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Abstract

While deep learning has lead to dramatic improvements in auto-
matic speech recognition (ASR) systems in the past few years,
it has also made them vulnerable to adversarial attacks. These
attacks may be designed to either make ASR fail in producing
the correct transcription or worse, output an adversary-chosen
sentence. In this work, we propose a defense based on inde-
pendently processing random or fixed size chunks of the speech
input in the hope of “containing” the cumulative effect of the
adversarial perturbations. This approach does not require any
additional training of the ASR system, or any defensive pre-
processing of the input. It can be easily applied to any ASR
systems with little loss in performance under benign conditions,
while improving adversarial robustness. We perform experi-
ments on the Librispeech data set with different adversarial at-
tack budgets, and show that the proposed defense achieves con-
sistent improvement on two different ASR systems/models.
Index Terms: speech recognition, adversarial attack and de-
fense, adversarial robustness, streaming model

1. Introduction

With the rapid development of deep learning techniques in re-
cent years, more and more neural-based Al systems have been
deployed in real world scenarios. Among them, the automatic
speech recognition (ASR) is one of the most successful and
widely used application [1, 2, 3]. However, there is a rising
concern that neural ASR systems can be easily manipulated by
adversarial inputs with imperceptible distortions [4, 5].

Depending on how much knowledge the adversary has
about the deep learning system, adversarial attacks are classi-
fied as either black-box or white-box attacks. In the black-box
scenarios, the attacker has no access to the ASR system/model
but is allowed to “probe” it with manipulated inputs and ob-
serving its input. These attacks are thus harder to mount and,
consequently, less effective than white-box attacks. As its name
suggests, white-box attacks can get access to all the informa-
tion about the ASR system, including its model architecture,
parameters and training data. Among all proposed attacks, the
fast gradient sign method (FGSM) [4] and its multi-step itera-
tive version, called the projected gradient descent (PGD) attack
[5], remain the most successful attacks in many fields of deep
learning, including ASR. Although there are also some newly
developed attacks specific to ASR [6, 7], their effectiveness is
reported to be less consistent and robust on strong ASR models
[8]. We focus on the white-box threat model in this paper, and
study defenses against PGD attacks with different attack bud-
gets and iterative steps.

Several efforts have been made to defend ASR systems
against adversarial attacks. In [8, 9], pre-processing modules
are added to the ASR system that attempt to recover the be-
nign audio signal from the adversarial input. However, these
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Figure 1: Illustration of an untargeted (left) and a targeted at-
tack (right), in which an adversary manipulates a benign (blue)
signal to generate adversarial (red) signals that fail to produce
the correct output (left), or produce a desired incorrect output
(right).

pre-processing modules are vulnerable to adaptive attacks too,
i.e., white-box attacks that propagate the gradient through both
the ASR model and the pre-processing modules. By contrast,
adversarial training [5, 10] can achieve consistent robustness
against these attacks by feeding the ASR model with adver-
sarial examples during training. But this has two limitations:
(1) Generating adversarial examples on-the-fly during training
multiplies training time X (N + 1), where N is the number
of iterations (of back-propagation through the ASR neural net-
work) needed to create the adversarial version of each train-
ing example; (2) Adversarial training shifts the data distribution
from benign examples to adversarial examples, resulting in non-
negligible loss of performance in benign conditions.

In summary, most of existing approaches focus on solving

the distribution mismatch between benign and adversarial data
in such problems, but very few attempt to utilize the sequen-
tial nature of ASR to create defenses. Temporal dependencies
within speech are used in [11] to characterize adversarial exam-
ples, but only to detect attacks.
Contributions: We develop a new defense, named chunking
defense, against adversarial attacks on sequence-to-sequence
tasks like ASR. Instead of defending against adversarial at-
tacks, we “counterattack” by cutting up a sequence into mul-
tiple shorter sequences or chunks. The proposed defense can
be applied to any existing ASR model, without extra pre-
processing modules or adversarial training/fine-tuning of the
model. Experimental results on two state-of-the-art ASR mod-
els, (i) an E2E LF-MMI model [12, 13], and (ii) a streaming
CTC model, both built using K2 [14], show that the proposed
defense achieves significant robustness compared to the unde-
fended models, especially against targeted attacks.

