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A BOOTSTRAP MULTIGRID EIGENSOLVER∗

JAMES BRANNICK† AND SHUHAO CAO‡

Abstract. This paper introduces bootstrap multigrid methods for solving eigenvalue problems
arising from the discretization of partial differential equations. Inspired by the full bootstrap alge-
braic multigrid setup algorithm that includes an AMG eigensolver, we illustrate how the algorithm
can be simplified for the case of a discretized partial differential equation, thereby developing a
bootstrap geometric multigrid (BMG) approach. We illustrate numerically the efficacy of the BMG
method for (1) recovering eigenvalues having large multiplicity, (2) computing interior eigenvalues,
and (3) approximating shifted indefinite eigenvalue problems. Numerical experiments are presented
to illustrate the basic components and ideas behind the success of the overall bootstrap multigrid
approach. For completeness, we present a simplified error analysis of a two-grid bootstrap algorithm
for the Laplace–Beltrami eigenvalue problem.
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ment method
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1. Introduction. The aim of this paper is to present a bootstrap multigrid
(BMG) framework for solving eigenvalue problems arising from discretizing partial
differential equations (PDEs). The approach we consider is motivated by the boot-
strap algebraic multigrid (BAMG) setup algorithm designed and analyzed in [8, 7,
29, 11, 10]. The key components of the BAMG setup algorithm that motivate our
proposed geometric BMG algorithm are the adaptive or bootstrap construction of
the coarse spaces coupled with the BAMG multilevel eigensolver used in constructing
interpolation (or prolongation). The overall BAMG process simultaneously computes
approximations of algebraically smooth error and constructs improved or enriched
coarse spaces using these approximations. The resulting BAMG setup algorithm has
been shown to provide for an efficient algebraic multigrid (AMG) eigensolver as well
as a robust and efficient AMG setup process for solving sparse linear systems [8, 11].
In this paper, we adapt the BAMG setup algorithm to a geometric method, i.e., one
that makes explicit use of the PDE and discretization in its design, and draw con-
nections between this BMG approach and existing geometric two-grid and multigrid
eigensolvers that have been developed for approximating PDE eigenvalue problems.
We illustrate numerically that the resulting bootstap method is suitable for (1) re-
covering eigenvalues having large multiplicity, (2) computing interior eigenvalues, and
(3) approximating shifted indefinite eigenvalue problems.
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1628 JAMES BRANNICK AND SHUHAO CAO

The problem of interest in this paper to present a BMG eigensolver is the Laplace–
Beltrami eigenvalue problem

−∆Γu = λu,(1.1)

where ∆Γ denotes the Laplace–Beltrami operator on a two-dimensional, smooth, ori-
entable, and closed surface Γ, λ ∈ R

+ is the eigenvalue to the continuous eigenvalue
problem, and u : Γ→ R denotes the associated eigenfunction. Letting

a(u, v) :=

∫

Γ

∇Γu · ∇Γv dS, and b(u, v) :=

∫

Γ

uv dS,(1.2)

the weak formulation of (1.1) is as follows: Find u ∈ H1(Γ) and λ ∈ R
+ such that

a(u, v) = λb(u, v) for any v ∈ H1(Γ),(1.3)

where H1(Γ) := {v ∈ L2(Γ) : ∇Γv ∈ L2(Γ)} equipped with the following norms:

‖v‖2H1(Γ) := ‖v‖
2
L2(Γ) + |v|

2
H1(Γ) with |v|H1(Γ) := ‖∇Γv‖L2(Γ) .

Throughout this paper, we assume that a surface finite element discretization [20, 21]
is used to approximate problem (1.3).

Though we derive the geometric BMG eigensolver with a focus on the finite
element approximation to the problem above, we note that the overall strategy is
applicable for much wider classes of PDE eigenvalue problems. The Laplace–Beltrami
model is selected as our model problem since it is a challenging problem in that its
eigenvalues have large multiplicity. Moreover, the Laplace–Beltrami spectrum on a
2-sphere is explicitly known, allowing us to study the proposed BMG approach in
detail for a specific problem.

1.1. The BAMG setup. The BAMG setup algorithm that serves as the main
motivation for our proposed BMG eigensolver can be viewed as an AMG eigensolver
for the algebraic system Au = λBu with (λ, u) the unknown eigenpairs. As we show
below, it is straightforward to derive a BMG approach directly from the BAMG setup
algorithm.

In contrast to geometric multigrid methods that begin with a coarse problem (on
a coarse mesh) and then aim to construct a sequence of problems on increasingly
finer meshes (resulting in more accurate approximations), in AMG the problem is
assumed to be given on the finest mesh, and then is sought to be coarsened in an
algebraic fashion, i.e., using only algebraic information available from the linear sys-
tem. Accordingly, we label the finest-grid system matrix as A0 = A. Later on, in
our description of the related geometric approaches, we adopt the usual geometric
multigrid notation and set the coarsest-grid system to A0. When discussing two-level
approaches, Ah represents the fine-grid matrix, and AH denotes the coarse-grid sys-
tem matrix, obtained using the Galerkin form AH = PTAhP in the AMG setting, or
by rediscretizing in the geometric multigrid setting.

Given the fine-grid system based on Ah, the BAMG setup algorithm aims to
construct an interpolation operator P , and the corresponding coarse-grid matrix
AH = PTAhP . A certain approximation property is satisfied by the interpolation
operator and, hence, by the corresponding coarse space [8]. Generally, the AMG
interpolation operator must accurately approximate (generalized) eigenvectors corre-
sponding to small eigenvalues of the fine-grid system matrix Ah [10], which are referred
to as the slow-to-converge error of the AMG smoother. Various techniques exist for
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BOOTSTRAP MULTIGRID EIGENSOLVER 1629

constructing accurate interpolation for problems where such spectral information is
available, e.g., classical AMG [9] and smoothed aggregation [36]. The adaptive AMG
[12, 13] and BAMG algorithms were designed to construct P for cases where this
information is not available, e.g., quantum dynamics applications. The main idea in
these approaches is to make use of a multilevel algorithm in the AMG setup to com-
pute slow-to-converge error of relaxation, and then to use these modes to adapt the
coarse space. The overall BAMG approach for enriching the coarse spaces uses the
combination of a multilevel eigensolver that efficiently and accurately computes ap-
proximations to the (generalized) eigenvectors with small eigenvalues of the fine-grid
system matrix, i.e., it aims to solve problems of the form

Au = λBu,(1.4)

e.g., a surface finite element discretization of problem (1.3). Then, a least squares
(LS) process is used to construct interpolation to fit these computed approximations.
The overall approach is applied in the usual recursive way to obtain the corresponding
multilevel algorithm. We describe the overall process adopting the same notation we
used in [8] and recall some numerical results obtained for the Poisson problem as well.

BAMG interpolation is derived to provide the best LS fit to a set of smooth test
vectors V =

{
v(1), . . . , v(k)

}
. Specifically, each row of interpolation, denoted by pi, is

defined as the minimizer of the local LS functional:

L(pi) =
k∑

κ=1

ωκ


(v)

(κ)
{i} −

∑

j∈Ωi

(pi)j v
(κ)
{j}




2

,(1.5)

where Ωi are the sets of interpolation points, vΩ̃ denotes the canonical restriction of

a vector v to the set Ω̃ ⊂ Ω := {1, . . . , n}, and ωκ denotes the interpolation weights.
A common choice for the weights is given by ωk = ‖vk‖/‖Avk‖, in which case the LS
functional can be viewed as a local version of the weak approximation property [8],
assuming A is symmetric and positive definite.

The rationale behind the bootstrap multilevel generalized eigensolver is as follows.
If an initial multigrid hierarchy is constructed using LS interpolation, given the initial
Galerkin operators A0 = A,A1, . . . , AL on each level and the corresponding interpola-
tion operators P l

l+1, l = 0, . . . , L− 1, define the composite interpolation matrices and

corresponding mass matrices as Pl = P 0
1 · · · · · P

l−1
l and Tl = PT

l B0Pl, l = 1, . . . , L;
then for any level l and any given vector xl ∈ R

nl and λl ∈ R such that Alxl = λlTlx
l

we have

Rayleigh quotient of Plx
l :=

〈xl, xl〉Al

〈xl, xl〉Tl

=
〈Plxl, Plxl〉A0

〈Plxl, Plxl〉2
= λl,(1.6)

where we used that 〈xl, xl〉Al
= 〈Plxl, Plxl〉A0

, which follows from the definition of
Al = PT

l A0Pl. This result relates the eigenvectors and eigenvalues of any of the
coarse-grid matrices to the eigenvectors and eigenvalues of the finest-grid operator
A. Note that the eigenvalue approximations in (1.6) are continuously updated within
the algorithm so that the overall approach resembles an inverse Rayleigh-quotient
iteration found in eigenvalue computations (cf. [38]). Figure 1.1 provides a schematic
outline of a V -cycle version of the BAMG setup algorithm. We note that Vr and Ve are
the sets of approximate test vectors from relaxations and approximate eigenvectors,
respectively, that are used in computing the LS interpolations.

Following are a few general remarks regarding the above BAMG setup algorithm
and its conversion to a geometric multigrid method, before we proceed with a general
discussion of the BMG eigensolver:
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1630 JAMES BRANNICK AND SHUHAO CAO

Relax on Av = 0, v ∈ V
r, compute P

Compute v, s.t., Av = λTv, update V
e

Relax on Av = λTv, v ∈ V
e

Relax on and / or solve using MG Av = 0, v ∈ V
r and Av = λTv, v ∈ V

e, recompute P

Test MG method, update V
r

Fig. 1.1. A possible Galerkin BAMG V -cycle setup scheme from [8].

• The BAMG eigensolver only solves the eigenvalue problem on the coarsest
level and then uses an iterative method to approximately solve (simpler)
shifted linear systems on the corresponding finer levels. This strategy of only
solving the eigenvalue problem on the coarsest level is what gives the approach
its efficiency and ultimately its near optimality.

• The method continuously updates (enriches) the coarse space using these im-
proved eigen-approximations in the LS interpolation process and then the
Galerkin definition of the coarse-level operator. Moreover, it is this enrich-
ment that gives the method the flexibility to construct approximations to
both oscillatory and smooth eigenvectors using very coarse meshes.

