
Simple Codes and Sparse Recovery with Fast Decoding

Mahdi Cheraghchi⇤ João Ribeiro†‡

Abstract

Construction of error-correcting codes achieving a designated minimum distance parameter is a central
problem in coding theory. In this work, we study a very simple construction of binary linear codes that
correct a given number of errors K. Moreover, we design a simple, nearly optimal syndrome decoder for
the code as well. The running time of the decoder is only logarithmic in the block length of the code,
and nearly linear in the number of errors K. This decoder can be applied to exact for-all sparse recovery
over any field, improving upon previous results with the same number of measurements. Furthermore,
computation of the syndrome from a received word can be done in nearly linear time in the block
length. We also demonstrate an application of these techniques in non-adaptive group testing, and
construct simple explicit measurement schemes with O(K2 log2 N) tests and O(K3 log2 N) recovery time
for identifying up to K defectives in a population of size N .

1 Introduction

The problem of constructing low-redundancy codes with practical decoding algorithms that handle a pre-
scribed number of adversarial errors has been extensively studied in coding theory. We distinguish between
two standard decoding settings for linear codes: Syndrome decoding, where one has access to the syndrome
of the corrupted codeword, and full decoding, where one has access to the corrupted codeword itself. In both
cases, the goal is to return the error pattern.

The syndrome holds extra pre-computed information about the corrupted codeword. As a result, we
expect to be able to perform syndrome decoding much faster than full decoding. In fact, while full decoding
has complexity at least linear in the block length of the code, syndrome decoding can be potentially accom-
plished in time sublinear in the block length. Syndrome decoding is important for various reasons: In many
cases, the most e�cient way we have of performing full decoding for a given linear code is to first compute
the syndrome from the corrupted codeword, and then run a syndrome decoding algorithm. Furthermore, as
we shall see, syndrome decoding is connected to other widely studied recovery problems.

Two examples of families of high-rate linear codes with good decoding guarantees are the classical BCH
codes, which are widely used in practice, and expander codes, introduced by Sipser and Spielman [1]. The
properties of BCH codes derive from the theory of polynomials over large finite fields. On the other hand,
the guarantees behind expander codes follow from the combinatorial properties of the underlying expander
graphs. Due to their combinatorial nature, expander codes have simple decoders, while decoding BCH codes
requires algorithms which perform arithmetic over large fields. However, while BCH codes support sublinear
syndrome decoding [2, 3], no such sublinear syndrome decoders are known for expander codes.

Syndrome decoding of linear codes can be interpreted as sparse recovery over a finite field. In exact

for-all sparse recovery, we aim to recover all sparse vectors x from Wx, where W is a measurement matrix
(which may be sampled with high probability from some distribution). The goal is to minimize recovery
time and number of measurements (i.e., rows of W) with respect to the sparsity and length of the vectors.
We say a for-all sparse recovery scheme is approximate if it allows recovery (within some error) of the best
sparse approximation of arbitrary vectors. There has been significant interest in developing combinatorial
algorithms for sparse recovery. Unlike their geometric counterparts, such procedures have the advantage of

⇤EECS Department, University of Michigan, Ann Arbor, MI, USA. Email: mahdich@umich.edu.
†Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA. Email: jlourenc@cs.cmu.edu.
‡This work was mainly performed while the authors were with the Department of Computing, Imperial College London,

UK.

1

supporting sublinear time recovery. Furthermore, while sparse recovery is normally studied over the reals,
such algorithms can usually be modified to perform sparse recovery over any field.

In this work, we study a simple combinatorial construction of high-rate binary linear codes that support
nearly optimal syndrome decoding. While we present our decoding algorithms over F2, our syndrome decoder
can be adapted to work over any field, improving upon previous combinatorial algorithms for exact for-all
sparse recovery with the same number of measurements. This adaptation to arbitrary fields is discussed
in more detail at the end of Section 4.1.1. We remark that the parity-check matrix of our code remains
0-1-valued even when we work over fields other than GF(2).

A di↵erent sparse recovery problem that has been extensively studied is that of Non-Adaptive Group

Testing (NAGT). In this setting, our goal is to identify all defectives within a given population. To this
end, we may perform tests by pooling items of our choice and asking whether there is a defective item in
the pool. In NAGT, tests are fixed a priori, and so cannot depend on outcomes of previous tests. A main
problem in this area consists in finding NAGT schemes supporting sublinear recovery time with few tests in
the zero-error regime, where it is required that the scheme always succeeds in recovering the set of defectives.
In the second part of this work, we present a zero-error NAGT scheme with few tests and a competitive
sublinear time recovery algorithm.

1.1 Related Work

Sublinear time decoding of BCH codes was studied by Dodis, Reyzin, and Smith [2, 3], who gave a
poly(K logN) time syndrome decoder, where N is the block length and K is the maximum number of er-
rors. More precisely, according to [3, Proof of Lemma 1] their decoder asymptotically requires ⇥(K log2 K ·
log logK +K2 logN) multiplications over the extension field of order N + 1. In turn, we can perform mul-
tiplications over this field in time ⇥(logN · log logN) under a believable assumption [4]. Combining both
results yields asymptotic syndrome decoding complexity

⇥((K log2 K · log logK +K2 logN) · logN · log logN).

In contrast, the best syndrome decoders for expander codes run in time O(DN), whereD is the left degree
of the expander [5]. Full decoding of expander codes takes time O(N) in the regime where K = ⇥(N) [1],
but it takes time O(N logN) when K is small and we want the rate of the expander code to be large [5].

The work on combinatorial for-all sparse recovery algorithms was initiated by Cormode and Muthukrish-
nan [6], and several others soon followed [7, 8, 9] with improved recovery time and number of measurements.
More recently, sublinear time combinatorial algorithms for approximate for-all sparse recovery with optimal
number of measurements [10] or very e�cient recovery [11] were given (both with strong approximation
guarantees). We compare the results obtained by these works in the context of for-all sparse recovery with
the result we obtain in this work in Section 1.2.

The first zero-error NAGT schemes supporting sublinear recovery time with few tests were given inde-
pendently by Cheraghchi [12] and Indyk, Ngo, and Rudra [13]. In [13], the authors present an NAGT
scheme which requires T = O(K2 logN) tests (which is order-optimal) and supports recovery in time
poly(K) · T log2 T + O(T 2), where N is the population size and K is the maximum number of defectives.

However, their scheme is only explicit when K = O
⇣

logN

log logN

⌘
. Cheraghchi [12] gives explicit schemes which

require a small number of tests and handle a constant fraction of test errors. However, his schemes may
output some false positives. While this can be remedied, the resulting recovery time will be worse. Later,
Ngo, Porat, and Rudra [14] also obtained explicit sublinear time NAGT schemes with near-optimal number
of tests that are robust against test errors. In particular, they obtain schemes requiring T = O(K2 logN)
tests with recovery time poly(T). Subsequently to the publication of a shortened version of the present
work [15], Cheraghchi and Nakos [16] constructed explicit NAGT schemes requiring T = O(K2 logN) tests
and recovery time nearly linear in T .

