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Abstract— Genetic algorithms (GAs) use many 

hyperparameters, and tuning these parameters can determine 
the optimization performance. A GA with an augmented initial 
population was proposed for decap optimization but it had 
convergence issues by getting stuck in the local minimum.  This 
work uses a reinforcement learning (RL) approach to 
adaptively tune the hyperparameters of GA during its 
operation. With this approach, the agent tries to change the 
parameters so that the GA does not get stuck in the local 
minimum. The proposed method combining the RL agent and 
Augmented GA showed better performance in terms of 
solution quality and time cost. Overall, in all the cases tested, 
the proposed method showed better performance than the 
Augmented GA without RL. 

Keywords—Reinforcement Learning (RL), Genetic 
Algorithm, Augmented Genetic Algorithm, Decap Optimization 

I. INTRODUCTION  
In a power distribution network (PDN), selecting 

decoupling capacitors (decaps) is essential in suppressing 
power supply ripples. Optimization of decaps is vital in 
saving cost and layout space. There are several works done 
in optimizing placement and the value of decaps using 
various approaches [1].  

In [2], a deep reinforcement learning agent is used to 
optimize the decap placement and value. Here proximal 
policy optimization (PPO) algorithm was used. The DNN 
was trained with different boards having the same stackup 
but different shapes and decap locations. The agent was able 
to provide optimal results for a board with a different shape 
but with the same stackup. In [3], transformer network-based 
deep reinforcement learning is used for decap placement. 
This attention-based transformer network was used to 
parameterize optimization policy. Here, in addition to self-
impedance, transfer impedance was also considered. An 
advantage actor-critic reinforcement learning-based method 
is proposed in [4], which has a large action space for decap 
optimization. All three methods have issues with 
generalization. They fail to produce optimal results for any 
new PCB that has never been used for training. 

On the other hand, evolutionary algorithms do not require 
training, and they are generalized. Among the various 
evolutionary algorithms, the genetic algorithm is widely used 
for combinatorial optimization problems because of its 
population-based approach. Conventional GA is modified in 
[5] called Gene suppressed GA to make the GA converge 
faster. In [6], the Gene suppressed GA was further improved 
with an augmented initial population named augmented GA, 
and new genetic operators are introduced. Even though the 
algorithm showed excellent performance in terms of solution 
quality and time cost compared to other algorithms, it tends 
to have convergence issues by getting stuck in a local 

minimum. Tuning the hyperparameters of the GA is vital in 
getting faster convergence. Various techniques have been 
employed to adjust the parameters, including meta-EA [7] 
and design of experiments (DOE) [8]. In the design of 
experiments, every possibility of the hyperparameters is 
tried, and this process is computationally expensive and 
time-consuming. Hence a more generalized and 
computationally inexpensive method of tuning the 
hyperparameters is needed.  

In this paper, a reinforcement learning agent is used to 
control the mutation probability of the GA adaptively. The 
agent chooses the mutation probability for the GA for every 
five generations.  By this approach, convergence issues of 
the previous augmented GA are addressed. The agent tries 
tuning the mutation probability, so the GA does not get stuck 
in the local minimum. The proposed method is evaluated for 
solution quality and time cost in comparison to the previous 
version and a conventional genetic algorithm, using various 
test cases with different target impedances. 

II. AUGMENTED GA V1 
The flowchart of the Augmented GA proposed in [6], 

denoted as Augmented GA v1 in this paper, is shown in 
Fig. 1. Instead of using a random initial population as in 
conventional GA, the Augmented GA v1 uses an augmented 
initial population. This is done by finding the best proportion 
of decaps needed for a specific board before starting the 
optimization. By doing so, this approach aims to determine 
the solution which might yield an ideal solution prior to 
commencing optimization, consequently improving the 
efficiency of the GA search. Two frequency points are 
considered for an RL-type target impedance: the final 
frequency critical point and the transition frequency critical 
point. For an R-type target impedance, only the last 
frequency point is considered. Decap weights are generated 
for each decap in the decap library by adding one decap at a 
time. This is done to know the proportions of decaps needed 
to satisfy the impedance at the final frequency critical point 
for R type target and transition and the final frequency point 
for the RL-type target.   

