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AbstractÐ This paper presents a variational representation
of the Bayes’ law using optimal transportation theory. The vari-
ational representation is in terms of the optimal transportation
between the joint distribution of the (state, observation) and
their independent coupling. By imposing certain structure on
the transport map, the solution to the variational problem is
used to construct a Brenier-type map that transports the prior
distribution to the posterior distribution for any value of the
observation signal. The new formulation is used to derive the
optimal transport form of the Ensemble Kalman filter (EnKF)
for the discrete-time filtering problem and propose a novel
extension of EnKF to the non-Gaussian setting utilizing input
convex neural networks. Finally, the proposed methodology is
used to derive the optimal transport form of the feedback par-
ticle filler (FPF) in the continuous-time limit, which constitutes
its first variational construction without explicitly using the
nonlinear filtering equation or Bayes’ law.

I. INTRODUCTION

Nonlinear filtering is the problem of computing the con-

ditional distribution of the state of a stochastic dynamical

system given historical noisy observations. The critical step

in any nonlinear filtering algorithm is the implementation of

Bayes’ law in order to update the conditional distribution of

the state as the new observations arrive. Bayes’ law gives the

conditional distribution of the state X given observations Y

according to

PX|Y (x|y) =
PX(x)PY |X(y|x)

PY (y)
(1)

where PX is the prior distribution assumed on X , PY |X

is the likelihood distribution of observations conditioned

on the state X , and PY (y) =
∫

PY |X(y|x)PX(x) dx is

the marginal distribution of Y . Nonlinear filtering is also

accompanied with an update step according to the dynamics

of the system. This step is straightforward using the dynamic

model directly. Therefore, the focus of this paper is on the

Bayesian update step.

Numerical implementations of Bayes’ law often require

a discretization (finite-dimensional approximation) of the

prior and posterior distributions. An exact computation is not

possible except in a few special cases, such as the class of

Gaussian distributions or in the finite-state space setting. This

motivates Monte-Carlo or particle-based approaches where

the posterior distribution is approximated with an empirical

distribution of samples. To this end, the main task of a

particle-based algorithm is to transform a set of particles that
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represent samples from the prior distribution to particles that

represent the posterior distribution. Simply put, the problem

can be stated as:

given: {X1
0 , . . . , X

N
0 } ∼ PX

generate: {X1
1 , . . . , X

N
1 } ∼ PX|Y

A vanilla importance sampling and resampling particle

filter carries out this task by first forming a weighted em-

pirical distribution and then resampling from the weighted

distribution [12]:

Xi
1 ∼

N
∑

j=1

wjδXj
0

, wj =
PY |X(y|Xj

0)
∑N

k=1 PY |X(y|Xk
0 )
.

Although computationally efficient, this approach performs

poorly in high-dimensional problems due to weight degen-

eracy issues [27], [4], [2]. In particular, for a Gaussian

prior and identity observation model, the mean-squared error

scales with Cd

N
where d is the dimension of the state and

C is a positive constant [36]. This means that in order to

keep the same error, the number of particles N should scale

exponentially with the dimension d.

These issues motivated recent efforts in the nonlinear

filtering literature to develop numerical algorithms based on

a controlled system of interacting particles to approximate

the posterior distribution [40], [39], [9], [28], [31], [3],

[10], [11]. A prominent idea is to view the problem of

transforming samples from the prior to the posterior from the

lens of optimal transportation theory [29], [30], [36], [8],

[35], [37], which has also become popular in the Bayesian

inference literature [13], [23], [24], [18], [34], [20], [33].

Broadly speaking, the aim of the above methods is to

find a transport map (be it stochastic or deterministic) that

transforms the prior distribution to the posterior distribution

while minimizing a certain cost.

The present paper builds on the aforementioned transport-

based works and is closely related to the optimal transport

formulation of the Ensemble Kalman filter (EnKF) and

feedback particle filter (FPF) [36], [37] with a slight, but

crucial, difference in the formulation: Prior works are based

on optimal transportation from the prior PX to the posterior

PX|Y , which is undesirable as the posterior distribution is

not available and depends on the observation Y . Instead, the

new formulation involves the optimal transportation between

the independent coupling PX ⊗PY and the joint distribution

PXY which is readily available in a filtering problem. By

imposing a block triangular structure (x, y) 7→ S(x, y) =
(T (x, y), y) on the transport map S, the component T (x, y)
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automatically serves as a transport map between the prior and

posterior distributions for any realization of the observation

Y = y. Such triangular representations of the transport map

have also appeared in [13], [34], [20], [26], [32]. With the

map T at hand, one can generate samples from the posterior

distribution PX|Y=y according to

Xi
1 = T (Xi

0, y), for i = 1, . . . , N.

