2023 IEEE Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMC+SIPI) | 979-8-3503-0976-8/23/$31.00 ©2023 IEEE | DOI: 10.1109/EMCSIPI50001.2023.10241752

Augmented Genetic Algorithm v2 with
Reinforcement Learning for PDN Decap
Optimization

Haran Manoharan*!, Jack Juang”?, Hanfeng Wang™3, Jingnan Pan™, Kelvin Qiu ", Xu Gao*, and Chulsoon Hwang"’

*EMC Laboratory, Missouri University of Science and Technology, Rolla, Mo, USA
*Google LLC, Mountain View, CA, USA
'hm6h6, %jjryb, Thwangc@mst.edu, *hanfengw, 4jingnan, *kqiu, *xugaon@google.com

Abstract— Genetic algorithms (GAs) use many
hyperparameters, and tuning these parameters can determine
the optimization performance. A GA with an augmented initial
population was proposed for decap optimization but it had
convergence issues by getting stuck in the local minimum. This
work uses a reinforcement learning (RL) approach to
adaptively tune the hyperparameters of GA during its
operation. With this approach, the agent tries to change the
parameters so that the GA does not get stuck in the local
minimum. The proposed method combining the RL agent and
Augmented GA showed better performance in terms of
solution quality and time cost. Overall, in all the cases tested,
the proposed method showed better performance than the
Augmented GA without RL.

Keywords—Reinforcement Learning (RL), Genetic
Algorithm, Augmented Genetic Algorithm, Decap Optimization

1. INTRODUCTION
In a power distribution network (PDN), selecting
decoupling capacitors (decaps) is essential in suppressing
power supply ripples. Optimization of decaps is vital in
saving cost and layout space. There are several works done
in optimizing placement and the value of decaps using
various approaches [1].

In [2], a deep reinforcement learning agent is used to
optimize the decap placement and value. Here proximal
policy optimization (PPO) algorithm was used. The DNN
was trained with different boards having the same stackup
but different shapes and decap locations. The agent was able
to provide optimal results for a board with a different shape
but with the same stackup. In [3], transformer network-based
deep reinforcement learning is used for decap placement.
This attention-based transformer network was used to
parameterize optimization policy. Here, in addition to self-
impedance, transfer impedance was also considered. An
advantage actor-critic reinforcement learning-based method
is proposed in [4], which has a large action space for decap
optimization. All three methods have issues with
generalization. They fail to produce optimal results for any
new PCB that has never been used for training.

On the other hand, evolutionary algorithms do not require
training, and they are generalized. Among the various
evolutionary algorithms, the genetic algorithm is widely used
for combinatorial optimization problems because of its
population-based approach. Conventional GA is modified in
[5] called Gene suppressed GA to make the GA converge
faster. In [6], the Gene suppressed GA was further improved
with an augmented initial population named augmented GA,
and new genetic operators are introduced. Even though the
algorithm showed excellent performance in terms of solution
quality and time cost compared to other algorithms, it tends
to have convergence issues by getting stuck in a local

This work was supported in part by the National Science Foundation
(NSF) under Grant No. IIP-1916535.

979-8-3503-0976-8/23/$31.00 ©2023 IEEE

Y P T T

255

T T

minimum. Tuning the hyperparameters of the GA is vital in
getting faster convergence. Various techniques have been
employed to adjust the parameters, including meta-EA [7]
and design of experiments (DOE) [8]. In the design of
experiments, every possibility of the hyperparameters is
tried, and this process is computationally expensive and
time-consuming. Hence a more generalized and
computationally inexpensive method of tuning the
hyperparameters is needed.

In this paper, a reinforcement learning agent is used to
control the mutation probability of the GA adaptively. The
agent chooses the mutation probability for the GA for every
five generations. By this approach, convergence issues of
the previous augmented GA are addressed. The agent tries
tuning the mutation probability, so the GA does not get stuck
in the local minimum. The proposed method is evaluated for
solution quality and time cost in comparison to the previous
version and a conventional genetic algorithm, using various
test cases with different target impedances.