 The decap solution is encoded as a vector of real numbers 
where the index corresponds to decap ports, and values in 
each index correspond to the decap type in the decap library. 
An encoded example solution is shown in Fig. 2. Here, the 
value 7 in index 3 means the 7th decap in the decap library is 
placed in the 3rd port. The value 0 in index 5 means no decap 
is placed in the 5th port. The main goal of the GA is to find a 
solution satisfying the target with minimal decap ports used. 
For solutions that satisfy the target impedance, the fitness is 
given by (1), and for solutions that do not satisfy the target 
impedance, the fitness is given by (2) [6]. 
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Fig.  1. Augmented GA v1 flowchart. 

 
Fig.  2. Encoded decap solution example 

Fitness =  -(Total #  of Ports - #  of Ports Used) +  1   (1) 

solut ion_ z(f) - target_ z(f)
Fitness = max( )

target_ z(f)
        (2) 

This fitness function makes the GA find the solution 
satisfying the target impedance while simultaneously 
optimizing the number of decaps. Performing crossover 
operations on entire decap solutions would make more 
changes at once, making improvements difficult to achieve. 
Hence the crossover operator was removed.  

The Augmented GA relies heavily on mutation operators 
to generate new solutions. New mutation operators were 
introduced, namely interchange mutation and shift mutation. 
In the interchange mutation, the decap type is interchanged 
with the other decap types in the solution. In the shift 
mutation, the decap ports are shifted either left or right by 
random steps. There is also the custom mutation, where the 
decap types are mutated to any other type in the decap 

library. An example of custom mutation is shown in Fig. 3. 
Here, the decaps in ports 2 and 4 are mutated. 

 

 
Fig.  3. Example of custom mutation (first row: before mutation, second 
row: after mutation) 

A brute force check function was added, which reduces 
the number of decaps in the solution by iteratively removing 
the decaps from the solution. The procedure involves 
removing one decap at a time and checking if the target 
impedance is still met. The order in which the ports are 
removed is based on inductance calculated port priority. 
This inductance seen from each port is extracted from the Z 
-parameters. If the target impedance is still met after 
removing the decap for all ports, they will remain empty. 
However, if the impedance target is not met, the decap for 
that particular port will be retained, and the next port will be 
evaluated. 

III. AUGMENTED GA V2 
A. Tuning of Mutation Probability 

The typical problem with the GA is premature 
convergence, i.e., the algorithm gets stuck in local minima 
and cannot find the global minimum. By changing the 
mutation probability, the algorithm was able to find a better 
solution. Fig. 4 shows a convergence graph of the GA for 
100, 75, and 50 decap port cases with mutation probability 
(Pm) of 0.4 and 0.6. For the 100 decap port example case, 
when the algorithm ran with 0.4 mutation probability, it gave 
a solution of 69 capacitors needed to satisfy the target 
impedance. Still, when it was run with 0.6 mutation 
probability, a better solution of 64 capacitors was obtained. 
When the algorithm was run with a mutation probability of 
0.4 for the 75 decap port case, a better solution of 37 
capacitors was obtained compared to the solution of 39 
capacitors when it was run with a Pm of 0.4. 

 

 
Fig. 4. Algorithm convergence graph for three cases (100, 75, and 50 decap 
ports). 
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It is observed from Fig. 4 that for each board and its 
specific target impedance, the mutation probability must be 
tuned separately to find the better solutions possible. Instead 
of randomly changing the mutation probability over 
generations, an intelligent way of tuning is required to 
achieve better performance.  Hence in this algorithm, an RL 
agent is used to tune the mutation probability of the GA over 
generations adaptively.  

B. Reinforcement Learning Overview 
Reinforcement Learning is a feedback-based ML 

technique that enables the agent to learn in an interactive 
environment using feedback from its actions and 
experiences. 