This slight difference in the formulation of the transport

problem has several implications which constitute the con-

tributions of the paper:

(i) A variational formulation of Bayes’ law is introduced

that is based on the Kantorovich dual formulation of a

optimal transportation problem between PX ⊗ PY and

PXY . The solution to this problem is a Brenier-type

map (the map T above) that characterizes the posterior.

(ii) The variational formulation is cast as a stochastic

optimization problem that requires pairs of samples

{(Xi, Y i)}Ni=1 from the joint distribution PXY . The

pair of samples can be generated using a simula-

tor/oracle for the observation model, without the need

for analytical model of the likelihood function.

(iii) The stochastic optimization problem involves a

search over a certain class of convex functions. With a

quadratic restriction of the search domain, the optimal

transport formulation of EnKF is obtained, while a

restriction to the class of input convex neural networks

(ICNN) [1] leads to novel nonlinear filtering algorithms

that generalize EnKF to non-Gaussian settings.

(iv) In the continuous-time limit, the solution to the vari-

ational problem is used to recover the optimal transport

version of the FPF algorithm [37], which constitutes

the first variational construction of FPF that does not

explicitly rely on the nonlinear filtering equations.

The rest of the paper is organized as follows: Neces-

sary background on optimal transportation is summarized

in Section I-A. The variational formulation of Bayes’ law

is presented in Section II. Computational algorithms are

discussed in III, and the connection to the FPF algorithm is

discussed in IV. Concluding remarks are given in Section VI.

A. Background on optimal transportation theory

Given two probability measures µ, ν on R
n, and a mea-

surable map T : R
n → R

n, we say T transports µ to

ν, if T♯µ = ν, where ♯ is the push-forward operator. In

probabilistic terms, if Z is a random variable with probability

law µ, then T (Z) has probability law ν. The set of all

transport maps from µ to ν is denoted by T (µ, ν).
The Monge optimal transportation problem with quadratic

cost is to select the transport map from µ to ν with the least

quadratic cost:

min
T∈T (µ,ν)

EZ∼µ

[

1

2
∥T (Z)− Z∥2

]

.

If µ is absolutely continuous with respect to the Lebesgue

measure then the Monge problem has a dual formulation,

referred to as the Monge-Kantorovich (MK) dual problem

[38, Thm. 2.9]

min
f∈CVX(µ)

EZ∼µ[f(Z)] + EV∼ν [f
∗(V )]

where f∗ denotes the convex conjugate of f , i.e. f∗(v) =
supz∈Rn zT v−f(z), and CVX(µ) denotes the set of all con-

vex and µ-integrable functions on R
n. Then the celebrated

result of Brenier [5] states that the MK dual problem above

has a unique minimizer f̄ and that T̄ = ∇f̄ is the solution

to the Monge problem. The map T̄ is often referred to as

the Brenier transport map (solution).

II. A VARIATIONAL FORMULATION OF BAYES’ LAW

This section proposes a variational formulation of Bayes’

law (1), characterizing the posterior distribution as the push-

forward of the prior via a parametric map. We assume that

the hidden state X ∈ R
n and the observation Y ∈ R

m. In the

prior works [36], [37], the authors considered the problem of

finding the optimal transport map x 7→ T (x) that transports

the prior distribution PX to the posterior distribution PX|Y :

min
T∈T (PX ,PX|Y )

EX∼PX
[∥T (X)−X∥2]. (2)

This formulation is not useful for constructing a filtering

algorithm as it involves the unknown conditional distribution

PX|Y explicitly. Furthermore, the optimal map T̄ has to

be re-computed for each observation of Y . The key idea

that resolves this issue is to instead consider a transport

problem on the product space R
n × R

m. More precisely,

find a map (x, y) 7→ S(x, y) = (T (x, y), y) that transports

the independent coupling PX ⊗ PY to the joint distribution

PXY . The structure of the map S(x, y) implies that its first

component T (x, y) serves as a transport map from PX to

PX|Y yielding the new optimal transportation problem

min
S∈T (PX⊗PY ,PXY )

E(X,Y )∼PX⊗PY
[∥T (X,Y )−X∥2], (3)

where the map S is assumed to have the above parameteri-

zation in terms of T and we used the identity ∥S(X,Y ) −
(X,Y )∥2 = ∥T (X,Y ) − X∥2. In contrast to the prior

formulation (2), the new formulation contains the posterior

distribution implicitly through the joint distribution PXY

which is readily available for the filtering task and without

knowledge of a likelihood distribution.