1.2 Contributions and Techniques

Our binary linear codes are a bitmasked version of expander codes. Roughly speaking, bitmasking a binary
M⇥N matrix W consists in replacing each entry in W by the logN -bit binary expansion of its corresponding

2

column index, multiplied by that entry of W . This gives rise to a new bitmasked matrix of dimensions
M logN ⇥N . The bitmasking technique has already been used in [6, 7, 8, 9, 11] in several di↵erent ways to
obtain sublinear time recovery algorithms for approximate sparse recovery. We provide a detailed explanation
of this technique and its useful properties in Section 3.

The parity-check matrices of our codes are obtained by following the same ideas as [9, 11]: We take
the parity-check matrix of an expander code, bitmask it, and stack the two matrices. Note that these
codes have a blowup of logN , where N is the block length, in the redundancy when compared to expander
codes. However, we show that these codes support randomized and deterministic syndrome decoding in time
O(K logK · logN) under a random expander, where K is the number of errors. We remark that this is within
an O(logK) factor of the optimal recovery time for small K. In particular, this also leads to randomized
and deterministic full decoders running in time O(logK ·N logN).

Our syndrome decoders can be made to work over any field with almost no modification. As a result,
we obtain a recovery algorithm for exact for-all sparse recovery over any field with nearly optimal recovery
time O(K logK · logN) from O(K log2 N) measurements. This improves upon the recovery time of previous
schemes using the same number of measurements in the exact for-all sparse recovery setting [9, 11]. Al-
though sublinear time recovery is possible with fewer measurements (the optimal number of measurements
is O(K log(N/K))), the dependency on N in that case is generally worse than what we obtain, which is
optimal. A detailed comparison between our work and previous results in the for-all sparse recovery setting
can be found in Table 1.

Our randomized decoders have several advantages over their deterministic counterparts that make them
more practical. First, the hidden constants in the runtime are smaller. Second, the runtime is independent
of the degree of the underlying expander. As a result, we can instantiate our codes under explicit expanders
with sub-optimal degree without a↵ecting the decoding complexity. Third, the failure probability of the
algorithm has a negligible e↵ect on its runtime for large block lengths. Therefore, it can be set to an
arbitrarily small constant of choice with limited e↵ect on the runtime. In particular, our randomized full
decoder is faster than the expander codes decoder even under a random expander if K is small.

Recovery time Approximate? (Y/N)
[6] K2 log2 N N
[7] K log2 K · log2 N Y
[8] K2 · polylog(N) Y
[9] K logK · log2 N N
[11] K logK · log2 N Y

This work (see Remark 1) K logK · logN N
< K log2 N measurements [10] poly(K logN) Y

BCH codes [3, 4] K2 log2 N · log logN N

Table 1: Summary of best known previous results and the result obtained in this work on sublinear recovery
in the for-all sparse recovery setting. Here, K denotes the sparsity and N the vector length. We omit
the O(·) notation in recovery times for simplicity, and in the third column we distinguish between schemes
that work for approximate sparse recovery (i.e., arbitrary vectors), versus those that work only in the exact
for-all setting. Since it is not relevant for us, we do not distinguish between the approximation guarantees
obtained in each work for approximate sparse recovery. All works except the last two rows require at least
O(K log2 N) measurements, which is the number of measurements our scheme requires. While sublinear
decoding is possible in those cases, the dependency on N is generally worse than what we obtain. For a
more detailed description of such schemes, see [10, Table 1] and [7, Table 1]. As mentioned before, our
measurement matrices remain 0-1-valued even when we work over fields other than GF(2).

Remark 1. We assume that reading an integer from memory takes time O(1). If instead we assume that

reading an L-bit integer takes time O(L), then we incur an extra logK factor in our deterministic recovery

time, for a total runtime of O(K log2 K · logN).

In the second part of our work, we present a simple, explicit zero-error NAGT scheme with recovery
time O(K3 log2 N) from O(K2 log2 N) tests, where N is the population size and K is the maximum number

3

of defectives. Such a scheme is obtained by bitmasking a disjunct matrix. At a high-level, the recovery
algorithm works as follows: First, we use the bitmask to obtain a small superset of the set of defectives.
Then, we simply apply the naive recovery algorithm for general disjunct matrices to this superset to remove
all false positives. The recovery time of this scheme is better than of those presented in Section 1.1, albeit we
are an O(logN) factor away from the optimal number of tests. Moreover, unlike our scheme, those schemes
make use of algebraic list-decodable codes and hence require sophisticated recovery algorithms with large
constants. Finally, we note that the bitmasking technique has been used in a di↵erent way to obtain e�cient
NAGT schemes which recover a large fraction of defectives, or even all defectives, with high probability [17].

1.3 Organization

In Section 2, we introduce several concepts and results in coding and group testing that will be relevant
for our work in later sections. Then, in Section 3 we present the bitmasking technique and its original
application in sparse recovery. We present our code construction and the decoding algorithms in Section 4.
Finally, our results on non-adaptive group testing can be found in Section 5.

2 Preliminaries

2.1 Notation

We denote the set {0, . . . , N � 1} by [N]. Given a vector x, we denote its support {i : xi 6= 0} by supp(x).
We say a vector is K-sparse if |supp(x)|  K. We index vectors and matrix rows/columns starting at 0. Sets
are denoted by calligraphic letters like S and X . In general, we denote the base-2 logarithm by log. Given
a graph G and a set of vertices S, we denote its neighborhood in G by �(S). For a matrix W , we denote its
i-th row by Wi· and its j-th column by W·j .

2.2 Unbalanced Bipartite Expanders

In this section, we introduce unbalanced bipartite expander graphs. We will need such graphs to define our
code in Section 4.

Definition 2 (Bipartite Expander). A bipartite graph G = (L,R, E) is said to be a (D,K, ✏)-bipartite
expander if every vertex u 2 L has degree D (i.e., G is left D-regular) and for every S ✓ L satisfying

|S|  K we have |�(S)| � (1� ✏)D|S|.
Such a graph is said to be layered if we can partition R into disjoint subsets R1, . . . ,RD with |Ri| = |R|/D

for all i such that every u 2 L has degree 1 in the induced subgraph Gi = (L,Ri, E). We call such i 2 [D]
seeds and denote the neighborhood of S in Gi by �i(S).

The graph G can be defined by the function C : L⇥ [D] ! R which maps (u, i) 2 L⇥ [D] to the neighbor

of u in Ri. For convenience, we also define Ci = C(·, i), which defines the subgraph Gi.

Informally, we say that a bipartite expander graph is unbalanced if |R| is much smaller than |L|. The
next lemma follows immediately from Markov’s inequality.

Lemma 3. Fix some c > 1 and a set S such that |S|  K, and let G be a (D,K, ✏)-layered bipartite

expander. Then, for at least a (1� 1/c)-fraction of seeds i 2 [D], it holds that

|�i(S)| � (1� c✏)|S|.

We will also need the following lemma that bounds the number of right vertices with a single neighbor
in a given subset of left vertices.