• The overall procedure uses a relatively large enrichment space since exper-
imentally this gives the best overall results in the BAMG construction of
interpolation and, hence, ultimately yields the best overall AMG solver. We
propose a similar enrichment strategy that uses multiple vectors in the BMG
eigensolver; however, since we are interested in solving the eigenvalue prob-
lem and not using the approach as a setup process for defining interpolation,
we omit the set of relaxed vectors Ve in the BMG algorithm and enrich the
coarse space using only eigenvector approximations Ve. Correspondingly,
the BMG approach begins by solving an eigenvalue problem on the coarsest
level A0.

• A main cost in the BAMG setup is the need to compute the AMG hierarchy in
each iteration, i.e., the cost of computing P l

l+1, and Al = (P l
l+1)

TAl−1P
l
l+1 on

all levels. In the BMG setting, the coarse spaces are defined using the chosen
finite element discretization plus an additional global enrichment space. This
difference is, in fact, the main modification that we make to the BAMG
eigensolver in order to arrive at the BMG approach.

• Though we include the possibility of using the existing MG solver in the
BAMG setup when solving the shifted linear systems on finer meshes, typi-
cally only a few relaxation steps are needed. We use many pre- and
postsmoothing steps in the BAMG setup in order to reduce the number of
setup cycles, which, in turn, offsets the cost of recomputing the AMG hier-
archy in each iteration of the BAMG setup. For example, using a standard
discretization for the two-dimensional Laplace eigenvalue problem in [8] on a
structured mesh, two V (4, 4) BAMG setup cycles as depicted in Figure 1.1
on a finest-level mesh of size 64 × 64 using standard (full) coarsening and
Gauss–Seidel relaxation yield comparable result versus direct methods with
all geometric information. These partial experimental results from [8, Figure
4.2 and Table 4.5] illustrate the efficacy and potential of the BAMG setup
algorithm as an AMG eigensolver.
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BOOTSTRAP MULTIGRID EIGENSOLVER 1631

1.2. Existing geometric multigrid eigensolvers. Generally speaking, in sit-
uations where multiple eigen-modes are required, a highly refined uniform mesh is
needed for a good approximation for all these modes. In such cases, solving the as-
sociated systems of equations on this given fine mesh can be prohibitively expensive.
There are many methods taking advantage of a multilevel hierarchy to remedy this
cost. For the two-dimensional Laplace eigenvalue problem on the plane, a two-grid
eigensolver that reduces the overall costs of solving the resulting finite element sys-
tems was proposed in [39] and later improved using a Newton-type iteration in [25].
A similar approach was designed for the Maxwell eigenvalue problem in [40]. These
two-grid methods involve a coarse mesh and a fine mesh and the finite element spaces
defined on these meshes. In addition, a direct solve, e.g., eig in MATLAB, is used
to solve the coarse space eigenvalue problem, and then Newton’s method is applied
on the fine mesh in order to solve the nonlinear eigenvalue problem using the coarse
solution as an initial guess, which results in solving a linear source problem. The a
priori analysis for the finite element approximations to the Laplace–Beltrami eigen-
value problem is studied in [6, 33]. To the best of our knowledge, there is no known
two-grid (or multigrid) eigensolver for the Laplace–Beltrami operator on surfaces in
the finite element setting, which is the model problem we design the BMG eigensolver
for in this paper.

Though two-grid methods do provide significant improvements when compared
with single-grid methods (such as the Arnoldi algorithm) in terms of their compu-
tational complexity, they too have drawbacks in practice. First, two-grid methods
are generally not optimal since the mesh spacing tends to zero even for the coarse
eigenvalue problem, which needs to be solved with high accuracy. For example, in
order to resolve eigenpairs corresponding to large eigenvalues in the discrete spectra
for our model problem, the coarse mesh used in the two-grid method must be fine
enough to capture these oscillatory modes. In practice, we observe a “loss of spectra”
phenomenon when using two-grid methods where the coarse mesh is not fine enough.
This issue is overcome in our proposed BAMG algorithm by using the idea to enrich
the coarse space as in [8] and as discussed above. We note in addition that these two-
grid eigensolvers often require solving a linear source problem on the fine mesh that is
indefinite so that using optimal solvers such as multigrid can become problematic. As
we show numerically in this paper, it is not necessary to solve this indefinite problem
directly, and a few sweeps of an iterative solver suffice to obtain a nearly optimal
multigrid algorithm. In fact, for certain cases, we show that the shift can be moved to
the right-hand side using an interpolated coarse approximation to the eigenfunction
of interest.

In [14], multilevel analogues of the two-grid solvers noted above are developed.
Specifically, the paper develops multilevel approaches for nearly singular elliptic prob-
lems and eigenvalue problems. It should be noted that these methods are able to
approximate the components in the eigenspace with small eigenvalues of (1.3) and
as presented cannot be used to approximate larger eigenpairs. This is because on
the coarsest level the corresponding space is defined using standard finite element
basis functions, e.g., nodal Lagrange basis, and thus it is not possible to approximate
oscillatory functions.

In a recent paper [27], another multilevel approach was developed in which the
coarse eigenvalue problem is solved in an enriched space. This enrichment is achieved
by including a single extra function in the coarse space that is obtained by solving a
positive definite source problem on a finer mesh. Then, this two-grid correction scheme
is used repeatedly to span multiple levels, resembling the bootstrapping procedure

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1632 JAMES BRANNICK AND SHUHAO CAO

developed in [8] but only for a single enrichment vector. The approach we propose
involves a suitable geometric projection from coarse spaces to fine spaces (defined on
a sequence of refined and nonnested meshes) and the use of a bootstrap enrichment
procedure to iteratively improve the coarse spaces until the desired approximation is
computed to sufficient accuracy.

It is known that the Laplace–Beltrami eigenvalues have very high multiplicity on
closed surfaces (e.g., see [34, Chapter 3]), which adds to the difficulties associated with
solving this system. For example, for the Laplace–Beltrami operator on the 2-sphere,
the number of linearly independent eigenfunctions associated with the lth distinct
eigenvalue λ = l(l + 1) is 2l + 1. Thus, the bootstrap approach we propose which
enriches the coarsest space with a subspace of linearly independent approximations
is of particular interest for this model problem. We note that the idea to enrich the
coarse space in designing eigensolvers goes back to [26] and [28]. These authors also
analyze an iterative method for computing the smallest eigenpair under the somewhat
restrictive condition that the initial guess of the eigenfunction is sufficiently close to
the smallest one, namely that its Rayleigh quotient lies between the smallest and
second smallest eigenvalues. In [15], the method from [26] is extended to both two-
grid and multigrid methods and an algorithm for computing a given number of the
smallest eigenpairs is presented. The paper also presents a convergence theory with
less restrictive assumptions on the initial guess.

In this paper, we develop the BMG eigensolver for the surface finite element dis-
cretization of the shifted Laplace–Beltrami eigenvalue problem. The base two-grid
method can be viewed as a generalization of the approaches proposed in [26, 28, 15,
27] in that the coarse space is enriched with a subspace, instead of a single eigenfunc-
tion, and we consider computing interior eigenvalues directly by introducing a shift.
Alternatively, our proposed approach can be viewed as a simplification of the BAMG
algorithm [8] in that we use the finite element spaces to explicitly define the com-
ponents of the multilevel method, including interpolation and restriction operators
among different levels, and the enriched coarsest space eigenvalue problem. Mean-
while, the iterative procedure involving multilevels of mesh refinement resembles the
geometric cascadic multigrid in [35] and [23]. Overall, we note that though we fo-
cus on this model problem the approach we present here is applicable to much wider
classes of problems with relatively few modifications.

This paper is organized as follows. In section 2, we provide some preliminary
notation and present the a priori estimate of the surface finite element method for the
eigenvalue problems from [6]. In section 3, we introduce the standard two-grid method
for Laplace–Beltrami eigenvalue problems on surfaces mimicking the approaches de-
veloped for the elliptic eigenvalue problem in [39, 25, 40]. In addition, we prove the
convergence of this method for the case of a smooth, closed, and orientable surface. In
section 4, we derive the finite element BMG method for the Laplace–Beltrami eigen-
value problem and give details on the approach. In addition, we prove the convergence
of the bootstrap two-grid eigensolver for the shifted Laplace–Beltrami eigenvalue prob-
lem in the case the enrichment space is defined using several functions. We note that
on a surface the nonnestedness of the meshes also introduces a geometric error into
the discrete approximations. In this regard, our model problem presents several chal-
lenges and our two-grid approach is quite general since the inclusion of a shift also
covers the case of computing interior eigenvalues (with high multiplicity). Section 5
contains results of numerical experiments for both the two-grid and multigrid meth-
ods applied to the model problem on S

2. Note that by fixing the geometry we are
able to study the algorithm in a detailed and systematic way.
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BOOTSTRAP MULTIGRID EIGENSOLVER 1633

2. Notation and preliminary results. In this section, the finite element ap-
proximation, together with its a priori error estimate, to the eigenvalue problem (1.3)
are presented. Before presenting the details of the discretization we set notation that
is used throughout the paper. Here, we need to distinguish between the continuous
solution of the eigenvalue problem on the continuous surface, Γ, the continuous so-
lution on the discrete surface (mesh), Γh, used to approximate the surface (which
introduces a geometric error), and the discrete finite element approximation obtained
on the discrete surface which admits a discretization error.

We denote the eigen-modes to the continuous eigenvalue problem on the contin-
uous surface by lowercase letters, e.g., u, and the associated eigenvalues by λ. The
associated solution to the continuous eigenvalue problem on the discrete surface Γh is
denoted by ū and the associated eigenvalues are given by λ̄. We distinguish between
these two solutions since the solution on the discrete surface will only approximate
the true solution since the discrete surface approximation introduces a geometric er-
ror. The finite element spaces are similarly defined, where we use instead capital
calligraphic letters, e.g., the finite element space on Γh is denoted by Vh.

In describing a multigrid approach for solving eigenvalue problems it is convenient
to distinguish between the solutions of the nonlinear finite element eigenvalue problem
and the solutions to associated linear problems. Assume that a pair of finite element
spaces are given, where the coarse finite element approximation space is VH and
the fine space is Vh. Then, the subscript on uh denotes that this is the solution
to a direct eigensolve of the eigenvalue problem in Vh. A superscript uh denotes a
source problem approximation in the fine space Vh. In a two-grid method, a direct
eigensolve solution uH in a coarser space VH (to a nonlinear problem) is used, and
a source problem approximation uh using uH as data in a finer space Vh yields an
improved approximation. The vector representation of uh in the canonical finite
element basis of Vh is denoted by Uh, while Uh is for uh. This nomenclature, where
a subscript corresponds to a direct eigensolve and a superscript stands for source
problem approximation, is adopted throughout the paper. Matrices and operators
are denoted with capital letters, where the actual definition should be clear from
context. Moreover, the details on our construction of fine meshes and the associated
eigen-spaces are given in the beginning of section 3.