2. Adversarial Attacks on ASR

Given an utterance Xy, the output prediction Py of a neural net
based ASR model is obtained by:

Py = F(X;0) M

where t is a time interval (¢s, te). F(+; 0) represents the forward
function of the neural network with parameter 6.
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In an adversarial setting, an attacker finds the perturbation
04" within a permissible set S to create an adversarial ut-
terance X% = X 4 04 that either (a) maximizes the
loss between the ground truth Y and the prediction Py adv
F(X29v.9), ie. that aims to make the system’s output tran-

scription go wrong, as illustrated in Fig. 1 left, so that

adv

0" = arg max L(P2,Yy), (2)
ot ES
or (b) minimizes the loss between a target sentence Y"*" and

the prediction P¢%%", i.e. that tries to make the output be the

target sentence as illustrated in Fig. 1 right, so that

3

d . d t
o = arg min L(P¢*"", Y¢™").
ot €S

Typically S = {ot°% : ||os*®||, < &} for some p and €.

Fast gradient sign method (FGSM) [4] takes the sign of
the gradient of the loss L in (2) or (3) w.r.t. the input Xy to get

@

where € is the attack budget that restricts ||o < e
Note that + is for untargeted attack that represents the direc-
tion mamximizing L(-) in (2)) while — is for targeted attack
that minimizing L(-) in (3).

Projected Gradient Descent (PGD) [5] is an iterative ver-
sion of FGSM that takes small steps « in the direction of the
gradient while clipping the perturbation to stay within budget:

01" = tesign(Vx, L(-))

adv
oo

X, () clipy, .. (Xt(” + asign(thmL(')) ;

X, ()

where 1 < ¢ < I, « is the step size, and [ is the number of
iterations, both important factors determining the strength of the
attack. For a given budget €, more iterations with smaller steps
lead to stronger attacks, while for I = 1, PGD is equivalent to
FGSM with ¢ = a.

Untargeted attacks are not hard to conduct on an unde-
fended ASR system, as easily seen in both our experiments and
previous work [15, 8]. FGSM, PGD with few iterations or even
Gaussian noise can cause such degradation on an ASR model
trained with clean speech. On the other hand, it takes more ef-
fort to mount a successful targeted attack where the WER w.r.t
the target sentence Y4'*", denoted WER TG, is very low, e.g.
comparable to WERggr on benign inputs. In real life, ma-
licious targeted attacks have the potential to cause more harm
than untargeted attacks. Defending against targeted attack is
therefore our primary concern in this work.

Several targeted attacks on ASR systems have been pro-
posed in the literature, including the C&W attack [6], imper-
ceptible attack [7], and PGD attacks with large number of it-
erations. We follow the current best practice developed by the
DARPA GARD' Evaluation team, who report that performance
against high-iteration PGD attacks is indicative of wider adver-
sarial robustness.

Xt adv

3. Chunking to Defuse Targeted Attacks
3.1. Partition function

Commonly studied scenarios in adversarial attacks and de-
fenses are based on systems that perform closed-set classifi-

Uhttps://www.darpa.mil/program/guaranteeing-ai-robustness-
against-deception
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Figure 2: An illustration of chunking defense on (a) benign ex-
ample and (b) adversarial example.

cation tasks. Unlike them, speech recognition is a sequence-
to-sequence task where both the input and output are variable-
length sequences of different units with a latent alignment be-
tween them. For this reason, the mapping from the input utter-
ance to the output prediction is not unique although the ASR
model is fixed and deterministic at inference time. More pre-
cisely, given an utterance X¢, the ASR model can either

¢ take the full utterance as the input to the neural net-
work and predict Y at once, which is true in most non-
streaming end-to-end ASR models, or

e cut the utterance into successive chunks of arbitrary
lengths, forward them to the network one by one, and
concatenate the resulting outputs.

