 3.8. Suppose that 𝑉 is 𝛼-strongly convex and let𝜋 ∝ 𝑒−𝑉 . Then 𝐷KL(⋅‖𝜋) is 𝛼-geodesically convex w.r.t. the
Wasserstein distance.

With Theorem 3.8 in hand, the 𝛼-strong convexity of 𝑉
implies that𝐷KL(𝜌𝑡‖𝜋) ≤ 𝑒−2𝛼𝑡𝐷KL(𝜌0‖𝜋), ∀𝑡 ≥ 0,
along a solution {𝜌𝑡}𝑡≥0 of the Fokker–Planck equation
(3.3). This notion of exponential contraction to equilib-
rium is not implied by the Poincaré condition from Theo-
rem 3.2.
3.4. Time discretizations. This section describes how to
obtain sampling algorithms from time discretization of
the Langevin dynamics (3.1). In analogy to the explicit
Euler scheme (2.16) for (2.2), the Euler–Maruyama dis-
cretization for (3.1) is given by 𝜃0 ∼ 𝜌0, and𝜃𝑛+1 = 𝜃𝑛 − 𝜏∇𝑉(𝜃𝑛) + √2𝜏𝜉𝑛, 𝜉𝑛 i.i.d.∼ 𝑁(0, 1). (3.10)

For 𝑡 = 𝑛𝜏, the law 𝜌𝑛 of 𝜃𝑛 approximates the law 𝜌𝑡 of𝜃𝑡 given by (3.1). However, the error introduced by time
discretization causes 𝜌𝑛 to not converge, in general, to 𝜋
as 𝑛 → ∞. In other words, the probability kernel 𝑞(𝜃𝑛, ⋅) =
law(𝜃𝑛+1|𝜃𝑛), defined by theMarkov chain (3.10), does not
leave 𝜋 invariant.

To remedy this issue, one may consider using (3.10) as
a proposal kernel within a Metropolis–Hastings algorithm
[Liu01], leading to the Metropolis Adjusted Langeving Algo-
rithm, often referred to as MALA. The basic idea is to use
an accept/reject mechanism to turn the proposal kernel 𝑞
into a new Markov kernel that leaves 𝜋 invariant. Given
the current state 𝜃𝑛, one proposes a move 𝜃𝑛 ↦ 𝜃∗𝑛+1 by
sampling 𝑞(𝜃𝑛, ⋅); the move is accepted with a probability

𝑎 = min(1, 𝜋(𝜃∗𝑛+1)𝜋(𝜃𝑛) 𝑞(𝜃∗𝑛+1, 𝜃𝑛)𝑞(𝜃𝑛, 𝜃∗𝑛+1)). (3.11)

If the move is accepted, we set 𝜃𝑛+1 ≔ 𝜃∗𝑛+1.Otherwise, we
set 𝜃𝑛+1 ≔ 𝜃𝑛. The Metropolis–Hastings acceptance prob-
ability (3.11) is chosen in such a way that 𝜋 is the invari-
ant distribution of the new chain {𝜃𝑛}∞𝑛=1. Notice that the
two steps of the algorithm, namely, sampling from the pro-
posal kernel defined by (3.10) and evaluating (3.11), can
be implemented without knowledge of the normalizing
constant of 𝜋.We refer to [RT96] for further details on the
convergence of Langevin diffusions and their discretiza-
tions and we refer to [CLGL+20] for a sampling analog of
the mirror descent optimization algorithm in (2.20).

4. Modern Twists on Langevin
In this section we outline recent extensions of the gradi-
ent flows of section 3.3.1 aimed at sampling. The idea is
to employ gradient flows of the energy 𝐹 = 𝐷KL(⋅‖𝜋) w.r.t.
metrics beyond the Wasserstein distance. One hopes that
the new dynamics lead to faster convergence to minimiz-
ers and, in turn, to more efficient sampling algorithms.
4.1. Ensemble preconditioning. In analogy with sec-
tion 2.3, we consider preconditioned variants of the
Langevin diffusion (3.1),

𝑑𝜃𝑡 = −𝐻(𝜃𝑡)−1∇𝑉(𝜃𝑡) 𝑑𝑡 +√2𝐻(𝜃𝑡)−1 𝑑𝐵𝑡, (4.1)

where 𝐻(𝜃) is once again the preconditioning matrix field.
The intuition from subsection 2.3 carries over in this set-
ting: by choosing an appropriate preconditioner we can
speed up the convergence of the Langevin diffusion to the
target density. However, in contrast to (3.1), choosing 𝐻
as a function of 𝜃𝑡 can in general lead to a nonlinear evo-
lution for the law of the process. Moreover, without addi-
tional structure, the target𝜋 ∝ 𝑒−𝑉 may not be an invariant
distribution for (4.1). This motivates discussing suitable
choices for 𝐻. One approach to constructing the matrix 𝐻
is to consider an ensemble of particles evolving according
to (4.1) and use the location of the particles to construct an
appropriate preconditioner. Following [GIHLS20], con-
sider an ensemble of 𝐽 ≥ 1 interacting Langevin diffusions𝜃𝑡 ≔ {𝜃(𝑗)𝑡 }𝐽𝑗=1 that are evolved according to the coupled
system