We use x . y and z & w to represent x ≤ c1y and z ≥ c2w, respectively, where
c1 and c2 are two constants independent of the mesh size h and eigenvalues. The
constants in these inequalities may in certain cases depend on specific eigenvalues
and when such dependence exists, it will be stated explicitly.

The surface gradient operator on a two-dimensional smooth orientable surface
that can be embedded into R3 can be defined using extensions∇Γ : H1(Γ)→ (L2(Γ))3

as follows:

(∇Γf)(x) :=
(
I − n(x)n(x)⊤

)
∇f̃(x) = n(x)×

(
∇f̃(x)×n(x)

)
,(2.1)

where f̃ is a smooth extension of f to a three-dimensional tubular neighborhood U of
Γ, ∇ : H1(Ω) → (L2(Ω))3 is the weak gradient operator in R

3, and n(x) is the unit
normal pointing to the outside of this closed surface at point x. The Laplace–Beltrami
operator ∆Γ is then defined in a distributional sense:

〈−∆Γf, g〉 =

∫

Γ

(−∆Γf)g dS :=

∫

Γ

∇Γf · ∇Γg dS ∀g ∈ C∞(Γ).(2.2)

For a more detailed definition and the technicalities that arise when defining a differ-
ential operator on surfaces, we refer readers to [18, 21, 5].
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1634 JAMES BRANNICK AND SHUHAO CAO

2.1. The eigenvalue problem on the discrete surface. Let Th = {T} be
a triangulation and Γh = ∪T∈Th

T be a piecewise planar surface approximating the
continuous surface Γ, where T stands for the “flat” triangular element. Γh is assumed
to be quasi-uniform and regular. The mesh size is then defined as the maximum of
the diameter of all the triangles: h := maxT∈Th

diam T . Furthermore, the set of all
vertices is denoted by Nh. For any z ∈ Nh, it is assumed that z ∈ Γ, i.e., any vertex
in the triangulation lies on the original continuous surface Γ.

Note that the surface gradient on a smooth surface carries over naturally to a
discrete surface Γh (e.g., see [37]): the unit normal n(x) is now a constant vector nT

for each point x ∈ T . For ease of notation, the surface gradients ∇Γh
on Γh and on

Γ will both be denoted by ∇Γ, where the definition should be clear from the context.
With these definitions the bilinear forms on Γh are as follows:

ah(ū, v̄) :=

∫

Γh

∇Γū · ∇Γv̄ dS, and bh(ū, v̄) :=

∫

Γh

ūv̄ dS.(2.3)

Note that the subscript used in defining the bilinear forms is used to represent that
the continuous problem has been restricted to a discrete surface, Γh. Moreover, the
fact that this discrete surface Γh is piecewise linear affine, which gives a C0,1-surface,
implies that the Sobolev space H1(Γh) is well-defined (see [20]).

The weak formulation for the eigenvalue problem on the discrete surface Γh is
now given by the following: find ū ∈ H1(Γh) and λ̄ ∈ R

+ such that

ah(ū, v̄) = λ̄ bh(ū, v̄) for any v̄ ∈ H1(Γh).(2.4)

Using the Poincaré inequality (see [18, Lemma 2.2]) or the compact embedding of
H1(Γh)/R ⊂⊂ L2(Γh) when Γh is a piecewise linear affine manifold [1, Chapter 2],
and the geometric error estimate between (1.2) and (2.3) (e.g., see [21, section 4]), it
follows that if the mesh is sufficiently fine (required for the coercivity), then for any
ū, v̄ ∈ H1(Γh)/R

ah(ū, v̄) . ‖ū‖H1(Γh)
‖v̄‖H1(Γh)

, and ah(ū, ū) & ‖ū‖
2
H1(Γh)

.(2.5)

If v̄ 6= 0, bh(v̄, v̄) = ‖v‖2L2(Γh)
> 0, the coercivity and continuity of (2.5) imply

that ah(·, ·) induces a bounded, compact, and self-adjoint operator. By the Hilbert–
Schmidt theory and the spectrum theory of the Laplace–Beltrami operator on compact
surfaces (every closed surface being compact; see [16]), problem (2.4) is a well-posed
self-adjoint eigenvalue problem. The eigenvalues {λ̄i}

∞
i=0 for problem (2.4) form a

discrete sequence, starting from 0, with no accumulation point:

0 = λ̄0 < λ̄1 ≤ λ̄2 ≤ · · · → ∞.

Moreover, the eigenfunctions φk associated with λ̄k are orthogonal in the sense that
bh(φi, φj) = δij .

Let M(λ̄) be the eigenspace spanned by the eigenfunctions associated with λ̄ for
(2.4) defined on the discrete surface Γh:

M(λ̄) := {ū ∈ H1(Γh) : ah(ū, v̄) = λ̄bh(ū, v̄) ∀v̄ ∈ H1(Γh)}.(2.6)

Similarly, the eigenspace for the continuous eigenvalue problem (1.3) on Γ is given by

M(λ) := {u ∈ H1(Γ) : a(u, v) = λb(u, v) ∀v ∈ H1(Γ)}.(2.7)
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2.2. Finite element approximation. In this subsection, the surface finite el-
ement discretization (2.9) of eigenvalue problem (2.4) is established. Here, if the
geometric error introduced by the discrete surface is sufficiently small, then the sur-
face finite element approximates the eigenvalue problem (1.3) on the original smooth
surface. In the last part of this subsection, the a priori error estimation for the surface
finite element eigenvalue problem using a direct eigensolve is presented, giving Lemma
2.2. Note that the orders of the approximation errors for the computed eigenpairs
given in this lemma are useful in determining the effectiveness of an iterative pro-
cedure to obtain approximate eigenpairs, namely, the two-grid or multigrid method
need to compute approximations with the same (or higher) order of approximation
error.

The finite element approximation to problem (2.4) Vh is as follows:

Vh = {φh ∈ C0(Γh) : φh

∣∣
T
∈ P 1(T ) ∀T ∈ Th}.(2.8)

The discretization to problem (2.4) is to find uh ∈ Vh and λh ∈ R
+ such that

ah(uh, vh) = λhbh(uh, vh) ∀ vh ∈ Vh.(2.9)

Note that the finite element approximation problem (2.9) serves as a straightforward
conforming discretization to (2.4) on the discrete polygonal surface Γh, but not di-
rectly to the original eigenvalue problem (1.3) on Γ.

The connection between the approximation on Γh and its continuous counterpart
on the surface Γ is established through a bijective lifting operator (see [18]), between
any triangle T ⊂ Γh to a curvilinear triangle on Γ. Then, for any v ∈ H1(Γh), its
lifting ṽ to the continuous surface Γ can be defined as follows: for any point x ∈ Γh,
there is a unique point x̃ ∈ Γ such that

x̃+ d(x)n(x̃) = x, and ṽ
(
x̃
)
= v(x),(2.10)

where d(x) is the signed distance to Γ at point x ∈ Γh and d(x) is positive when x is
outside of the closed surface Γ with |d(x)| = miny∈Γ |x− y|.

Lemma 2.1 (Lemma 3 in [20], Lemma 4.7 in [21]). If d defined in (2.10) satisfies
‖d‖L∞(Γh)

. h2, then for any v ∈ H1(Γh)

(1− ch2) |v|H1(Γh)
≤ |ṽ|H1(Γ) ≤ (1 + ch2) |v|H1(Γh)

,

and (1− ch2) ‖v‖L2(Γh)
≤ ‖ṽ‖L2(Γ) ≤ (1 + ch2) ‖v‖L2(Γh)

.
(2.11)

For any uh, vh ∈ Vh,

|b(ũh, ṽh)− bh(uh, vh)| ≤ ch2 ‖uh‖L2(Γh)
‖vh‖L2(Γh)

.(2.12)

When using the linear surface finite element on a piecewise planar mesh on Γh, the
following estimate holds [6].

Lemma 2.2. If the mesh size h is small enough and all the vertices of Γh lie on

Γ, then for an eigenvalue λ of problem (1.3) with multiplicity m on Γ, there exist m
λh,k ’s that are the eigenvalues of problem (2.9) on Γh, and

|λh,k − λ| ≤ C(λ)h2 ∀1 ≤ k ≤ m.(2.13)

Moreover, let M(λh) = span {uh,k}
m
k=1, where uh,k ’s are the eigenfunctions associated

with λh; then for any eigenfunction u ∈M(λ),

min
wh∈M(λh)

|u− w̃h|H1(Γ) ≤ C(λ)h.(2.14)
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Algorithm 3.1. A two-grid scheme with a spectral shift.

1: Coarse grid eigensolve

Set a fixed shift µH := µ ≥ 0, and find (uH , λH) satisfying

aH(uH , v)− µHbH(uH , v) = λHbH(uH , v) for any v ∈ VH .(3.3)

2: Fine grid source approximation

Refine TH and perform the geometric projection to get Th, construct Vh,
approximate uh by solving the following indefinite source problem on Th:

ah(u
h, v)− (µH + λH)bh(u

h, v) = bh(PhuH , v) for any v ∈ Vh.(3.4)

maintaining orthogonality to previous eigenfunctions.

Suppose that the finite element approximation spaces have the following basis set:

VH = span{φH,i}
NH

i=1, and Vh = span{φh,i}
Nh

i=1.

If wH = (WH)TΦH , where ΦH = (φH,1, . . . , φH,NH ,)
T , then

Vh ∋ Phw
H = Ph

(
(WH)TΦH

)
= (PhWH)TΦh,

where Ph ∈ R
Nh×NH is the matrix representation of the prolongation operator. Note

that the geometric projection is implicitly imposed here.
For example, by (3.2), PhφH,i(zH,j) = δij , and PhφH,i(zh,ij) = 1/2 if i 6= j,

where zh,ij is a newly created vertex in Nh\NH by projecting the midpoint of zH,i

and zH,j onto the continuous surface (see Figure 3.1(c)).
Similarly, the restriction operator PH is opted to be the transpose of the geometric

projection Ph defined above:

PH : Vh → VH , wh 7→ PHwh, and VH ∋ PHwh = (PHWh)
TΦH ,

where PH = (Ph)
T ∈ R

NH×Nh is the matrix of the restriction operator.