The optimal transportation problem (3) is numerically

infeasible to solve as it requires search over the set T (PX ⊗
PY , PXY ). Instead, following [25], we consider the MK dual

problem:

min
f(·,y)∈CVX(PX)

E(X,Y )∼PX⊗PY
[f(X,Y )]

+ E(X,Y )∼PXY
[f∗(X,Y )],

(4)

where the constraint f(·; y) ∈ CVX(PX) means that x 7→
f(x; y) is convex and in L1(PX) for any y ∈ R

m. Similarly,

f∗(x; y) = supz z
Tx − f(z; y) is the convex conjugate of

f(·; y) for fixed y.
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The following theorem, which is a direct consequence of

[6, Thm. 2.3] and can be viewed as a conditional analogue

of Brenier’s result, connects the minimizers of (3) and (4).

Theorem 1: Assume E[∥X∥2] <∞ and PX is absolutely

continuous with respect to the Lebesgue measure on R
n.

Then, the MK dual problem (4) admits an optimal solution

f̄ that satisfies

PX|Y=y = ∇xf̄(·, y)♯PX , ∀y ∈ R
m. (5)

Moreover, T̄ (x, y) = ∇xf̄(x, y) is the solution to (3).

Proof: (sketch) The main idea behind the proof is the

disintegration of the objective function in (4) according to
∫
[
∫

f(x, y) dPX(x) +

∫

f∗(x, y) dPX|Y (x|y)

]

dPY (y),

and noting that the term inside brackets is the MK dual

problem for transporting from PX to PX|Y=y for each

y ∈ R
m. Then, by the application of the Brenier’s result

to the MK dual problem for each y, a minimizer gy exists

such that PX|Y=y = ∇gy♯PX . The proof follows by showing

that the function f , defined according to f(x, y) := gy(x)
for all x ∈ R

n and y ∈ R
m, is the optimal solution for (4).

Remark 1: The proposed variational formulation for the

posterior distribution is fundamentally different than the

existing variational approaches based on Kullback-Leibler

(KL) divergence that solve

PX|Y=y = arg min
Q

D(Q∥PX|Y=y),

= arg min
Q

{

D(Q∥PX)−

∫

log(PY |X(y|x))dQ(x)

}

,

where D(Q∥P ) =
∫

log(dQ
dP

)dQ is the KL divergence

and Bayes’ law was used to obtain the second display.

This formulation is reminiscent of the JKO time stepping

procedure [19] and has been used extensively in variational

construction of filtering algorithms [21], [15], [16], [17].

However, theoretically, it involves the Bayes’ law explicitly,

and computationally, it is not meaningful when the prior

distribution is an empirical distribution formed by particles.

III. COMPUTATIONAL ALGORITHMS

The proposed variational formulation is computationally

very appealing and gives rise to novel families of algorithms.

In particular, let

J(f):=E(X,Y )∼PX⊗PY
[f(X,Y )]+E(X,Y )∼PXY

[f∗(X,Y )],

denote the objective function in (4). The value of the objec-

tive function is easily approximated empirically. In particular,

given the ensemble of particles {Xi
0}

N
i=1 that form samples

from the prior distribution PX , one generates observations

Y i
0 ∼ PY |X(·|Xi

0) for i = 1, . . . , N so that {(Xi
0, Y

i
0 )}

N
i=1

form independent samples from the joint distribution PXY .

The samples are then used to define the empirical cost

J (N)(f) :=
1

N2

N
∑

i,j=1

f(Xi
0, Y

j
0 ) +

1

N

N
∑

i=1

f∗(Xi
0, Y

i
0 ).

It is straightforward to see that J (N)(f) is an unbiased

estimator of J(f). Remarkably, it is not necessary to use

the analytical form of the observation likelihood in order

to form the estimate. Only a simulator/oracle to generate

observations is required.