Lemma 4. Let G = (L,R, E) be a layered bipartite graph. If S ✓ L satisfies |�i(S)| � (1� �)|S|, then the

number of right vertices in �i(S) with only one neighbor in S (with respect to the subgraph Gi) is at least

(1� 2�)|S|.

4

Proof. Suppose that there are fewer than (1 � 2�)|S| vertices in �i(S) with only one neighbor in S. Since
Gi has left-degree 1, this means that there are more than 2�|S| vertices in S which are adjacent to right
vertices with degree at least 2. Therefore, we can upper bound |�i(S)| as

|�i(S)| < (1� 2�)|S|+ 1

2
· 2�|S| = (1� �)|cS|,

which contradicts our assumption.

The next theorem states we can sample nearly-optimal layered unbalanced bipartite expanders with high
probability.

Theorem 5 ([18, Lemma 4.2]). Given any N , K, and ✏, we can sample a layered (D,K, ✏)-bipartite expander

graph G = (L = [N],R = [MD], E) with high probability for D = O
⇣

logN

✏

⌘
and M = O

�
K

✏

�
.

The graph in Theorem 5 can be obtained by sampling a random function C : [N] ⇥ [D] ! [M], and
choosing (x; (s, y)) as an edge in G if C(x, s) = y.

2.3 Coding Theory

In this section, we define some basic concepts from coding theory that we use throughout our paper. We
point the reader to [19] for a much more complete treatment of the topic.

Given an alphabet ⌃, a code over ⌃ of length N is simply a subset of ⌃N . We will be focusing on the
case where codes are binary, which corresponds to the case ⌃ = {0, 1}. For a code C ✓ ⌃N , we call N the
block length of C. If |⌃| = q, the rate of C is defined as

logq |C|
N

.

We will study families of codes indexed by the block length N . We do not make this dependency explicit,
but it is always clear from context.

If ⌃ is a field, we say C is a linear code if c1 + c2 2 C whenever c1, c2 2 C. In other words, C is a linear
code if it is a vector space over ⌃. To each linear code C we can associate a unique parity-check matrix H
such that C = kerH. Given such a parity-check matrix H and a vector x 2 ⌃N , we call Hx the syndrome

of x. Clearly, we have x 2 C if and only if its syndrome is zero.

2.4 Group Testing

As mentioned in Section 1, in group testing we are faced with a set of N items, some of which are defective.
Our goal is to correctly identify all defective items in the set. To this end, we are allowed to test subsets,
or pools, of items. The result of such a test is 1 if there is a defective item in the pool, and 0 otherwise.
Ideally, we would like to use as few tests as possible, and have e�cient algorithms for recovering the set of
defective items from the test results.

In Non-Adaptive Group Testing (NAGT), all tests are fixed a priori, and so cannot depend on the outcome
of previous tests. While one can recover the defective items with fewer tests using adaptive strategies,
practical constraints preclude their use and make non-adaptive group testing relevant for most applications.

It is useful to picture the set of N items as a binary vector x 2 {0, 1}N , where the 1’s stand for defective
items. Then, the T tests to be performed can be represented by a T ⇥N test matrix W satisfying

Wij =

(
1, if item j is in test i

0, else.

The outcome of the T tests, which we denote by W � x, corresponds to the bit-wise union of all columns
corresponding to defective items. In other words, if S denotes the set of defective items, we have

W � x =
_

j2S
W·j ,

5

where the bit-wise union of two N -bit vectors, x _ y, is an N -bit vector satisfying

(x _ y)i =

(
1, if xi = 1 or yi = 1

0, else.

We say an NAGT scheme is zero-error if we can always correctly recover the set of defectives. Zero-error
NAGT schemes are equivalent to disjunct matrices.

Definition 6 (Disjunct matrix). A matrix W is said to be d-disjunct if the bit-wise union of any up to d
columns of W does not contain any other column of W .

The term contains used in Definition 6 is to be interpreted as follows: A vector x is contained in a vector
y if yi = 1 whenever xi = 1, for all i. If we know there are at most K defective items, taking the rows of a
K-disjunct T ⇥N matrix as the tests to be performed leads to a NAGT algorithm with T tests and a simple
O(TN) recovery algorithm: An item is not defective if and only if it is part of some test with a negative
outcome, so one can just check whether each item participates in a negative test.

As a result, much e↵ort has been directed at obtaining better randomized and explicit1 constructions of
K-disjunct matrices, with as few tests as possible with respect to number of defectives K and population size
N . The current best explicit construction of a K-disjunct matrix due to Porat and Rothschild [20] requires
O(K2 logN) rows (i.e., tests), while a probabilistic argument shows that it is possible to sample K-disjunct
matrices with O(K2 log(N/K)) rows with high probability. We remark that both these results are optimal
up to a logK factor [21].

Theorem 7 ([21, 20]). There exist explicit constructions of K-disjunct matrices with T = O(K2 logN) rows.
Moreover, it is possible to sample a K-disjunct matrix with T = O(K2 log(N/K)) rows with high probability.

Both these results are optimal up to a logK factor, and the matrix columns are O(K logN)-sparse in the

two constructions.

3 Bitmasked Matrices and Exact Sparse Recovery

In this section, we describe the bitmasking technique, along with its application in sparse recovery presented
by Berinde et al. [9]. As already mentioned, later on Cheraghchi and Indyk [11] modified this algorithm to
handle approximate sparse recovery with stronger approximation guarantees, and gave a randomized version
of this algorithm that allows for faster recovery.

Fix a matrix W with dimensions M ⇥N . Consider another matrix B of dimensions logN ⇥N such that
the j-th column of B contains the binary expansion of j with the least significant bits on top. We call B a
bit-test matrix. Given W and B, we define a new bitmasked matrix W ⌦ B with dimensions M logN ⇥ N
by setting the i-th row of W ⌦B for i = q logN + t as the coordinate-wise product of the rows Wq· and Bt·
for q 2 [M] and t 2 [logN]. This means that we have

(W ⌦B)i,j = Wq,j ·Bt,j = Wq,j · bint(j),

for i = q logN + t and j 2 [N], where bint(j) denotes the t-th least significant bit of j.
Let W be the adjacency matrix of a (D,K, ✏)-bipartite expander graph G = (L = [N],R = [M], E). We

proceed to give a high level description of the sparse recovery algorithm from [9]. Suppose we are given
access to (W ⌦ B)x for some unknown K-sparse vector x of length N . Recall that our goal is to recover x
from this product very e�ciently. A fundamental property of the bitmasked matrix W ⌦B is the following:
Suppose that for some q 2 [M] we have

supp(x) \ supp(Wq·) = {u} (1)

for some u 2 [N]. We claim that we can recover the binary expansion of u directly from the logN products

(W ⌦B)q logN · x, (W ⌦B)q logN+1 · x, . . . , (W ⌦B)q logN+logN�1 · x.
1By an explicit construction, we mean one in which we can construct the matrix in time polynomial in N .

