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Abstract

Adversarial attacks are a threat to automatic speech recognition
(ASR) systems, and it becomes imperative to propose defenses
to protect them. In this paper, we perform experiments to show
that K2 conformer hybrid ASR is strongly affected by white-
box adversarial attacks. We propose three defenses—denoiser
pre-processor, adversarially fine-tuning ASR model, and ad-
versarially fine-tuning joint model of ASR and denoiser. Our
evaluation shows denoiser pre-processor (trained on offline ad-
versarial examples) fails to defend against adaptive white-box
attacks. However, adversarially fine-tuning the denoiser using
a tandem model of denoiser and ASR offers more robustness.
We evaluate two variants of this defense—one updating param-
eters of both models and the second keeping ASR frozen. The
joint model offers a mean absolute decrease of 19.3% ground
truth (GT) WER with reference to baseline against fast gra-
dient sign method (FGSM) attacks with different Lo, norms.
The joint model with frozen ASR parameters gives the best
defense against projected gradient descent (PGD) with 7 iter-
ations, yielding a mean absolute increase of 22.3% GT WER
with reference to baseline; and against PGD with 500 iterations,
yielding a mean absolute decrease of 45.08% GT WER and an
increase of 68.05% adversarial target WER.

Index Terms: speech recognition, adversarial attacks and de-
fenses, adversarial training, robustness, speech enhancement

1. Introduction

In today’s world, voice-based smart assistants are ubiquitous—be
it using phones, dedicated home assistants like Alexa, Google
Home, Apple Pod, or as call center agents [1]. A core tech-
nology behind these assistants is automatic speech recogni-
tion (ASR) whose goal is to transcribe speech to text. Recent
work [2, 3, 4] has shown that ASR systems are vulnerable to
adversarial inputs, which contain specially crafted mostly hu-
man inaudible noise. Considering the threat of these adversar-
ial attacks, it becomes of foremost importance to propose de-
fensive countermeasures to protect ASRs. These countermea-
sures broadly fall into three categories—pre-processing, stochas-
tic, and adversarial training. Pre-processing defenses intend to
remove the adversarial noise from the signal before passing it
into the machine learning system [5, 6, 7]. Stochastic defenses
introduce randomness into the model. Thus, the model used
to craft the adversarial sample differs slightly (but stochasti-
cally) from the model used to evaluate the sample, reducing at-
tack effectiveness. Randomized smoothing is the most common
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stochastic defense [8]. Finally, adversarial training tries to make
the model inherently robust by training on dynamically gener-
ated adversarial examples [9, 10]. The major contributions of
this work are highlighted below:

* We evaluate the robustness of a strong baseline K2 Con-
former hybrid ASR model against white-box attacks, i.e.
when the adversary is aware of parameters of the model. To
the best of our knowledge, this is the first work that fully uti-
lizes a differentiable hybrid ASR model to study adversarial
robustness.

* We propose four defenses—a pre-processing time-domain de-
noiser, adversarial fine-tuning and two variants of joint adver-
sarial training of a pre-processing denoiser with ASR model.

* We evaluate these defenses against strong adaptive white-box
attacks, i.e. when the adversary is aware of parameters of
defense model along with those of ASR.

The rest of the paper is as follows. In Section 2, we introduce
adversarial attacks on ASR. In Section 3, we describe defenses;
followed by experiments and results in Section 4 and 5 respec-
tively.

2. Adversarial attacks on ASR

An ASR system can be considered as a function y = f(x,0),
which predicts a sequence of words y given an audio wave-
form x. f is a statistical model described by a set of parameters
0. ASR systems are known to be vulnerable to adversarial at-
tacks [2]. The attacker adds a small perturbation to the benign
signal to alter the prediction of the system. Depending on the
goals of the attacker, we find different attack modalities. When
an adversarial example fools the ASR into predicting a particu-
lar target phrase that an adversary desires, it is called a targeted
adversarial attack. Untargeted attacks, by comparison, simply
induce transcription errors and are not of as much concern in the
ASR context [3]. Table 1 explains the concept of targeted attack
via an example. Suppose we have a speech signal x. Without
any attack, a human will transcribe x as actual = This
is the human ASR output. Now using x as input to
the ASR model, the output transcription by the ASR is denoted
as benign = Thus is the real ASR output. Sup-
pose, the adversary wants the ASR model to predict the target
phrase denoted by target = Transfer $1000 from
my account. To achieve this goal, he/she crafts an adversar-
ial example x’ such that when x’ is given as input to the ASR,
the model produces the output transcription adversarial =
Transfer a sand from my account. One can find
Word Error Rate (WER) between the pairs of the transcrip-
tions as shown in Table 2. Let WER between reference
(ref) and hypothesis (hyp) be denoted by W ER(ref, hyp).
Benign = WER(actual,benign) denotes the Benign
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Table 1: Table describing types of transcripts with shorthand symbol used and example