The empirical approximation is then utilized to formulate

optimization problems of the form:

min
f∈F

J (N)(f) (6)

where F is a subset of functions f(x; y) : Rn × R
m → R

such that x 7→ f(x; y) is convex in x. The solution of the

optimization problem, denoted by f (N), forms a numerical

approximation of the solution f̄ to (4) which is used to

transport the particles

Xi
1 = ∇xf

(N)(Xi
0, y)

for the received realization of the observation Y = y.

We discuss restriction of F to two class of functions,

namely quadratic, and neural networks, in Section III-A

and III-B respectively. The latter is closely related to the

Monotone GANs algorithm of [20] and the cWGAN algo-

rithm of [26].

A. Optimal transport EnKF

Consider the class of quadratic functions in x,

FQ =
{

(x; y) 7→
1

2
xTAx+xT (Ky + b)

∣

∣

∣
A ∈ Sn

+,

K ∈ R
n×m, b ∈ R

n
}

(7)

where Sn
+ denotes the set of positive-definite matrices. Such

functions give rise to linear transport maps of the form

∇xf(x, y) = Ax+Ky + b, (8)

which are sufficient to represent exact transport maps from

priors to posteriors whenever PXY is Gaussian. Note that in

this setting both the prior and the posterior are Gaussian.

Considering problem (4) for functions f ∈ FQ, which in

turn is analogous to optimizing over the parameters θ :=
{A,K, b̃} ∈ Θ := Sn

+×R
n×m×R

n of a quadratic function,

yields the optimization problem

min
θ∈Θ

1

2
Tr(AΣx) +

1

2
Tr(A−1Σx) +

1

2
Tr(A−1KΣyK

T )

− Tr(A−1ΣxyK
T ) +

1

2
(b̃−mx)

TA−1(b̃−mx) (9)

where mx = E[X], my = E[Y ], b̃ = b−Amx−Kmy , Σx =
E[(X −mx)(X −mx)

T ], Σy = E[(Y −my)(Y −mT
y )] and

Σxy = E[(X −mx)(Y −my)
T ]. The following proposition

characterizes the exact solution to (9).

Proposition 1: Assume ΣX is positive definite. Then, the

optimization problem (9) is convex and admits the unique

solution

b̃ = mx (10a)

K = ΣxyΣ
−1
y (10b)

A = Σ
− 1

2

x (Σ
1

2

x (Σx − ΣxyΣ
−1
y ΣT

xy)Σ
1

2

x )
1

2Σ
− 1

2

x (10c)
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with resulting transport map

∇xf̄(x, y) = mx +A(x−mx) +K(y −my). (11)

Note that the above proposition is valid for any joint

distribution PXY as long as ΣX is a positive-definite matrix.

However, when PXY is Gaussian, then the map T in (11) is

precisely the linear map that pushes PX to PY |X .

The result above can be used to construct a nonlinear filter-

ing algorithm. In particular, when only samples (Xi
0, Y

i
0 ) ∼

PXY are available, the transport map (11) is approximated

empirically by substituting the mean and the covariance by

their empirical averages, concluding the following update law

for the particles:

Xi
1 = ∇xf

(N)(Xi
0, y)

= m(N)
x +A(N)(Xi

0 −m(N)
x ) +K(N)(y −m(N)

y ) (12)

for any realization of the observation signal Y = y, where

m
(N)
x = N−1

∑N
i=1X

i
0 and m

(N)
y = N−1

∑N
i=1 Y

i
0 are the

empirical approximation of mx and my respectively, and

K(N) and A(N) are approximations of K and A in (10b)

and (10c) obtained from empirical approximations of the

covariance matrices.

The resulting algorithm (12) is the optimal transport

version of EnKF algorithm for the discrete-time filtering

problem. (12) should be compared with the classical EnKF

update with perturbed observations [14], [28], [3]:

Xi
1 = Xi

0 +K(N)(y − Y i
0 ) (13)

Interestingly, both (12) and (13) result in the same update

rules for the empirical mean and covariance, but different

trajectories for the particles. The difference arises due to

presence of A(N) in (12) to ensure that the update law

for the particles is optimal with respect to the quadratic

transportation cost. Compared to (13), the optimal transport

update (12) is expected to be more numerically challenging

while admitting lower variance error in the estimation [36].

Remark 2: The update rule (12) can also be viewed as

the generalization of the continuous-time optimal transport

EnKF update of [36] to the discrete-time setting.