6

In fact, if (1) holds, then for i = q logN + t it is the case that

(W ⌦B)i · x =
NX

j=1

Wq,j · bint(j) · xj = bint(u),

since Wq,j · xj 6= 0 only if j = u. In words, if u is the unique neighbor of q in supp(x), then the entries of
(W ⌦B)x indexed by q logN, . . . , q logN + logN � 1 spell out the binary expansion of u.

By the discussion above, if the edges exiting supp(x) in G all had di↵erent neighbors in the right vertex
set, we would be able to recover x by reading o↵ the binary expansion of the elements of supp(x) from
the entries of (W ⌦ B)x. However, if there are edges (u, v) and (u0, v) for u, u0 2 supp(x) in G, it is not
guaranteed that we will recover u and u0 as elements of supp(x). While such collisions are unavoidable, and
thus we cannot be certain we recover x exactly, the expander properties of G ensure that the number of
collisions is always a small fraction of the total number of edges. This means we will make few mistakes
when reconstructing supp(x). As a result, setting ✏ to be a small enough constant and using a simple voting
procedure (which we refrain from discussing as it is not relevant to us), we can recover a sparse vector y that
approximates x in the sense that

kx� yk0  kxk0
2

.

We can then repeat the procedure on input (W ⌦B)(x� y) to progressively refine our approximation of x.
As a result, we recover a K-sparse vector x exactly in at most logK iterations.

4 Code Construction and Decoding

In this section, we define our code that is able to tolerate a prescribed number of errors, and analyze e�cient
syndrome decoding and full decoding algorithms.

Let N be the desired block-length of the code, K an upper bound on the number of adversarial errors
introduced, and ✏ 2 (0, 1) a constant to be determined later. We fix an adjacency matrix W of a (D,K, ✏)-
layered unbalanced bipartite expander graph G = (L,R, E) with L = [N] and R = [D ·M], where

D = O

✓
logN

✏

◆
and M = O

✓
K

✏

◆
.

Such an expanderG can be obtained with high probability by sampling a random function C : [N]⇥[D] ! [M]
as detailed in Section 2.2.

We define our code C ✓ {0, 1}N by setting its parity-check matrix H as

H =


W

W ⌦B

�
.

It follows that H has dimensions (D ·M(1 + logN))⇥N , and so C has rate at least

1� D ·M(1 + logN)

N
= 1�O

✓
K · log2 N

✏2N

◆
.

In particular, if K and ✏ are constants, then C has rate at least 1�O
⇣

log2
N

N

⌘
.

Note that instead of storing the whole parity-check matrix H in memory, one can just store the function
table of C, which requires space ND logM , along with a binary lookup table of dimensions logN ⇥ N
containing the logN -bit binary expansions of 0, . . . , N � 1.

4.1 Syndrome Decoding

In this section, we study algorithms for syndrome decoding of C. Fix some codeword c 2 C, and suppose c is
corrupted by some pattern of at most K (adversarially chosen) errors. Let x denote the resulting corrupted
codeword. We have x = c+ e, for a K-sparse error vector e. The goal of syndrome decoding is to recover e

7

from the syndrome Hx as e�ciently as possible. Our decoder is inspired by the techniques from [9] presented
in Section 3, and also the sparse recovery algorithms presented in [11].

For the sake of exposition, we consider only the case of decoding over GF(2) – the adaptation to arbitrary
fields is simple and is discussed at the end of Section 4.1.1.

4.1.1 A Deterministic Algorithm

In this section, we present and analyze our deterministic decoder which on input Hx recovers the error vector
e in sublinear time. Before we proceed, we fix some notation: For s 2 [D], let Gs denote the subgraph of G
induced by the function Cs (recall Definition 2), and let Ws be its adjacency matrix. Informally, our decoder
receives

Hx =


Wx

(W ⌦B)x

�

as input, and works as follows:

1. Estimate the size of supp(e). This can be done by computing kWs ·xk0 for all seeds s 2 [D] and taking
the maximum;

2. Using information from Ws · x and (Ws ⌦ B)x for the good seed fixed in Step 2, recover a K-sparse
vector y which approximates the error pattern e following the ideas from Section 3;

3. If needed, repeat these three steps with x� y in place of x.

A detailed description of the deterministic decoder can be found in Algorithm 1. We will proceed to show the
procedure detailed in Algorithm 1 returns the correct error pattern e, provided ✏ is a small enough constant.

Algorithm 1 Deterministic decoder

1: procedure Estimate(Wx) . Estimates |supp(e)| and outputs best seed
2: for s 2 [D] do
3: Compute Ls = kWs · xk0
4: Output (maxs Ls, argmaxs Ls)

5: procedure Approximate(Ws · x, (Ws ⌦B)x) . Computes a good approximation of supp(e)
6: Set y = 0
7: for q = 0, 1, . . . ,M � 1 do
8: if (Ws · x)q 6= 0 then
9: Let u 2 [N] be the integer with binary expansion

(Ws ⌦B)q logN · x, (Ws ⌦B)q logN+1 · x, . . . , (Ws ⌦B)q logN+logN�1 · x,

10: Set yu = 1.

11: Output y

12: procedure Decode(Hx) . The main decoding procedure
13: Set (L, s) = Estimate(Wx)
14: if L = 0 then . If no errors found, stop and return the zero vector
15: Output y = 0
16: else
17: Set y = Approximate(Ws · x, (Ws ⌦B)x)
18: Set z = Decode(H(x� y))
19: Output y + z

We begin by showing that procedure Estimate in Algorithm 1 returns a good approximation of the size
of supp(e) along with a good seed.

8

Lemma 8. Procedure Estimate(Wx) in Algorithm 1 returns a seed s 2 [D] satisfying

(1� 2✏)|supp(e)|  |�s(supp(e))|  |supp(e)|,

where the parameter ✏ comes from the underlying expander graph.

Proof. Recall that we defined Ls = kWs ·xk0 and L = maxs2[D] kWs ·xk0. First, observe that Ws ·x = Ws ·e
for all s. Then, the upper bound L  |supp(e)| follows from the fact that

kWs · ek0  |supp(e)|

for all seeds s and all vectors e, since each column of Ws has Hamming weight 1 by the fact that the
underlying graph G is layered.

It remains to lower bound L. Since e is K-sparse, we know that

|�(supp(e))| � (1� ✏)D|supp(e)|.

By an averaging argument, it follows there is at least one seed s 2 [D] such that

|�s(supp(e))| � (1� ✏)|supp(e)|.

As a result, by Lemma 4 the number of vertices in �s(supp(e)) adjacent to a single vertex in supp(e) is at
least

(1� 2✏)|supp(e)|,

and thus |�s(supp(e))| � kWs · xk0 � (1� 2✏)|supp(e)|.

We now show that, provided a set X ✓ L = [N] has good expansion properties in Gs, then procedure
Approximate in Algorithm 1 returns a good approximation of X .

Lemma 9. Fix a vector x 2 {0, 1}N and denote its support by X . Suppose that

|�s(X)| � (1� 2✏)|X | (2)

for a given seed s 2 [D]. Then, procedure Approximate(Ws · x, (Ws ⌦ B)x) returns an |X |-sparse vector

y 2 {0, 1}N such that

kx� yk0  5✏kxk0.

