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Abstract

This article presents an immersed virtual element method for solving a class of interface
problems that combines the advantages of both body-fitted mesh methods and unfitted mesh
methods. A background body-fitted mesh is generated initially. On those interface elements,
virtual element spaces are constructed as solution spaces to local interface problems, and
exact sequences can be established for these new spaces involving discontinuous coefficients.
The discontinuous coefficients of interface problems are recast as Hodge star operators that
are the key to project immersed virtual functions to classic immersed finite element (IFE)
functions for computing numerical solutions. An a priori convergence analysis is established
robust with respect to the interface location. The proposed method is capable of handling
more complicated interface element configuration and provides better performance than
the conventional penalty-type IFE method for the H(curl)-interface problem arising from
Maxwell equations. It also brings a connection between various methods such as body-fitted
methods, IFE methods, virtual element methods, etc.
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1 Introduction

Interface problems widely appear in many engineering and physical applications involving
multiple materials or media that incorporate discontinuous coefficients for the related partial
differential equations (PDEs). For example, Fig. 1 illustrates a two-dimensional bounded
domain Ω that is formed by two different materials separated by a closed smooth curve
Γ ∈ C1,1, i.e., Γ separates Ω into subdomains Ω+ and Ω− such that Ω = Ω+ ∪ Ω− ∪ Γ .
The main challenge of using standard finite element methods (FEMs) is that solutions of
interface problems are not smooth across the interface. It is well known that FEMs can be used
to solve interface problems with optimal accuracy [21, 49, 55, 74, 76] based on body-fitted and
shape regular meshes. The “body-fittedness” refers to that the interface is well approximated
by edges of elements [49], i.e., the piecewise linear approximated interface cannot intersect
any element interior. However, it is nontrivial and time-consuming to generate such a shape
regular mesh that fits the interface, as it generally requires certain global modifications.
This issue will become more severe for complex geometry or moving interface problems,
especially in three dimensions.

So, it becomes critical for the purpose of efficiency to relax the mesh restriction for
interface problems. Generally speaking, two different groups of methods can be found in
this field: (i) modify the finite element spaces or finite difference stencils to encode the jump
conditions into the discretization; (ii) modify the mesh only near the interface and then apply
either continuous or discontinuous Galerkin formulation.

The first approach employs meshes that are completely independent of the interface,
i.e., the so-called unfitted mesh methods. As the mesh cannot resolve interface geometry,
special treatments are needed on interface elements. The Nitsche’s idea [60] uses penalties
to enforce the jump condition, see e.g., CutFEM [9] or unfitted FEM [33]. Another strategy
is to construct special FEM functions or finite difference stencils on interface elements, such
as the immersed interface method [48], the MIB method [75], the multiscale FEM [23], and
the immersed finite element (IFE) methods [32, 52, 53] to be discussed. In particular, for
the IFE method, a set of local basis functions on interface elements are devised as piecewise
polynomials that include jump conditions in their connection in a pointwise or an averaging
sense. The convergence of IFE methods for H1 interface problems have been established
in [32, 52, 53] and improved recently in [28, 30, 43, 44]. These methods still obtain the

Fig. 1 The domain and a uniform
triangulation for the interface
problem

123



Journal of Scientific Computing (2022) 93 :12 Page 3 of 41 12

optimal convergence order where the hidden constant is independent of the interface location
relative to the mesh. However, for almost all these unfitted mesh methods, the approximation
spaces are not conforming. The non-conformity actually becomes an essential issue for
solving H(curl) interface problems arising from Maxwell equations, which has been widely
discussed in the literature [7, 14, 15, 31, 38], also see the discussion below. It is one of the
motivation for the proposed method that aims to develop a method based on conforming
approximation spaces.

For the second approach, as the modification is only performed locally near the interface,
shape regularity, in general, cannot be achieved. Instead, the refined meshes are required to
satisfy the maximum angle condition [4, 46, 47] to obtain optimal convergence rates robust
with respect to element shapes. One work in this direction can be found in [20]. This is
indeed achievable for the 2D case, as the maximum angle condition can be always satisfied
for arbitrary interface location [12], and even for adaptive meshes [72]. However, such a
local triangulation satisfying the maximum angle condition might not be readily available or
requires strenuous effort to generate in the 3D case [26, 50, 57]. This obstacle also motivates
us to develop a method that does not rely on a local triangulation. Even though the current
work is only for the 2D problems, it can shed light on the 3D case. In fact, we have recently
established the 3D IVE spaces in [13] after this work.

Recently, the authors in [18] proposed a novel method that directly works on polygonal
or polyhedral elements cut from interface, instead of re-triangulating them to simplices. The
key of [18] is to employ directly the virtual element method (VEM) on these elements for the
discretization, on which only degrees of freedom (DoFs) are necessary for assembling the
final linear system, e.g., see [63, 65, 66, 70] and the reference therein. The “virtual” shape
functions, which are H1 functions that serve as the solutions to certain local problems but
do not need to be explicitly solved, are then projected to polynomial spaces for computation
through DoFs. One key advantage is its flexibility for element shapes being polygonal or
polyhedral. As the interface may intersect elements arbitrarily which generates elements
with high aspect ratio, for the aforementioned approach in [18], one major difficulty is to
obtain a robust a priori error estimate independent of the potentially anisotropic subelement
shapes. Some anisotropic error analysis of VEM can be found in [10–12] for different interface
problems.

Inspired by VEM [18] and IFE methods in the literature, is it possible for a numerical
method to take both the advantages of conformity provided by virtual element spaces and
robust optimal approximation capabilities of IFE spaces? The question severs as one major
motivation for this work. For this purpose, we shall develop H1, H(curl) and H(div) virtual
element spaces involving discontinuous coefficients, i.e., they are solution spaces to some
local interface problems incorporating jump conditions related to the underlying equations.
As the interface is immersed into the design of the virtual element spaces, we shall call it
immersed (interface) virtual element method (IVEM). The key idea is to use the conforming
virtual element spaces on a shape regular background unfitted mesh Th for discretization, and
then to project them to the IFE spaces on interface elements which are cut by the interfaces
from the background mesh. The virtual element space provides the conformity and the IFE
space can offer sufficient and robust approximation capabilities locally. We also note that
this practice exhibits similarity to the Trefftz finite element method (Trefftz-FEM) [45],
in which the basis functions are fundamental solutions to certain local problems. Another
resemblance is that Trefftz FEM may relax the exact inter-element continuity to yield a “quasi-
conforming” discretization [2, 41], which carries the same spirit with the IFE spaces locally.
Moreover, as subelements of elements are treated together through the jump conditions
instead of independently as anisotropic polygons, it is highlighted that the coercivity can
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be established of which the hidden constants are independent of subelement shapes. This
property does not hold for virtual element spaces defined only on subelements [10, 18],
where the coercivity constant may depend on the anisotropy of polygons or polyhedra, and
refined analysis is needed to establish a robust error analysis.

In particular, we will consider the following H1 and H(curl) interface problems in two
dimensions and refer to [42] for H(div) interface problems. Due to the fact that solution
exhibiting low regularity near the interface, especially for the H(curl) equations [24, 25],
in this work we only consider the lowest order methods. The first problem of interest is an
H1-elliptic interface problem

−∇ · (β∇u) = f in Ω− ∪ Ω+,

u = 0 on ∂Ω,
(1.1)

with f ∈ L2(Ω), and the continuity and flux jump conditions

[u]Γ := u+ − u− = 0, (1.2a)

[β∇u · n]Γ := β+∇u+ · n − β−∇u− · n = 0, (1.2b)

where n := n(x) denotes the unit normal vector to Γ at x = (x1, x2) ∈ Γ pointing from Ω−

to Ω+. In the following discussion, n always denotes the unit outward normal vector, and t

denotes the tangential vector which is a counterclockwise rotation of n by π/2.
The second model we are interested in is an H(curl) interface problem arising from

Maxwell equations:

curl (α curl u) + βu = f in Ω− ∪ Ω+, (1.3a)

u · t = 0 on ∂Ω, (1.3b)

with f ∈ H(div;Ω), where the operator curl is for vector functions v = (v1, v2)
⊺ such that

curl v = ∂x1v2 −∂x2v1 while curl is for scalar functions v such that curl v =
(
∂x2v,−∂x1v

)
⊺

with “⊺" denoting the transpose herein. The following jump conditions at the interface Γ are
imposed:

[u · t]Γ := u+ · t − u− · t = 0, (1.4a)

[α curl u]Γ := α+curl u+ − α−curl u− = 0, (1.4b)

[βu · n]Γ := β+u+ · n − β−u− · n = 0. (1.4c)

In Eqs. (1.1) and (1.3), the coefficients α and β in Ω are assumed to be positive piecewise
constant functions of which the locations of the discontinuity align with one another:

α(x, y) =
{

α+, (x, y) ∈ Ω+,

α−, (x, y) ∈ Ω−,
β(x, y) =

{
β+, (x, y) ∈ Ω+,

β−, (x, y) ∈ Ω−.

