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Abstract— PCB/package stack-up design optimization is time-
consuming and requiring a great deal of experience. Although 
some iterative optimization algorithms are applied to implement 
automatic stack-up design, evaluating the results of each 
iteration is still time-intensive. This paper proposes a combined 
Bayesian optimization-artificial neural network (BO-ANN) 
algorithm, utilizing a trained ANN-based surrogate model to 
replace a 2D cross-section analysis tool for fast PCB/package 
stack-up design optimization. With the acceleration of ANN, the 
proposed BO-ANN algorithm can finish 100 iterations in 40 
seconds while achieving the target characteristic impedance. To 
better generalize the BO-ANN algorithm, a strategy of effective 
dielectric calculation is applied to multiple-dielectric stack-up 
optimization. the BO-ANN algorithm will be able to output 
optimized stack-up designs with dielectric layers chosen from the 
pre-defined library and the obtained designs are verified by 2D 
solver. 

Keywords—PCB/package stack-up design, artificial neural 
network, deep learning, Bayesian optimization 

I. INTRODUCTION

The electrical properties of the transmission line are usually 
considered for PCB/package stack-up design, such as 
impedance matching and attenuation minimization. Even 
though designers can obtain the transmission line electrical 
properties by putting stack-up parameters into commercially 
available 2D cross-section analysis tools, the mapping from 
stack-up parameters to transmission line electrical properties is 
non-linear. Therefore, design optimization still requires lots of 
time and experience. Especially when multiple dielectrics are 
applied in PCB/package stack-up design, the complexity of 
design optimization increases dramatically. 

Several works have applied machine learning based 
optimization on the design process as a substitute for manual 
selection. One popular method is the genetic algorithm (GA), 
which is widely used for diverse problems in signal 
integrity/power integrity [1][2]. However, GA requires many 
evaluations of the optimization function, which limits its 
application. Another widely used optimization technique for 
SI/PI is deep reinforcement learning [3]. Whereas, it is hard to 

find an optimal solution with a large variable space. In recent 
years, non-convex Bayesian optimization (BO) has become 
popular. BO is a Gaussian process (GP) and a Bayes-theorem-
based approach, which aims to optimize N-dimensional 
functions and minimize the number of evaluations [4]. For 
SI/PI tasks, BO is used to optimize via parameters for signal 
transmission [5],  the eye opening of interconnects in high-
speed channels [6], and PCB stack-up [7]. BO works well in 
[5], however, the evaluation is still expensive. To further 
accelerate the algorithm, the additive Gaussian process (ADD-
GP) [8] is used as a predictive model in [6] while each output 
needs one ADD-GP model. Although [7] utilizes an artificial 
neural network to replace the 2D cross-section analysis tool, 
the simple structure of the neural network and small dataset 
cannot guarantee prediction accuracy. Furthermore, only a 2-
dielectric stack-up with 5 parameters is studied in [7], this 
strategy cannot solve the problem of data explosion caused by 
multiple dielectrics and the difficulty of convergence in a large 
variable space. 

In this paper, the BO-ANN algorithm is proposed with an 
effective dielectric calculation strategy for fast PCB/package 
stack-up optimization. The variables are the stack-up 
parameters of the PCB/package, and the objective function is 
defined by the electrical properties of the PCB/package: the 
characteristic impedance (Z0) and attenuation. The ANN is 
introduced to calculate the objective function instead of time-
consuming electromagnetic simulations. After training ANN 
on over 100,000 stack-ups, the relative prediction error of Z0 is 
less than 1% on the validation dataset, and the relative 
prediction error of attenuation is less than 5%. Furthermore, the 
difference between the Z0 of the optimized stack-up and the 
target Z0 is less than 2% on practical applications, and the 
difference of attenuation is less than 11%. 

II. BAYESIAN OPTIMIZATION APPROACH

BO was originally developed in the 1970s and 1980s [9]-
[11]. In this paper, BO is the main frame of the proposed BO-
ANN algorithm, and the flow chart is shown in Fig. 1. 
Different from conventional BO, the ANN model acts as an 
evaluator to accelerate algorithm speed. Initially, BO uses GP 
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to estimate parameter possibility distributions and relationships 
by several known data points. Based on the fitted parameter 
joint probability distribution, the acquisition function (AF) will 
determine the potential optimal point as the next sample point, 
then update the prior joint probability distribution with the new 
sample point. Accordingly, BO consists of two important parts, 
GP and AF. 