| Description | Shorthand | Under attack? | Example
What is the actual (human transcribed) content of speech signal? actual X This is the human ASR output
What is the text that the ASR system predicts ? benign X Thus is the real ASR output
What is the text that the adversary wants to achieve? target v Transfer $1000 from my account
What is the text that is actually predicted by ASR after the attack? | adversarial v Transfer is sand from my account

Table 2: Table describing different Word Error Rate (WER) metrics used for evaluation of successful defense

. Formula Defense

‘ Description ‘ WER type ‘ WER(<L ref >, < hyp >) success ‘

Does the defense harm the un-attacked system? Benign ground truth Benign = WER(actual,benign) 1

Did the attacker succeed in denial of service? Adversarial ground truth | GT = WER(actual,adversarial) 1
Did the adversary make the system recognize what he/she wants? Adversarial target TGT=WER(target,adversarial) T
ground truth WER, which measures the performance of the the input. This additive normal noise tries to mask the gradients
ASR system in non-attack conditions. A good ASR system, that are essential in computing adversarial examples. If ¢ is too
and hence defense, should have Benign WERs as low as pos- high, the benign accuracy reduces and hence it is vital to find o
sible, indicated by | in the column Defense success. GT = that offers robustness without reducing the accuracy. Previous
W ER(actual, adversarial) is called the adversarial ground work on speaker identification defenses [13] show that this de-
truth WER. GT is a performance indicator of how much the fense can be easily combined with other defenses and may offer
attacker succeeded in denial-of-service, i.e. introducing untar- additional protection against high L. attacks.
geted spelling errors. A higher value indicates as successful
untargeted attack, while a low value is characteristic of a ro- 3.2. Adversarial fine-tuning of ASR model

bust ASR. TGT = W ER(target, adversarial) denotes the
adversarial target WER and is a performance indicator whether
the adversary was successful in getting the ASR to predict the

This defense is a variant of adversarial training [9]. Instead of
full adversarial training, which leads to convergence issues in

chosen target phrase. While the adversary wants TGT WER ASR, we propose to bootstrap from a pre-trained ASR (which

to as low as possible (meaning, target phrase to be recognized
perfectly), an ideal defense will make it be as high as possible.
This is indicated by 1 in the column Defense success.

Attack Algorithms: An adversarial example is computed as
x' = x + & where is x is a benign signal and ¢ is a small

adversarial perturbation. Many attack algorithms in the litera-

ial training is done by minimizing the loss function given by

is trained using clean/benign examples as normally done) and
then fine-tune using the model using PGD adversarial attacks.
We call this model ADV-FINETUNE-ASR. For an ASR model
denoted by f(-, 8), where 6 are the model parameters, adversar-

ture [4] propose different ways to compute &. In this work, we 0" = argemin Egy)op [J(f(x+05,0),y)], (2

consider FGSM [11] and Projected Gradient Descent (PGD) at-
tacks [9]. For targeted attacks, PGD optimizes delta by gradient
descent iterations that minimizes the ASR loss L between the
target phrase selected by the attacker y***#°* and the adversar-
ial transcript predicted by ASR. Thus, for iteration ¢ 4 1,

Sir1 = clip_(6; — asign(VL(f(x,0), ")) . (1)

D is the set of training audio-transcript pairs (x,y), and §*
optimized by PGD iterations.

3.3. Denoiser
Throughout this paper, PGD-i indicates the number of iterations
used for PGD attack (e.g.: PGD-7 means 7 iterations). At every
iteration, the clip function (projection) ensures that ||§||cc < €,
keeping the attack imperceptible. We choose the learning rate «
at every iteration is one fifth of the max-norm. FGSM is a sin-
gle iteration version of PGD with step a = . While attacking
any system (with or without defense), we assume that it fully

auxiliary loss.

where J is the ASR loss function (lattice-free MMI in our case),

argmaxg 51 <.J(f(x+9,0),y) is adversarial perturbation

The pre-processing denoiser defense maps adversarial signals
to benign. The denoiser was trained using deep regression ap-
proach [14] in time-domain. Training objective function Ly
is Multi-Resolution Short-Time Fourier Transform (MRSTFT)