Note that the two models above share the same parameter β which can be interpreted from
the perspective of de Rham complexes. The proposed virtual element spaces can inherit this
kind of structure on each interface element.

Similar to the standard virtual element spaces in the literature, our new H1, H(curl) and
H(div) virtual element spaces admit the nodal and edge DoFs which make them conform-
ing in their respective Sobolev spaces even with the presence of interface-cutted mesh and
discontinuous parameters. These DoFs also enable us to establish the global exact sequence,
and e.g., the following commutative diagrams
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R −→ H2(β; Th)
∇−−→ H1(curl, α, β; Th)

curl−−−−→ H1(α; Th) −→ 0⏐⏐⏐�I n
h

⏐⏐⏐�I e
h

⏐⏐⏐�π
αh

h

R −→ V n
h

∇−−→ Ve
h

curl−−−−→ Q
αh

h −→ 0.

(1.5)

See Sects. 2.2 and 3.1 for definitions of spaces and operators.
Constructing special shape functions by solving local problems to capture certain behavior

of solutions can be traced back to the fundamental work of Babuška et al. in [5, 6]. In particular,
for a 1D case, the basis functions in [5, 6] are the solutions of

− (β(x)u
′
)′ = 0 in [a, b] (1.6)

subject to some boundary conditions at the ending points a, b. It could be considered as the
local problems of VEM with variable coefficients. Due to the trivial 1D geometry, solutions
of (1.6) can be expressed as

∫ x

a
β−1(s) ds. When β is a piecewise constant function, they

become exactly the 1D IFE functions [51]. Namely, for this case, the 1D VEM and IFE
spaces are identical, but they are distinguished in higher dimensions due to more complicated
geometry. From this point of view, on one hand, the proposed IVEM is a more straightforward
generalization of the early approach of Babuška et al. On the other hand, the conventional
IFE space is also important to provide robust local approximation capabilities, and thus is
suitable for constructing projections.

We also note that the newly constructed H1 virtual element space is similar to the mul-
tiscale finite element space in [23] in the sense that local interface problems are used to
develop the approximation spaces. In both approaches, standard non-piecewise polynomials
on interface elements cannot be used to approximate the solutions to these local interface
problems due to the jump conditions across the interface. In [23], the authors generate a local
fine mesh and use standard finite element functions for approximation. Here we propose
projecting the virtual element spaces to IFE spaces consisting of piecewise polynomials that
can accurately capture the jump conditions. We will show that, similar to the conventional
VEM, these projections are indeed computable directly through the DoFs.

The proposed method is not only a new formulation of IFE or VEM in the literature, but
also inherits the advantages of both the two methods, or even the general fitted mesh and
unfitted mesh methodology. First, it is still able to solve interface problems on a background
unfitted mesh. However, different from most of the unfitted mesh methods aforementioned
that do not impose any DoFs on edges or nodes associated with cutting points of interface, the
proposed one does impose these newly added DoFs. With this property, it may better resolve
the more complex geometry but without generating an extra triangulation near the interface.
In other words, we use a virtual body-fitted mesh. Second, it is known that IFE shape functions
satisfying certain DoFs are in general not easy to construct, and theoretically their existence
are subject to some geometric conditions [28, 31, 42]. Within the VEM framework, this
issue has been completely addressed, since the DoFs are imposed through virtual functions
which always exist by solving local problems. Third, compared with the anisotropic analysis
for conventional VEM [8, 10], the robust error analysis of the proposed method can be,
thanks to the shape regularity of background meshes and properties of IFE spaces, easily
and systematically obtained regardless of subelement shape. Finally, compared with other
penalty-type methods in the literature [30, 53], the proposed method requires only a locally
computed edge term within each element, and thus makes the assembling procedure easier
as the stabilization term does not need explicitly the interaction of neighbor elements’ DoFs.

One remarkable advantage of using the proposed method is to recover the optimal con-
vergence for solving H(curl) interface problems on unfitted meshes. The H(curl) equations
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are sensitive to the conformity of the approximated spaces due to its low regularity. Discon-
tinuous Galerkin methods can obtain an optimal convergence, but this is based on the fact
that the broken non-conforming space contains an H(curl)-conforming subspace when no
interface is present, see the analysis in [35–37]. Unfortunately, many aforementioned con-
ventional unfitted mesh methods do not preserve this property which may cause the loss of
accuracy. This phenomenon has been numerically observed and theoretically proved in [14,
15] for Nitsche’s penalty methods. In [54], the authors assume a higher regularity, i.e., at
least piecewise H2(Ω±), to overcome this issue. As for IFE methods, standard penalty-type
methods still do not achieve optimal convergence, and a Petrov-Galerkin method can be
applied, see [31], and achieve optimal order convergence with certain conditions. The IVEM
proposed in this paper is able to circumvent this issue since the underlying IVE space is
always conforming which is distinguished from many conventional unfitted mesh methods.
The resulting linear algebraic system remains symmetric and positive definite unlike the
one obtained from Petrov-Galerkin formulation [31]. Again due to the usual low piecewise
H1(curl) regularity near the interface for the H(curl) equations, in this work we only consider
the lowest order methods.

The rest of this article is organized as follows. In Sect. 2, some existing results are presented
to help us to establish the error analysis. In Sect. 3, we introduce the IVE space and its
properties, and review IFE spaces. In Sect. 4, we show some novel estimates for IFE spaces
that help in our error analysis. In Sect. 5 and Sect. 6, the convergence is shown for the H1

and H(curl) interface problems, respectively.

2 Preliminary

In this section, we introduce some mesh assumptions and define some notation. We also
recall some existing fundamental estimates which are critical for our analysis. Throughout
this paper, we assume Ω ⊂ R

2 is a simply connected convex polygon. Usually it can be
chosen as a rectangle enclosing the interface.

2.1 Meshes

Let Th = {K } be a shape regular triangulation of the domain Ω that may not be fitted to the
interface. A triangle K is called an interface triangle if |K ∩ Ω+| > 0 and |K ∩ Ω−| > 0;
otherwise K is called a non-interface element. The collection of interface elements and
non-interface elements are denoted as T i

h and T n
h , respectively.

For a non-interface element K , the local finite element space is simply defined as the
linear polynomial space P1(K ) for (1.1) or the lowest order Nédélec space ND0(K ) [56, 58]
for (1.3a). The usage whether to choose the nodal or edge shape functions depends on the
problem. For convenience of the reader, RT 0(K ) is the lowest order Raviart-Thomas space
[61] on K as well. If K ∈ T i

h , see Fig. 2a for example, b1 and b2 denote the intersection

points of the interface and ∂K , and we let Γ K
h = b1b2. In addition, we let NK be collection

of vertices and cutting points of K , and let EK be collection of cut segments from the original
edges of K , for example NK = {a1, a2, a3, b1, b2} and EK = {a1b1, b1a2, a2a3, a3b2, b2a1}
for the interface element K in Fig. 2a. Namely, we treat K as pentagon instead of a triangle.
Moreover, let Nh and Eh be the collection of all the vertices and edges of NK and EK overall
all the K , respectively. Although the conventional IFE methods may be only used on the
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(a) (b) (c)

Fig. 2 Possible configuration for an interface element. a, b, c: Γ intersects at an interface at 2, 3, 4 points. The
proposed IVE spaces can be defined on almost arbitrary interface element configuration, as discussed in Sect.
3.1. But the construction of IFE spaces and the error analysis will be a little more technical for those general
cases. So for simplicity, we will only consider the case in (2a) for the discussion starting from Sect. 3.2

element in Fig. 2a that has two cutting point on two different edges, the proposed method can
be readily used for elements with more complex geometry such as those in Figs. 2b and c.

We define the union of cut segments Γ K
h of all the interface elements as the approximated

interface Γh , which also separates the original domain Ω into two subdomains Ω±
h , in which

the ± are determined by the area overlap with Ω±. Define αh = α±, βh = β± on Ω±
h . For

each interface triangle K , δK is the subset of K such that β 	= βh (i.e. mismatch region).
Using Fig. 2a as an example, without loss of generality, K +

h := int Conv(a1b1b2) and K −
h is

the quadrilateral complement formed by int Conv(a2a3b2b1), where int stands for the interior
so that K ±

h are open sets, and the relevant definitions and proofs follow similarly when ±
swaps.