Given these definitions, the two-grid method approximating the exact solution of
problem (2.9) is given by Algorithm 3.1.

Remark 3.1 (natural extension to a multilevel method). When multiple levels
of meshes are available (Vhk

for k = 1, . . . ,K with K ≥ 3), Algorithm 3.1 can be
naturally extended to be a multilevel method by being applied in a cascading fashion
between two adjacent levels. For example, starting from Vh1

, when a two-grid eigen-
pair approximation (uh2 , λh2) is obtained, we set (uh2

, λh2
)← (uh2 , λh2). Then steps

2 and 3 in Algorithm 3.1 are repeated for level 3 to level K.

Remark 3.2 (approximation accuracy of the source problem). In Algorithm 3.1,
the source problem (3.4) can be approximated by a direct or multilevel method.
We note that if a multilevel hierarchy exists and the two-grid method is applied in
a cascading fashion, then numerically the source problem on Vhk

of the kth level
(k ≥ 3) does not necessarily need to be solved at an accuracy of a direct solver.
This implies that a smoother (relaxation method) can be applied to problem (3.4) in
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1638 JAMES BRANNICK AND SHUHAO CAO

step 2 of Algorithm 3.1, with the approximation from the previous level as an initial
guess, instead of a direct solve. Below, in Algorithms 4.1 and 4.2, when the term
“approximate” is used for the source problems, the user can choose a direct/multigrid
solver or smoother. We illustrate this numerically below in section 5.3.

3.1. Convergence analysis. The main ingredient in proving the convergence
of Algorithm 3.1 is to bridge the connection between the geometric projection on
the surface [21] with existing two-grid convergence results (e.g., see [25, 40]) for the
Laplace eigenvalue problem on the plane. The error introduced by the projection
between nonhierarchical spaces that arises in this setting is accounted for in the final
estimate we derive.

We use the following lemmas to obtain the convergence estimate of the two-grid
method for the Laplace–Beltrami eigenvalue problem. The first lemma, Lemma 3.3
(e.g., see [2, 25]), gives the stability estimate for the discrete shifted problem.

Lemma 3.3 (discrete inf-sup condition with a shift). If µ is not an exact eigen-

value to problem (2.9), then there exists a constant C(µ) such that

sup
v∈Vh

|ah(uh, v)− µbh(uh, v)|

|v|H1(Γh)

≥ C(µ) |uh|H1(Γh)
∀uh ∈ Vh.

The next lemma, Lemma 3.4, is an important identity used to prove the rate of
convergence for the approximation of a certain eigenvalue (e.g., see [2]).

Lemma 3.4. Let (u, λ) ∈ H1(Γ)×R
+ be an eigenpair for problem (1.3); then for

any w ∈ H1(Γ)\{0}

a(w,w)

b(w,w)
− λ =

a(w − u,w − u)

b(w,w)
− λ

b(w − u,w − u)

b(w,w)
.(3.5)

We then define the following measure of Vh’s approximation power:

η(h) := sup
f∈H1(Γh),|f |H1=1

inf
v∈Vh

|Tf − v|H1(Γh)
,(3.6)

where the operator T is defined as

ah(Tf, v) = bh(f, v) ∀f ∈ H1(Γh) and ∀ v ∈ H1(Γh).(3.7)

For finite element eigenvalue problems on a convex planar domain Ω ⊂ R
2, one

can assume that the eigenspace M(λ) has certain regularity, e.g., one assumes that
M(λ) ⊂ H2(Ω), which is the Sobolev space containing functions with second weak
derivatives that are L2-integrable. As a result, it is shown in [25] that if hierarchical
coarse and fine finite element spaces are used, i.e., VH ⊂ Vh, the general estimate for
the two-grid approximation reads for the linear finite element approximation

min
α∈R

∥∥u− αuh
∥∥
H1(Γh)

≤ C(λ)
(
h+H4

)
and |λ− λh| ≤ C(λ)

(
h2 +H8

)
.(3.8)

However, in the case of a surface finite element here, Theorem 3.3 in [25] cannot be
directly applied due to the facts that (i) only H1(Γh), not H

2(Γh), is well-defined on
a piecewise linear triangulation Γh (see, e.g., [20, section 2]), where H2(Γh) stands
for, when being well-defined,

H2(Γh) :=
{
v̄ ∈ H1(Γh) : (∇Γv̄)i ∈ H1(Γh), i = 1, 2, 3

}
;(3.9)
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(ii) when refining, the spaces are not hierarchical, i.e., VH 6⊂ Vh (see Figure 3.1).
In the rest of this subsection, a modified two-grid convergence proof is presented

following the method from [40], and similar bounds are obtained as the standard
two-grid results in (3.8) given that the geometric error is of O(h2).

Theorem 3.5 (convergence of the two-grid method). Let λH be an approximation

to the eigenvalue λ of problem (1.3) satisfying the a priori estimate in

Lemma 2.2. Consider an approximation uh obtained from the two-grid method given

in Algorithm 3.1 with µ = 0 on Γh with h sufficiently small, and λh := ah(u
h, uh)/

bh(u
h, uh). Then, there exists an eigenfunction u ∈ M(λ) such that the following

estimates hold:

min
α∈R

∣∣u− αũh
∣∣
H1(Γ)

≤ C(λ)
(
h+H4

)
, and |λ− λh| ≤ C(λ)

(
h2 +H8

)
.(3.10)

Proof. The proof follows from the ones in [25, 40]. Assume that the coarse
approximation λH is not an eigenvalue of the discrete eigenvalue problem (2.9) on the
fine mesh. Consider an auxiliary solution ûh = (λh−λH)uh, where uh solves problem
(3.4) with µ = 0; then it can be verified that this ûh satisfies

ah(û
h, v)− λHbh(û

h, v) = (λh − λH)bh(PhuH , v) ∀ v ∈ Vh.

In the equation above, (uh, λh) is an eigenpair obtained from the direct solve for
problem (2.9), i.e., ah(uh, v) = λhbh(uh, v) for any v ∈ Vh. Taking the difference of
these two equations yields that for any v ∈ Vh

ah(uh − ûh, v)− λHbh(uh − ûh, v) = (λh − λH)bh(uh − PhuH , v).(3.11)

Applying the discrete inf-sup stability estimate in Lemma 3.3, we have

C
∣∣uh − ûh

∣∣
H1(Γh)

≤ sup
v∈Vh

∣∣ah(uh − ûh, v)− λHbh(uh − ûh, v)
∣∣

|v|H1(Γh)

= sup
v∈Vh

|(λh − λH)bh(uh − PhuH , v)|

|v|H1(Γh)

.

(3.12)

By the triangle inequality and the a priori estimate from Lemma 2.2, we have

|λh − λH | ≤ |λ− λh|+ |λ− λH | ≤ C(λ)H2.(3.13)

Now we restrict the true eigenfunction u ∈ M(λ) with its continuous mapping ū to
the discrete surface Γh or ΓH , and use the definition of η(·), the direct solve achieving
the best approximation (Lemma 2.2), together with the geometric error (Lemma 2.1):

sup
v∈Vh

bh(uh − PhuH , v)

|v|H1(Γh)

≤ sup
v∈H1(Γh)

bh(uh − ū, v)

|v|H1(Γh)

+ sup
v∈H1(Γh)

bh(ū− PhuH , v)

|v|H1(Γh)

≤ c1(λ)η(h) |uh − ū|H1(Γh)
+ c2(λ)η(H) |ū− uH |H1(ΓH) + c3η(H)H2.

(3.14)

Now for η(h) and η(H) defined in (3.6), since restricting on each element T , the
eigenfunction is smooth, then by the interpolation estimate in [18, Lemma 2.2], we
have

η(h) = sup
f∈H1(Γh),|f |H1=1

inf
v∈Vh

|Tf − v|H1(Γh)
≤ Ch,(3.15)
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1640 JAMES BRANNICK AND SHUHAO CAO

where C only depends on the geometry. Using this result, (3.12), and the a priori
estimate for the direct solve eigenfunction approximation, we have

∣∣uh − ûh
∣∣
H1(Γh)

≤ C(λ)H4.(3.16)

Then apply the geometric error estimates (2.11) for both ûh and uh,

∣∣u− ˜̂uh
∣∣
H1(Γ)

≤ |u− ũh|H1(Γ) + c(λ)h2 +
∣∣uh − ûh

∣∣
H1(Γh)

≤ C(λ)(h+H4),(3.17)

where h is assumed to be small enough such that the geometric error, which is O(h2),
can be omitted compared with the O(h) term.

Last, using the fact that ûh = (λh − λH)uh we have

λh =
ah(u

h, uh)

bh(uh, uh)
=

ah(û
h, ûh)

bh(ûh, ûh)
.(3.18)

By Lemma 3.4, the eigenfunction to be normalized to satisfy bh(u
h, uh) = 1, the

Poincaré inequality, and Lemma 2.1, we can get the estimate for the two-grid approx-
imation:

|λh − λ| =

∣∣∣∣
ah(u

h, uh)

bh(uh, uh)
− λ

∣∣∣∣
≤
∣∣a(ũh, ũh)− λ

∣∣+
∣∣ah(uh, uh)− a(ũh, ũh)

∣∣
≤
∣∣a(ũh − u, ũh − u)− λb(ũh − u, ũh − u)

∣∣+ Ch2

≤
∣∣ũh − u

∣∣2
H1(Γ)

+ λ
∥∥ũh − u

∥∥2
L2(Γ)

+ Ch2

≤ C(λ)
∣∣ũh − u

∣∣2
H1(Γ)

+ Ch2 ≤ C(λ)
(
h2 +H8

)
.

(3.19)

Remark 3.6. Theorem 3.5 implies that if the mesh sizes are chosen such that
H . h1/4 between neighboring levels, then the optimal linear rate of convergence
for the eigenfunction in |·|H1(Γ) and the quadratic convergence for the eigenvalue
follow. In our setting, assuming multiple levels of meshes (obtained by uniformly
refining the mesh from the previous level) and that we project the vertices onto the
surface, H . h1/4 holds and the estimate follows. Assume Algorithm 3.1 is applied
in a cascading fashion spanning multiple levels; then the optimal convergence rates of
these two algorithms depend on the assumption that the coarse mesh is fine enough,
that is, they depend on the assumption that the geometric error is sufficiently small.