Proof. First, it is immediate that the procedure returns an |X |-sparse vector y. This is because |�s(X)|  |X |
as Gs is 1-left regular, and the procedure adds at most one position to y per element of �s(X).

In order to show the remainder of the lemma statement, observe that we can bound kx� yk0 as

kx� yk0  A+B,

where A is the number of elements of X that the procedure does not add to y, and B is the number of
elements outside X that the procedure adds to y.

First, we bound A. Let �0
s
(X) denote the set of neighbors of X in Gs that are adjacent to a single element

of X . Then, the lower bound in (2) and Lemma 4 ensure that

|�0
s
(X)| � (1� 4✏)|X |.

Note that, for each right vertex q 2 �0
s
(X), the bits

(W ⌦B)q logN · x, (W ⌦B)q logN+1 · x, . . . , (W ⌦B)q logN+logN�1 · x

are the binary expansion of u for a distinct u 2 X , and u is added to supp(y). As a result, we conclude that

A  4✏|X |.

It remains to bound B. Note that the procedure may only potentially add some u 62 X if the corresponding
right vertex q is adjacent to at least three elements of X . This is because right vertices q that are adjacent

9

to exactly two elements of X satisfy (Ws ·x)q = 0, and so are easily identified by the procedure and skipped.
Then, the lower bound in (2) ensures that there are at most

1

2
· 2✏|X | = ✏|X |

such right vertices. As a result, we conclude that

B  ✏|X |,

and hence
kx� yk0  5✏|X |.

We combine the lemmas above to obtain the desired result.

Corollary 10. Suppose that ✏ < 1/10. Then, on input Hx for x = c + e, Decode(Hx) in Algorithm 1

recovers the error vector e after at most 1 + logK

log(1
5✏)

iterations.

Proof. Under the conditions in the corollary statement, combining Lemmas 8 and 9 guarantee that in the
first iteration of Decode we obtain a K-sparse vector y1 such that

ke� y1k0  5✏kek0  5✏K.

Recursively applying this result shows that after ` iterations we have a vector y = y1 + y2 + · · · + y` with
sparsity at most

P
`

i=1(5✏)
i�1K  2K satisfying

ke� yk0  (5✏)`K.

Setting ` = 1 + logK

log(1
5✏)

ensures that ke� yk0 < 1, and hence e = y.

To conclude this section, we give a detailed analysis of the runtime of the deterministic syndrome decoder.
We have the following result.

Theorem 11. On input Hx for x = c+e with c 2 C and e a K-sparse error vector, procedure Decode(Hx)
in Algorithm 1 returns e in time

O

logK

log
�

1
5✏

� (K +M)(D + logN)

!
.

In particular, if ✏ is constant, M = O(K/✏), and D = O(logN/✏), procedure Decode takes time

O(K logK · logN).

Proof. We begin by noting that, for a K-sparse vector y and seed s 2 [D], we can compute Ws · y and
(Ws ⌦B)y in time O(K) and O(K logN), respectively, with query access to the function table of C and the
lookup table of binary expansions. We now look at the costs incurred by the di↵erent procedures. We will
consider an arbitrary iteration of the algorithm. In this case, the input vector is of the form x+ y, where x
is the corrupted codeword and y is a 2K-sparse vector.

• The procedure Estimate in Algorithm 1 requires computing D products of the form Ws(x+y), which
in total take time O(D(K + M)), along with computing the 0-norm of all resulting vectors. Since
Ws(x+y) has length M , doing this for all seeds takes time O(DM). In total, the Estimate procedure
takes time O(D(K +M));

• The procedureApproximate in Algorithm 1 requires the computation ofWs(x+y) and (Ws⌦B)(x+y)
for a fixed seed s, which take time O(K + M) and O((K + M) logN), respectively. The remaining
steps can be implemented in time O(M logN) for a total time of O((K +M) logN);

10

Note that the time required to compute the sum of sparse vectors in Line 19 is absorbed into the O((K +
M)(D+ logN)) complexity of previous procedures. The desired statements now follow by noting that there
are at most 1 + logK

log(1
5✏)

iterations.

Remark 12. In the proof of Theorem 11, we assume that reading an integer from memory (e.g., from the

support of a sparse vector y or the function table of C) takes time O(1). If instead we assume that reading

an L-bit integer from memory takes time O(L), then we obtain runtime

O

logK

log
�

1
5✏

� (K logM +M)(D + logN)

!
.

instead.

We conclude this section by briefly describing how to adapt Algorithm 1 to perform sparse recovery over
any field. There are several ways to do this. One possibility is to replace the check in Line 8 of Algorithm 1
by the following: (Ws · x)q 6= 0 and all non-zero entries of

(Ws ⌦B)q logN · x, . . . , (Ws ⌦B)q logN+logN�1 · x

equal (Ws · x)q. As a result, right vertices in �s(supp(e)) with exactly two neighbors in supp(e) are skipped
by the algorithm. Observe that this additional condition is trivially satisfied over GF(2) if (Ws · x)q 6= 0.
Then, in Line 17 one should set yu = (Ws · x)q instead.

We remark that the condition in Line 8 could be simplified in general to only checking whether (Ws ·x)q 6=
0, at the expense of obtaining worse constants in the lemmas from this section. In particular, we would have
to make ✏ smaller. Since we care about the practicality of our algorithms, we made an e↵ort to have ✏ be as
large as possible.

4.1.2 A Randomized Algorithm

In this section, we analyze a randomized version of Algorithm 1 that is considerably faster. The main idea
behind this version is that in procedure Estimate we can obtain a good estimate of |supp(e)| with high
probability by relaxing ✏ slightly and sampling kWs · xk0 for a few i.i.d. random seeds only.

In Algorithm 2, we present the randomized decoder, which uses an extra slackness parameter �. We will
show that the procedure detailed in Algorithm 2 returns the correct error pattern e with probability at least
1� ⌘, provided ✏ is a small enough constant depending on �.

We begin by showing that procedure Estimate in Algorithm 2 returns a good approximation of the size
of supp(e) with high probability.

Lemma 13. Procedure Estimate(r,Wx) in Algorithm 2 returns a seed s 2 [D] satisfying

(1� 2(1 + �)✏)|supp(e)|  |�s(supp(e))|  |supp(e)| (3)

with probability at least 1� (1 + �)�r
.

Proof. Similarly to the proof of Lemma 8, the desired result will follow if we show that with probability at
least 1� (1 + �)�r over the choice of the seeds s1, . . . , sr it holds that

Ls � (1� 2(1 + �)✏)|supp(e)| (4)

for some seed s 2 {s1, . . . , sr}. We note that (4) holds if |�s(supp(e))| � (1 � (1 + �)✏)|supp(e)|. The
probability that a random seed fails to satisfy this condition is at most 1

1+�
by Lemma 3. Therefore, the

probability that none of the seeds s1, . . . , sr satisfy the condition is at most (1 + �)�r, as desired.