2.2 Sobolev Spaces and Norms

Let H k(D) (k ≥ 0) be the standard Sobolev space on a domain D with the norm ‖ · ‖H k (D),
as well as the seminorm | · |H k (D) when k > 0. Due to the discontinuity of the coefficient

β, the solution to the H1 interface problem in (1.1) is not in H2(Ω) globally. To define this
piecewise Sobolev space, for any open subdomain D ⊂ Ω intersecting Γ , D± := D ∩ Ω±,
we introduce

H k(∪D±) =
{
u ∈ H1(D) and u± ∈ H k(D±)

}

and the piecewise H k–norm is defined by ‖u‖2
H k (∪D±)

= ‖u‖2
H k (D+)

+ ‖u‖2
H k (D−)

for any

u ∈ H k(∪D±). If there is no danger of confusion, in the following discussion, we shall
employ a simple notation for the norms: ‖ · ‖k,D = ‖ · ‖H k (D) and ‖ · ‖k,∪D± = ‖ · ‖H k (∪D±),
and the seminorms follow similarly. For the H(curl) interface problem, we let

Hk(curl; D) = {u ∈ H(curl; D) : curl u ∈ Hk(D)},
Hk(div; D) = {u ∈ H(div; D) : div u ∈ H k(D)}.

In addition, we introduce the following spaces

H2(β; Th) = H1(Ω) ∩ {u : u|K ∈ H2(K ), ∀K ∈ T
n

h }∩
{u : u|K ∈ H2(∪ K ±), β∇u|K ∈ H(div; K ), ∀K ∈ T

i
h }, (2.1a)
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H1(curl, α, β; Th) = H(curl;Ω) ∩ {u : u|K ∈ H1(curl; K ), ∀K ∈ T
n

h }∩
{u : u|K ∈ H1(curl; ∪ K ±), βu|K ∈ H(div; K ),

α curl u|K ∈ H1(K ), ∀K ∈ T
i

h }, (2.1b)

H1(div, β; Th) = H(div;Ω) ∩ {u : u|K ∈ H1(div; K ), ∀K ∈ T
n

h }∩
{u : u|K ∈ H1(div; ∪ K ±), βu|K ∈ H(curl; K ), ∀K ∈ T

i
h },

(2.1c)

H1(α; Th) = L2(Ω) ∩ {u : u|K ∈ H1(K ), ∀K ∈ T
n

h }∩
{u : u|K ∈ H1(∪ K ±), αu|K ∈ H1(K ), ∀K ∈ T

i
h }. (2.1d)

It is not hard to see these spaces are mesh-dependent and are constructed based on the
associated jump conditions. Under the setting introduced in Sect. 1 that f ∈ L2(Ω) and
Γ ∈ C1,1, it can be shown that (see e.g. [22, 23, 39]), the solution to the H1 elliptic interface
problem satisfies u ∈ H2(∪Ω±), and thus, with the jump conditions, u ∈ H2(β; Th). As for
the H(curl) interface problem, we follow [34, 40] to assume u ∈ H1(curl; ∪Ω±). With the
jump condition, we have u ∈ H1(curl, α, β; Th).

Given an interface element K , we let H2(β; K ), H1(curl, α, β; K ) and H1(α; K ) be
the local spaces on K of their respective global counterpart in (2.1), with the inter-element
continuity constraint removed. These spaces together with the classic Sobolev spaces admit
the following diagram in the continuous level:

R −→ H2(β; K )
∇−−→ H1(curl, α, β; K )

curl−−−−→ H1(α; K ) −→ 0⏐⏐⏐�I

⏐⏐⏐�β
⏐⏐⏐�α

0 ←− L2(K )
div←−−−− H(div; K )

curl←−−−−− H1(K ) ←− R.

(2.2)

We highlight that the scalar multiplication β· and α· can be understood as Hodge stars [3] as
shown by the downward arrows in (2.2). We shall construct virtual element spaces to mimic
this diagram in the discrete level.

Lemma 1 Assume that Γ is C2 smooth and ∂Ω is a polygon, Γ ∩ ∂Ω = ∅. Then,

R −→ H2(β; Th)
∇−−→ H1(curl, α, β; Th)

curl−−−−→ H1(α; Th) −→ 0 (2.3)

is exact.

Proof We first recall the standard exact sequence of the de Rham complex:

R −→ H1(D)
∇−−→ H(curl; D)

curl−−−−→ L2(D) −→ 0, (2.4)

where D is any contractible subdomain of Ω with Lipschitz boundary ∂ D.
By definition, for v ∈ H2(β; Th), ∇v ∈ H(curl;Ω) satisfies the regularity condition

and the jump conditions associated with H1(curl, α, β; Th) and obviously curl ∇v = 0.
Conversely, let u ∈ H1(curl, α, β; Th) such that curl u = 0. We are going to find v ∈
H2(β; Th) such that u = ∇v. By the standard exact sequence, there exists v ∈ H1(Ω)

such that ∇v = u. We need to verify the extra conditions associated with H2(β; Th) for v.
Given each K ∈ T n

h , ∇v = u ∈ H1(K ) implies v ∈ H2(K ). On each K ∈ T i
h , similarly

∇v = u ∈ H1(∪K ±) implies v ∈ H2(∪K ±). In addition, β∇v ∈ H(div; K ) is trivial by
(2.1b). Thus, v ∈ H2(β; Th).

Next, let us show curl : H1(curl, α, β; Th) → H1(α; Th) is surjective. Since Ω may not
be convex, we let Ω̃ be convex hull of Ω . For any f ∈ H1(α; Th) ⊂ L2(Ω), we let f̃ be
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the trivial zero extension of f to Ω̃ , and thus f̃ ∈ L2(Ω̃). Since Γ does not intersect ∂Ω ,
it can also partition Ω̃ into interior and exterior subdomains denoted by Ω̃±. Then, β+ can
be naturally used on Ω̃+. Thus, without loss of generality, we shall keep the same notation.
Consider a function ϕ such that

curl β−1curl ϕ = − div(β−1∇ϕ) = f̃ in ∪ Ω̃±, (2.5a)

[ϕ]Γ = 0, on Γ , (2.5b)

[β−1∇ϕ · n]Γ = 0, on Γ , (2.5c)

β−1∇ϕ · n = |∂Ω̃|−1
∫

Ω

f̃ dx on ∂Ω̃. (2.5d)

Note that (2.5) is a pure Neumann boundary value problem with the compatibility satisfied,
which guarantees the solution ϕ being unique up to a constant. Thus, curl ϕ is unique and
we let w̃ = β−1curl ϕ. As f̃ ∈ L2(Ω̃) with Ω̃ being convex and Γ being C2 smooth, by
the elliptic regularity we have ϕ ∈ H2(∪Ω̃±) [39], thus further obtain w̃|Ω̃± ∈ H1(Ω̃±).

Besides, (2.5a) shows curl w̃ = f̃ in Ω̃±, (2.5b) shows [βw̃ · n]Γ = [curl ϕ · n]Γ =
[∇ ϕ · t]Γ = 0, and (2.5c) yields [w̃ · t]Γ = [β−1curl ϕ · t]Γ = [β−1∇ ϕ · n]Γ = 0.
Therefore, w := w̃|Ω ∈ H1(curl, α, β; Th) which completes the proof. ⊓⊔

Remark 1 Lemma 1 heavily relies on the smoothness of Γ due to the interface problem (2.5).
If the interface is non-smooth or touches the boundary ∂Ω , the solution regularity, in general,
will not be as high as H1(curl).

Next, u±
E := Eu± ∈ H2(Ω) denotes the standard smooth Sobolev extensions that are

bounded in the H2-norm (see e.g., [1]). As for the H(curl) spaces, the continuous extension
operator is given by the following result:

Theorem 2.1 (Theorem 3.4 and Corollary 3.5 in [34]) There exist two bounded linear oper-

ators

E±
curl : H1(curl;Ω±) → H1(curl;Ω) (2.6)

such that for each u ∈ H1(curl;Ω±):

1. E±
curlu = u a.e. in Ω±.

2. ‖E±
curlu‖H1(curl;Ω) ≤ CE‖u‖H1(curl;Ω±) with constant CE only depending on Ω and Γ .

Using the extension operators, we can define u±
E = E±

curlu
± which are the keys in the analysis

later.
In the rest of the paper, all constants in � are β and α–dependent but independent of the

cut point locations unless stated otherwise.

2.3 Fundamental Inequalities

We review some fundamental estimates that are crucial for our analysis. The first one concerns
the mismatch region of the partitions by the exact interface Γ and Γ K

h , i.e., δK . For any
subdomain D ⊆ Ω with the interface Γ , define

Dδ = {x ∈ D : dist(x, Γ ) < δ}.

