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Abstract— PCB/package stack-up design optimization is time-
consuming and requiring a great deal of experience. Although
some iterative optimization algorithms are applied to implement
automatic stack-up design, evaluating the results of each
iteration is still time-intensive. This paper proposes a combined
Bayesian optimization-artificial neural network (BO-ANN)
algorithm, utilizing a trained ANN-based surrogate model to
replace a 2D cross-section analysis tool for fast PCB/package
stack-up design optimization. With the acceleration of ANN, the
proposed BO-ANN algorithm can finish 100 iterations in 40
seconds while achieving the target characteristic impedance. To
better generalize the BO-ANN algorithm, a strategy of effective
dielectric calculation is applied to multiple-dielectric stack-up
optimization. the BO-ANN algorithm will be able to output
optimized stack-up designs with dielectric layers chosen from the
pre-defined library and the obtained designs are verified by 2D
solver.

Keywords—PCB/package stack-up design, artificial neural
network, deep learning, Bayesian optimization

I. INTRODUCTION

The electrical properties of the transmission line are usually
considered for PCB/package stack-up design, such as
impedance matching and attenuation minimization. Even
though designers can obtain the transmission line electrical
properties by putting stack-up parameters into commercially
available 2D cross-section analysis tools, the mapping from
stack-up parameters to transmission line electrical properties is
non-linear. Therefore, design optimization still requires lots of
time and experience. Especially when multiple dielectrics are
applied in PCB/package stack-up design, the complexity of
design optimization increases dramatically.

Several works have applied machine learning based
optimization on the design process as a substitute for manual
selection. One popular method is the genetic algorithm (GA),
which is widely used for diverse problems in signal
integrity/power integrity [1][2]. However, GA requires many
evaluations of the optimization function, which limits its
application. Another widely used optimization technique for
SI/PI is deep reinforcement learning [3]. Whereas, it is hard to
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find an optimal solution with a large variable space. In recent
years, non-convex Bayesian optimization (BO) has become
popular. BO is a Gaussian process (GP) and a Bayes-theorem-
based approach, which aims to optimize N-dimensional
functions and minimize the number of evaluations [4]. For
SI/PI tasks, BO is used to optimize via parameters for signal
transmission [5], the eye opening of interconnects in high-
speed channels [6], and PCB stack-up [7]. BO works well in
[5], however, the evaluation is still expensive. To further
accelerate the algorithm, the additive Gaussian process (ADD-
GP) [8] is used as a predictive model in [6] while each output
needs one ADD-GP model. Although [7] utilizes an artificial
neural network to replace the 2D cross-section analysis tool,
the simple structure of the neural network and small dataset
cannot guarantee prediction accuracy. Furthermore, only a 2-
dielectric stack-up with 5 parameters is studied in [7], this
strategy cannot solve the problem of data explosion caused by
multiple dielectrics and the difficulty of convergence in a large
variable space.

In this paper, the BO-ANN algorithm is proposed with an
effective dielectric calculation strategy for fast PCB/package
stack-up optimization. The variables are the stack-up
parameters of the PCB/package, and the objective function is
defined by the electrical properties of the PCB/package: the
characteristic impedance (Zo) and attenuation. The ANN is
introduced to calculate the objective function instead of time-
consuming electromagnetic simulations. After training ANN
on over 100,000 stack-ups, the relative prediction error of Z is
less than 1% on the validation dataset, and the relative
prediction error of attenuation is less than 5%. Furthermore, the
difference between the Z, of the optimized stack-up and the
target Zo is less than 2% on practical applications, and the
difference of attenuation is less than 11%.

II. BAYESIAN OPTIMIZATION APPROACH

BO was originally developed in the 1970s and 1980s [9]-
[11]. In this paper, BO is the main frame of the proposed BO-
ANN algorithm, and the flow chart is shown in Fig. 1.
Different from conventional BO, the ANN model acts as an
evaluator to accelerate algorithm speed. Initially, BO uses GP
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Fig. 1. Flow chart of the proposed algorithm.

to estimate parameter possibility distributions and relationships
by several known data points. Based on the fitted parameter
joint probability distribution, the acquisition function (AF) will
determine the potential optimal point as the next sample point,
then update the prior joint probability distribution with the new
sample point. Accordingly, BO consists of two important parts,
GP and AF.