II. AUGMENTED GA V1

The flowchart of the Augmented GA proposed in [6],
denoted as Augmented GA vl in this paper, is shown in
Fig. 1. Instead of using a random initial population as in
conventional GA, the Augmented GA v1 uses an augmented
initial population. This is done by finding the best proportion
of decaps needed for a specific board before starting the
optimization. By doing so, this approach aims to determine
the solution which might yield an ideal solution prior to
commencing optimization, consequently improving the
efficiency of the GA search. Two frequency points are
considered for an RL-type target impedance: the final
frequency critical point and the transition frequency critical
point. For an R-type target impedance, only the last
frequency point is considered. Decap weights are generated
for each decap in the decap library by adding one decap at a
time. This is done to know the proportions of decaps needed
to satisfy the impedance at the final frequency critical point
for R type target and transition and the final frequency point
for the RL-type target.

The decap solution is encoded as a vector of real numbers
where the index corresponds to decap ports, and values in
each index correspond to the decap type in the decap library.
An encoded example solution is shown in Fig. 2. Here, the
value 7 in index 3 means the 7% decap in the decap library is
placed in the 3™ port. The value 0 in index 5 means no decap
is placed in the 5" port. The main goal of the GA is to find a
solution satisfying the target with minimal decap ports used.
For solutions that satisfy the target impedance, the fitness is
given by (1), and for solutions that do not satisfy the target
impedance, the fitness is given by (2) [6].

T

Port Priarity

v

Decap Weights
Generation

v

Initial Population
Generation

v

Fitness Evaluation

¥

Brute Force Check

v

Modelled Population

v

\.

-

-

Y

Until last
generation

Mutation
A
Fig. 1. Augmented GA vl flowchart.
4 5 7 10 0
7t decap in
library placed

in 37 port

Fig. 2. Encoded decap solution example

Fitness= -(Total # of Ports-# of PortsUsed) + 1 (1)

solution_ z(f) - target_ z(f)
target_ z(f)

Fitness = max() (2)

This fitness function makes the GA find the solution
satisfying the target impedance while simultaneously
optimizing the number of decaps. Performing crossover
operations on entire decap solutions would make more
changes at once, making improvements difficult to achieve.
Hence the crossover operator was removed.

The Augmented GA relies heavily on mutation operators
to generate new solutions. New mutation operators were
introduced, namely interchange mutation and shift mutation.
In the interchange mutation, the decap type is interchanged
with the other decap types in the solution. In the shift
mutation, the decap ports are shifted either left or right by
random steps. There is also the custom mutation, where the
decap types are mutated to any other type in the decap

e~ ey

256

library. An example of custom mutation is shown in Fig. 3.
Here, the decaps in ports 2 and 4 are mutated.

i4|5\7‘!10I°l
L« | s] 7] 6] o |

Fig. 3. Example of custom mutation (first row: before mutation, second
row: after mutation)

A brute force check function was added, which reduces
the number of decaps in the solution by iteratively removing
the decaps from the solution. The procedure involves
removing one decap at a time and checking if the target
impedance is still met. The order in which the ports are
removed is based on inductance calculated port priority.
This inductance seen from each port is extracted from the Z
-parameters. If the target impedance is still met after
removing the decap for all ports, they will remain empty.
However, if the impedance target is not met, the decap for
that particular port will be retained, and the next port will be
evaluated.

III. AUGMENTED GA V2
A. Tuning of Mutation Probability

The typical problem with the GA is premature
convergence, i.e., the algorithm gets stuck in local minima
and cannot find the global minimum. By changing the
mutation probability, the algorithm was able to find a better
solution. Fig. 4 shows a convergence graph of the GA for
100, 75, and 50 decap port cases with mutation probability
(Pm) of 0.4 and 0.6. For the 100 decap port example case,
when the algorithm ran with 0.4 mutation probability, it gave
a solution of 69 capacitors needed to satisfy the target
impedance. Still, when it was run with 0.6 mutation
probability, a better solution of 64 capacitors was obtained.
When the algorithm was run with a mutation probability of
0.4 for the 75 decap port case, a better solution of 37
capacitors was obtained compared to the solution of 39
capacitors when it was run with a Pm of 0.4.

100 4 — Pm-0.6

100 decaps case
— Pm- 0.4

80 4
70 1 75 decaps case
60 4

50 4

40

Minimum Number of decaps Required

30
50 decaps case

20+

T T T T

40 60
Generations

80 100

Fig. 4. Algorithm convergence graph for three cases (100, 75, and 50 decap
ports).

e AR L AN AN A LT~

T T T e

It is observed from Fig. 4 that for each board and its
specific target impedance, the mutation probability must be
tuned separately to find the better solutions possible. Instead
of randomly changing the mutation probability over
generations, an intelligent way of tuning is required to
achieve better performance. Hence in this algorithm, an RL
agent is used to tune the mutation probability of the GA over
generations adaptively.