Clearly, there hold

∪K∈T
i

h
δK ⊂ Ωδ0 , and ∪K∈T

i
h

K ⊂ ΩhΓ
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where δ0 is the maximum distance from Γh to Γ , while hΓ is the maximum diameter of
K ∈ T i

h with hΓ � h. By well-known geometric estimates, e.g., see [28, Lemma 3.2], we
have δ0 � h2. The following result can be found in [19, 49].

Lemma 2 (A norm estimate on a strip region) For each u ∈ H1(∪Ω±), there holds

‖u‖0,Ωδ
�

√
δ‖u‖1,∪Ω± .

We will also need the following trace theorems and Poincaré-type inequalities.

Lemma 3 (A trace inequality [8]) Let e be an edge of a shape regular element K . Then, for

all v ∈ H1(K ), there holds

‖v‖2
0,e � h−1‖v‖2

0,K + h|v|21,K .

Lemma 4 (A trace inequality on interface [71]) On any interface element K , for all v ∈
H1(K ), there holds

‖v‖0,Γ K
h

� h
−1/2
K ‖v‖0,K + h

1/2
K |v|1,K . (2.7)

Theorem 2.2 (Poincaré-Friedrichs’ type inequalities [10, Lemma 6.8] and [8, (2.14)]) Given

a polygon K with Lipschitz boundary ∂K and the number of edges of K is uniformly bounded,

for v ∈ C0(∂K ) and piecewise linear on ∂K , there holds, for each e ⊂ ∂K ,

‖v‖0,e � h
−1/2
K

∣∣∣∣
∫

∂K

v ds

∣∣∣∣+ h
1/2
K |v|1/2,EK

, (2.8a)

where in the seminorm | · |1/2,EK
is defined in (5.3). Furthermore, if K is shape regular in the

sense that it is star-shaped with respect to a disk with radius ρhK , then for each v ∈ H1(K ),

there hold

‖v‖0,K �

∣∣∣∣
∫

∂K

v ds

∣∣∣∣+ hK |v|1,K . (2.8b)

3 Immersed Virtual Element and Immersed Finite Element Spaces

In this section, we introduce the immersed virtual element (IVE) and the immersed finite
element (IFE) spaces. Then we describe the associated projection and interpolation operators.
We connect them by commuting diagrams.

3.1 ImmersedVirtual Element Spaces

The proposed IVE space is a group of novel virtual element spaces with an interface immersed
inside the element. As only the linear method is considered in this article, the interface is
flattened inside each element, i.e., the whole interface is approximated by a polyline Γh . We
let αh and βh be the piecewise constant coefficients with interface being Γh . As we only
consider the lowest order methods, such a linear approximation to the geometry is sufficient.
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3.1.1 H
1 Virtual Element Spaces

For each interface element K , we begin with an H1 virtual element space that encodes the
interface into its elements:

V n
h (K ) = {vh : div(βh∇vh) = 0, vh |e ∈ P1(e), ∀e ∈ EK , vh |∂K ∈ C0(∂K ),

[vh]Γ K
h

= 0, and [βh∇vh · n̄]Γ K
h

= 0}. (3.1)

Here we note that the jump conditions in (3.1) are imposed on the approximated interface
Γ K

h instead of on the exact interface Γ , the barred notation n̄ denotes the unit normal vector

to Γ K
h that points roughly in the same direction with n. Similarly, t̄ is the unit tangential

vector to Γ K
h that is an approximation to t. The motivation to impose the jump conditions

on Γ K
h is that the IFE space defined later becomes a subspace of V n

h (K ), which facilitates
a simpler analysis. There will be no essential difficulty if the jump conditions of the virtual
element spaces are defined on Γ as the analysis follows the VEM meta-framework.

Clearly, V n
h (K ) is not empty. The reason is that we can treat V n

h (K ) ⊆ H1(K ) as the
space of the weak solutions to a boundary value problem. Then, the dimension of V n

h (K ) is
that of the boundary conditions, i.e., the dimension of Πe∈EK

P1(e)∩ C0(∂K ), which further
can be identified by the number of the vertices on ∂K . Consequently, V n

h (K ) is unisolvent:
if the DoFs vh(x) = 0 at each x ∈ NK , which implies the boundary value vh = 0 on ∂K ,
then vh ≡ 0 in K by the uniqueness of the local problem. This space can be understood
as a natural generalization of the classic linear virtual element space in [63, 65] to the case
of discontinuous coefficients. Furthermore, referred to (1.6), we can see the space is also a
generalization of 1D space by Babuška et al. in [5, 6].

Note that V n
h (K ) ⊂ H1(K ) ∩ {βh∇u ∈ H(div; K )}. Inside the interface element K ,

the piecewise constant function βh serves as a Hodge star which maps the function ∇u ∈
H(curl; K ) to a function βh∇u ∈ H(div; K ).

The global space is then defined as

V n
h = {vh ∈ H1

0 (Ω) : v|K ∈ V n
h (K ) if K ∈ T

i
h and v|K ∈ P1(K ) if K ∈ T

n
h } (3.2)

which is an H1-conforming space. Lastly, we can define the Lagrange type interpolation I n
h

using the nodal DoFs, for continuous u,

(I n
h u)(x) = u(x), ∀x ∈ Nh . (3.3)

3.1.2 H(curl) Virtual Element Spaces

Next, let us consider an H(curl) virtual element space involving discontinuous coefficients.
Given an interface element K , we define

Ve
h(K ) = {vh ∈ H(curl; K ) : βhvh ∈ H(div; K ), vh · te|e ∈ P0(e), ∀e ∈ EK ,

div βhvh = 0, αh curl vh ∈ P0(K )}. (3.4)

Again βh is a Hodge star operator which maps vh ∈ H(curl; K ) to βhvh ∈ H(div; K ) and
αh is another Hodge star which maps curl vh ∈ L2(K ) to αh curl vh ∈ H1(K ).

With this definition, it is easy to see

curl Ve
h(K ) = {c is a piecewise constant on K ±

h : α+
h c+ = α−

h c−}. (3.5)

In the rest of this section, we denote the weighted average of α on K by

αK =
(
|K +

h |α−
h + |K +

h |α+
h

)
/|K |. (3.6)
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If a piecewise constant vector c := c± on K ±
h satisfies β+

h c+ ·n̄ = β−
h c− ·n̄ and c+ · t̄ = c− · t̄,

then c ∈ Ve
h(K ). Thus, Ve

h(K ) is non-empty, and upon a closer inspection it is not hard
to see that the aforementioned c± form the gradient of the H1 IFE space on K (see the
definition of IFE spaces in Sect. 3.2.1). The dimension of Ve

h(K ) is not immediately obvious.
To characterize the functions in Ve

h(K ), we consider the following local problem: given
f ∈ L2(K ) and g ∈ L2(∂K ), find vh such that

curl vh = f in K , (3.7a)

div(βhvh) = 0 in K , (3.7b)

vh · t = g on ∂K . (3.7c)

The following lemma establishes the well-posedness of this equation.

Lemma 5 The equation in (3.7) is well-posed if the compatibility condition is met:

∫

K

f dx =
∫

∂K

g ds. (3.8)

Proof By the constraint div βhvh = 0, the exact sequence property implies that there exists
ϕ ∈ H1(K ) such that curl ϕ = βhvh . Then the argument basically mimics the one in the
proof of Lemma 1 locally on an element. In particular, the problem (3.7) then becomes a
pure Neumann problem:

curl(β−1
h curl ϕ) = −div(β−1

h ∇ϕ) = f in K , (3.9a)

β−1
h ∇ϕ · n = −g on ∂K . (3.9b)

Clearly, for any boundary condition g and source term f satisfying the compatibility condition
(3.8), (3.9) has a unique solution ϕ ∈ H1(K )/R, and thus a unique vh = β−1

h curl ϕ. ⊓⊔

We then follow [17] to introduce the so-called data space

D(K ) = {( f0, g0) : αh f0 ∈ P0(K ), g0|e ∈ P0(e), e ∈ EK , and

∫

K

f0 dx =
∫

∂K

g0 ds.}

Despite the fact f0 gives an extra 1 dimension, the compatible condition reduces this extra
dimension, and thus dim D(K ) = |EK |. Given a function u ∈ Ve

h(K ), (curl vh, vh · t∂K )

defines a mapping L : Ve
h(K ) → D(K ). On the other hand, given ( f0, g0) ∈ D(K ),

the solution vh to the local problem (3.7) is a function in Ve
h(K ). The uniqueness of the

local problem implies L−1 is well-defined. Therefore, L is one-to-one, and dim Ve
h(K ) =

dim D(K ) = |EK |. Next we show the DoFs on the edges in EK suffice to uniquely determine
a function in Ve

h(K ) as follows.

Lemma 6 The DoFs {vh · te, e ∈ EK } are unisolvent on the space Ve
h(K ) for any K ∈ Th .