A. Multivariate Gaussian Process
For PCB/package stack-up optimization, there are multiple

parameters to be optimized. The multivariate Gaussian 
distribution is considered in this multidimensional problem. 
First, one-dimensional Gaussian distribution [12] is given by: 

2( , )X N

Where  is the mean and  is the standard deviation. The 
variance of the distribution is . And the probability density 
function for one-dimensional Gaussian distribution is given as 
follows: 

2

2

1 exp
22

x
p x

Similarly for multidimensional Gaussian distribution [13], 
it is notated as (3), and the probability density function in (4): 

,NX μ

1
1

1 1, , exp
22

T
X N N

f X X X μ X μ

where  is the n-dimension random vector, 
 is the mean vector, and  is the covariance 

matrix of size .  

The GP is the joint distribution of all those random 
variables. For example, the collection of those random 
variables has a multidimensional Gaussian distribution. For a 
random vector  with the covariance matrix

 describes the relationship between variables. The kernel 
function is used to define the covariance matrix that will be 
discussed in the following part. It is supposed that the variable 

 is separated to and , 
similarly, for and , such that: 

A

B

u
u

u

A

B

μ
μ

μ

AA AB

BA BB

 And for the separate random vectors,  and  also 
follows Gaussian Distribution, such that: 

,A A AANu μ

,B B BBNu μ

 The conditional probability distribution of  given  is 
also a Gaussian distribution given by: 

1 1,B A B BA AA A A BB BA AA ABNu u μ u μ

In BO, The Gaussian regression process is used to find the 
relations between variables and the objective function in 
training data. First, a group of sampling points is known, 

 and , and it 
follows Joint GP with  as mean and  as a covariance 
matrix.  is calculated with a kernel function. As for a new 
point, it still follows the distribution, such that: 

1: 1:

1 11 1

,
,

t t
T

t tt t

f a a
N

k a af a a
K k
k

 It assumes that a prior distribution is given which is from 
the known sampling points, , and the posterior predictive 
distribution of the next sampling point is given as follows: 

 
Fig. 1. Flow chart of the proposed algorithm. 
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 The often-used kernel function includes linear function, 
Gaussian noise function, squared exponential function, Matern 
function, and rational quadratic function [14]. The Matern 5/2 
function is used in this work. Different kernel functions used in 
the BO for stack-up design are discussed in detail in [7]. In 
BO, Gaussian regression process gives the probability 
distribution of the objective function  based on the known 
sampling points and quantifies the uncertainty of 
unknown areas. 

B. Acquisition Function 
The AF determines the unknown area to explore and 

exploit in BO. The higher value of the AF in an unknown area 
indicates the objective function is optimal or highly possibly 
optimal. The commonly used AF includes upper confidence 
bound (UCB), probability of improvement (PI), and expected 
improvement (EI) [13]. The upper confidence bound is used in 
this work. 

The UCB contains explicit exploitation terms  and 
exploration terms  given by: 

ucb x x x

where  is a parameter that balances the trade-off of exploiting 
and exploring. When  is small, UCB favors area with higher 

 which could be next to the maximum value of the known 
sampling points. When  is large, BO prefers the exploration of 
the unknown area. However, if  is too small, BO may obtain a 
local optimal solution. Corresponding, if  is too large, BO 
may focus on exploring the unknown area without procuring 
the global optimal solution. 

Based on multivariate GP and UCB, BO utilizes a set of 
known sampling to find the new points with maximized AF 
and approaches to the area with optimal value in each iteration. 
The complete process of BO has been shown in Fig. 1. 

III. ARTIFICIAL NEURAL NETWORK AND TRAINING DATASET 
ANN is a higher-order nonlinear function. Therefore, it has 

a strong ability to fit the mapping from stack-up parameters to 
Z0 and attenuation in the simulation dataset. Multiple-input and 
multiple-output ANN is easier to train than multiple ADD-GPs 
[6]. Meanwhile, sufficient dataset and powerful neural network 
make prediction results more accurate. 

A. Structure of Artificial Neural Network 
The architecture of the applied ANN model consists of a 

gated recurrent unit (GRU) [15] and fully connected (FC) 
layers, as shown in Fig. 2. The applied ANN is more advanced 
than the ANN with only FC layers, but it is not complex. Less 
complexity can avoid overfitting and the influence of data 

noise. The input set  represents stack-up 
parameters, as shown in TABLE I and TABLE II. 

GRU is a well-known and popular structure of the recurrent 
neural network (RNN) and is widely used for sequence data 
processing, such as machine translation and speech 
recognition. More details of GRU are shown in Fig. 3.  