M
white-box and adaptive, meaning the adversary knows not only _ (m) ’

the speech recognition model parameters but also the defense. Lsip = B xinps 4 [Z_l Lap’ (%], 3)
This is the worst-case scenario to evaluate robustness, a com- (m) , (m) 717 (m) ,

monly expected norm for evaluation of defenses, as it exposes Lap’ (x,%) = L (%, (X, @) + Log (%, 9(X, 9))),
the system’s weakest links [12]. 4

_ IISTET™ (x)| — | STFT™ (X)||l»

£ (x, % G
3. Defenses (%, %) [ STET™ (x)]|| )
3.1. Randomized smoothing 5‘(‘17;;)(x75() _ %H log | STFT™ (x)|
Randomized smoothing is a stochastic defense that adds ran- (m) /s
dom, normally-distributed noise with standard deviation o to — log [STFT™ (X)][|1 ; (©)
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Table 3: Ground Truth (GT) Word error rate (%) (1) for K2 ASR systems under FGSM and PGD-7 attacks and defenses. RSo stands

for randomized smoothing with a o parameter.

System Benign FGSM Attack PGD-7 Attack
Lo (max-norm) 0.0001  0.001  0.01 0.1 0.2 0.0001  0.001  0.01 0.1 0.2
Baseline (full LibriSpeech test-clean) 4.34 5.12 713 10.62 7027  90.80 629 2238 6350 9524 97.68
Baseline (reduced LibriSpeech test-clean) 4.53 5.36 722 1156 7484 9132 6.44 2589 63.63 9571 97.90
+ RS0.001 4.66 4.88 1043 13.12  79.23  94.49 4.83 1048 65.68 9473 97.17
+ RS0.001 + DENOISER 4.95 4.97 595 21.65 81.72 98.78 4.97 590 40.61 92.64 95.76
ADV-FINETUNE-ASR + RS0.001 4.73 4.88 570 2048 8230  99.27 4.88 590 4042 9371 96.10
ADV-FINETUNE-JOINT + RS0.001 5.22 5.07 570 6.00 2140 5558 5.27 522 1219 7899 9274
ADV-FINETUNE-JOINT-ASRfrozen + RS0.001 5.64 6.09 624  9.65 90.05 100.00 6.24 639 1029 6529 89.81

where x is a benign signal and x’ is the corresponding adver-
sarial signal, * = g(x’, @) is the predicted benign and ¢ are
the parameters of the denoiser. B and A denote the benign and
adversarial domains and Pg, 4 denotes their joint distribution,
which is obtained from a dataset of offline attack samples. Lqp
uses M different STFT with different frame-shift and frame-
lengths, which are indexed by m = 1... M. The number of
time-frequency bins in the STFT are denoted by N, while ||-||»
refers to the Frobenius matrix norm.

3.4. Adversarial fine-tuning of joint ASR and Denoiser
model

The disadvantage of using denoiser as pre-processor is that, in
a fully white-box scenario, the adversary can break the system
by backpropogating through the combined denoiser+ASR net-
work and computing adaptive adversarial attacks—i.e., attacks
that adapt to the defense (albeit at the expense of higher com-
puting cost). Therefore, to make the denoiser itself robust to
adaptive white-box attacks, we propose to adversarially fine-
tune the pre-trained denoiser in tandem with the ASR model us-
ing on-the-fly PGD attacks, trying to minimize the ASR cross-
entropy. We call this model ADV-FINETUNE-JOINT. Similar
to standard adversarial training in (2), the optimum parameters
for denoiser and ASR models are given by

6*’ (z)* = ar%r;linE(x,y)ND [J(f(g(x + 6*3 ¢)7 9)3 y)} I (7)

s

where 6" = arg max; 51 <.J(f(9(x+0,9),0),y).

3.5. Adversarial fine-tuning of joint ASR and Denoiser
model with ASR model frozen

It is known that adversarial fine-tuning may over-fit the ASR
model to work well on adversarial examples, degrading be-
nign performance. To avoid this, we tried another variant of
the joint network by freezing the ASR model and just up-
dating the denoiser parameters. We call this model ADV-
FINETUNE-JOINT-ASRfrozen. We expect that adversarial
training on the denoiser will be more efficient than doing it
on the full ASR+denoiser network, as the denoiser network is
much smaller than ASR and hence will require fewer epochs to
train.