Proof First of all, the number of DoFs {vh ·te, e ∈ EK } is |EK | which is equal to the dimension
of the space Ve

h(K ). Then, a mapping can be defined from DoFs to the data space D(K ). An
obvious choice is g0|e = vh · te ∈ P0(e). From the compatibility condition

∑

e∈EK

|e|vh · te =
∫

∂K

vh · t ds =
∫

K

curl vh dx = |K +
h |(curl vh)+ + |K −

h |(curl vh)−,

(3.10)
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where (curl vh)± are constant restricted to K ±
h , respectively. On the other hand, by definition

of the space, we have equation

α+
h (curl vh)+ = α−

h (curl vh)−. (3.11)

Then solve (3.10)-(3.11) for (curl vh)±, which are two constant scalars, we get

(curl vh)+ = 1

|K |
α−

h

αK

∫

∂K

vh · t ds, (curl vh)− = 1

|K |
α+

h

αK

∫

∂K

vh · t ds, (3.12)

where the weighted average αK is given in (3.6). That is to say, the second output of this
map in D(K ), f0 = curl vh can be expressed by a linear combination of DoFs. Therefore,
the unisolvence follows from the uniqueness of the local problem (3.7). More precisely, if
vh · te vanishes for every e ∈ EK , then both f0 and g0 are zero and consequently the solution
vh to (3.7) is zero. ⊓⊔

The importance of this lemma is that we have established the one-to-one correspondance
between the local virtual element space, the DoFs, and the data space. Moreover, from the
proof, curl vh is readily computable for any vh ∈ Ve

h(K ) through the DoFs using (3.12),
which is vital for the implementation.

Thanks to the edge DoFs, we can also construct a globally H(curl)-conforming space

Ve
h = {vh ∈ H(curl;Ω) : vh |K ∈ Ve

h(K ) if K ∈T
i

h and vh |K ∈ND0(K ) if K ∈T
n

h }.
(3.13)

We can define the edge interpolation I e
h u as, provided that u is smooth enough,

∫

e

I e
h u · t ds =

∫

e

u · t ds, ∀e ∈ Eh . (3.14)

3.1.3 H(div) Virtual Element Spaces

Similarly, given an interface element K , the H(div) virtual element space involving discon-
tinuous coefficients is defined as

V
f
h (K ) = {vh ∈ H(div; K ) : β−1

h vh ∈ H(curl; K ), vh · ne ∈ P0(e), ∀e ∈ EK ,

div vh ∈ P0(K ), curl β−1
h vh = 0}. (3.15)

Different from the standard virtual element spaces, V
f
h (K ) is not exactly the rotation of

Ve
h(K ). Indeed, the Hodge star is defined by β−1

h which maps a function vh ∈ H(div; K ) to

β−1
h vh ∈ H(curl; K ).

By a similar argument to Sect. 3.1.2 that leads to Lemma 6, we can show that the definition
(3.15) yields a well-defined local space with DoFs being vh · ne, ∀e ∈ EK , and thus has the

dimension |EK |. Similarly, div vh , vh ∈ V
f
h (K ) is computable using these DoFs through the

integration by parts:

|K | div vh =
∫

K

div vh dx =
∫

∂K

vh · n ds. (3.16)

Then, the global H(div) virtual element space is

V
f
h = {vh ∈H(div;Ω) : vh |K ∈ V

f
h (K ) if K ∈ T

i
h and vh |K ∈RT 0(K ) if K ∈T

n
h }.

(3.17)
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We can also define the edge interpolation I
f

h u as, provided u is smooth enough,
∫

e

I
f

h u · n ds =
∫

e

u · n ds, ∀e ∈ Eh . (3.18)

We note that both I e
h and I

f
h are just standard edge interpolation on non-interface elements.

3.1.4 A discrete de Rham Complex

The commuting diagram and a discrete de Rham complex also hold for the newly constructed
virtual element spaces. Given each element K and a weight function w ∈ L2(K ) that is
piecewise constant w± on K ±

h , let πw
K be the projection, defined with the inner product

(w·, ·)K , onto

Qw
h (K ) = {c is a piecewise constant on K ±

h : w+c+ = w−c−}. (3.19)

Namely, for z ∈ L2(K ) there holds

(w πw
K z, v)K = (w z, v)K , ∀v ∈ Qw

h (K ). (3.20)

In particular, if K is simply a non-interface element or w = 1, πw
K reduces to the standard

L2 projection onto Q1
h(K ) = P0(K ). If K is an interface element and w = αh , from (3.5)

we have Q
αh

h (K ) = curl Ve
h(K ).

We first summarize the aforementioned Hodge star operators associated with V n
h (K ) and

Ve
h(K ) through the following diagram

R −→ V n
h (K )

∇−−→ Ve
h(K )

curl−−−−→ Q
αh

h (K ) −→ 0⏐⏐⏐�I

⏐⏐⏐�βh

⏐⏐⏐�αh

0 ←− L2(K )
div←−−−− H(div; K )

curl←−−−−− H1(K ) ←− R.

(3.21)

We note that this diagram exactly mimics the one in (2.2) which shows the proposed spaces
nicely inherit this feature locally on interface elements.

Furthermore, given w ∈ L2(Ω) that is piecewise constant weight function on each element
and subelement of interface elements, we let Qw

h be a piecewise constant space satisfying
Qw

h |K = Qw
h (K ). Let the global projection be πw

h |K = πw
K . Then, we have our diagram in

(1.5). Let us proceed to show its exactness and commutative property.

Lemma 7 There holds

∇V n
h ⊂ Ve

h ∩ Ker(curl).

Consequently, together with curl Ve
h = Q

αh

h , the discrete sequence on the bottom of (1.5) is

a complex.

Proof We first show the local subset result and focus on interface elements K , since the
argument for non-interface elements is standard. Given vh ∈ V n

h (K ), [vh]Γ K
h

= 0 and

[βh∇vh · n̄]Γ K
h

= 0 imply ∇vh ∈ H(curl; K ) and βh∇vh ∈ H(div; K ), respectively. In

addition, we also have div(βh∇vh) = 0 by the local problem (3.7). Besides, vh |e ∈ P1(e)

implies ∇vh |e · t ∈ P0(e). Moreover, it is trivial that curl(∇vh) = 0 which gives the desired
local subset result. It leads to the global one by their DoFs. ⊓⊔

Lemma 8 The discrete sequence on the bottom of (1.5), is exact.
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Proof Given vh ∈ Ve
h ∩ Ker(curl), there exists a ϕh ∈ H1(Ω) such that ∇ϕh = vh by the

continuous exact sequence. We need to show ϕh ∈ V n
h . On non-interface elements K , as vh

is a constant vector, there simply holds ϕh ∈ P1(K ). On any K ∈ T i
h , as div(βhvh) = 0,

we also have −∇ · (βh∇ϕh) = 0. The jump conditions for ϕh are thus satisfied due to those
of vh . It follows from the DoFs vh · t = ∇ϕh · t ∈ P0(e) that ϕh ∈ P1(e), ∀e ∈ EK . These
results lead to ϕh ∈ V n

h (K ). Thus, we have ϕh ∈ V n
h through their DoFs.

To show curl is surjective, we construct an auxiliary mesh T A
h by simply refining interface

elements into several triangles. Given qh ∈ Q
αh

h ⊂ H1(αh; Th), it is trivial that qh can be

considered as a piecewise constant function on T A
h . Then, the classic exact sequence yields a

curl-conforming Nédélec element w̃h ∈ H(curl;Ω) with w̃h |K ∈ ND0(K ), ∀K ∈ T A
h such

that curl w̃h = qh . We set wh = I e
h w̃h ∈ Ve

h , that is, their edge moments only have to agree

on the edges in Eh , not on the extra interior edges to form T A
h . It is trivial that curl wh =

curl w̃h = qh on K ∈ T n
h . We only need to verify it on interface elements. Given K ∈ T i

h ,
we let q±

h = qh |K ± . With integration by parts, there holds
∫

K
curl w̃h dx =

∫
∂K

w̃h · t ds.

Then, by α+q+
h = α−q−

h we have

q±
h = 1

|K |
α∓

h

αK

∫

∂K

w̃h · t ds = 1

|K |
α∓

h

αK

∫

∂K

wh · t ds

with αK defined in (3.6). Using (3.12), we have concluded curl wh = qh . ⊓⊔
Remark 2 The global Nédélec edge element constructed in the proof above can be understood
as a function in the virtual element space developed in [12] with discontinuous coefficients,
in which the DoFs associated with the interior edges of an interface element are eliminated
by imposing a single constant curl value.