𝑑𝜃(𝑗)𝑡 = −𝐻(𝜃𝑡)−1∇𝑉(𝜃(𝑗)𝑡 ) +√2𝐻(𝜃𝑡)−1 𝑑𝐵(𝑗)𝑡 ,
where {𝐵(𝑗)𝑡 }𝐽𝑗=1 are i.i.d. Brownian motions, and

𝐻(𝜃𝑡) = 1𝐽 𝐽∑𝑗=1 (𝜃(𝑗)𝑡 − ̄𝜃𝑡) (𝜃(𝑗)𝑡 − ̄𝜃𝑡)⊤ ,
for ̄𝜃𝑡 the ensemble mean of the 𝜃(𝑗)𝑡 . In other words, the
preconditioner is chosen to be the empirical covariance
matrix of the ensemble at each point in time, a quantity
that is convenient to compute in practice.
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As in previous sections, one can show that the ensem-
ble preconditioned Langevin dynamics has a gradient flow
structure. Taking the mean-field limit, i.e., letting 𝐽 → ∞,
we formally obtain the following diffusion for the evolu-
tion of the ensemble

𝑑𝜃𝑡 = −𝐻(𝜌𝑡)−1∇𝑉(𝜃𝑡) 𝑑𝑡 +√2𝐻(𝜌𝑡)−1 𝑑𝐵𝑡,
where 𝜌𝑡 denotes the distribution of 𝜃𝑡 as before and𝐻(𝜌𝑡)
is the covariancematrix of 𝜌𝑡. The Fokker–Planck equation
for 𝜌𝑡 is given by

𝜕𝑡𝜌𝑡 = div(𝜌𝑡𝐻(𝜌𝑡)−1(∇𝑉(𝜃𝑡) + ∇ log 𝜌𝑡)), (4.2)

which has the target 𝜋 ∝ 𝑒−𝑉 as a stationary point. The
divergence form in (4.2) suggests a gradient flow structure
as shown in [GIHLS20]. Indeed, the above equation is a
gradient flow of 𝐹 w.r.t. the Kalman–Wasserstein distance𝑊 𝐾 defined as

𝑊2𝐾(𝜌, 𝜌′) ≔ inf𝛾𝑡,𝜑𝑡∫1
0 ∫⟨∇𝜑𝑡, 𝐻(𝜌𝑡)∇𝜑𝑡⟩𝜌𝑡 𝑑𝜃 𝑑𝑡,

s.t. 𝜕𝑡𝛾𝑡 + div(𝛾𝑡𝐻(𝛾𝑡)∇𝜑𝑡) = 0,𝛾(0) = 𝜌, 𝛾(1) = 𝜌′.
4.2. Langevin with birth-death. One of the shortcom-
ings of the Langevin dynamics is that its convergence suf-
fers when sampling from multimodal target densities: the
process may get stuck around one of the modes and it may
take a long time to cross the energy barrier between various
modes or to overcome entropic bottlenecks. To ameliorate
thismetastable behavior [LLN19] proposes to consider the
birth-death accelerated Langevin (BDL) dynamics𝜕𝑡𝜌𝑡 = ℒ𝜌𝑡 + 𝜌𝑡(log 𝜋 − log 𝜌𝑡)− 𝜌𝑡∫𝜃(log 𝜋 − log 𝜌𝑡)𝑑𝜌𝑡(𝜃), (4.3)

where ℒ is as in (3.1). Notice that compared with the
Fokker–Planck equation (3.3), equation (4.3) contains
two additional terms. The second term on the right-hand
side favors increasing (resp. decreasing) 𝜌𝑡(𝜃) whenever𝜌𝑡(𝜃) < 𝜋(𝜃) (resp. 𝜌𝑡(𝜃) > 𝜋(𝜃)), hence the name birth-
death. The third term is only included to ensure that 𝜌𝑡
remains a probability distribution through the birth-death
process. The birth-death terms make the equation nonlo-
cal (due to averaging) and allow the dynamics to explore
the support of a multimodal 𝜋 more efficiently: if the dy-
namics get stuck in one mode, the birth-death process can
still transfer some mass to another mode that has not yet
been thoroughly explored.