A. Multivariate Gaussian Process

For PCB/package stack-up optimization, there are multiple
parameters to be optimized. The multivariate Gaussian
distribution is considered in this multidimensional problem.
First, one-dimensional Gaussian distribution [12] is given by:

X ~N(u,07) (1)
Where u is the mean and ¢ is the standard deviation. The
variance of the distribution is 0. And the probability density

function for one-dimensional Gaussian distribution is given as
follows:

p(x)=

o271 20

1 exp[_ﬂ] @)

Similarly for multidimensional Gaussian distribution [13],
it is notated as (3), and the probability density function in (4):

X~N(uZ) A3)

1886

1
V(27)" 2]

where X = (X;,...,Xy) is the n-dimension random vector,
= (Uy,...,uy) is the mean vector, and X is the covariance
matrix of size N X N.

Se( X Xy)=

exp(—%(X —u)z (X_”)j(4)

The GP is the joint distribution of all those random
variables. For example, the collection of those random
variables has a multidimensional Gaussian distribution. For a
random vector u € R™ with u~N(u, X), the covariance matrix
X describes the relationship between variables. The kernel
function is used to define the covariance matrix that will be
discussed in the following part. It is supposed that the variable

u is separated to u, = (uq,...,u,) and ug = (Uppq,..., Up),
similarly, for g and X, such that:
.,
u=
L%z
_.”A:|
” =
L Mg
Z — (ZAA ZABJ (5)
ZBA ZBB

And for the separate random vectors, u, and ug also
follows Gaussian Distribution, such that:

u,~ N(:uA7zAA) (6)
u; ~ N(”B7ZBB) (7

The conditional probability distribution of ug given uy is
also a Gaussian distribution given by:

up |”A ~ N(/‘B +2,,2, (”A - ﬂA)’ZBB ~Z,Z 0% 0 ) (®)

In BO, The Gaussian regression process is used to find the
relations between variables and the objective function in
training data. First, a group of sampling points is known,
ay.r = (ay,...,ar) and f(ay) = (f(ar),...,f(ar)), and it
follows Joint GP with u(a,..) as mean and K as a covariance
matrix. K is calculated with a kernel function. As for a new
point, it still follows the distribution, such that:

|:f(a1:t):|~N |:,u((l1:,):|’|:KT k :| 9)
f (at+1 ) Iu(at+1 ) k k (at+1 ’ at+1 )
It assumes that a prior distribution is given which is from

the known sampling points, a,.;, and the posterior predictive
distribution of the next sampling point is given as follows:
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H= k'K (f(am)—/l(ak, ))+ ,u(am)

o’ =k(a,.a,)-k"K'k (10)

The often-used kernel function includes linear function,
Gaussian noise function, squared exponential function, Matern
function, and rational quadratic function [14]. The Matern 5/2
function is used in this work. Different kernel functions used in
the BO for stack-up design are discussed in detail in [7]. In
BO, Gaussian regression process gives the probability
distribution of the objective function f based on the known
sampling points f(a,..) and quantifies the uncertainty of
unknown areas.

B. Acquisition Function

The AF determines the unknown area to explore and
exploit in BO. The higher value of the AF in an unknown area
indicates the objective function is optimal or highly possibly
optimal. The commonly used AF includes upper confidence
bound (UCB), probability of improvement (PI), and expected
improvement (EI) [13]. The upper confidence bound is used in
this work.

The UCB contains explicit exploitation terms p(x) and
exploration terms o (x) given by:

ucb(x)=,u(x)+/10(x) (11

where A is a parameter that balances the trade-off of exploiting
and exploring. When A is small, UCB favors area with higher
1 (x) which could be next to the maximum value of the known
sampling points. When A is large, BO prefers the exploration of
the unknown area. However, if 1 is too small, BO may obtain a
local optimal solution. Corresponding, if A is too large, BO
may focus on exploring the unknown area without procuring
the global optimal solution.