Note that for standard FEM on non-interface elements, curl I e
h u is the projection of curl u

onto the constant space, which is the well-known commuting property for the de Rham
complex. For the new virtual element spaces, the commuting property also holds.

Lemma 9 The diagram in (1.5) is commutative.

Proof It suffices to establish the result on interface elements. To this end, given one interface
element K , we shall first show for any u ∈ H2(β; Th), there holds

I e
h ∇u = ∇ I n

h u. (3.22)

As shown in Lemma 7, we have ∇ I n
h u ∈ Ve

h(K ); so by the unisolvence in Lemma 6, to prove
(3.22), it remains to check their DoFs coincide. Indeed, given each e ∈ EK with the ending
points ae and be, we have
∫

e

∇ I n
h u · t ds = I n

h u(ae) − I n
h u(be) = u(ae) − u(be) =

∫

e

∇u · t ds =
∫

e

I e
h ∇u · t ds.

Furthermore, we need to show for any u ∈ H1(curl, α, β; Th), there holds

curl I e
h u = π

αh

K curl u. (3.23)

Note that functions in Q
αh

h (K ) are simply α−1
h c with any constant c. Then, Green’s theorem

gives
∫

K

αh curl I e
h u α−1

h c dx =
∫

K

curl I e
h u c dx = c

∫

∂K

I e
h u · t ds

= c

∫

∂K

u · t ds =
∫

K

curl u c dx =
∫

K

αh curl u α−1
h c dx,

(3.24)
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which yields the desired result. ⊓⊔

Remark 3 It is highlighted that the commutative property essentially only depends on the
DoFs of the IVE spaces. It makes the definition of IVE spaces quite flexible. For example,
the property still holds if the IVE spaces are defined with the original interface Γ instead of
the approximate interface Γh , if appropriate jump conditions are imposed on Γ .

Here we assume higher regularity for the spaces in the continuous level so that the canonical
interpolation operator I n

h and I e
h are well-defined. In the rest of this article, we simply denote

these interpolations by

u I := I n
h u and uI := I e

h u, (3.25)

if there is no confusion. It is possible to follow the approach in [27, 62] to construct quasi-
interpolation operators without extra smoothness requirement and establish the commutative
property.

3.2 Immersed Finite Element Spaces

Similar to the standard VEM [63, 65], the basis functions themselves in the virtual element
space do not have explicit pointwise values for computation, and this demands projections.
Due to jump conditions, the standard polynomial spaces are not appropriate choices onto
which the virtual element spaces are projected. As the IFE space consists of piecewise
polynomials satisfying the jump conditions on Γ K

h , naturally it can be used as a computable
space for projecting. To simplify the discussion, starting from this section, we only consider
the interface element in Fig. 2a; namely, we make the following assumption:

Assumption 3.1 (The background mesh being fine enough) For each interface triangle K in
the background mesh, Γ intersects with K at most two distinct points on two different edges.

We note that this assumption can be satisfied if Th is sufficiently fine [23, 28] provided
that Γ ∈ C1,1, i.e., the interface is locally flat enough. Even if the interface intersects an
element multiple times, such as Fig. 2b and c, the proposed method is still applicable, since
the immersed virtual functions always exist from solving local problems, which is one of the
major difference from the conventional IFEM. So, this assumption is merely to simplify the
analysis. Now, let us review three types of IFE spaces including the H1, H(curl), and H(div)

spaces.

3.2.1 H
1 IFE Spaces

First, we consider the H1 case, see e.g., [30]. Given an interface element K , we consider the
approximate jump conditions to (1.2) defined on the segment Γ K

h :

v+
h = v−

h at Γ K
h , (3.26a)

β+
h ∇v+

h · n̄ = β−
h ∇v−

h · n̄ at Γ K
h . (3.26b)

Note that (3.26a) leads to ∇v+
h · t̄ = ∇v−

h · t̄, which together with (3.26b) leads to the relation

∇v+
h = M∇v−

h , (3.27)
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where M is an invertible matrix encoded with the jump information

M =
[

n2
2 + ρn2

1 (ρ − 1)n1n2

(ρ − 1)n1n2 n2
1 + ρn2

2

]
(3.28)

with n̄ = (n1, n2), t̄ = (t1, t2) = (n2,−n1), and ρ = β−/β+. Accordingly, we can express
the H1 IFE functions explicitly as follows:

vh(x) =
{

Mc · (x − xm) + c0 if x ∈ K +
h ,

c · (x − xm) + c0 if x ∈ K −
h ,

(3.29)

where xm = (xm
1 , xm

2 )⊺ is the mid-point of Γ K
h , and c0 and c are scalar- and vector-valued

constants that can be viewed as the DoFs for the polynomial space. Now, the H1 local IFE
space on K is then defined as

Sn
h (K ) := {vh |K ±

h
∈ P1(K ±

h ) : vh satisfies (3.26)}. (3.30)

By counting the number of constraints, dim Sn
h (K ) = 3. Comparing it with the virtual element

space (3.1), it is straightforward to conclude that Sn
h (K ) ⊂ V n

h (K ). In the classical definition
of IFE, e.g. [28], the IFE space admits the DoFs as the values at the vertices of a triangular
element K . In contrast, this nodal basis–DoF pair is now different, as the DoFs are imposed
through the virtual element space. Note that the IFE basis in (3.29) is not the conventional
nodal IFE basis, and the formula in (3.29) is easier to be derived and only used for computing
projections.

3.2.2 H(curl) IFE Spaces

The H(curl) IFE space is developed in [31] which employs the approximate jump conditions
for piecewise polynomials v±

h ∈ ND0(K ±
h )

v+
h · t̄ = v−

h · t̄ at Γ K
h , (3.31a)

α+
h curl v+

h = α−
h curl v−

h at Γ K
h , (3.31b)

β+
h v+

h · n̄ = β−
h v−

h · n̄ at xm . (3.31c)

Then, the H(curl) IFE space is defined as

Se
h(K ) = {vh |K ±

h
∈ ND0(K ±

h ) : vh satisfies (3.31)}. (3.32)

The functions in Se
h(K ) admit the following explicit representation:

vh =
{

Mc + c0
α+ (−(x2 − xm

2 ), x1 − xm
1 )⊺ in K +

h ,

c + c0
α− (−(x2 − xm

2 ), x1 − xm
1 )⊺ in K −

h ,
(3.33)

where M is given by (3.28), and c0 and c are arbitrary scalar- and vector-valued constants.

3.2.3 H(div) IFE Spaces

To derive a systematic framework, we also recall the H(div) IFE space [42] which is used to
approximate β∇u ∈ H(div; K ). The related approximate jump conditions are defined as

v+
h · n̄ = v−

h · n̄ on Γ K
h , (3.34a)
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(β+
h )−1v+

h · t̄ = (β−
h )−1v−

h · t̄, at xm . (3.34b)

together with the condition

div v+
h = div v−

h . (3.34c)

We note that (3.34c) is proposed in [42] for guaranteeing unisolvence, but it is interesting to
note that it also mimics the condition of the face IVE space in (3.15), i.e. div vh is a single
constant in K . We emphasize again that the jump condition is from the discrete Hodge star
β−1

h which maps vh ∈ H(div; K ) to β−1
h vh ∈ H(curl; K ).

Then, the H(div) IFE space is defined as

S
f
h (K ) = {vh |K ±

h
∈ RT 0(K ±

h ) : vh satisfies (3.34)}. (3.35)

Again, we can derive the explicit formulas for functions in S
f
h (K ):

vh =
{

M ′c + c0(x − xm) in K +
h ,

c + c0(x − xm) in K −
h ,

(3.36)

where c0 and c are arbitrary scalar- and vector-valued constants, and M ′ = ρ−1 M .

Remark 4 Comparing the virtual element space (3.4) and the IFE space (3.32), we find that
the only difference is that βhvh /∈ H(div; K ) for vh ∈ Se

h(K ), since the normal continuity
only holds at one point xm as shown in (3.31c). Thus, Se

h(K ) 	⊂ Ve
h(K ) which is different

from the H1 case. Similarly, for the H(div) case, we still do not have S
f
h (K ) 	⊂ V

f
h (K )

since the tangential continuity only holds at xm . Note that the similar practices occur in the
VEM literature. For example, the serendipity VEM spaces often use DoFs/projections as
constraints in the definition of the virtual element spaces to eliminate interior DoFs, e.g.,
[64, 70]. However, due to the presence geometry-tied constraints such as the barycenter in
the space definition, some common constructions for the vector polynomial space may not
directly yield a subspace of this serendipity-type space anymore. Nevertheless, the flexibility
of the VEM framework still guarantees convergence for a class of admissible geometry-
tied constraints if the polynomial space offers approximation, e.g., see the discussion in [13,
Appendix]. Another example is VEM on curved edges or faces, e.g., [69], the exact geometry
is captured by the virtual element spaces that does not contain the standard polynomial
spaces, and the projection is done in an isogeometric fashion to guarantee the approximation
to geometry. As for the present case, the IVE spaces contain a piecewise constant vector
proper subspace of the IFE spaces, onto which the IVE functions are then projected. This is
sufficient for an optimal first order accuracy.