It turns out that, akin to the Langevin dynamics, BDL
is also a gradient flow of the KL divergence but w.r.t.
a modification of the Wasserstein distance referred to

as the Wasserstein–Fisher–Rao (or the Spherical Hellinger–
Kantorovich) distance:𝑊2

FR(𝜌, 𝜌′)
= inf𝛾𝑡,𝜑𝑡∫1

0 (∫ |∇𝜑𝑡|2 + |𝜑𝑡|2𝑑𝛾𝑡 − (∫𝜑𝑡𝑑𝛾𝑡)2) 𝑑𝑡
subject to the constraints

𝜕𝑡𝛾𝑡 + div(𝛾𝑡∇𝜑𝑡) = −𝛾𝑡(𝜑𝑡 −∫𝜑𝑡𝑑𝛾𝑡), (4.4a)𝛾(0) = 𝜌, 𝛾(1) = 𝜌′. (4.4b)

As before, the BDL continuity equation (4.4a) is under-
stood in the weak sense and plays the same role as the
continuity equation in the Benamou–Brenier formulation
(3.8). Equation (4.4a) thus provides an alternative repre-
sentation for admissible curves in the space 𝒫(Θ). Moti-
vated by this, we will thus think of a pair (𝜑,∇𝜑) as tangent
to a given point 𝜈 ∈ 𝒫(Θ) and introduce the inner product
at the point 𝜈

𝑔𝜈((𝜑,∇𝜑), (𝜑′, ∇𝜑′)) ≔ ∫∇𝜑 ⋅ ∇𝜑′𝑑𝜈
+∫𝜑𝜑′𝑑𝜈 −∫𝜑𝑑𝜈∫𝜑′𝑑𝜈.

With this geometric structure for the space 𝒫(Θ) en-
dowed with the WFR metric, we can proceed to carry out
an analogous computation to the one at the end of sec-
tion 3.3.1 and show that the BDL dynamics is the gradi-
ent flow of the energy functional 𝐷KL(⋅‖𝜋) w.r.t. the 𝑊 FR
geometry; see [LLN19, Thms. 3.2 and 3.3]. Furthermore,
the rate of convergence of BDL is at least as good as that
of Langevin dynamics and is asymptotically independent
of the negative-log-density 𝑉 , making it suitable for explo-
ration of multimodal landscapes. However, an important
caveat is that turning BDL into a sampling algorithm re-
quires utilizing an ensemble of interacting Langevin trajec-
tories to empirically approximate themean-field dynamics
(4.3) using a kernel density estimation, which may be for-
biddingly expensive in high-dimensional settings.

5. Conclusion and Discussion
This article provided a gentle introduction to gradient
flows as a unifying framework for the design and analysis
of optimization and sampling algorithms. Three key ele-
ments are involved in specifying a gradient flow: the space
of interest (parameter or distribution); an energy function
defined on that space to be minimized; and a geometric
notion of a gradient. After discussing different versions
of gradient flows for optimization, we mostly focused on
Langevin dynamics as a sampling analog to gradient de-
scent and discussed its generalizations through ensemble
preconditioning and addition of nonlocal terms.
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The flexibility of the gradient flow framework gives sig-
nificant freedom in the choice of the energy function and
geometry to design new algorithms beyond the examples
discussed in this article. For instance, in [AKSG19] the gra-
dient flow of themaximummean discrepancy (as opposed
to KL) w.r.t. the Wasserstein distance is used to analyze
an ensemble sampling algorithm. As another example,
the Stein Variational Gradient Descent or SVGD algorithm
[Liu17] can be viewed as a gradient flow of KL w.r.t. to a
modified Wasserstein distance defined from an appropri-
ate reproducing kernel Hilbert space.

To close, we point out that many alternative approaches
that do not rely on direct reference to gradient flows can
be used to enhance the convergence of Langevin dynam-
ics and ameliorate their metastable behavior. For exam-
ple, Hamiltonian Monte Carlo or HMC (see [Liu01] Chap-
ter 10) utilizes a proposal kernel obtained by discretiza-
tion of (deterministic) Hamilton equations as opposed
to (stochastic) Langevin dynamics; theoretical and empiri-
cal evidence suggests that HMC scales favorably to high-
dimensional settings. As another example, momentum
methods may be used to accelerate the convergence of op-
timization and sampling algorithms; these methods may
be interpreted as arising from time discretization of higher-
order systems that approximate a gradient flow structure
in certain limiting regimes [KS21]. Nonreversible variants
of the Langevin diffusion can potentially achieve faster
convergence (see section 4.8 in [Pav14]), while umbrella,
tempering, and annealing sampling strategies (see chap-
ter 10 in [Liu01]) enable the efficient traversing of mul-
timodal targets. Finally, recent machine learning tech-
niques such as normalizing flows [KPB20] offer an alter-
native approach to sampling and density estimation by di-
rect parameterization of transport maps using neural net-
works. Employing the so called neural ODE models leads
to formulations that closely resemble gradient flows and
the continuity equation (3.9) with the vector field ∇𝜑𝑡 re-
placed by a neural network.
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