4. Experimental Setup

Dataset, Baseline, and Adversarial Attacks Our experimental
setup was based on LibriSpeech dataset [15]. We used a Hybrid
DNN-HMM ASR model implemented on the K2 framework'

Ihttps://k2-fsa.github.io/k2/index.html
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Table 4: Word error rate (%) for K2 ASR system under PGD-
500 attacks. [Ground-truth WER (GT) and target WER (TGT).
RSo stands for randomized smoothing with a o parameter. Ar-
row | indicates lower is better and T indicates higher is better.

System Benign PGD-500 Attack
Lo (max-norm) 0.01 0.1
GT| GT] TGTt GT| TGT?t

Baseline (reduced LibriSpeech test-clean) 4.53  97.81 40.71 100.59 16.47
Baseline + RS0.001 478 101.41 16.37 101.22 17.19
Baseline + RS0.001 + Denoiser 4.63 9405 5540 9244 7196
ADV-FINETUNE-ASR + RS0.001 497 6884 91.07 101.95 10.03
ADV-FINETUNE-JOINT

+ RS0.001 5.17 6236 97.94 96.25 4892
ADV-FINETUNE-JOINT-ASRfrozen 570 2540 10005 82.84 93.23

+ RS0.001

using PyTorch [16]. A Conformer [17] network was used to
compute frame-level posteriors, which were used as input to the
K2 WFST decoder. The Conformer consisted of 12-layers with
dimension=256, heads=4, and feed-forward dimension=2048;
and used 80 log-Mel-filterbank features. The whole pipeline
is end-to-end differentiable to be able to compute adversarial
examples in time domain. This model was trained on the full
960 hours LibriSpeech corpus for 20 epochs, and the parame-
ters from the last 5 epochs were averaged to get the final model.
We denote this model as the undefended baseline. To evalu-
ate the robustness of the model, we applied targeted FGSM and
PGD attacks with different strengths, i.e., max. Lo, norm lev-
els: {0.0001, 0.001, 0.01, 0.1, 0.2}. For PGD, we evaluated
attacks with 7 and 500 iterations (PGD-7 and PGD-500). The
target phrases used to craft the attacks were taken from the Lib-
riSpeech training set. For each utterance, we chose a target
phrase with length similar to the benign transcript. We eval-
uated the attacks on the first 100 examples from LibriSpeech
test-clean. We chose to work on this reduced set because of
three reasons. First, the computational cost for PGD iterations
is too high for the full set, so in the literature, it is common to
experiment on a limited number of utterances [2]. Second, for
the baseline, the performance of the reduced set did not statisti-
cally change w.r.t. the full set (see Table 3). Lastly, this setup is
the same as in previous work [18] and in DARPA-GARD eval-
uations. Another important thing to point-out is that we always
evaluated using white-box adaptive attacks. That means that
the adversary knows the defenses and their parameters, and it
is able to back-propagate through them to create the adversar-
ial examples. Many works in the adversarial literature do not
consider adaptive attacks based their defense in obfuscating the
gradients of the system, as evidenced in [19].



Attacks Dataset: We create a dataset by generating offline
PGD adversarial samples against LibriSpeech train sets using
Ly ={0.2,0.5,1.5,1.9} and L = {0.001,0.01,0.1} threat
models with number of iterations {10, 20, 50, 100,200} sam-
pled with more bias towards high norm and high iteration at-
tacks. Generating offline adversarial examples has the advan-
tage that we can use computationally expensive PGD attacks
with large number of iterations without letting a model run for
months on online attacks. The generated attacks were used to
train the denoiser as described in Section 4. Then, the pre-
trained denoiser could be finetuned in tandem with ASR model
to increase its robustness.

Denoiser: After experimenting with a few denoiser architec-
tures, we choose TasNet [20], a time-domain model for source
separation and speech enhancement. It is an all-convolutional
1-D Convolutional Neural Network (CNN), which consists of
encoder, separator, and decoder. The encoder and decoder are
single convolutional layers, while the separator stage consists
of multiple CNNs called stacks. The stacks output are com-
bined to produce a mask, which is applied to the encodings and
passed to the decoder stage. We used 128-dim encodings ob-
tained with kernel-size=16 and stride=8. The separator used
one stack with 16 layers, with kernel dilations increasing with
a factor of 2 [20]. We trained the denoiser on our dataset of of-
fline attacks, using the corresponding benign example as a clean
target.