After we obtain a good seed via the Estimate procedure, invoking Lemma 9 with ✏(1 + �) in place of ✏
ensures that we can obtain a good sparse approximation of supp(e) with high probability. We thus obtain
the following corollary.

11

Algorithm 2 Randomized decoder

1: procedure Estimate(r,Wx) . Estimates |supp(e)|
2: Sample r i.i.d. random seeds s1, . . . , sr from [D]
3: For each si, compute Li = kWsi · xk0
4: Output (maxi2{1,...,r} Li, argmaxi2{1,...,r} Li)

5: procedure Approximate(Ws · x, (Ws ⌦B)x) . Computes a good approximation of supp(e)
6: Set y = 0
7: for q = 0, 1, . . . ,M � 1 do
8: if (Ws · x)q 6= 0 then
9: Let u 2 [N] be the integer with binary expansion

(Ws ⌦B)q logN · x, (Ws ⌦B)q logN+1 · x, . . . , (Ws ⌦B)q logN+logN�1 · x,

10: Set yu = 1

11: Output y

12: procedure Decode(Hx, ⌘, �, ✏) . The main decoding procedure

13: Set r = 1 +
log(1/⌘)+log logK�log log(1

5✏(1+�))
log(1+�)

14: Set (L, s) = Estimate(r,Wx)
15: if L = 0 then
16: Output y = 0
17: else
18: Set y = Approximate(Ws · x, (Ws ⌦B)x)
19: Set z = Decode(H(x� y), ⌘, �, ✏)
20: Output y + z

Corollary 14. Suppose that ✏(1 + �) < 1/10. Then, on input Hx for x = c + e, procedure Decode in

Algorithm 2 returns the error vector e with probability at least 1� ⌘ in at most 1 + logK

log(1
5✏(1+�))

iterations.

Proof. The statement follows by repeating the proof of Corollary 10 but replacing Lemma 8 with Lemma 13
and by invoking Lemma 9 with ✏(1 + �) in place of ✏. Since each iteration succeeds with probability at
least 1� (1 + �)�r and there are at most 1 + logK

log(1
5✏(1+�))

, a union bound guarantees that decoding fails with

probability at most 0

@1 +
logK

log
⇣

1
5✏(1+�)

⌘

1

A · (1 + �)�r  ⌘

by the choice of r in Algorithm 2.

We conclude this section by analyzing the runtime of the randomized decoder.

Theorem 15. On input Hx for x = c + e with c 2 C and e a K-sparse error vector, procedure Decode
Algorithm 2 returns e with probability at least 1� ⌘ in time

O

0

@ logK

log
⇣

1
5✏(1+�)

⌘ (K +M)(r + logN)

1

A,

where

r = 1 +
log(1/⌘) + log logK � log log

⇣
1

5✏(1+�)

⌘

log(1 + �)
.

Proof. The proof is analogous to that of Theorem 11, except that in the procedure Estimate in Algorithm 2
we only test r seeds. This means procedure Estimate now takes time O(r(K +M)).

12

We note that the runtime of the randomized decoder in Theorem 15 is independent of the degree D of
the expander. This has two advantages: First, it means the hidden constants in the runtime are considerably
smaller than in the deterministic case from Theorem 11, even assuming we use a near-optimal expander with
degree D = O(logN

✏
). Second, it means that replacing the near-optimal non-explicit expander graph by an

explicit construction with sub-optimal parameters will a↵ect the runtime of the randomized decoder only
marginally. Furthermore, the failure probability ⌘ only a↵ects lower order terms of the runtime complexity.
Therefore, we can (for example) set ⌘ to be any arbitrarily small constant with only negligible e↵ect in the
runtime for large block lengths. Finally, we observe that computing the 0-norm of vectors can be sped up
with a randomized algorithm. One can simply sample several small subsets of positions and estimate the
true 0-norm with small error and high probability by averaging the 0-norm over all subsets. As mentioned
before, we will consider instantiations of our code with an explicit expander in Section 4.3.

Remark 16. As in the proof of Theorem 11, we assume in this section that reading an integer from memory

takes time O(1). If instead we assume that reading an L-bit integer from memory takes time O(L), then we

obtain runtime

O

0

@ logK

log
⇣

1
5✏(1+�)

⌘ (r · (K(logM + logD) +M) + (K +M) logN)

1

A

instead. The preceding arguments still stand, as even for explicit expanders it holds that logM and logD
are negligible compared to logN .

4.2 Full Decoding

In this section, we study the decoding complexity of our code in the setting where we only have access to the
corrupted codeword x = c+ e. This mean that if we want to perform syndrome decoding, we must compute
the parts of the syndrome that we want to use from x.

Recall that we have access to the function table of C, as well as a lookup table of logN -bit binary
expansions. As a result, we can compute products of the form Ws · x and (Ws ⌦ B)x in time O(N) and
O(N logN), respectively. This is because all columns of Ws (resp. Ws ⌦ B) have 1 nonzero entry (resp.
at most logN nonzero entries), and the nonzero entry (resp. entries) of the j-th column are completely
determined by Cs(j) = C(s, j) and the j-th column of the lookup table of binary expansions.

We now analyze the runtimes of both the deterministic and randomized decoders from Algorithms 1
and 2 in this alternative setting. We have the following results.

Theorem 17. On input x = c + e with c 2 C and e a K-sparse error vector, procedure Decode from

Algorithm 1 returns e in time

O

logK

log
�

1
5✏

� (N +K +M)(D + logN)

!
.

In particular, if ✏ is constant, M = O(K/✏), and D = O(logN/✏), procedure Decode takes time

O(K logK ·N logN).

Proof. The proof is analogous to that of Theorem 11, except we now must take into account the time taken
to compute products of the form Ws · x and (Ws ⌦B)x:

• The procedure Estimate in Algorithm 1 requires computing D products of the form Ws(x+y), which
in total take time O(D(N +K +M)), along with computing the 0-norm of all resulting vectors. Since
Ws(x+y) has length M , doing this for all seeds takes time O(DM). In total, the Estimate procedure
takes time O(D(N +K +M));

• The procedureApproximate in Algorithm 1 requires the computation ofWs(x+y) and (Ws⌦B)(x+y)
for a fixed seed s, which take time O(N + K + M) and O((N + K + M) logN), respectively. The
remaining steps can be implemented in time O(M logN) for a total time of O((N +K +M) logN).

13

The desired statements now follow by noting that there are at most 1 + logK

log(1
5✏)

iterations.

Theorem 18. On input x = c + e with c 2 C and e a K-sparse error vector, procedure Decode from

Algorithm 2 returns e with probability at least 1� ⌘ in expected time

O

0

@ logK

log
⇣

1
5✏(1+�)

⌘ (N +K +M)(r + logN)

1

A,

where

r = 1 +
log(1/⌘) + log logK � log log

⇣
1

5✏(1+�)

⌘

log(1 + �)
.

Proof. The proof is analogous to that of Theorem 17, except that in the procedure Estimate in Algorithm 2
we only need to test r seeds. This means procedure Estimate now takes time O(q(N +K +M)).