4. The bootstrap multigrid method. In this section, we propose a finite
element BMG eigensolver based on the BAMG framework [8]. The key ingredient in
the bootstrap approach proposed in this section is the idea to continuously enrich the
coarse space with computed eigenfunction approximations coming from linear solves
on finer meshes.

The motivation of the eigensolve in an enriched coarse space is to overcome
the drawbacks of the standard two-grid method. Essentially, the two-grid methods
proposed, when using the original geometrically defined coarse space, accelerate the
eigensolve on the finest mesh. However, the number of correctly approximated eigen-
pairs by these two-grid methods depends on the dimension of the coarse space (see the
numerical example in section 5.1). With the BMG eigensolver, the desired eigenpairs
of the original Laplace–Beltrami operator can be approximated with the same order of
accuracy as the direct eigensolve achieves on the finest mesh, assuming certain mesh
size relations are satisfied between consecutive levels (see Remark 3.6).
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Algorithm 4.1. A two-grid BMG scheme for approximating eigenfunctions

near µ using an enriched coarse space.

1: Coarse grid eigensolve

Set a coarse-grid shift µH = µ ≥ 0, find (uH,i, λH,i) ∈ VH × R
+ (for i = 1, . . . , N ,

using direct eigensolve, where N ≤ dimVH) satisfies

aH(uH,i, v)− µHbH(uH,i, v) = λH,ibH(uH,i, v) for any v ∈ VH .(4.1)

2: Choose eigenfunctions for the enrichment

Let the index set for the enrichment candidate eigenfunctions be Λ ⊂ {1, . . . , N},
where if i ∈ Λ, |λH,i − µ| < tol. Let

XH := span{uH,i}i∈Λ.(4.2)

3: Fine grid source approximation

Refine TH and perform the geometric projection to get Th. Approximate
uh,i ∈ Vh, where i ∈ Λ, using uH,i ∈ XH as the source, in

ah(u
h,i, v)− µHbh(u

h,i, v) = λH,ibh(PhuH,i, v) for any v ∈ Vh.(4.3)

Then orthogonalize uh,i’s with respect to the inner product bh(·, ·), let the
enrichment space contain the orthogonalized source approximations:

Xh := span{uh,i}i∈Λ.(4.4)

4: Coarse grid eigensolve in the enriched space

Set a new shift µh. Find (uh,i, λh,i) ∈ VH,h × R
+ satisfying, for i ∈ Λ,

aH,h(uh,i, v)− µhbH,h(uh,i, v)=λh,ibH,h(uh,i, v) for any v ∈ VH,h,(4.5)

where VH,h := VH +Xh is the enriched coarse space. Update XH = span{uh,i}i∈Λ.

4.1. The two-grid bootstrap algorithm. A two-grid bootstrap algorithm is
outlined in Algorithm 4.1 and illustrated briefly in Figure 4.1(a). The algorithm takes
a coarse mesh, a shift µ, and the tolerance tol as inputs.

In the two-grid bootstrap method, the bilinear forms aH,h(·, ·) and bH,h(·, ·) are
defined as follows. Let w ∈ VH +Xh be any function such that w = wH +wh, where
wH ∈ VH , and wh ∈ Xh. Then, for any test function v = vH + vh ∈ VH +Xh

aH,h(w, v) := aH(wH , vH) + ah(PhwH , vh)

+ah(wh,PhvH) + ah(wh, vh),

and bH,h(w, v) := bH(wH , vH) + bh(PhwH , vh)

+bh(wh,PhvH) + bh(wh, vh).

(4.6)

Now we rewrite some of the key equations in Algorithm 4.1 in their matrix forms.
Problem (4.3) can be rewritten as follows: find Uh,i ∈ R

Nh , i ∈ Λ,

(Ah − µHMh)U
h,i = λHMh(PhUH,i).(4.7)
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VH VH +Xh

Vh

Vh1
+Xh2

Vh1
+Xh3

Vh2
Vh2

Vh3

Vh1
Vh1

+Xh2
Vh1

+Xh3
Vh1

+Xh4

Vh2
Vh2

Vh2
Vh2

Vh2

Vh3
Vh3

Vh3

Vh4

(a) (b)

(c)

Fig. 4.1. Illustration of Algorithms 4.1, 4.2, and 4.3 in (a), (b), and (c), respectively. A gray
diamond box stands for a direct eigensolve on the coarse level (with or without the enrichment), a
blue circle stands for a source problem approximation (smoother/solve) on finer levels. The names
in the boxes or circles stand for the finite element spaces that are used in the various steps of the
algorithm. (a) A two-grid bootstrap algorithm between the coarse and fine levels. (b) A BMG V-
cycle iteration between level 1 and level 3. The enrichments space Xh2

is updated to Xh3
using the

approximations in Vh3
. (c) A bootstrap full multigrid cycle iteration between level 1 and level 4.

From coarse to fine, Rayleigh quotient iteration (4.18) is performed. From fine to coarse, smoothing
(4.19) is performed.

Here Ah and Mh are the stiffness matrix and mass matrix for the degrees of freedom
on the fine approximation space Vh, respectively. U

h,i is the vector representation of
uh,i in the canonical finite element basis, and its superscript is inherited from uh,i.
The UH,i with the subscript is the vector representation of the direct solve solution
uH,i in the coarse approximation space VH .

Step 4 of Algorithm 4.1 is to find Uh,i ∈ R
NH+|Λ|, and λh,i ∈ R

+, i ∈ Λ,

(AH,h − µhMH,h)Uh,i = λh,iMH,hUh,i.(4.8)

The enriched stiffness and mass matrices AH,h and MH,h are in the following coarse-
fine block form: let Uh := (Uh,1, . . . , Uh,|Λ|) ∈ R

Nh×|Λ| be the block of all the approx-
imations from problem (4.7), and

AH,h =

(
AH PHAhU

h

(Uh)TAhPh (Uh)TAhU
h

)
, MH,h =

(
MH PHMhU

h

(Uh)TMhPh (Uh)TMhU
h

)
.

Remark 4.1 (choice of the shifts). The shifts µH , µh ≥ 0 in Algorithm 4.1 are
added in case the user is interested in a specific range of the eigenvalues. If one is to
find the eigenvalues from the smallest one, the shift can be set as µH = µh = 0 for all
of the enriched coarse eigenvalue problems and fine source approximation problems.
To recover interior eigenvalues, the coarse-grid shift µH can be set to be a positive
number that is near the center of an eigen-cluster of interest. Then the new shift µh is
updated using the Rayleigh quotients computed from the fine source approximations.

The choice of the set of enrichment functions XH (test vectors in the BAMG
[8] setup) with index set Λ is related to the eigenspace of interest, as well as the
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BOOTSTRAP MULTIGRID EIGENSOLVER 1643

resources one can afford. As the dimension of XH increases, the sparsity of AH,h de-
teriorates, resulting in a more expensive fine-grid source problem. Thus, we propose
that the user shall choose the coarse space according to the spectrum of interest. Us-
ing approximating the Laplace–Beltrami spectrum on a closed surface as an example,
consider the simple case that the user wants to recover the lth eigenpair, (λh,l, uh,l),
where 1 ≤ l < dimVH . The eigensolve in the coarse space contains the discrete
approximations {(λH,i, uH,i)}

dimVH

i=1 to these eigenpairs. Then, the index set for the
eigenfunction approximations Λ in (4.2) can be chosen as {k̂ ∈ Z : l −m ≤ k̂ ≤ l}.
Here, m is greater than or equal to the geometric multiplicity shown in the discrete
spectra for the eigenvalue closest to the eigenvalue of interest, say, λH,l, and the
tolerance tol is set to be the maximum distance between the distinctive eigenvalue
clusters. Intuitively, these choices are motivated by the fact that the algorithm should
“detect” the improvement in the approximations of the eigenpair (λh,l, uh,l) of inter-
est. For additional discussion of how to set shifts and how to choose the enrichment
candidates, please refer to the examples in section 5.2.

Theorem 4.2 (error estimates for BMG Algorithm 4.1). Assume µ ≥ 0 is an

eigenvalue of neither problem (2.9) nor problem (2.4), and suppose uH,i ∈ XH in (4.2)
for i = 1, . . . , dimXH are linearly independent, and there exists a ui ∈M(λ+ µ) with
the estimates

|λ− λH,i| ≤ C(λ, µ)H2, and
∣∣ui − ũH,i

∣∣
H1(Γ)

≤ C(λ, µ)H,

sup
v∈Vh/R

b(ui − P̃huH,i, ṽ)

|v|H1(Γh)

≤ C(λ, µ)H
∣∣ui − ũH,i

∣∣
H1(Γ)

.
(4.9)

After one iteration of Algorithm 4.1 with µH = µh = µ under a uniform refinement

with h sufficiently small, and an exact solve in step 3, there exists a û ∈ M(λ+ µ)
such that the resultant approximation (λh,i, uh,i) has the following error estimates:

|λ− λh,i| ≤ C(λ, µ)(h2 +H4), and
∣∣û− ũh,i

∣∣
H1(Γ)

≤ C(λ, µ)(h+H2).(4.10)

Proof. The proof follows from a similar argument in [27, Theorem 3.4] and uses
Lemma 3.3, with the geometric error estimates from Lemma 2.1. For simplicity first
we consider dimXH = 1, then define a projection Πh : H1(Γ)→ Vh of a u ∈M(λ+µ)
with respect to the inner product ah(·, ·) as follows:

ah
(
Πhu, v

)
= a(u, ṽ), and

∫

Γh

Πhu dS =

∫

Γ

u dS = 0 ∀v ∈ Vh.(4.11)

For uh from the exact solve of (4.3), by Lemma 3.3,

c
∣∣uh −Πhu

∣∣
H1(Γh)

≤ sup
v∈Vh

∣∣ah(uh −Πhu, v)− µbh(u
h −Πhu, v)

∣∣
|v|H1(Γh)

.(4.12)

The numerator on the right-hand side above becomes
∣∣ah(uh −Πhu, v)− µbh(u

h −Πhu, v)
∣∣

=
∣∣ah(uh, v)− µbh(u

h, v)− (ah(Πhu, v)− µbh(Πhu, v)︸ ︷︷ ︸
=:(d)

)
∣∣.