The proposed model is based on the Q-learning model 
[10], which iteratively improves the off-policy method. The 
RL parameters are defined as follows. 

• State (S): The state is the current situation of the 
agent, in this case, it’s either fitness improvement 
observed or no fitness improvement observed.  

• Action Space (A): The action space contains the 
mutation probabilities ranging from 0 to 1 with 
intervals of 0.1. 

• Reward (R): The reward R is determined based on 
the fitness returned by the GA for a specific mutation 
probability. If the fitness is improved, the reward is a 
positive value of 100, and if the fitness is not 
improved, the reward is a negative value of 100. 

C. GA+RL 
The flowchart for GA+RL is shown in Fig. 5. In the 

exploration stage, the agent explores the action space by 
choosing random mutation probability and running the GA 
operation for 5 generations. After 5 generations, the fitness 
of the GA is observed, the corresponding reward to 
assigned, and the Q table is updated. After the exploration, 
the stage is finished exploitation stage starts and here, the 
agent chooses a mutation probability with the maximum Q 
value in the Q table. In this way, the GA can find a better 
solution which is the best solution. 

 
Fig.  5. Flowchart of the GA+RL algorithm. 

IV. VALIDATION 
Validation of the proposed algorithm was carried out by 

comparing it with the previous version and commercial tools 
in terms of both solution quality and time cost. 

A. Comparison with Previous Works 
The comparison of the proposed Augmented GA v2 was 

compared with the previous version v1 and the conventional 
GA [10]. There are 30 test cases (10 each for 75, 100, and 
150 decap ports). These test cases were created using the 
boundary integral method [11-12]. There are ten decap types 
in the decap library ranging from 0.1 µF to 330 µF[5]. Fig. 6 
and Fig. 7 compare the solution quality and time cost of the 
proposed algorithm with the previous version, respectively. 

 
Fig.  6. Comparison of the algorithm- solution quality. 

 
Fig.  7. Comparison of the algorithm- time cost. 

From both Fig. 6 and Fig. 7, it can be seen that the 
proposed algorithm can achieve better solution quality and 
be less computationally expensive compared to the previous 
version and the conventional GA. For instance, in one case 
of 150 decap ports, the conventional GA took around 70 
mins to find a solution of 60 decaps, while the Augmented 
GA v1 took around 40 mins to find a solution of 30 decaps. 
The v2 outperformed both by finding a solution of 25 
decaps in 30 mins. 

Fig. 8 compares the convergence graph for the proposed 
algorithm and the previous version. For the three boards 
(100, 75, and 50 decap ports), the algorithm, with the help 
of the RL agent, can converge to the global minimum faster. 
In the case of the 100 decap port case, the proposed 
algorithm can find the solution of 62 capacitors in the 61st 
generation, while the previous version found a solution of 
64 capacitors in the 91st generation. It is also to be noted that 
the previous version may find the global minimum if it was 
run for more generations, but it will significantly affect the 
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time cost. But the proposed algorithm can do that in less 
computation time. 

 
Fig.  8. Comparison of convergence of algorithm v1 and v2 for two cases 
(100 and 75 decap ports). 

B. Comparison with Commercial Tools 
The proposed algorithm is compared with the 

commercial tools available - Cadence Optimize PI and 
ANSYS SIWAVE PI advisor. A real board design with 23 
decap ports was used for this comparison. The same decap 
library was used in these tools. Table I shows the comparison 
for the example. In terms of both solution quality and time 
cost, the proposed method is significantly effective. 

TABLE I.  COMPARISON WITH COMMERCIAL TOOLS 

TOOL Minimum # of decaps 
found Time taken 

Proposed method 3 72 seconds 

Optimize PI 3 195 seconds 

PI Advisor 4 662 seconds 

V. CONCLUSION 
In this work, with the help of a reinforcement learning 

agent, the mutation probability of the Augmented GA was 

tuned for every five generations. The agent helps the GA in 
finding the best solution available. The proposed method 
performs better than the previous version and as well as the 
commercial tools in terms of both solution quality and time 
cost.  
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