B. Restriction to ICNNs

The second class of functions discussed here are IC-

NNs [1]. This class of neural networks can be used to

represent functions f(x, y) that are convex in x. Universal

approximation results have been established for ICNNs stat-

ing that they can approximate any convex function over a

compact domain with a desired accuracy [7].

In order to employ ICNNs for the proposed variational

problem (4), it is necessary to represent their convex con-

jugates. Unlike quadratic functions, there are no explicit

formulae for the convex conjugates of ICNNs. This issue

is resolved in [22] by representing the convex conjugate as

the solution to an inner optimization problem leading to a

min-max problem of the form:

min
f∈ICNN

max
g∈ICNN

{EPX⊗PY
[f(X,Y )]

+ EPXY
[∇xg(X,Y )TX − f(∇xg(X,Y ), Y )]}

(14)

The solution to the min-max problem can be numerically ap-

proximated using stochastic optimization algorithms result-

ing in novel nonlinear filtering algorithms for the discrete-

time setting. Preliminary numerical results in this direction

are presented in Section V.

IV. CONNECTION TO FPF

FPF is an algorithm for the continuous-time nonlinear

filtering problem where the state and observations are mod-

eled as continuous-time stochastic processes. For simplicity,

assume the state X ∈ R
n is static, while the observations

{Zt ∈ R; t ≥ 0} is scalar-valued and modeled by the

following stochastic differential equation (SDE):

dZt = h(X) dt+ σ dWt (15)

where h : R
n → R is the observation function, Wt is

the standard Wiener process modeling observation noise,

and σ ≥ 0 is the standard deviation of the noise. In the

continuous-time setting, the objective is to compute the

conditional distribution PX|Zt
where Zt is the filtration

generated by the observation process {Zs : s ∈ [0, t]}.

The FPF algorithm proceeds by simulating a controlled

stochastic process

dX̄t = Kt(X̄t) dZt + ut(X̄t) dt, X̄0 ∼ PX (16)

where the vector-fields Kt and ut are designed such that the

law of {X̄t} coincides with the posterior distribution PX|Zt

for all t ≥ 0. The objective of this section is to formally

characterize the vector-fields Kt and ut in (16) directly from

the variational formulation (4) circumventing application of

the continuous-time nonlinear filtering equations for PX|Zt

in the original derivation of the FPF algorithm [39]. For

simplicity, the procedure is explained for t = 0 because the

extension to t > 0 is similar.

To that end, consider a time discretization of the observa-

tion process (15) according to

Y := Z∆t − Z0 = h(X)∆t+ σW∆t. (17)

The state X and the observation random variable Y are used

to define the variational problem (4). The solution to the

variational problem (4) is assumed to be of the form

f(x; y) =
1

2
∥x∥2 + ϕ(x)y + ψ(x)∆t, (18)

where ϕ and ψ are real-valued functions. The solution can

then be used to obtain a transport map to update X̄0 to X̄∆t

as follows

X̄∆t = ∇xf(X̄0; y) = X̄0 +∇ϕ(X̄0)y +∇ψ(X̄0)∆t (19)

which in the limit as ∆t→ 0 yields the stochastic differential

equation (16) with K0 = ∇ϕ and u0 = ∇ψ.

It remains to identify the functions ϕ and ψ by solving

the optimization problem (4). The following proposition

identifies the first-order and second-order approximation of

the objective function in the asymptotic limit as ∆t→ 0.
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Proposition 2: In the asymptotic limit as ∆t → 0,

the value of the objective function (4), with observation

model (17) and f specified as (18), is

J(f) =
1

2
σ2
x + J1(ϕ)∆t+ J2(ϕ, ψ)∆t

2 +O(∆t3) (20)

where σ2
x = E[∥X∥2], ĥ = E[h(X)], and

J1(ϕ) = E

[

σ2
w

2
∥∇ϕ(X)∥2 − ϕ(X)(h(X)− ĥ)

]

,

J2(ϕ, ψ) = E

[

1

2
∥∇ψ(X)− v(X)∥2

]

+ J̃2(ϕ),

v = −
h+ ĥ

2
∇ϕ+

σ2
w

2
∇2ϕ∇ϕ,

and J̃2 is only a function of ϕ that does not depend on ψ.