Based on multivariate GP and UCB, BO utilizes a set of
known sampling to find the new points with maximized AF

and approaches to the area with optimal value in each iteration.

The complete process of BO has been shown in Fig. 1.

III. ARTIFICIAL NEURAL NETWORK AND TRAINING DATASET

ANN is a higher-order nonlinear function. Therefore, it has
a strong ability to fit the mapping from stack-up parameters to
Zy and attenuation in the simulation dataset. Multiple-input and
multiple-output ANN is easier to train than multiple ADD-GPs
[6]. Meanwhile, sufficient dataset and powerful neural network
make prediction results more accurate.

A. Structure of Artificial Neural Network

The architecture of the applied ANN model consists of a
gated recurrent unit (GRU) [15] and fully connected (FC)
layers, as shown in Fig. 2. The applied ANN is more advanced
than the ANN with only FC layers, but it is not complex. Less
complexity can avoid overfitting and the influence of data

noise. The input set {xy,x,,..,x,} represents
parameters, as shown in TABLE I and TABLE II.

stack-up

GRU is a well-known and popular structure of the recurrent
neural network (RNN) and is widely used for sequence data
processing, such as machine translation and speech

recognition. More details of GRU are shown in Fig. 3.

X; —> GRU
v

X; —> GRU
Y
l

Xp —> GRU

Fig. 2. Structure of artificial neural network.

Attenuation

TABLE L PARAMETER NUMERICAL RANGES FOR MICROSTRIP LINE
DATASET GENERATION
Stack-Up Numerical Stack-Up Numerical
Parameter Range Parameter Range
Signal Line 40-200um CL Thickness 32.5-75um
Width ’
Signal Line
Thickness 6,9,12, 18um CCL D 2.5-35
Gap 80-120um CCL D¢ 0.001-0.01
CCL
CL Dy 2.7-3.4 Thickness 25-100um
CL Dy 0.006-0.03
TABLE II. PARAMETER NUMERICAL RANGES FOR STRIP LINE DATASET
GENERATION
Stack-Up Numerical Stack-Up Numerical
Parameter Range Parameter Range
Signal Line 40-200um CL Thickness 25-200um
Width
Signal Line
Thickness 6,9,12, 18um CCL Dy 2.5-35
Gap 80-120um CCL D¢ 0.001-0.01
CCL
CL Dy 2.7-4.2 Thickness 25-100um
CL D¢ 0.004-0.026
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Fig. 3. Gated recurrent unit.

Typically, GRU has an update gate and reset gate. It will
process current input and the known information of previous
GRU output at the same time. In Fig. 3, h;_; is the output
information from the previous GRU block, and x, is the
current input. In this work, each GRU block receives one
PCB/package stack-up parameter and combines the current
stack-up parameter with known stack-up information.
Therefore, h,_, represents known PCB/package stack-up
information extracted from previous input stack-up parameters,
and x; is used as the current input stack-up parameter. 1; is
reset gate calculated by x; and h;_:

/4

”

A x (12)

t-1° l])

The numeric ranges of the stack-up parameters are
different. Hence, it is hard to directly learn the effect and
importance of each stack-up parameter from the input numbers.
The weights of the reset gate (W) will rescale the stack-up
parameter values to a comparable range from different numeric
ranges. Then, r; determines how much known information will
be combined with current input to generate new information.
The new information is presented by %, which is defined as
follows:

r=o(

}Zztanh-(W-[r, *hH,xt]) (13)

The update gate (z;) decides the ratio of new information
and known information from the previous GRU block to
generate the final output (h;). z; and h; are defined by the
following formulas:

w .

z

h ..x

Z 112"t

t

[7:%])

h=(1-z)*h_ +z %I,

=o( (14)

(15)

Since different stack-up parameters have different effects
on Zo and attenuation, and the final result may not be
calculated by simply superimposing all effects of stack-up
parameters, the gating mechanism of GRU plays an important
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role. After GRU blocks extract the relationship among stack-up
parameters, FC layers finish the final mapping from extracted
high-level features to Z, and attenuation.