Formally, consider a partition function c(t) that represents how
Xy is cut into chunks. For instance, if we split the interval
t = {ts,te} into 20 ms chunks with no overlaps (i.e. use a
20ms window with a 20 ms stride), then c(t) = {(ts,ts +
20), (ts + 20,ts + 40), ..., (te — 20,t)}. With ¢(t) we can
extend (1) as:

Pt (Xt,9 C( ) (6)

)
In other words, the ASR output F'(-; 0, c(t)) depends on both
the network architecture and parameters F(-;0) and the parti-
tion function c(t).

3.2. Motivation
3.2.1. Lack of transferability

As discussed in Section 2, since successful targeted attacks
[5, 6, 7] usually take hundreds to thousands of iterations to
sucessfully perturb a benign example X¢, the chances are high
that the adversarial example X over-fits to the forward func-
tion F'(+; 0, ¢(t)), which depends on c(t). This over-fitting intu-
ition is supported by the observations of [8, 16], who report that
adversarial examples do not fransfer well from one ASR sys-
tem to another, suggesting that adversarial examples in audio
domain may be highly specific to the model they are generated
for. As a result, if there is a mismatch between the partition
functions ¢(t) used to craft the adversarial examples and the
one used to perform inference, we expect the attack will not
succeed.



Table 1: ASR outputs of an undefended model for the same speech and different PGD attack parameters, demonstrating that mounting
a successful targeted attack with a high signal-to-noise ratio (SNR) requires a large number of iterations.

| Ground Truth Transcript [

there’s a heavy storm coming on i cried pointing towards the horizon.

ID € iters | SNR (dB) ASR Output

(a) | 0.001 7 41.94 there’s a heavy storm coming on i cried twining towards the horizon.

(b) | 0.01 7 22.76 where is a heavy storm coming on i cried twinning towards the horizon.

(c) 0.1 7 2.86 and queer the heavy crowing cunning are at gri when they be lucif fiery.

(d) | 0.01 500 35.93 where is ahead store cutting no mother she buy drink according with she sold his furniture.
(e) 0.1 500 19.84 when she heavily get no money to buy drink with she sold his furniture.

| Attacker’s Target Transcript [

when she could get no money to buy drink with she sold his furniture. ‘

3.2.2. Limited receptive field

ASR systems based on modern neural network architectures
have large receptive fields. This means that to predict a token
at time ¢, the system aggregates information from several past
and future time steps. For example, if the system is based on a
convolutional network the receptive is proportional to the prod-
uct of the kernel-sizes and number of layers; and it it is based
on transformer the receptive field covers the whole utterance.
Therefore, the adversarial perturbation at time ¢; can have an
impact on the predicted token at time 5.

The partition function c¢(t) breaks a long utterance into
multiple chunks that are processed in isolation, so that the out-
put of one chunk is not affected by the input of another. Chunk-
ing prevents the attackers from distributing the adversarial noise
needed to modify the output of a given chunk along the en-
tire length of the utterance. Therefore, if the partition function
used to generate the adversarial example (or if it is generated on
the full utterance) is different from the test partition, the attack
should be less effective. This is because some of the adversarial
waveform samples optimized to change the ¢ — th chunk output
will be at a different chunk at test time.