3.2.4 The Exact Sequence for IFE Spaces

First of all, it is not hard to see

curl Ve
h = curl Se

h(K ) = Q
αh

h (K ) and div V
f
h = div Se

h(K ) = Q1
h(K ). (3.37)

Let us recall the discrete de Rham complex and exact sequence for IFE spaces which will
be useful in the later discussion. Here, we only need the local ones: [31, Theorem 3.5] shows

R
→֒−→ Sn

h (K )
∇−−→ Se

h(K )
curl−−−−→ Q

αh

h (K ) −→ 0. (3.38)
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A similar exact sequence is

R
→֒−→ S̃n

h (K )
curl−−−−→ S

f
h (K )

div−−−−→ Q1
h(K ) −→ 0. (3.39)

Here, S̃n
h (K ) is an H1 IFE spaces but with the parameter β−1

h and a rotated gradient, i.e.,
(3.26) is replaced by

(β+
h )−1curlv+

h · t̄ = (β−
h )−1curlv−

h · t̄ on Γ K
h . (3.40)

We mention that S
f
h (K ) is the space used in [42] for mixed IFE methods. Then, we have the

following result.

Lemma 10 The Hodge star operator βh · induces a one-to-one mapping from ∇Sn
h (K ) to

curl S̃n
h (K ):

βh∇Sn
h (K ) = curl S̃n

h (K ). (3.41)

Proof For a function vh ∈ Sn
h (K ), ∇vh is a piecewise constant vector in H(curl; K ), i.e.,

with tangential continuity. By construction βh∇vh ∈ S
f
h (K ) is a piecewise constant vector

but now continuous at normal direction. Therefore, div βh∇v = 0. So we have proved

βh∇Sn
h (K ) ⊆ Ker(div)∩S

f
h (K ) = curl S̃n

h (K ). By the same argument but switching Sn
h (K )

and S̃n
h (K ), we have β−1

h curl S̃n
h (K ) ⊆ Ker(curl) ∩ Se

h(K ) = ∇Sn
h (K ). This finishes the

proof. ⊓⊔
Remark 5 Lemma 5 shows for each vh ∈ Ve

h , there uniquely exists ϕh ∈ H1(K ) such

that β−1
h curl ϕh = vh and

∫
∂K

ϕh ds = 0. If vh is assumed to be a constant vector whose

divergence vanishes, then by sequence (3.39) ϕh ∈ S̃n
h (K ). Moreover, with the Poincaré-

Friedrichs’ inequality (2.8b) and the trace inequality in Lemma 3, we can show the stability:

h
1/2
K ‖ϕh‖0,∂K + ‖ϕh‖0,K � hK ‖vh‖0,K . (3.42)

3.3 Projections

It can be shown that the IFE spaces Sn
h (K ), Se

h(K ) and S
f
h (K ) are unisolvent by the nodal DoFs

[28], edge DoFs
∫

e
vh · t ds [31] and

∫
e

vh ·n ds [42], respectively. These DoFs are critical for
the conventional IFE methods in both analysis and computation. Proofs of the unisolvence
with respect to the DoFs are generally very technical and rely on mesh assumption, for
example the “no-obtuse-angle” condition introduced in [31, 42]. For some other problems,
the unisolvence may not even hold, such as the elasticity problem [29], or the case that the
interface intersects an element multiple times. It is highlighted that both the analysis and
implementation of the proposed method do not rely on the unisolvence of the DoFs for the
IFE spaces themselves, as they only serve as a computable projection space of the underlying
virtual element spaces that offers a sufficient approximation power. IFE is used locally and
thus no inter-element continuity is needed. Roughly speaking, the usual IFE shape functions
will be replaced by a certain projection of φh to IFE spaces, where φh’s are the shape functions
of the virtual element spaces. This is one of the major difference of the proposed method from
those classical IFE works. With this property, the IVEM is more flexible and generalizable.

Let us describe how to compute the projection from the IVE spaces to the IFE spaces. For

the H1 case, we introduce a projection Π
βh

K : H1(K ) → Sn
h (K ):

(βh∇Π
βh

K u,∇vh)K = (βh∇u,∇vh)K , ∀vh ∈ Sn
h (K ), and

∫

∂K

(
u − Π

βh

K uh

)
ds = 0.
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(3.43)

By the continuity of uh ∈ V n
h (K ) and flux jump condition of vh ∈ Sn

h (K ), applying integra-
tion by parts, we have

∫

K

βh∇uh · ∇vh dx =
∫

∂K

βhuh∇vh · n ds, (3.44)

which is computable, since uh |∂K is explicitly known, and vh ∈ Sn
h (K ) can have its gradient

evaluated explicitly. Therefore Π
βh

K uh for a VEM function uh ∈ V n
h (K ) is computable. This

projection exactly mimics the usual one used in the VEM literature.
For the H(curl) interface problem, as curl vh is explicitly computable through the DoFs, cf.

(3.12), but not vh . As a result, we only need to approximate the L2 term. To this end, a weighted

L2 projection is introduced �
βh

K : L2(K ) → ∇Sn
h (K ). For u ∈ L2(K ), βh�

βh

K u ∈ ∇Sn
h (K )

such that

(βh�
βh

K u, vh)K = (βhu, vh)K , ∀vh ∈ ∇Sn
h (K ). (3.45)

Since vh ∈ ∇Sn
h (K ), by (3.41) we have βhvh ∈ βh∇Sn

h (K ) = curl S̃n
h (K ). Hence, there

exists ϕh ∈ S̃n
h (K ) such that curl ϕh = βhvh . In particular, we can use (3.29) to express ϕh

as

ϕh(x) = (R− π
2
βhvh) · (x − xm) + c0, (3.46)

where R− π
2

is the counterclockwise π
2 rotation matrix, and c0 can be taken as an arbitrary

constant with respect to which the projected vector is invariant. Then, for uh ∈ Ve
h , it follows

from integration by parts that

∫

K

βh�
βh

K uh · vh dx =
∫

K

uh · curl ϕh dx =
∫

K

curl uh ϕh dx −
∫

∂K

uh · t ϕh ds, (3.47)

where curl uh is computable through DoFs as shown in (3.12). Notice that as [uh · t̄] = 0 and
ϕh is continuous on Γ K

h , there is no contribution from the integral on Γ K
h .

The projection for the H(div) case is defined similarly. A weighted L2 projection is

introduced �̃
β−1

h

K : V
f
h (K ) → curl S̃n

h (K ):

(β−1
h �̃

β−1
h

K uh, vh)K = (β−1
h uh, vh)K , ∀vh ∈ curl S̃n

h (K ). (3.48)

Given vh ∈ curl S̃n
h (K ), there exists ϕh ∈ Sn

h (K ) such that ∇ ϕh = β−1
h vh .

∫

K

β−1
h �

β−1
h

K uh · vh dx =
∫

K

uh · ∇ ϕh dx = −
∫

K

div uh ϕh dx +
∫

∂K

uh · n ϕh ds,

(3.49)

where div uh can be computed through (3.16) with DoFs and uh · n are the given DoFs.
In the rest of this article, for the sake of simplicity, we shall drop βh of the projections

Π
βh

K and �
βh

K , and furthermore ΠK and �K , regardless of being interface element or not, are
adopted to maintain a consistent and concise set of notation. On each non-interface element,
the projection is simply the identity operator.
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4 Properties of IFE Functions

In this section, we recall some properties for IFE functions and show some novel ones to be
used. In the following discussion, any subdomain D ⊆ Ω , we denote for simplicity

‖u‖E,k,D := ‖u+
E‖k,D + ‖u−

E‖k,D and ‖u‖E,curl,k,D := ‖u‖E,k,D + ‖ curl u‖E,k,D,

where k is a non-negative constant, and u±
E are the Sobolev extensions defined before

Theorem 2.1. For scalar- or vector-valued functions, their corresponding seminorms adopt
this notation convention as well. We also need the patch of an interface element K which is
the collection of elements neighboring K :

ωK :=
⋃

T ∈Th ,K∩T 	=∅

T , and ω±
K := ωK ∩ Ω±.

In the following discussion, we focus our analysis on interface element where the specially
constructed IVE and IFE spaces are used. The analysis on non-interface elements are trivial
since the standard FE functions are used.

4.1 The H1 IFE Functions

We first recall the trace inequalities for the H1 IFE functions.