 

TABLE I.  PARAMETER NUMERICAL RANGES FOR MICROSTRIP LINE 
DATASET GENERATION 

Stack-Up 
Parameter 

Numerical 
Range 

Stack-Up 
Parameter 

Numerical 
Range 

Signal Line 
Width 40-200um CL Thickness 32.5-75um 

Signal Line 
Thickness 6, 9, 12, 18um CCL Dk 2.5-3.5 

Gap 80-120um CCL Df 0.001-0.01 

CL Dk 2.7-3.4 CCL 
Thickness 25-100um 

CL Df 0.006-0.03   

a.  

TABLE II.  PARAMETER NUMERICAL RANGES FOR STRIP LINE DATASET 
GENERATION 

Stack-Up 
Parameter 

Numerical 
Range 

Stack-Up 
Parameter 

Numerical 
Range 

Signal Line 
Width 40-200um CL Thickness 25-200um 

Signal Line 
Thickness 6, 9, 12, 18um CCL Dk 2.5-3.5 

Gap 80-120um CCL Df 0.001-0.01 

CL Dk 2.7-4.2 CCL 
Thickness 25-100um 

CL Df 0.004-0.026   

b.  

 
Fig. 2. Structure of artificial neural network. 
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Typically, GRU has an update gate and reset gate. It will 

process current input and the known information of previous 
GRU output at the same time. In Fig. 3,  is the output 
information from the previous GRU block, and  is the 
current input. In this work, each GRU block receives one 
PCB/package stack-up parameter and combines the current 
stack-up parameter with known stack-up information. 
Therefore,  represents known PCB/package stack-up 
information extracted from previous input stack-up parameters, 
and  is used as the current input stack-up parameter.  is 
reset gate calculated by  and : 

1,t r t tr W h x

The numeric ranges of the stack-up parameters are 
different. Hence, it is hard to directly learn the effect and 
importance of each stack-up parameter from the input numbers. 
The weights of the reset gate ( ) will rescale the stack-up 
parameter values to a comparable range from different numeric 
ranges. Then,  determines how much known information will 
be combined with current input to generate new information. 
The new information is presented by ĥt, which is defined as 
follows: 

1tanh ,t t t th W r h x

The update gate ( ) decides the ratio of new information 
and known information from the previous GRU block to 
generate the final output ( ).  and  are defined by the 
following formulas: 

1,t z t tz W h x

11 tt t t th z h z h

Since different stack-up parameters have different effects 
on Z0 and attenuation, and the final result may not be 
calculated by simply superimposing all effects of stack-up 
parameters, the gating mechanism of GRU plays an important 

role. After GRU blocks extract the relationship among stack-up 
parameters, FC layers finish the final mapping from extracted 
high-level features to Z0 and attenuation. 

B. Training Data Generation 
 Supervised learning is applied to train the ANN model. 

Thus, sufficient data are necessary. Ansys Q2D was utilized to 
generate the dataset. For the microstrip line case and strip line 
case, two different datasets were generated individually. The 
microstrip line stack-up is shown in Fig. 6a, and the numerical 
ranges for every stack-up parameter are listed in TABLE I. In 
the dataset of the microstrip line, only a 2-dielectric stack-up 
was considered. In addition, the numerical ranges of stack-up 
parameters are based on the existing dielectric material library, 
which makes the dataset meaningful. 

Similarly, the dataset for the strip line case was generated, 
which is shown in TABLE II. To reduce the amount of data, 
only the 2-dielectric stack-up was considered for data 
generation. When the BO-ANN algorithm is applied for 
practical stack-up optimization, the stack-up is extended to 
multiple-dielectric stack-up by effective dielectric calculation 
strategy. For this reason, the parameter numerical ranges of CL 
dielectric are different from the microstrip line case, especially 
the dielectric thickness. Each dataset includes more than 
100,000 stack-ups with corresponding Z0 and attenuation. 

C. Training Results of Artificial Neural Network 
The dataset is divided into a training dataset, a testing 

dataset and a validation dataset. Then, K-fold cross-validation 
[16] was used during training. After training, the model was 
tested on the validation dataset. Fig. 4 shows the validation 
results for the microstrip line at 10 GHz. The ANN model has 
good performance in Z0 prediction. As for attenuation 
prediction, even though the value of attenuation is small, the 
ANN model can follow its changes. 

Likewise, the validation results for the strip line are shown 
in Fig. 5. The trained model can fit the mapping from stack-up 
parameters to Z0 and attenuation well. Meanwhile, the ANN 
model is 4000 times faster than Ansys Q2D.  

 

 
(a) Z0 prediction result for microstrip line (10 GHz). 