3.3. Defense method

Based on the discussion above, the defense is straightfor-
ward: we simply cut the utterance Xy into small chunks dur-
ing test time, which does not require any extra work during
training/fine-tuning of the ASR model, nor any other pre/post-
processing modules. The utterance partition can be fixed or
stochastic. The former can be effective if the attacker does not
know about the defense method. However in a fully white-box
scenario the attacker would break the system using the same
partition to generate the attacks. On the other hand, the stochas-
tic version will use a different partition each time we evaluate
the system, making the job of the attacker more difficult. Fig-
ure 2 illustrates the expected behavior of chunking defense on
benign and adversarial speech respectively. Note that, in this
work we reform the chunks into a full sequence at the network
output level. In other words, the decoder still receives a full se-
quence of output from the network instead of decoding on each
chunk one by one and combining them in the end. It makes
the chunking defense more general to all sequence-to-sequence
tasks

4. Experimental Results
4.1. Dataset

Librispeech [17] full 960 hours corpus was used as training data
for the baseline undefended ASR models. Test clean data was
used to generate adversarial examples. Since generating suc-
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cessful targeted attacks take hundreds of PGD iterations for
each example, we do all the experiments on the first 100 ex-
amples from the test clean data due to the computational limi-
tations, which was also adopted in other works[6, 7] when gen-
erating adversarial examples on full test clean data becomes too
expensive.

4.2. Attacks

As shown in Table 1, we select five different settings for PGD
attack as the threat models. In all cases, « = (1.5 % ¢)/I to let
perturbation ¢ %" reach the budget boundary e. We performed
targeted attacks following (3), target phrases Y;"*" were taken
from a pool of phrases in the Librispeech train set. For each
test example, we chose the phrase with the closest length to the
ground truth Y: to make the attack easier and, therefore, more
difficult to defend.

4.3. Non-streaming E2E LF-MMI Conformer ASR

We started with a non-streaming end-to-end model that was
trained with full utterances. The system is based on the Snow-
fall and K2 [14] frameworks and was trained on end-to-end
lattice-free MMI loss. The neural network consists of two con-
volution sub-sampling layers with kernel size 3*3 and stride 2,
followed by a 12-layer 4-head Conformer encoder [18]. Each
conformer layer uses 256 attention dimensions and 2048 feed-
forward dimensions. Log Mel-Filterbank (LFB) acoustic fea-
tures with 80 bins are used, which are extracted with a 25ms
window, 10ms hop-length at a sample rate of 16kHz. The model
was trained for 20 epochs and the parameters from last 5 check-
points are averaged to get the final model. The conformer pro-
duces a sequence of posteriors for each input sequence, which
goes to k2 for decoding next. As mentioned in Section 3.3, the
reformation of chunks into full sequences only took place at
the posterior level instead of word/sentence level.

As shown in Table 2 sys 1-5, for benign examples and
weakly optimized attacks (e.g. attack (a) to (c) that only has
7 iterations), chunking defense with small chunk size doesn’t
help the model but instead degrades its performance in terms of
increasing WER re . Itis expected since the model was trained
on full utterances while tested on small chunks. Such inconsis-
tency of input scale along with the lack of context in test time
makes the model perform badly, both with and without attacks.
However, for highly optimized attack (e.g. (d) and (e)), chunk-
ing defense manage to break the targeted attack by increasing
the WER g1 dramatically.



Table 2: Chunking defense on 2 baseline models against 5 adversarial attacks on the first 100 examples from Librispeech test clean
dataset. All the attacks are generated on the full utterance in an non-adaptive way. WERrrr and WERr T is the WER of the output
sentence w.r.t the ground truth and target sentence respectively. From the defense perspective, WERRg r is lower the better (|) while

WERTGT is higher the better (1).