B. Reinforcement Learning Overview

Reinforcement Learning is a feedback-based ML
technique that enables the agent to learn in an interactive
environment using feedback from its actions and
experiences.

The proposed model is based on the Q-learning model
[10], which iteratively improves the off-policy method. The
RL parameters are defined as follows.

o State (S): The state is the current situation of the
agent, in this case, it’s either fitness improvement
observed or no fitness improvement observed.

e Action Space (A): The action space contains the
mutation probabilities ranging from 0 to 1 with
intervals of 0.1.

e Reward (R): The reward R is determined based on
the fitness returned by the GA for a specific mutation
probability. If the fitness is improved, the reward is a
positive value of 100, and if the fitness is not
improved, the reward is a negative value of 100.

C. GA+RL

The flowchart for GA+RL is shown in Fig. 5. In the
exploration stage, the agent explores the action space by
choosing random mutation probability and running the GA
operation for 5 generations. After 5 generations, the fitness
of the GA 1is observed, the corresponding reward to
assigned, and the Q table is updated. After the exploration,
the stage is finished exploitation stage starts and here, the
agent chooses a mutation probability with the maximum Q
value in the Q table. In this way, the GA can find a better
solution which is the best solution.

Initialize Q
table

Exploration

Random
Action

Exploration/
Exploitation

Exploitation
Action with a
high Q value is
chosen

Until Last
Generation

GA operation for
5 Generations

Update Q table

Fig. 5. Flowchart of the GA+RL algorithm.

257

IV. VALIDATION

Validation of the proposed algorithm was carried out by
comparing it with the previous version and commercial tools
in terms of both solution quality and time cost.

A. Comparison with Previous Works

The comparison of the proposed Augmented GA v2 was
compared with the previous version v1 and the conventional
GA [10]. There are 30 test cases (10 each for 75, 100, and
150 decap ports). These test cases were created using the
boundary integral method [11-12]. There are ten decap types
in the decap library ranging from 0.1 pF to 330 uF[5]. Fig. 6
and Fig. 7 compare the solution quality and time cost of the
proposed algorithm with the previous version, respectively.

! 1
2 + OpenSource GA | | °
<100 = Augmented GA vl : L.,
g 1
2 + Augmented GAv2 | L 150 Decap ports
2 ! .l
% * ! * le * e e *
@ 75 Decap ol | .
< 60| ports I 100 Decap ports
2 . . s I .
8 N LI] :
. | .
£ w0 «te ! . oL e 1t
z ! . * p e 2l . ® :
E sl . " .3 + o e v
2 20 . H R
‘£ * L} . - R :
£ , .t . . !
1 1
0 5 10 15 20 25 30

Fig. 6. Comparison of the algorithm- solution quality.

70

T
« Open Source GA : . . LI I . .
60 s Augmented GA vl : 1 . .
A ted GA v2 1
Hamene = ! 150 Decap ports
—~50 : h
c ,
E 75 Decap ports 1 100 Decap ports .
<40 1 . R)
= - -t . oo . . . 1 .,
© . « " e . ® . L, e
b | . le = M
230 \ ! . ..
F ! L) .I
1 o ® . . e
20 \
. . : . |
0] *tTaerelal, R :
| * .
0 5 10 15 20 75 o
Case #

Fig. 7. Comparison of the algorithm- time cost.

From both Fig. 6 and Fig. 7, it can be seen that the
proposed algorithm can achieve better solution quality and
be less computationally expensive compared to the previous
version and the conventional GA. For instance, in one case
of 150 decap ports, the conventional GA took around 70
mins to find a solution of 60 decaps, while the Augmented
GA v1 took around 40 mins to find a solution of 30 decaps.
The v2 outperformed both by finding a solution of 25
decaps in 30 mins.

Fig. 8 compares the convergence graph for the proposed
algorithm and the previous version. For the three boards
(100, 75, and 50 decap ports), the algorithm, with the help
of the RL agent, can converge to the global minimum faster.
In the case of the 100 decap port case, the proposed
algorithm can find the solution of 62 capacitors in the 61
generation, while the previous version found a solution of
64 capacitors in the 91 generation. It is also to be noted that
the previous version may find the global minimum if it was
run for more generations, but it will significantly affect the

e AR L AN AN A LT A E—— N~ =

time cost. But the proposed algorithm can do that in less
computation time.