The first difference ah(u
h, v) − µbh(u

h, v) = λHbh(PhuH , v). For (d) by (4.11) and
a(u, ṽ)− µb(u, ṽ) = λb(u, ṽ) we can write it as

(d) = a(u, ṽ)− µbh(Πhu, v)

= λb(u, ṽ) + µb(u, ṽ)− µb(Π̃hu, ṽ) + µb(Π̃hu, ṽ)− µbh(Πhu, v).
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1644 JAMES BRANNICK AND SHUHAO CAO

As a result, by the triangle inequality we have
∣∣ah(uh −Πhu, v)− µbh(u

h −Πhu, v)
∣∣ ≤ |λHbh(PhuH , v)− λb(u, ṽ)|︸ ︷︷ ︸

=:(I)

+
∣∣µb(u, ṽ)− µb(Π̃hu, ṽ)

∣∣
︸ ︷︷ ︸

=:(II)

+
∣∣µb(Π̃hu, ṽ)− µbh(Πhu, v)

∣∣
︸ ︷︷ ︸

=:(III)

.
(4.13)

Next we show the estimates for each term on the right of (4.13). For (I) we have

(I) =
∣∣λHbh(PhuH , v)− λb(u, ṽ)

∣∣

≤
∣∣∣b
(
λHP̃huH − λu, ṽ

)∣∣∣+
∣∣∣bh
(
λHPhuH , v

)
− b
(
λHP̃huH , ṽ

)∣∣∣ .
(4.14)

For the second term above in (4.14) which is introduced by approximating the ge-
ometry, by letting q = uh − Πhu ∈ Vh below, applying [21, Lemma 4.7], a Poincaré
inequality on Γh since

∫
Γh

(uh −Πhu) dS = 0 [32, Remark 5.3], and discarding higher
order terms, we have

∣∣∣bh
(
λHPhuH , v

)
− b
(
λHP̃huH , ṽ

)∣∣∣

≤ λH sup
q∈Vh/R

∣∣bh
(
λHPhuH , q

)
− b
(
λHP̃huH , q̃

)∣∣
|q|H1(Γh)

|v|H1(Γh)

≤ ch2λH

‖PhuH‖L2(Γh)
‖q‖L2(Γh)

|q|H1(Γh)
|v|H1(Γh)

≤ ch2λH ‖PhuH‖L2(Γh)
|v|H1(Γh)

.

(4.15)

For the first term in (4.14), applying the geometric error estimate in Lemma 2.1
such that |ṽ|H1(Γ) ≤ (1 + ch2) |v|H1(Γh)

, we have

b
(
λHP̃huH − λu, ṽ

)
≤ (1 + ch2) sup

q∈Vh/R

b
(
λHP̃huH − λu, q̃

)

|q|H1(Γh)
|v|H1(Γh)

≤ (1 + ch2)

(
|λ− λH | sup

q∈Vh/R

b
(
P̃huH , q̃

)

|q|H1(Γh)
+ λ sup

q∈Vh/R

b
(
P̃huH − u, q̃

)

|q|H1(Γh)

)
|v|H1(Γh)

.

(4.16)

Exploiting the technique in (4.15) again, and combining the estimates above with
the assumption in (4.10), we have reached (I) ≤ C(1+ ch2)2H2 |v|H1(Γh)

. For (II), we
have

(II) :=
∣∣µb(u, ṽ)− µb(Π̃hu, ṽ)

∣∣ ≤ µ
∥∥u− Π̃hu

∥∥
L2(Γh)

‖v‖L2(Γh)
.

We choose v = uh − Πhu ∈ Vh here; thus the Poincaré inequality can be used and
‖v‖L2(Γh)

. |v|H1(Γh)
. Since the lifting operator does not preserve the integration,

the Poincaré inequality (see, e.g., [22, Lemma B.63]) has to be applied on the first
term as follows:

c
∥∥u− Π̃hu

∥∥
L2(Γh)

≤
∣∣u− Π̃hu

∣∣
H1(Γ)

+ |Γ|−1

∫

Γ

Π̃hu dS.

A standard error estimate for the projection
∣∣u− Π̃hu

∣∣
H1(Γ)

. h|∇Γu|H1(Γ) (e.g., [18,

Lemma 2.2]) can be applied to the first term above. The second term above can be
estimated by the fact that

∫
Γh

Πhu dS = 0,
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BOOTSTRAP MULTIGRID EIGENSOLVER 1645

∫

Γ

Π̃hu dS = b(Π̃hu, 1)− bh(Πhu, 1) ≤ ch2|Γ|1/2‖Πhu‖L2(Γh).

As a result, we have (II) ≤ Cµ(h + h2) |v|H1(Γh)
. Last, for (III) [21, Lemma 4.7] is

applied again as in (4.15) and we have (III) ≤ Cµh2 |v|H1(Γh)
. Applying the triangle

inequality and discarding the higher order term yield

∣∣u− ũh
∣∣
H1(Γ)

≤
∣∣u− Π̃hu

∣∣
H1(Γ)

+
∣∣Π̃hu− ũh

∣∣
H1(Γ)

≤ C(λ, µ)(h+H2).

When dimXH > 1, the argument above still applies by [4, Theorem 4.1] since uh,i’s
are orthogonal with respect to bh(·, ·). Last, we apply the eigenpair approximation
results with multiplicity ≥ 1 results in [3, (8.47b), p. 700, and Theorem 9.1], and for
each i, we have for a û ∈M(λ), VH,h := VH + span{uh,i}

∣∣û− ũh,i

∣∣
H1(Γ)

≤ inf
w∈M(λ)

inf
v∈VH,h

∣∣w − ṽ
∣∣
H1(Γ)

≤
∣∣ui − ũh,i

∣∣
H1(Γ)

,

which, together with the estimate above, gives the first estimate in (4.9). Now using
the same argument as (3.19) yields the eigenvalue estimate in (4.10).

Remark 4.3 (smoothers versus solve in (4.3)). For simplicity of presentation, we
have assumed that (4.3) is solved exactly in the proof of Theorem 4.2. Nevertheless,
applying similar estimates for the Gauss–Seidel smoother using, e.g., [35, Lemma 3.9],
the estimate in (4.10) can be shown to yield the same order error under appropriate
choice of smoothers.

4.2. The bootstrap multigrid cycle. The V-cycle variant of Algorithm 4.1 is
given by incorporating this two-grid method into a multilevel setting, as we outline in
Algorithm 4.2 and illustrate briefly using three levels in Figure 4.1(b). The algorithm
here is a simplified variant of the BAMG approach presented in [8] since the coarse-
level systems and the restriction and interpolation operators can be defined using
the finite element formulation at hand; in BAMG the restriction and interpolation
operators are defined algebraically and the coarse-level system is computed using the
Galerkin definition.

For the geometric BMG algorithm in this paper, we construct an “almost” hierar-
chical sequence of finite element spaces that are geometrically projected to the finest
one, with a total number of K meshes: V̂h1

⊂ V̂h2
⊂ · · · ⊂ V̂hK−1

⊂ VhK
. The meshes

are obtained using the surface mesh refinement procedure in section 2, and then finite
element spaces on the first through (K − 1)th levels are projected onto the Kth level
by recursively using the projection in (3.1). We note that the coarsest space has been
enriched by approximations from all finer spaces at the end of one BMG V-cycle.

In contrast to the conventional fine-coarse-fine multigrid V-cycle for a source
problem, the BMG V-cycle (Algorithm 4.2) poses itself as an “inverted” V-cycle as
the relaxations process as coarse-fine-coarse. In Figure 4.1(b), the first Vh2

node
corresponds to the presmoothing stage of the conventional multigrid V-cycle. The
Rayleigh quotient iteration problem (4.18) is approximated in Vh2

using a smoother.
Starting from the Vh3

node, together with the second Vh2
node, a smoother for the

source problem (4.19) is applied on each level, resembling the postsmoothing stage of
the conventional multigrid V-cycle. The diamond boxes represent the direct eigensolve
in the space Vh1

+Xhi
(i = 2, 3).
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1646 JAMES BRANNICK AND SHUHAO CAO

Algorithm 4.2. A BMG V-cycle for approximating eigenpairs between level

1 and level k ≥ 2. Input: (uhk−1,i, µhk−1
, λhk−1,i), Output: (uhk,i, µhk

, λhk,i).

1: Coarse grid eigensolve in an enriched space

For a fixed shift µhk−1
, perform a direct eigensolve for the coarse-grid eigenpairs

(uhk−1,i, λhk−1,i) ∈ Vh1,hk−1
× R

+ for i ∈ Λ, where Vh1,hk−1
= Vh1

+Xhk−1
, and Λ

is index set of Xhk−1
on the (k − 1)th level, satisfying, for any v ∈ Vh1,hk−1

,

ah1,hk−1
(uhk−1,i, v)− µhk−1

bh1,hk−1
(uhk−1,i, v) = λhk−1,i bh1,hk−1

(uhk−1,i, v).
(4.17)

2: Rayleigh quotient iteration

For s = 2, . . . , k − 1, approximate for uhs,i in the following source problem on
level s: for any v ∈ Vhs

ahs
(uhs,i, v)− µhk−1

bhs
(uhs,i, v) = λhk−1,i bhs,hk−1

(uhs−1,i, v),(4.18)

where uh1,i := uhk−1,i ∈ Vh1
+Xhk−1

.
3: Smoothing of fine-grid auxiliary source problem

Apply a smoother for uhk,i ∈ Vhk
from level k back to level 1 for the following

problem defined on the finest grid: for any v ∈ Vhk

ahk
(uhk,i, v)− µhk−1

bhk
(uhk,i, v) = λhk−1,ibh(Phk

uhk−1,i, v).(4.19)

Then orthogonalize uhk,i’s with respect to the inner product bhk
(·, ·).

4: Coarse shift and enrichment space updates

Update Xhk
= span{uhk,i}i∈Λ. Update the coarse-grid shift µhk−1

from the
previous cycle to µhk

based on the Rayleigh quotients of the eigenfunctions in
Xhk

.
5: Coarse grid eigensolve in the updated enriched space and shift

Find (uhk
, λhk

) ∈ Vh1,hk
× R

+ satisfying, for i ∈ Λ, and any v ∈ Vh1,hk
,

ah1,hk
(uhk,i, v)− µhk

bh1,hk
(uhk,i, v) = λhk,i bh1,hk

(uhk,i, v),(4.20)

where Vh1,hk
= Vh1

+Xhk
is the updated enriched coarse space.