. chunk size WERREF (%) | WERTGT (%) T
sys ID Architecture frames (secs) Bemign @ ®) © @ @ ©
1 Full 4.89 2222 | 61.33 | 90.28 | 64.44 | 87.04 42.13
2 600 (6s) 8.00 26.22 | 71.11 | 93.33 | 65.33 | 91.67 70.37
3 E2E LFMMI 400 (4s) 10.22 | 32.00 | 74.67 | 95.56 | 64.89 | 91.67 68.98
4 300 (3s) 12.44 | 34.67 | 7556 | 96.89 | 62.22 | 92.13 76.85
5 200 (2s) 28.89 | 41.78 | 75.11 95.37 | 69.78 | 93.52 86.57
6 Full 2.67 24.89 | 75.11 | 107.11 | 87.11 | 70.83 18.98
7 200 (2s) 4.44 29.78 | 70.22 | 108.00 | 69.33 | 86.57 37.50
8 Streaming CTC 64 (0.64s) 4.44 29.78 | 70.22 | 116.00 | 63.11 | 89.35 50.93
9 32 (0.32s) 5.33 29.78 | 7244 | 111.56 | 63.56 | 88.43 55.56
10 16 (0.16s) 7.56 29.78 | 77.33 | 112.44 | 61.33 | 98.15 61.11

4.4. Streaming CTC Conformer model

To solve the degradation on benign examples, a baseline model
trained with flexible chunk size is more favorable for the chunk-
ing defense. In this section, we will test the proposed defense
on a streaming CTC model®. It has the same network archi-
tecture and feature extraction modules as the previous E2E LF-
MMI model. It was trained with CTC loss [19] in K2 [14] with
full left context but limited random right context for streaming
decoding in the test time. As shown in Table 3, the stream-
ing model does not degrade too much when decoding benign
speech in small chunks. Note that the chunk size here refers to
the look-ahead right context appended to the input samples in a
streaming model. For this reason, the chunk size in this model
is not the same concept in the previous non-streaming model
and thus not comparable among two models.

Table 3: WER of the streaming CTC model on Librispeech test
clean dataset with different chunk sizes of the right context.

. . WER (%)
chunk size (right) test clean | test other
Full 3.53 8.52
200 (2.00s) 3.78 9.38
64 (0.64s) 4.06 9.98
32 (0.32s) 4.30 10.55
16 (0.16s) 5.88 12.01

From Table 2 sys 6-10 we can see that, when applied
to a streaming model that is capable of predicting on flex-
ible chunks, chunking defense does negligible degradation
on WERggr while significantly raising the WERrgr from
18.98% to 61.11%. Note that both (d) and (e) attacks take 500
iterations to optimize an example with targeted output. To get
better targeted attack (e.g. WERgrrr < 5), more iterations
or distortion will be needed, in which cases chunking defense
should show better performance.

4.5. Adaptive attack

To study the worst case scenario, we assume that the adversary
is also going to adapt to the chunking defense by using chunks
during attack instead of the full utterances.

Table 4: WERTcT (%) of the streaming CTC model attacked
and defended by chunks. PGD-500-0.1 (e) is used to craft ad-
versarial examples.

. chunk size (attack)
chunk size (defense) 16 35 o 300
16 20.37 | 33.8 | 40.74 | 375
32 31.02 | 20.83 | 30.09 | 29.63
64 50.93 | 32.41 | 17.59 | 18.52
200 50.00 | 43.06 | 37.04 | 13.43
avg 34.11 | 32.52 | 31.36 | 24.77

Table 4 shows that, when the partition functions ¢(¢) used
to generate attacks and defend match, the adversary can find
examples with low WER7rcr again. However, if the adversary
has to use small chunks to match the defense, this prevents it
from using a large receptive field of speech to better craft the
example. As a result, the average WERr¢r increases when
the chunk size decreases. It shows chunking defense can still
benefit the victim model even under strong adaptive attacks, al-
though not as significant as when using non-adaptive attacks.

5. Conclusions

In this work, we introduce the partition function to the adversar-
ial study on sequence-to-sequence tasks and develop the chunk-
ing defense accordingly. We present its effects on two end-to-
end models under five different attacks and show its full po-
tential against targeted attack along with its limitation for weak
attacks. A further experiment on adaptive attacks suggest that
even when the adversary is aware of the chunking defense and
generate attacks accordingly, we can still provide the model
with some robustness by forcing the attacker to limit its recep-
tive field. We look forward to applying chunking defense to
more sequential tasks in the future.
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