ADV-FINETUNE-ASR: We fine-tuned the baseline ASR
model on on-the-fly PGD-7 attacks. The L., for these at-
tacks were randomly sampled from a log uniform distribution
[0.0001,0.02]. The learning rate was 10x lower than the one
used in the training phase.

ADV-FINETUNE-JOINT: Instead of adversarially fine-tuning
just the ASR model, we jointly fine-tuned the tandem de-
noiser+ASR. We evaluated another variant where attacks were
generated on the tandem denoiser+ASR, but we only updated
the denoiser weights while the ASR model is frozen. We call
this defense as ADV-FINETUNE-JOINT-ASRfrozen.

5. Results

We evaluate the robustness of baseline ASR and all proposed
defenses against FGSM and PGD-7 attacks (Table 3) and PGD-
500 attacks (Table 4). For FGSM and PGD-7, the WER w.r.t.
the target phrase was always greater than 90%. In other words,
the adversary is not able to make the ASR to recognize the ma-
licious target phrase. Hence, we omitted TGT WER in Table 3
and included only WER w.r.t ground truth phrase (GT WER).
We analyze the undefended baseline for full and reduced Lib-
rispeech test-clean set. We observe that the results for both sets
are similar. Therefore, henceforward, all models were evalu-
ated on the reduced set to alleviate the large cost of generating
attacks (and other reasons mentioned in Section 4). Next, we
evaluated the different defenses. We observe that the denoiser
defense trained on offline attacks performed better than random-
ized smoothing for most L, values and on par with the adver-
sarially trained ASR. Both defenses jointly adv. fine-tuning de-
noiser and ASR performed significantly better than the offline
denoise and the adv. fine-tuned ASR. ADV-FINETUNE-JOINT
yielded the largest robustness against FGSM attacks with mean
absolute decrease of 19.3% GT WER w.r.t. the baseline. ADV-
FINETUNE-JOINT-ASRfrozen was the best for PGD-7 with a
mean absolute decrease in GT WER of 22.3% w.r.t. the base-
line. We can observe that for both attacks, the best defense kept
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Figure 1: Summary of systems for all attack settings using box
plot. We exclude FGSM-Lo, = 0.2 and PGD-Loo = 0.2) be-
cause they are perceptible attacks with SNR. The dotted line
indicates the clean/benign performance of the system

the system robust up to L, < 0.01.

When increasing the number of PGD iterations to 500 (Ta-
ble 4), the WER w.r.t. the target phrase (TGT) decreases, mean-
ing that the attacker starts being successful in making the system
to recognize a particular malicious phrase. However, to obtain a
usable TGT WER of 16%, it needs to increase L to 0.1, which
is a very perceptible attack. Here, the goal of the defense is in-
creasing TGT WER while reducing GT WER. Again, the best
system by far was ADV-FINETUNE-JOINT-ASRfrozen. The
mean absolute decrease in GT WER was 45.08% GT WER and
increase in TGT WER was 68.05%. Although there was a slight
increase (1.17%) in the benign WER with reference to the base-
line model, the gain in adversarial robustness overshadowed it.
The proposed method significantly outperformed the baseline
defenses in the literature, i.e., randomized smoothing and ASR
adversarial training. Unfortunately, for large Lo, = 0.1, the
defenses could not reduce GT WER much. However, note that
these are very perceptible attacks and even using Gaussian noise
(non-adversarial) of that level would significantly damage the
ASR system.

6. Conclusion

We evaluated the robustness of K2 Hybrid ASR model along
with four defenses—pre-processing time-domain denoiser de-
fense, adversarial fine-tuning of ASR model and two variants of
joint adversarial training of pre-processing denoiser and ASR
model. We evaluated these defenses against strong adaptive
white-box attacks, i.e. when the adversary is aware of parame-
ters of defense model along with those of ASR. To understand
the big picture of the defenses, we convert the Table 3 to box
plot shown in Figure 1. Please note that we exclude FGSM-
Lo = 0.2 and PGD-L, = 0.2) as they are perceptible. The
dotted blue line indicates the clean/benign performance of the
individual systems. The best defense should have WER distri-
bution concentrated around the blue line. The results show that
ADV-FINETUNE-JOINT is the best defense, followed closely
by ADV-FINETUNE-JOINT-ASRfrozen. On the other hand,
for PGD-500 attacks, ADV-FINETUNE-JOINT-ASRfrozen per-
forms the best, consistently yielding low GT WER and high
TGT WER. This is at the cost of slight degradation in benign
WER (<1.2%), however this is expected for adversarial de-
fenses. In the future, we would like to bridge this gap further.
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