 
Fig. 3. Gated recurrent unit. 
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IV. STACK-UP OPTIMIZATION 
To validate the performance of the proposed algorithm, it 

was used to optimize practical PCB/package stack-up by 
choosing dielectric layers from the pre-defined library. The 

microstrip line case and strip line case are discussed 
individually. 

A. Microstrip Line 
The 2-dielectric stack-up of microstrip line was considered 

as shown in Fig. 6a. According to the practical PCB/package 
design, the ,  and thickness of the specific dielectric is a 
fixed combination. Thus, BO directly selected dielectrics from 
the dielectric library instead of individually choosing , , 
and thickness from a continuous numerical range. Besides, 
other stack-up parameters was selected from some common 
numerical ranges as shown in TABLE I, such as signal line 
width, signal line thickness, and gap. Since it is difficult for BO 
to find the optimal solution when there only are a few satisfied 
solutions existing in a large variable space, preprocessing is 
needed. For example, if there is a severe total height restriction 
for final stack-up and rare dielectric combinations can satisfy 
this requirement in the dielectric library, the combinations that 
do not meet this restriction should be removed from the 
dielectric library first. Then, BO optimizes the rest stack-up 
parameters based on the remaining dielectric combinations. In 
this validation, 50  was set as the target Z0 and attenuation 
was minimized as possible. After optimization, Ansys Q2D 
was used to validate the results. The optimization results for 
microstrip line are listed in TABLE III. In most cases, the BO 

 
(a) Z0 prediction result for strip line (10 GHz). 

  
(b) Attenuation prediction result for strip line (10 GHz). 

Fig. 5. Validation results for strip line. 

 
(b) Attenuation prediction result for microstrip line (10 GHz). 

Fig. 4.  Validation results for microstrip line. 

   
(a) Microstrip line stack-up for data generation and optimization. 

   
(b) Strip line stack-up for data generation. 

  
(c) Strip line stack-up for optimization. 

Fig. 6. Stack-up of microstrip line and strip line for data generation and 
optimization. 
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could find good solutions according to the predictions of the 
trained ANN model. But ANN introduced around 1  error in 
Z0 prediction, which makes the optimization results somewhat 
different from the optimal solution. The error of attenuation 
prediction was smaller than expectation based on training 
results. 

B. Strip Line 
In this application, the stack-up was extended to multiple-

dielectric layers as shown in Fig. 6c, which is also common in 
practical designs. Since the training data of the ANN model 
only include a 2-dielectric stack-up, the BO-ANN algorithm 
firstly selected parameters according to the stack-up shown in 
Fig. 6b. Unlike the microstrip line case, BO only selected CCL 
from the given dielectric library while choosing CL , CL , 
and CL thickness from specific numerical ranges. For the 
extension from 2-dielectric stack-up to multiple-dielectric 
stack-up, a method of approximate effective dielectric 
calculation is defined as follows: 

eff CL PPG CCLT T T T

_ _ _
_

CL k CL PPG k PPG CCL k CCL
k eff

eff eff eff

T D T D T D
D

T T T

 _ _ _
_

CL f CL PPG f PPG CCL f CCL
f eff

eff eff eff

T D T D T D
D

T T T

where  presents thickness. After calculating all dielectric 
combinations from the given dielectric library, an effective 
dielectric list was obtained. Then, the effective dielectric list 
and CL parameters selected by the BO-ANN algorithm were 
used to calculate scores for every dielectric combination. The 
scores calculation formula is given as follows:  

 _ _3
3

eff BO
k eff k BO

abs T T
Scores abs D D  

_ _100 f eff f BOabs D D

where ,  and  are calculated in (16). , 
 and  are CL thickness, CL  and CL  selected 

by BO-ANN algorithm.  

Finally, the dielectric combinations with the top 5 scores 
were chosen to form a multiple-dielectric stack-up for the strip 
line. The optimization result of the proposed BO-ANN 
algorithm with an effective dielectric strategy is listed in 
TABLE IV. Also, the Ansys Q2D was utilized to verify the 
performance of the proposed algorithm. According to the 
predictions of ANN, the BO-ANN algorithm found the proper 
stack-ups with Z0 and attenuation close to targets. In 
comparison with Q2D results, there are still some errors. On 
the one hand, the prediction error of the trained ANN Model 
cased the difference between the proposed algorithm and Q2D. 

On the other hand, the effective dielectric calculation is only a 
rough estimate that introduces another error. 