100 1 —— Augmented GA v1
—— Augmented GA v2

100 decaps case

90 +
80 4
70 4
60 4

75 decaps case

50

Minimum Number of decaps Required

40

40 60 80 100
Generations

20

Fig. 8. Comparison of convergence of algorithm v1 and v2 for two cases
(100 and 75 decap ports).

B. Comparison with Commercial Tools

The proposed algorithm is compared with the
commercial tools available - Cadence Optimize PI and
ANSYS SIWAVE PI advisor. A real board design with 23
decap ports was used for this comparison. The same decap
library was used in these tools. Table I shows the comparison
for the example. In terms of both solution quality and time
cost, the proposed method is significantly effective.

TABLE 1. COMPARISON WITH COMMERCIAL TOOLS
TOOL Minimum # of decaps Time taken
found
Proposed method 3 72 seconds
Optimize PI 3 195 seconds
PI Advisor 4 662 seconds

V. CONCLUSION

In this work, with the help of a reinforcement learning
agent, the mutation probability of the Augmented GA was

258

tuned for every five generations. The agent helps the GA in
finding the best solution available. The proposed method
performs better than the previous version and as well as the
commercial tools in terms of both solution quality and time
cost.

REFERENCES

S. Hemaram and J. N. Tripathi, "Computational Intelligence Based
Selection and Placement of Decoupling Capacitors: A Comparative
Study," IEEE Electromagnetic Compatibility Mag., vol. 11, no. 2, pp.
49-59, 2nd Quarter 2022.

L. Zhang, W. Huang, J. Juang, H. Lin, B. -C. Tseng and C. Hwang,
“An Enhanced Deep Reinforcement Learning Algorithm for
Decoupling Capacitor Selection in Power Distribution Network
Design,” 2020 IEEE Int. Symp. on Electromagnetic Compatibility &
Signal/Power Integrity (EMCSI), 2020, pp. 245-250.

H. Park, et al., “Deep Reinforcement Learning-Based Optimal
Decoupling Capacitor Design Method for Silicon Interposer-Based
2.5-D/3-d 1Cs,” IEEE Trans. Compon. Packaging Manuf. Technol.,
vol. 10, no. 3, pp. 467-478, March 2020.

S. Han, O. W. Bhatti and M. Swaminathan, "Reinforcement Learning
for the Optimization of Decoupling Capacitors in Power Delivery
Networks," 2021 IEEE Int. Joint EMC/SI/PI and EMC Europe Symp.,
2021, pp. 544-548.

J. Juang, L. Zhang, Z. Kiguradze, B. Pu, S. Jin and C. Hwang, "A
Modified Genetic Algorithm for the Selection of Decoupling
Capacitors in PDN Design," 2021 [EEE Int. Joint EMC/SI/PI and
EMC Europe Symp., 2021, pp. 712-717.

J. Juanget al., “Augmented Genetic Algorithm for Decoupling
Capacitor Optimization in PDN Design Through Improved Population
Generation," submitted to IEEE Trans. on Signal and Power Integrity.

(1

[2]

B3]

(4]

[

(6]

[7] John J Grefenstette, “Optimization of control parameters for genetic
algorithms,” IEEE Trans. on systems, man, and cybernetics, vol. 16,

no. 1, pp. 122-128, Jan. 1986.

Arif Arin, Ghaith Rabadi, and Resit Unal, “Comparative studies on
design of experiments for tuning parameters in a genetic algorithm for
a scheduling problem”, Int. Journal of Experimental Design and
Process Optimisation, vol.2, pp. 102—-124, May. 2011.

D. Pandey and P. Pandey, "Approximate Q-Learning: An
Introduction," 2010 Second Int. Conf. on Machine Learning and
Computing, 2010, pp. 317-320,

R. Solgi, “Genetic Algorithm”, pypi.org, Available:
https://pypi.org/project/geneticalgorithm/ (accessed Sept. 1, 2022).

L. Zhang et al., “Efficient DC and AC Impedance Calculation for
Arbitrary-Shape and Multilayer PDN Using Boundary Integration,” in
IEEE Trans. on Signal and Power Integrity, vol. 1, pp. 1-11, 2022.

L. Zhang, “PDN modeling for high-speed multilayer PCB boards and
decap optimization using machine learning techniques,” Ph.D.
dissertation, Missouri Univ. Sci. Technol., Rolla, MO, USA, 2021.

(8]

[

[10]

(1]

[12

ot M AR L AN AN AT A ——.~r =