There are important properties that are not explicit in the proof of Theorem 18. Observe that only one
computation takes O(N logN) per iteration of the Algorithm 2; Namely, the computation of (Ws ⌦B)x for
a fixed seed s. Consequently, the hidden constant in the computation time is small. Moreover, as already
discussed for the randomized syndrome decoder, the runtime is independent of the degree of the expander,
and the e↵ect of the failure probability on the runtime is negligible for large block lengths. This means that
the decoder described in Algorithm 2 is also faster in the full decoding setting than the O(ND) expander
codes decoder adapted from [5], whose running time depends on the degree of the expander graph, as long
as the number of iterations is not too large. This is the case if the number of errors K allowed is a small
constant (e.g., K  5) and we set ✏ to be not too large. Furthermore, observe that, unlike our decoder, the
runtime of the expander codes decoder is a↵ected by a sub-optimal choice of unbalanced bipartite expanders.
Finally, if we want a faster decoder for an arbitrary but fixed error threshold K, we can also set ✏ to be small
enough so that the maximum number of iterations is su�ciently small for our needs. In this case, the rate
of our code becomes smaller since we must make ✏ smaller.

4.3 Instantiation with Explicit Expanders

In this section, we analyze how instantianting our construction with an explicit layered unbalanced expander
with sub-optimal parameters a↵ects the properties of our codes.

More precisely, we consider instantiating our code with the GUV expander introduced by Guruswami,
Umans, and Vadhan [22], and an explicit highly unbalanced expander constructed by Ta-Shma, Umans, and
Zuckerman [23]. For simplicity, in this section we will assume that all parameters not depending on N (such
as K and ✏) are constants.

Fix constants ↵, ✏,K > 0. Then, the GUV graph is a (D,K, ✏)-layered bipartite expander with degree

D = O

✓
logN · logK

✏

◆1+1/↵

,

and, for each layer, a right vertex set of size

M = D2 ·K1+↵.

Observe that, although the GUV expander is unbalanced, the size of its right vertex set grows with the
degree. Ta-Shma, Umans, and Vadhan [23] provided explicit constructions of highly unbalanced layered
expanders. In particular, they give a construction of a (D,K, ✏)-layered bipartite expander with degree

D = 2O(log logN)3 ,

and, for each layer, a right vertex set of size

M = KO(1/✏).

14

Syndrome decoding Deterministic Randomized
Graphs from [22] O(logN)3+3/↵ O(logN)3+2/↵

Graphs from [23] 2O(log logN)3 O(logN)

Table 2: Complexity of deterministic and randomized syndrome decoding for di↵erent explicit graphs when
the number of errors K and expander error ✏ are constants.

Full decoding Deterministic Randomized

Graphs from [22] O(N log1+1/↵ N) O(N logN)

Graphs from [23] O(N2O(log logN)3) O(N logN)

Table 3: Complexity of deterministic and randomized full decoding for di↵erent explicit graphs when the
number of errors K and expander error ✏ are constants.

Plugging the parameters of both graphs presented in this section into the runtimes in Theorems 11, 15, 17,
and 18 and treating K, ✏, and ↵ as constants immediately yields explicit high-rate codes with syndrome and
full decoding complexity displayed in Table 2 (for syndrome decoding), and in Table 3 (for full decoding).

Observe that for both graphs there is a substantial decrease in complexity for randomized decoding
versus deterministic decoding for the same setting. This is due to the fact that the decoding complexity
of our randomized decoding algorithms is independent of the degree of the underlying expander, which we
have already discussed before, and that the degree of explicit constructions is sub-optimal. Using the highly
unbalanced explicit graphs from [23], the decoding complexity of our randomized algorithms essentially
matches that of the case where we use a random expander with near-optimal parameters (we are ignoring
the contribution of K, which we assume to be small).

We conclude by noting that the full decoding complexity of expander codes under the explicit graphs
from this section matches the second column of Table 3. In comparison, our randomized algorithm performs
better under both graphs.

5 Group Testing

In this section, we show how we can easily obtain a scheme for non-adaptive group testing with few tests
and sublinear time recovery. More precisely, we will prove the following:

Theorem 19. Given N and K, there is an explicit test matrix W of dimensions T ⇥ N , where T =
O(K2 log2 N), such that it is possible to recover a K-sparse vector x from W � x in time O(K3 log2 N).

We begin by describing the test matrix W . Let W 0 be an explicit K-disjunct matrix of dimensions M⇥N
with M = O(K2 logN). Such explicit constructions exist as per Theorem 7. Then, our test matrix W is
defined as

W =


W 0

W 0 ⌦B

�
,

where B is the logN ⇥ N bit-test matrix from Section 3. It follows immediately that W has dimensions
T ⇥N with T = M logN = O(K2 log2 N).

It remains to describe and analyze the recovery algorithm that determines x from

W � x =


W 0 � x

(W 0 ⌦B)� x

�
=


y(1)

y(2)

�
,

whenever x is K-sparse. At a high-level, the algorithm works as follows:

1. For q 2 [M], let sq be the integer in [N] with binary expansion

y(2)
q logN

, y(2)
q logN+1, . . . , y

(2)
q logN+logN�1.

Recover the (multi) set S = {s0, s1, . . . , sM�1}. The disjunctness property of the underlying matrix
W 0 ensures that supp(x) ✓ S;

15

2. Similarly to the original recovery algorithm for disjunct matrices, run through all s 2 S and check
whether W 0

s
is contained y(1). Again, the fact that W 0 is disjunct ensures that this holds if and only

if s 2 supp(x).

A rigorous description of this recovery procedure can be found in Algorithm 3. We now show that procedure
Recover(W � x) indeed outputs supp(x), provided that x is K-sparse. First, we prove that supp(x) ✓ S.

Lemma 20. Suppose that x is K-sparse. Then, if S = SuperSet(W � x), we have supp(x) ✓ S.

Proof. It su�ces to show that if supp(x) = {s0, . . . , st�1} for t  K, then there is q 2 [M] such thatW 0
q,s0

= 1
and W 0

q,sj
= 0 for all 1  j  t� 1. If this is true, then

y(2)
q logN

, y(2)
q logN+1, . . . , y

(2)
q logN+logN�1

would be the binary expansion of s0. The desired property follows since W 0 is K-disjunct. In fact, if this
was not the case, then W 0

·s0 would be contained in
W

t�1
i=1 W

0
·si , and hence W 0 would not be K-disjunct.

The next lemma follows immediately from the fact that W 0 is K-disjunct.

Lemma 21. If x is K-sparse and supp(x) ✓ S, then Remove(W � x,S) returns supp(x).

Combining Lemmas 20 and 21 with Algorithm 3 leads to the following result.

Corollary 22. If x is K-sparse, then Recover(W � x) returns supp(x).

We conclude this section by analyzing the runtime of procedure Recover(W�x). We have the following
result.

Theorem 23. On input a K-sparse vector x, procedure Recover(W�x) returns supp(x) in time O(K3 log2 N).