TABLE III.  OPTIMIZATION RESULTS FOR MICROSTRIP LINE 

A
ttenuation V

alidated by Q
2D

 (dB/cm
) 

Z
0  V

alidated by Q
2D

 (
) 

A
ttenuation Predicted by A

N
N

 (dB
/cm

) 

Z
0  Predicted by A

N
N

 (
) 

C
L

 T
hickness (um

) 

C
L

 D
f  

C
L

 D
k  

C
C

L
 T

hickness (um
) 

C
C

L
 D

f  

C
C

L
 D

k  

G
ap (um

) 

Signal L
ine T

hickness (um
) 

Signal L
ine W

idth (um
) 

O
ptim

ization R
esult 

0.35 

48.749 

0.3447 

49.738 

17.5 

0.019 

3.25 

50 

0.0039 

3.33 

80 

6 

100 

#1 

0.296 

49.192 

0.295 

49.846 

32.5 

0.004 

2.7 

50 

0.0027 

3.29 

82 

12 

91 

#2 

0.2402 

49.511 

0.2383 

50.875 

27.5 

0.006 

3.10 

75 

0.005 

3.20 

102 

18 

132 

#3 

0.2509 

49.592 

0.2412 

50.359 

50 

0.005 

3.90 

75 

0.005 

3.20 

108 

18 

130 

#4 

0.2911 

49.501 

0.2880 

50.027 

32.5 

0.004 

2.70 

50 

0.0027 

3.29 

113 

12 

94 

#5 

c.  

TABLE IV.  OPTIMIZATION RESULTS FOR STRIP LINE 

A
ttenuation V

alidated by Q
2D

 (dB/cm
) 

Z
0  V

alidated by Q
2D

 (
) 

A
ttenuation Predicted by A

N
N

 (dB
/cm

) 
Z

0  Predicted by A
N

N
 (

) 
C

C
L

_2 T
hickness (um

) 
C

C
L

_2 D
f  

C
C

L
_2 D

k  
PPG

 T
hickness (um

) 
PPG

 D
f  

PPG
 D

k  
C

L
 T

hickness (um
) 

C
L

 D
f  

C
L

 D
k  

C
C

L
_1 T

hickness (um
) 

C
C

L
_1 D

f  
C

C
L

_1 D
k  

G
ap (um

) 
Signal L

ine T
hickness (um

) 
Signal L

ine W
idth (um

) 
O

ptim
ization R

esult 

0.4627 
49.949 
0.3715 
49.985 

75 
0.0050 
3.20 
35 

0.0160 
3.70 
27.5 

0.0210 
3.19 
50 

0.0037 
3.33 
89 
12 
68 
#1 
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A
ttenuation V

alidated by Q
2D

 (dB/cm
) 

Z
0  V

alidated by Q
2D

 (
) 

A
ttenuation Predicted by A

N
N

 (dB
/cm

) 
Z

0  Predicted by A
N

N
 (

) 
C

C
L

_2 T
hickness (um

) 
C

C
L

_2 D
f  

C
C

L
_2 D

k  
PPG

 T
hickness (um

) 
PPG

 D
f  

PPG
 D

k  
C

L
 T

hickness (um
) 

C
L

 D
f  

C
L

 D
k  

C
C

L
_1 T

hickness (um
) 

C
C

L
_1 D

f  
C

C
L

_1 D
k  

G
ap (um

) 
Signal L

ine T
hickness (um

) 
Signal L

ine W
idth (um

) 
O

ptim
ization R

esult 

0.3459 
49.115 
0.3482 
49.831 

7 
0.0020 
3.40 
45 

0.0040 
3.20 
75 

0.0050 
3.00 
50 

0.0039 
3.30 
112 
9 

78 
#2 

0.3614 
49.123 
0.3477 
50.136 

25 
0.0050 
3.48 
55 

0.0055 
3.32 
50 

0.0050 
2.90 
50 

0.0037 
3.33 
115 
6 

80 
#3 

0.3656 
49.110 
0.3512 
49.785 

12 
0.0043 
3.40 
45 

0.0040 
3.20 
75 

0.0050 
3.00 
50 

0.0037 
3.33 
115 
6 

80 
#4 

0.4355 
50.223 
0.3861 
50.06 

75 
0.0050 
3.20 
35 

0.0320 
3.34 
27.5 

0.0060 
3.10 
50 

0.0037 
3.33 
89 
12 
68 
#5 

d.  

V. CONCLUSION 
This paper proposes the BO-ANN algorithm to implement 

fast PCB/package stack-up optimization in terms of both Z0 
and attenuation. The effective dielectric calculation strategy 
endows the BO-ANN algorithm with good generalization 
ability, making the proposed algorithm applicable to more 
complex applications. For practical microstrip line and strip 
line stack-up optimizations, the difference between the Z0 of 
the optimized stack-up and target Z0 was less than 1  when 
target Z0 is set to 50 . 
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