B. Training Data Generation

Supervised learning is applied to train the ANN model.
Thus, sufficient data are necessary. Ansys Q2D was utilized to
generate the dataset. For the microstrip line case and strip line
case, two different datasets were generated individually. The
microstrip line stack-up is shown in Fig. 6a, and the numerical
ranges for every stack-up parameter are listed in TABLE I. In
the dataset of the microstrip line, only a 2-dielectric stack-up
was considered. In addition, the numerical ranges of stack-up
parameters are based on the existing dielectric material library,
which makes the dataset meaningful.

Similarly, the dataset for the strip line case was generated,
which is shown in TABLE II. To reduce the amount of data,
only the 2-dielectric stack-up was considered for data
generation. When the BO-ANN algorithm is applied for
practical stack-up optimization, the stack-up is extended to
multiple-dielectric stack-up by effective dielectric calculation
strategy. For this reason, the parameter numerical ranges of CL
dielectric are different from the microstrip line case, especially
the dielectric thickness. Each dataset includes more than
100,000 stack-ups with corresponding Zy and attenuation.

C. Training Results of Artificial Neural Network

The dataset is divided into a training dataset, a testing
dataset and a validation dataset. Then, K-fold cross-validation
[16] was used during training. After training, the model was
tested on the validation dataset. Fig. 4 shows the validation
results for the microstrip line at 10 GHz. The ANN model has
good performance in Zo prediction. As for attenuation
prediction, even though the value of attenuation is small, the
ANN model can follow its changes.

Likewise, the validation results for the strip line are shown
in Fig. 5. The trained model can fit the mapping from stack-up
parameters to Zo and attenuation well. Meanwhile, the ANN
model is 4000 times faster than Ansys Q2D.

100
90
80
701
60 -
50

40|

Zy of Prediction / (Ohm)

30t

20

40 60
Zy of Label / (Ohm)

20 80 100

(a) Z, prediction result for microstrip line (10 GHz).
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microstrip line case and strip line case are discussed

026 individually.

F024) A. Microstrip Line
%o.zz— The 2-dielectric stack-up of microstrip line was considered
z as shown in Fig. 6a. According to the practical PCB/package
g o02r design, the Dy, Dy and thickness of the specific dielectric is a
:%’ fixed combination. Thus, BO directly selected dielectrics from
Eo'lg the dielectric library instead of individually choosing Dy, Dy,
2 016 and thickness from a continuous numerical range. Besides,
§ other stack-up parameters was selected from some common
<0.14 numerical ranges as shown in TABLE I, such as signal line
el width, signal line thickness, and gap. Since it is difficult for BO
02 0 e e o to find the optimal solution when there only are a few satisfied
Attenuation of Label / (dB/cm) solutions existing in a large variable space, preprocessing is
(b) Attenuation prediction result for microstrip line (10 GHz). needed. For example, if there is a severe total height restriction

for final stack-up and rare dielectric combinations can satisfy
this requirement in the dielectric library, the combinations that
do not meet this restriction should be removed from the
dielectric library first. Then, BO optimizes the rest stack-up
parameters based on the remaining dielectric combinations. In
this validation, 50 Q was set as the target Zo and attenuation
was minimized as possible. After optimization, Ansys Q2D
was used to validate the results. The optimization results for
microstrip line are listed in TABLE III. In most cases, the BO

Fig. 4. Validation results for microstrip line.

Zy of Prediction / (Ohm)
17 Py wn D ~ o0 =3
(=] (=1 =] =] =] (=] (=1

[S]
=]

Side Ground

o

=}

20 40 60 80 100
Z, of Label / (Ohm)

o

Bottom Ground
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(b) Attenuation prediction result for strip line (10 GHz).

Fig. 5. Validation results for strip line.

Side Ground

IV. STACK-UP OPTIMIZATION

To validate the performance of the proposed algorithm, it
was used to optimize practical PCB/package stack-up by
choosing dielectric layers from the pre-defined library. The

Ground

(c) Strip line stack-up for optimization.