Finally, we present the bootstrap full multigrid (BFMG) method in Algorithm
4.3. The transition from the BMG V-cycle (Algorithm 4.2) to the BFMG (Algorithm
4.3) resembles the conventional full geometric multigrid cycle that applies V-cycles
in an incremental fashion, in terms of the levels (meshes) involved. On the coarsest
mesh, the eigenvalue problem is directly solved and then the eigenpairs of interest
form the right-hand sides of the source problems that are approximated on the finer
meshes. The approximated solutions obtained from the source problems are then
used to enrich the coarse space. Overall, the algorithm is continuously improving the
eigenpair approximations by working mainly on the coarsest level. The algorithm is
again illustrated briefly using four levels in Figure 4.1(c).

For the BFMG algorithm (Algorithm 4.3), we remark that the final output on
the Kth level, which approximates a certain eigenpair of interest, is given by the
source problem approximation (uhK

, λhK
) := (uhK , λhK ). The effect of a single BMG

V-cycle for this approximation resembles the two-grid method in Algorithm 3.1 in
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Algorithm 4.3. BFMG scheme for approximating eigenpairs over K levels.

1: Coarse eigensolve

Let (uh1,i, λh1,i) ∈ Vh1
× R

+ (i ∈ Λ ⊂ {1, . . . , dimVh1
}) perform a direct

eigensolve for the following problem:

a(uh1,i, v)− µh1
b(uh1,i, v) = λh1,ib(uh1,i, v) for any v ∈ Vh1

.

2: V-cycle iteration

Set a certain level k > 1, perform the V-cycle iteration as in Algorithm 4.2
between level 1 and k.

3: Rayleigh quotient

If k < K, k ← k + 1. If k = K, compute the eigenvalue approximation on the
finest level for all i ∈ Λ using the source approximations.

that a direct eigensolve is applied in the (enriched) coarse space and, then, the source
approximation is computed on the finer spaces.

Otherwise, if the aim is to recover the entire spectrum, then the mesh can be con-
tinuously refined, in which case the final output from the BFMG algorithm (Algorithm
4.3) converges to the true eigenpairs of problem (1.3).

5. Numerical experiments. In this section, we report various results from
the finite element approximation of the eigenvalue problem (1.3) on a 2-sphere S

2.
The numerical experiments in this section are carried out using the finite element
toolbox iFEM [17]. The source codes for these experiments are publicly available
at http://github.com/lyc102/ifem/tree/master/research. The initial coarse mesh is
generated by Distmesh [30].

In all tests (of both the two-grid methods and the BFMG from Algorithm 4.3),
the finer meshes are obtained from a uniform refinement of the coarser mesh. The
mesh sizes satisfy that h4

k−1 . hk between the coarser mesh at the (k−1)th level and
the finer mesh at the kth level. The newly created vertices are then projected onto
the continuous surface.

In all the BMG approaches, the dimension of the enrichment space on the coarsest
level dimXh is fixed unless explicitly stated otherwise. This dimension is usually set as
the multiplicity of the largest possible eigenvalue being computed plus some additional
overlap with its neighboring eigenvalues in the discrete spectra. We note that in the
first two subsections, unless specifically stated otherwise the source problems on the
finer levels are solved using a direct method.

The true solutions to the eigenvalue problem (1.1) of the Laplace–Beltrami
operator on the 2-sphere are known as the real spherical harmonics (e.g., see [24]).
Specifically, the jth eigenvalues, for l2 ≤ j ≤ (l + 1)2 − 1, counting multiplicity, are
λj = l(l + 1) for l ∈ Z

+. The dimension of the associated eigenspace to the lth
distinctive eigenvalue is 2l + 1.

In computation, due to the numbering of the vertices in the triangulation, the
eigenfunctions obtained approximate a rotated version of the spherical harmonics
represented using Cartesian coordinates. For this reason, we use an a posteriori error
estimator to give the error estimate of the eigenfunctions under an H1(Γ)-seminorm.
The error estimator we use is a combination of the one in [18] for a noneigenvalue
problem and the one from [19] for the eigenvalue problem on a polygonal domain.
The local error estimator for a surface triangle T ∈ Th is defined as follows:
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Fig. 5.1. Coarse #(DoFH) = 54. The two-grid method results in the approximated eigenspace
dimension being less than intended. Blue dots are the Rayleigh quotients computed by the two-grid
finite element approximations. Red dots are true eigenvalues. (a) Coarse grid approximation λH ’s
versus the true λ. (b) Two-grid approximation λh’s after five levels versus the true λ.

η2T = h2
Tλ

2
h ‖uh‖

2
L2(T ) +

1

2

∑

e⊂∂T

he ‖[[∇Γuh · (nT×τ e)]]e‖
2
L2(e) + ‖Bh∇Γuh‖

2
L2(T ) .

(5.1)

For notation please refer to [18, 6, 5]. The global error estimator is obtained by

η(uh) :=
(∑

T∈Th
η2T
)1/2

.

5.1. Standard two-grid eigensolver. To begin we apply the two-grid method
from Algorithm 3.1 with shift µ = 0 and note that the indefinite source problem on the
finer grid is solved directly. Our aim here is to illustrate the spectra loss phenomenon
that is caused by a coarse space being too small. To this end, the coarsest mesh
that approximates the sphere is set to have only 54 nodes, i.e., #(DoFH) = 54. The
coarsest spectrum computed by eigs can be viewed in Figure 5.1(a). We can observe
that the true λj = 30 for 26 ≤ j ≤ 36, and the dimension of the eigenspace for λj = 30
is 11. Further, we see that the numerical approximations to the higher end of the
spectrum have large errors, that is, we see that the approximated λH,j on the coarse
mesh are closer to the next eigenvalue 42 in the spectra than the true eigenvalue 30
that they are supposed to approximate. This causes part of the eigenpairs from the
coarse eigenspace M(λH,j) for 26 ≤ j ≤ 36 to converge to eigenpairs of the true
λ
j
′ = 42 for 37 ≤ j′ ≤ 49. As a result, as seen in Figure 5.1(b) dim(M(λh,j)) =

8 < dim(M(λj)) = 11, where M(λh,j) is the finite element approximated eigenspace
associated with λh,j ≈ 30.

Note that the spectrum loss becomes even more severe for the approximation of
the eigenspace for the true eigenvalue λj = 42 (37 ≤ j ≤ 49). In this case, if we use
the same coarse mesh only four eigenfunctions are recovered in the fine space (see
Figure 5.1(b)).

When a certain eigenpair is “lost” in the two-grid approximation scheme, a finer
coarse mesh can be used in order to recover an improved approximation. This is
because on a finer coarse mesh the wavelength of these eigenfunctions can be resolved.
As an example consider the case where the coarse mesh #(DoFH) = 54 and the
34th eigenvalue (λ34 = 30) is wrongly approximated by the two-grid method (see
Figure 5.1(b)). If a finer coarse mesh is used instead with #(DoFH) = 96, then the
34th eigenvalue is recovered. A comparison of this case is provided in Figure 5.2.
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Fig. 5.4. Coarse #(DoFH) = 54. The enrichment space is chosen according to the placement
of the eigenpair of interest on the discrete spectra. Red dots are true eigenvalues. (a) Coarse-
grid eigensolve approximations λh1

’s and λh2
’s obtained from the eigensolve in the enriched space

Vh1
+span{uh2,j

′
}
26≤j

′
≤37

, versus the true λ. (b) Enriched coarse eigensolve approximations λh2
’s

obtained from Vh1
+ span{uh2,j

′
}
26≤j

′
≤37

, and λh3
’s obtained from Vh1

+ span{uh3,j
′
}
26≤j

′
≤37

,

versus the true λ.

we observe that the approximation to the eigenpair of interest does not improve (see
Figure 5.3(b)).

The reason for this behavior can be explained as follows. First, we see that the
approximations to λh1,j (26 ≤ j ≤ 36) are closer to the true eigenvalue λj = 42
(37 ≤ j ≤ 49) than the corresponding discrete spectra λh1,j (37 ≤ j ≤ 49). As the
coarse space is enriched by a single function {uh2,37}, which is obtained by solving a
single source problem in Vhk

(k ≥ 2) on the kth level, the new approximation λhk,37

becomes closer to the true eigenvalue λ37 = 42 that it is supposed to approximate.
However, it is still not as good an approximation as λh1,j (26 ≤ j ≤ 36) to the true
eigenvalue λ37 = 42. As such, the algorithm mixes these modes and then cannot
detect the eigenpair of interest.

Heuristically speaking, for the Laplace–Beltrami eigenvalue problem on S
2, as-

suming a priori knowledge of the dimension of the eigenspace, it follows that if we
seek to approximate the lth distinctive eigenvalue λj = l(l + 1), then the coarse

space Vh1
should at least be enriched by the subspace Xhk

= span{uhk,j
′
}
j
′
∈Λ

, where

Λ = {j′ ∈ Z : (l − 1)2 + 1 ≤ j′ ≤ j}. In this example, for λ37 = 42 where l = 7,

the enrichment space Xhk
is span{uhk,j

′
}
26≤j

′
≤37

, where the uhk,j
′
’s denote the so-

lutions to the source problems in the finer space Vhk
on the kth level (k ≥ 2) for

the 26th to 37th eigenpairs of the discrete spectra. The comparison can be found in
Figures 5.4(a) and 5.4(b). Now, because the discrete eigenvalues λhk,j (26 ≤ j ≤ 36)
are better approximated after the coarse space is enriched with multiple eigenfunc-
tions, the algorithm is able to better detect the eigenpair of interest λhk,j (j = 37,
k = 2, 3) after the second coarse eigensolve, and overall we see that the approximations
improve.