The form of the objective function in (20) suggests that,

in the limit as ∆t → 0, the minimizer ϕ converges to

the minimum of the first-order term J1, and the minimizer

ψ converges to the minimum of the second-order term J2
while ϕ is fixed. Minimizing J1 over ϕ yields the first-order

optimality condition

−
1

p(x)
∇·(p(x)∇ϕ(x)) =

1

σ2
w

(h(x)−ĥ), ∀x ∈ R
n, (21)

where p is the probability density function of PX . This is

known as the weighted Poisson equation. Minimizing J2
over ψ, while ϕ is fixed, yields ∇ψ = v + ξ where ξ is

a divergence-free vector-field , i.e. ∇ · (pξ) = 0.

Using the form of ϕ and ψ in (19) and taking the

continuous-time limit as ∆t→ 0 concludes

dX̄t =∇ϕt(X̄t)

(

dZt −
h(X̄t) + ĥt

2
dt

)

+
σ2
w

2
∇2ϕt(X̄t)∇ϕt(X̄t) dt+ ξt(X̄t) dt

This is in agreement with the optimal transport form of the

FPF algorithm proposed in [37] and the original form of the

FPF in [39] modulo the additional divergence-free term ξt.

V. NUMERICAL EXAMPLE

Let PX be a bimodal distribution formed by combination

of two Gaussians N(−1, σ2) and N(+1, σ2) with σ2 = 0.2.

Assume Y is related to X according to

Y = X + σwW

where W is standard Gaussian independent of X and σ2
w =

0.2. Consider solving the variational formulation (4) using

ICNNs and the min-max formulation (14). For this one

dimensional example, consider a simple single layer ICNN

architecture where

f(x, y) =

K
∑

k=1

Wk(W
x
k x+W

y
k y + bk)

2
+

where Wk ≥ 0, W x
k ,W

y
k , bk ∈ R for k = 1, . . . ,K, and K

is the size of the network. A similar architecture is used for

g(x, y). Stochastic optimization algorithm (ADAM) is used

to solve the min-max problem and learn the parameters of

the network. The result is depicted in Figure 1.

y=1

PX PX|Y {X i1}

2 0 2

x

y=0

2 0 2

x

3

2

1

0

1

2

3

y

PX PY

(T, Id)#PX PY

PXY
x

x

Fig. 1. Numerical result for the bimodal example in Section V. Samples
from the joint distribution PXY , the independent coupling PX ⊗ PY , and
the push-forward (∇xf, Id)#PX⊗PY are depicted in the left panel, where
f is an approximate solution to the variational problem. problem (4). The
prior distribution PX , along with the exact posterior distribution PX|Y =y

and the approximated posterior distribution ∇xf(·, y)#PX for two values
y = 0, 1 are depicted in the right panels.

VI. CONCLUDING REMARKS

The paper presents a variational characterization of the

Bayes’s law using tools from optimal transportation theory.

The variational formulation is used to derive the optimal

transport EnKF algorithm, and propose novel generalizations

of the EnKF algorithm to the non-Gaussian setting, utilizing

ICNN and stochastic optimization algorithms. The paper

presents preliminary numerical result that serve as proof of

concept, while extensive numerical studies and comparison

with other nonlinear filtering algorithms are subject of on-

going work.

APPENDIX

A. Proof sketch of the proposition 1

The value of the objective function (9) is obtained using

the quadratic form of the function f(x, y; θ) = 1
2x

TAx +
xT (Ky + b), and its convex conjugate

f∗(x, y; θ) =
1

2
(x−Ky − b)TA−1(x−Ky − b)

The objective function is convex with respect to θ =
{A,K, b} because, (i) the function f(x, y; θ) is linear in θ,

and (ii) f∗(x, y; θ) is a maximization over linear functions

of θ, hence convex. The solution to the optimization problem

is obtained using the first-order optimality condition.

B. Proof sketch of the proposition 2

Express (18) as f(x, y) = 1
2∥x∥

2 + η(x, y) where

η(x, y) = ϕ(x)y + ψ(x)∆t. Then, the convex conjugate of

f up to the fourth order in η is

f∗(x, y) =
1

2
∥x∥2 − η(x, y) +

1

2
∥∇xη(x, y)∥

2

−
1

2
∇xη(x, y)

T∇2
xη(x, y)∇xη(x, y)

+
1

2
∥∇2

xη(x, y)∇xη(x, y)∥
2
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The expression (20) is obtained using the form for f , the

expansion of the convex conjugate f∗, and the observation

model Y = h(X)∆t+ σwW∆t. The details are removed on

the account of the space.
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