Fig. 6. Stack-up of microstrip line and strip line for data generation and
optimization.
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could find good solutions according to the predictions of the On the other hand, the effective dielectric calculation is only a
trained ANN model. But ANN introduced around 1 Q error in rough estimate that introduces another error.
Zy prediction, which makes the optimization results somewhat

different from the optimal solution. The error of attenuation TABLEIIL.  OPTIMIZATION RESULTS FOR MICROSTRIP LINE
prediction was smaller than expectation based on training o
> -
results. § 3
B. Strip Line £ In |E N 2z |,
In this application, the stack-up was extended to multiple- S g 217 |2 8 g "§ S
. . . . . . . — [+ -
dielectric layers as shown in Fig. 6¢, which is also common in = g 7 & |2 : a S - 8
practical designs. Since the training data of the ANN model £ g = |2 £ 22 |E Q18 & 8|8
only include a 2-dielectric stack-up, the BO-ANN algorithm g g 3 g |58 |3 |8 g ; ; T |2 |= §
firstly selected parameters according to the stack-up shown in g o [T = |2 I g g |7
Fig. 6b. Unlike the microstrip line case, BO only selected CCL 2 S = Z g g 2 2 |&
from the given dielectric library while choosing CL D, CL Dy, SB|Z |8 = s 2|7
and CL thickness from specific numerical ranges. For the % E he
extension from 2-dielectric stack-up to multiple-dielectric g g
stack-up, a method of approximate -effective dielectric -
calculation is defined as follows: s lo s -
o 2 |p |8 5 12 |¥ lu s ¥ e = | =
SRR IS (Z2 IR 82T 8"
j— o ~ oo O
Ty =To +Tppg + 1
sl le (e lele o lu |8 @ |« |-
D, ff:TCL*Dk_CL+TPPG*Dk_PPG+TCCL*Dk_CCL g = § £ tr § 3|3 § B8 S 28
€
- T, T T
ff e o
(=] S o W
SEEElRElelkslelslzlz s
D _TCL*DLCL+TPPG*D/;PPG+TCCL*DLCCL (16) § E § § w2 s v g |8 |8 |* |8 |¥
foeff
o T T T
off ff eff
121212 | lg le |o |2 |o
. . . . 2 |2 = S % |2 |®
where T presents thickness. After calculating all dielectric gig 2z °|g |8 |V |88 8 |* |& |&
combinations from the given dielectric library, an effective
dielectric list was obtained. Then, the effective dielectric list o |l lo lu -
and CL parameters selected by the BO-ANN algorithm were RS R 28 § Dz gD = s e |x
used to calculate scores for every dielectric combination. The =28 |5 | E° § @ ©
scores calculation formula is given as follows:
abs (Te _7190) TABLEIV.  OPTIMIZATION RESULTS FOR STRIP LINE
Scores=—+3*abs(Dk o — Dy Bo)
zZ B
g
=
+100%abs(D, ,,—D, 4,) 1D ENE N " 2 |
=) S A o] A g e
2ERIEF 3 2 2 =ES
where Terr, Dy ey and Dy o¢f are calculated in (16). Tgq , g g g 2 e Q2 | = Zle Q055 E.
Dy po and Ds p, are CL thickness, CL Dy and CL Dy selected £2gEE EeERz & eReEzlRs =2 E
by BO-ANN algorithm. SR e EilorE PP E s cEEER
S R=EZZ |2 by SFEF[TIE 27
Finally, the dielectric combinations with the top 5 scores ] S = Z = g g = g = g
were chosen to form a multiple-dielectric stack-up for the strip S5z © c =~ & g Al
line. The optimization result of the proposed BO-ANN & & ~
algorithm with an effective dielectric strategy is listed in g g
TABLE IV. Also, the Ansys Q2D was utilized to verify the I
performance of the proposed algorithm. According to the
L. . o s o & =) =) =) =)
predictions of ANN, the BO-ANN algorithm found the proper P MR hb etk brRe =
stack-ups with Z, and attenuation close to targets. In NECR = B e @ 4~
comparison with Q2D results, there are still some errors. On

the one hand, the prediction error of the trained ANN Model
cased the difference between the proposed algorithm and Q2D.
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