If one is interested in recovering all the eigenvalues from the smallest one, then
Algorithm 4.2 can be applied with an index-fixed Xhk

and for each distinctive eigen-
value one at a time. Here we choose a fixed dimension 20 (greater than the biggest
numerical multiplicity observed from the coarse eigensolve). The 20 enrichment can-
didate functions are the eigenfunctions associated with the 20 eigenvalues nearest to
the eigenvalue of interest on the discrete spectra, and these eigenfunctions are kept
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Fig 5.7 Coarse #(DoFH) = 54; both the enrichment space and the shift µ are chosen on each
level based on the current approximation to the eigenpair of interest on the discrete spectra. Red dots
are true eigenvalues. (a) Coarse grid approximation λh1

’s, the shift µh1
= 32. (b) λh4

’s obtained
from Vh1

+Xh4
, the shift µh4

= 24.9861.
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Fig. 5.8. Convergence results of BMG using the shifted problem with an updating µ to approx-
imate interior eigenvalue λ = 20. The enrichment space’s dimension is 20 where the eigenfunctions
of the 20 eigenvalues nearest to 0 are used. The coarse eigensolve is performed with a shift updated
after each BMG V-cycle (Algorithm 4.2). The convergence is plotted for the smallest eigenvalue
among the ones which approximate λ = 20. (a) The source problem on the current level is solved
by a direct solver. (b) The source problem on the current level is approximated by five sweeps of
Kaczmarz relaxations.

we observe in practice that performing the BFMG (Algorithm 4.3), when applied
continuously among multiple levels, brings the whole discrete spectra closer to the
true spectra. Consequently, the averaging after each V-cycle is to compensate for this
change. Figure 5.7(b) contains results obtained with applying this procedure twice,
between level 3 and level 1 and between level 4 and level 1. The convergence after
five levels of refinement can be found in Figure 5.8(a). We note that if the shift
is unchanged after each V-cycle, then a similar phenomenon as in Figure 5.3(b) is
observed.

Another interesting observation is that by computing the enrichment space ac-
cording to the eigenpairs that we are attempting to approximate we are able to obtain
improved approximations to these interior eigenvalues without having to first compute
accurate approximations to the smaller eigenvalues and their corresponding eigenfunc-
tions (see Figure 5.4(b)). Thus, the BFMG (Algorithm 4.3) approach can be used
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to compute interior eigenpairs. In contrast, the approach proposed in [15] only com-
putes multiple eigenpairs starting with the smallest. In this way, our method for the
shifted Laplace–Beltrami eigenvalue problem is more general and flexible than pre-
vious methods that have been developed for the Laplace eigenvalue problem on the
plane.

5.3. Solving versus relaxing the source problem. In previous works on
designing multigrid eigensolvers (e.g., [27, 31]), the auxiliary problems in the correc-
tion step are solved with a direct method on the fine level. In the BMG algorithms
(Algorithms 4.1, 4.2 and 4.3), the exact solve is replaced with an iterative solver (a
smoother such as symmetric Gauss–Seidel, or Kaczmarz relaxations). We illustrate
in the numerical experiments that a direct solve of the shifted and indefinite system
is not necessary and that relaxation on the shifted source problems suffices to guar-
antee a nearly optimal convergence rate for the approximation of the eigenpair the
algorithm produces. In the first test of this subsection, we compare the following four
ways to deal with the source problem on the fine level:

(1) Two-grid Algorithm 3.1 with shift µ = 0 applied in a cascading fashion as in
Remark 3.1. The shift for finer levels comes from previous levels; direct solve
is applied to the shifted (indefinite) problem (3.4) on the finer levels when
the algorithm is applied between neighbor levels.

(2) Same setting as (1). For the shifted (indefinite) problem (3.4), five sweeps of
the Kacmarcz smoother per level are applied using the prolongation of the
approximation from previous level as an initial guess.

(3) BFMG Algorithm 4.3 with shift µ = 0. For the unshifted positive definite
source problems (4.3) of BMG on the kth level, direct solve is used.

(4) Same setting as (3). In the BMG V-cycle Algorithm 4.2, one sweep of Gauss–
Seidel smoother per level is applied to problem (4.3) using the prolongation
of the approximation from previous level as an initial guess.

Note that the simplification in (2) and (4) reduces the overall computational cost
of the approach significantly.

To judge whether the source problems need to be approximated to machine pre-
cision as in a direct solve in (1) or (3), or some sweeps of a smoother suffice in (2)
or (4), a key measure is to check the rates of convergence r when the meshes are
continuously refined. The rate of convergence r (notice this is different from the rate
of convergence for a linear system solver) satisfies the following:

|λ− λhk
| ∼ O(#(DoFk)

−r) ∼ O(h2r
k ),(5.2)

where k stands for the numbering of the levels, and hk is the mesh size of the kth level.
λhk

is the approximation of the eigenvalues obtained either from a direct eigensolve on
level k, Algorithm 3.1 applied cascadingly from level 1 through level k, or Algorithm
4.3. Note that when the mesh is continuously refined such that H = h1 > h2 > · · · >
hk > · · · , the optimal rate of convergence of O(h2

k) by a direct solve predicted by
the a priori estimate (2.13) for the eigenvalue approximation is achieved with r ≈ 1.
Checking if r for an iterative algorithm is close to 1 in turn implies that the algorithm
is convergent in terms approximating the true eigenvalues.

In Table 5.1, we compare the rate of convergence for the approximation of the
first three distinct eigenvalues for methods (1) through (4) mentioned earlier, as the
first three distinct eigenvalues can be recovered by all methods without the loss of
spectrum phenomenon in section 5.1.
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Table 5.1
Comparison of the rates of convergence r as in O(#(DoF)−r) for the first three distinct eigen-

values’ approximation of Laplace–Beltrami operator on S2. TG = two-grid.

λ TG TG w/ Kaczmarz BMG BMG w/ GS

2 1.0084 0.9656 1.0037 0.9963
6 1.0063 0.9575 1.0005 0.9764

12 1.0084 0.9731 1.0059 0.9801

Table 5.2
Comparison of the rates of convergence r in O(#(DoF)−r) for λ = 20.

λ Shifted BMG Shifted BMG w/ Kaczmarz

20 0.9861 0.9054

First, r’s for (1) and (2) are compared in the second and third columns in
Table 5.1. Then r’s for (3) and (4) are compared in the fourth and fifth columns
in Table 5.1.

The experiments correspond to three choices of the eigenvalues and the results
suggest that it is sufficient to solve the unshifted source problem using Gauss–Seidel
and the BFMG method (Algorithm 4.3) still yields a nearly optimal rate of conver-
gence with r ≈ 1. In addition, the promising two-grid results obtained using the
Kaczmarz iteration for the indefinite system together with the multilevel results re-
ported in the previous section for the shifted (indefinite) Laplace–Beltrami eigenvalue
problem suggest that the algorithm will also work well for symmetric indefinite prob-
lems such as the Helmholtz equation.

In the second test of this subsection, we compare the following two methods
studied in the last part of section 5.2:

(5) BFMG Algorithm 4.3 with an adaptive shift µ after each BMG V-cycle.
For the shifted indefinite source problems (4.19) of on the current finest level,
direct solve is used.
(6) Same setting as (5). In the BMG V-cycle Algorithm 4.2, five sweeps of
the Kaczmarz smoother per level are applied to problem (4.19) using the
prolongation of the approximation from the previous level as an initial guess.

The r’s for (5) and (6) are compared in the second and third columns in Table 5.2.
The comparison of the convergence is shown in Figures 5.8(a) and 5.8(b).

The convergence rates of the BFMG (Algorithm 4.3) with uniform refinement
are further verified numerically for the Laplace–Beltrami eigenvalue problem on the
sphere in Figure 5.9. These results are on par with the a priori two-grid estimates
in (3.10). Note that for larger eigenvalues, e.g., λj = 30 (plot on the right), more
degrees of freedom are needed in order to obtain the same accuracy as for smaller
eigenvalues, e.g., λ = 2 (plot on the left). Of course, the resolution required to achieve
high accuracy for large eigenvalues is expected to be greater since these modes are
generally more oscillatory. The key difference in the BMG algorithms (Algorithms
4.1, 4.2, and 4.3) is that with the enriched coarse space it is possible to approximate
larger eigenvalues without needing to continuously increase the size of the coarsest
system in order to approximate larger eigenpairs, as required by the standard two-grid
method (Algorithm 3.1).
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Fig. 5.9. Typical convergence results of BMG: using unshifted problem to approximate λ = 2,
λ = 30. (a) λ = 2. The enrichment space’s dimension is fixed to be 6 using the 6 eigenfunctions of
the lowest 6 eigenvalues from the coarse eigensolve. (b) λ = 30. The enrichment space’s dimension
is fixed to be 15 using the 15 eigenfunctions of the 15 eigenvalues starting from the 20th eigenvalue
from 0.

6. Conclusions. In this paper, we introduced a bootstrap multigrid (BMG)
method for solving PDE eigenvalue problems. As we showed, the BMG algorithm is
a geometric version of the BAMG setup algorithm from [8] and it provides an over-
all framework for the design of multigrid eigensolvers. As an example, we designed
and analyzed a finite element BMG method for solving the shifted Laplace–Beltrami
eigenvalue problem. Our analysis and numerical experiments focused on this model
problem since it is a challenging eigenvalue problem (the eigenvalues have high multi-
plicity and discretization and refinement of the problem leads to a nonnested sequence
of meshes in the multilevel hierarchy) and the true solutions are known, allowing us
to systematically study the performance of the algorithm.

First, we extended the standard two-grid method from [25] for the Laplace ei-
genvalue problem on the plane to the shifted Laplace–Beltrami eigenvalue problem
on a surface and we showed that the method gives an optimal O(h2) convergence,
assuming that the coarsening is not too aggressive and that the coarse eigenvalue
problem is solved using a direct method. We also showed that if the coarse mesh
is not fine enough, then a “spectra loss” phenomena occurs and that approximating
larger eigenvalues requires increasingly finer coarse meshes.

To treat this observed spectral loss in the standard two-grid algorithm, we con-
sidered the BMG method that enriches the coarse space with a subspace consisting
of increasingly accurate approximations to the eigenpairs of interest. Moreover, we
showed that these approximations can be computed by applying only a few steps of
relaxation to related symmetric source problems on finer meshes to obtain reasonably
good results. Moreover, our approach is able to approximate eigenpairs with large
multiplicity provided that the enrichment space has sufficiently large dimension. Gen-
erally, the dimension of the coarsest space needs to depend on the dimension of the
eigenspace that the user wants to compute. In addition, we showed that the bootstrap
eigensolver can be used to compute a large portion of the eigenspace, starting with
the smallest eigenpairs. We also showed that if instead only a few large eigenpairs
are sought, then shifted indefinite systems can be solved using the BMG algorithm
with the Kaczmarz smoother in order to compute interior eigenpairs directly. Finally,
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we proved the convergence of our two-grid BMG approach for the shifted Laplace–
Beltrami eigenvalue problem in a simplified setting, illustrating the ability of the
method to directly compute interior eigenvalues.
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visions of the paper.
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