Proof. We analyze the runtime of procedures SuperSet and Remove separately:

• In procedure SuperSet(W � x), for each q 2 [M] we need O(logN) time to compute sq and add it to
S. It follows that SuperSet(W � x) takes time O(M logN) = O(K2 log2 N);

• In procedure Remove(W � x,S), it takes time O(|supp(W 0
·j)|) to decide whether W 0

·j is contained in

W 0 � x = y(1). Therefore, in total the procedure takes time O(|S| ·maxj2S |supp(W 0
·j)|). Noting that

|S|  M and that |supp(W 0
·j)| = O(K logN) for all j implies that the procedure takes time

O(M ·K logN) = O(K3 log2 N).

Acknowledgments

The authors thank Shashanka Ubaru and Thach V. Bui for discussions on the role of the bitmasking technique
in sparse recovery. M. Cheraghchi’s research was partially supported by the National Science Foundation
under Grants No. CCF-2006455 and CCF-2107345. J. Ribeiro’s research was partially supported by the
NSF grants CCF-1814603 and CCF-2107347, the NSF award 1916939, DARPA SIEVE program, a gift from
Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for financial services innovation
award, and a Cylab seed funding award.

References

[1] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Transactions on Information Theory, vol. 42,
no. 6, pp. 1710–1722, Nov 1996.

[2] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong keys from biometrics
and other noisy data,” in Advances in Cryptology - EUROCRYPT 2004. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 523–540.

16

Algorithm 3 Recovery algorithm for non-adaptive group testing scheme

1: procedure SuperSet(W � x) . Recover superset of supp(x)
2: Set S = {}
3: for q = 0, 1, . . . ,M � 1 do
4: Let sq be the integer with binary expansion

y(2)
q logN

, y(2)
q logN+1, . . . , y

(2)
q logN+logN�1

5: Add sq to S
6: Output S
7: procedure Remove(W � x,S) . Finds all false positives in the superset and removes them
8: for s 2 S do
9: if W 0

·s is not contained in y(1) then
10: Remove s from S
11: Output S
12: procedure Recover(W � x) . Main recovery procedure
13: Set S = SuperSet(W � x)
14: Output Remove(W � x,S)

[3] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Syndrome encoding and decoding of BCH codes in
sublinear time,” 2006, available at https://www.cs.bu.edu/⇠reyzin/code/bch-excerpt.pdf.

[4] D. Harvey and J. van der Hoeven, “Polynomial multiplication over finite fields in time O(n log n),” J.

ACM, vol. 69, no. 2, mar 2022.

[5] S. Jafarpour, W. Xu, B. Hassibi, and R. Calderbank, “E�cient and robust compressed sensing using
optimized expander graphs,” IEEE Transactions on Information Theory, vol. 55, no. 9, pp. 4299–4308,
Sep. 2009.

[6] G. Cormode and S. Muthukrishnan, “Combinatorial algorithms for compressed sensing,” in Proceedings

of the 13th Colloquium on Structural Information and Communication Complexity (SIROCCO 2006).
Springer, 2006, pp. 280–294.

[7] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin, “Algorithmic linear dimension reduction
in the `1 norm for sparse vectors,” arXiv preprint cs/0608079, 2006.

[8] ——, “One sketch for all: Fast algorithms for compressed sensing,” in Proceedings of the Thirty-ninth

Annual ACM Symposium on Theory of Computing (STOC 2007). ACM, 2007, pp. 237–246.

[9] R. Berinde, A. C. Gilbert, P. Indyk, H. Karlo↵, and M. J. Strauss, “Combining geometry and combi-
natorics: A unified approach to sparse signal recovery,” in 46th Annual Allerton Conference on Com-

munication, Control, and Computing, Sept 2008, pp. 798–805.

[10] A. C. Gilbert, Y. Li, E. Porat, and M. J. Strauss, “For-all sparse recovery in near-optimal time,” ACM

Trans. Algorithms, vol. 13, no. 3, pp. 32:1–32:26, Mar. 2017.

[11] M. Cheraghchi and P. Indyk, “Nearly optimal deterministic algorithm for sparse Walsh-Hadamard
transform,” ACM Trans. Algorithms, vol. 13, no. 3, pp. 34:1–34:36, Mar. 2017.

[12] M. Cheraghchi, “Noise-resilient group testing: Limitations and constructions,” Discrete Applied Math-

ematics, vol. 161, no. 1, pp. 81 – 95, 2013.

[13] P. Indyk, H. Q. Ngo, and A. Rudra, “E�ciently decodable non-adaptive group testing,” in Proceedings

of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010). SIAM,
2010, pp. 1126–1142.

17

https://www.cs.bu.edu/~reyzin/code/bch-excerpt.pdf

[14] H. Q. Ngo, E. Porat, and A. Rudra, “E�ciently decodable error-correcting list disjunct matrices and
applications,” in Proceedings of the International Colloqium on Automata, Languages, and Programming

(ICALP 2011). Springer, 2011, pp. 557–568.

[15] M. Cheraghchi and J. Ribeiro, “Simple codes and sparse recovery with fast decoding,” in 2019 IEEE

International Symposium on Information Theory (ISIT), 2019, pp. 156–160.

[16] M. Cheraghchi and V. Nakos, “Combinatorial group testing and sparse recovery schemes with near-
optimal decoding time,” in 2020 IEEE 61st Annual Symposium on Foundations of Computer Science

(FOCS), 2020, pp. 1203–1213.

[17] K. Lee, R. Pedarsani, and K. Ramchandran, “SAFFRON: A fast, e�cient, and robust framework for
group testing based on sparse-graph codes,” in 2016 IEEE International Symposium on Information

Theory (ISIT), July 2016, pp. 2873–2877.

[18] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, “Randomness conductors and constant-degree
lossless expanders,” in Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing

(STOC 2002). ACM, 2002, pp. 659–668.

[19] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. Elsevier, 1977.

[20] E. Porat and A. Rothschild, “Explicit non-adaptive combinatorial group testing schemes,” in Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP 2008). Springer, 2008, pp.
748–759.

[21] A. G. D’yachkov and V. V. Rykov, “Bounds on the length of disjunctive codes,” Problemy Peredachi

Informatsii, vol. 18, no. 3, pp. 7–13, 1982.

[22] V. Guruswami, C. Umans, and S. Vadhan, “Unbalanced expanders and randomness extractors from
Parvaresh–Vardy codes,” J. ACM, vol. 56, no. 4, pp. 20:1–20:34, Jul. 2009.

[23] A. Ta-Shma, C. Umans, and D. Zuckerman, “Lossless condensers, unbalanced expanders, and extrac-
tors,” Combinatorica, vol. 27, no. 2, pp. 213–240, Mar 2007.

18

	Introduction
	Related Work
	Contributions and Techniques
	Organization

	Preliminaries
	Notation
	Unbalanced Bipartite Expanders
	Coding Theory
	Group Testing

	Bitmasked Matrices and Exact Sparse Recovery
	Code Construction and Decoding
	Syndrome Decoding
	A Deterministic Algorithm
	A Randomized Algorithm

	Full Decoding
	Instantiation with Explicit Expanders

	Group Testing