Lemma 11 (A trace inequality for H1 IFE functions [53]) For each interface element K and

its edge e, there holds

h
1/2
K ‖∇vh‖0,e � ‖∇vh‖0,K , ∀vh ∈ Sn

h (K ), (4.1)

where the constant hidden in � is independent of the location of the interface.

Result (4.1) is non-trivial in the sense that the hidden constant may depend on the interface
location if classic tools are applied on each subelement. In particular, the constant may
blow up when the cut subelement is degenerated. We refer readers to [53, Section 3.1] for
a detailed proof. Heuristically for IFE functions, ∇vh is a piecewise constant, and (4.1) is
possible through scaling arguments. For IVE function vh , however, such trace result may not
be easy to establish as ∇vh is non-polynomial in general and extra geometric conditions are
needed, cf. [16]. This is also the case for the H(curl) IFE functions given in Lemma 18.

Let us then discuss the approximation results for the projection ΠK defined by (3.43).
Similar to the standard H1 projection, with the known approximation results for IFE inter-
polations in the literature [28, 32], the results for ΠK may directly follow from the best
approximation property of the projection. However, we shall see that the analysis further
demands the approximation of each polynomial component of ΠK u on the whole element
K . Recall that ΠK u is piecewise linear in K ± satisfying the jump condition (3.26). With a
slight abuse of notation, we consider the two polynomial extensions of ΠK u|K ± defined on
the entire element K

Π±
K u := (ΠK u)±E , (4.2)

where (ΠK u)±E are trivial extensions of ΠK u|K ± . Namely, we need to estimate u±
E − Π±

K u

on the entire element. See Fig. 3c for an illustration.
For this purpose, we need to employ a quasi-interpolation operator introduced in [32]

as an intermediate tool which is denoted by JK u. But, since our IFE functions are defined
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with approximate interface Γh , we need to slightly modify the definition here. Define the
interpolation operator JK such that

JK u =
{

J+
K u, in ω+

K ,

J−
K u, in ω−

K ,
(4.3)

where J±
K u are two linear polynomials satisfying the following conditions

J−
K u|Γ K

h
= J+

K u|Γ K
h

:= πωK
u+

E |Γ K
h

, (4.4a)

β−
h ∇ J−

K u · n̄K = β+
h ∇ J+

K u · n̄K := β−∇πωK
u−

E , (4.4b)

where πωK
is the standard L2 projection onto P1(ωK ). We note that the only difference

between JK and the one in [32] (denoted by IT in (3.4) therein) is that the jump conditions
are imposed on Γ K

h .
Similar to (4.2), we denote the two polynomials that are trivial H2-extensions of JK u|K ±

still as J±
K u, which are defined on the whole element K . Roughly speaking, (4.4) defines

a piecewise linear polynomial JK u by a Hermite interpolation at a point on Γh . Moreover,
by an averaging type Taylor expansion, these two polynomials have the desired optimal
approximations to their corresponding functions u±

E on the whole element. This crucial
property is given by the lemma below, and serves as the key in our analysis.

Lemma 12 For u ∈ H2(β; Th), on any K ∈ T i
h there holds

|u±
E − J±

K u|1,K � hK ‖u‖E,2,ωK
. (4.5)

Proof The argument is the same as Lemmas 3-5 in [32]. ⊓⊔

A similar estimate for Π±
K can be established on the whole element K . The analysis needs

to employ the quasi interpolation J±
K u as an intermediate quantity to bridge the estimate.

Lemma 13 For u ∈ H2(β; Th), on any K ∈ T i
h there holds

|u±
E − Π±

K u|1,K � hK ‖u‖E,2,ωK
+ |u|E,1,δK . (4.6)

Proof By the triangle inequality and Lemma 12, it suffices to estimate the difference |J±
K u±−

Π±
K u|1,K . Without loss of generality, we only discuss the + piece. We have the following

trivial split

|J+
K u − Π+

K u|1,K � |J+
K u − Π+

K u|1,K +
h︸ ︷︷ ︸

(I)

+ |J+
K u − Π+

K u|1,K −
h︸ ︷︷ ︸

(II)

. (4.7)

The estimate for (I) is relatively easy as the domain K +
h matches the definition of Π+

K . By
the triangle inequality,

|J+
K u − Π+

K u|1,K +
h

� |u − Π+
K u|1,K +

h
+ |u − J+

K u|1,K +
h

� |u − ΠK u|1,K + |u − JK u|1,K

� |u − JK u|1,K � |u±
E − J±

K u|1,K + |u|E,1,δK

(4.8)

where in the third inequality we have used the best approximation property for ΠK under
the energy norm which is equivalent to the | · |1,K norm.

The second term (II) is to estimate the error when the domain K −
h is out of the part

defining Π+
K . Again we refer to Fig. 3c for an illustration. By the jump conditions on Γ K

h and
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(a) (b) (c) (d)

Fig. 3 A 1D analog of the comparison used in Lemmas 13 and 16: a and b: u and ũ := u±
E

on K ±
h

; c: Π±
K

u

for H1 function in Lemma 13; d: Π±
K

u versus Π±
K

ũ for H(curl) case, where scalar functions in this figure is
illustrated as the lateral view of the tangential component of the vector functions

employing the matrix in (3.28), we have the following identity for gradients of an IFE function
vh ∈ Sn

h (K ): ∇v+
h = M∇v−

h with M given in (3.28). It clearly shows ‖∇v+
h ‖ ≃ ‖∇v−

h ‖,
where ‖ · ‖ are just Euclidean norms for vectors, and the hidden constant depends on β

through the eigenvalues of M . Therefore, by letting vh = JK u − ΠK u, we have

|J+
K u − Π+

K u|1,K −
h

� |J−
K u − Π−

K u|1,K −
h

(4.9)

where the later one can be proved similarly to (4.8). ⊓⊔

4.2 The H(curl) IFE Functions

The similar situation also exists for the H(curl) case, i.e., we need the estimates for the
two polynomial components of the weighted L2 projection �±

K u on the entire element (the
notation is similar to (4.2)). In this case, we employ the quasi interpolation defined in [31,
(4.4)] as an intermediate estimate in the error analysis, which is similar to that for (4.3). Here
we denote it as JK to be distinguished from the H1 scalar case of which the approximation
is recalled below:

Lemma 14 (Theorem 4.1 in [31]) For u ∈ H1(curl, α, β; Th), on any K ∈ T i
h there holds

‖u±
E − J±

K u‖H(curl;K ) � hK ‖u‖E,curl,1,ωK
. (4.10)

We also recall the following result.

Lemma 15 (Lemma 4.2 in [31] and Lemma 5.4 in [12]) For u ∈ H1(curl, α, β; Th), on

any K ∈ T i
h , the difference of the extensions on the approximate interface Γ K

h along the

tangential direction t̄ satisfies

‖u+
E · t̄ − u−

E · t̄‖0,K � hK ‖u‖E,1,ωK
. (4.11)

As a function in H(curl), u · t is continuous. Extension will preserve the tangential continuity.
Note that u+

E · t = u−
E · t on Γ ∩ K , then it is reasonable to expect u+

E · t̄ is close to u−
E · t̄ on

Γ K
h as t̄ is a good approximation to t. As both the two quantities u±

E · t̄ are well-defined on
the entire element K , the estimate in (4.11) is a Poincaré-type inequality in a certain sense.

Then we can show the estimates for �K u and curl uI . For the curl case, we need to
eliminate the mismatch term on δK in the error bound. For this purpose, we note that the
mismatched term is essentially caused by the fact that u itself is partitioned by Γ but �K u

and uI are partitioned by Γh . So, it inspires us to introduce a new function ũ := u±
E on K ±

h
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as an intermediate quantity, and present the following estimate. Note that ũ = u on ∂K , and
thus ũI = uI . In fact, ũ differs from u only on the mismatched region δK , i.e., on δK ∩ K +

h ,
u − ũ = u − u+

E = u−
E − u+

E , and similarly on δK ∩ K −
h , u − ũ = u+

E − u−
E . We also note

that [ũ · t̄] |Γ K
h

	= 0. For an analog of this heuristic in a 1-dimensional setting, please refer to

Fig. 3d.

Lemma 16 Let ũ := u±
E on K ±

h , then there holds

‖�±
K u − �±

K ũ‖0,K � hK ‖u‖E,curl,1,ωK
, (4.12a)

curl uI = curl ũI . (4.12b)

Proof Since u and ũ match on ∂K , (4.12b) is trivial from integration by parts. We estimate
�K u−�K ũ := wh . Given each vh ∈ ∇Sn

h (K ), by (3.41), we can find ϕh ∈ S̃n
h (K ) satisfying

curl ϕh = βhvh given in Remark 5. For v = u or ũ, a similar formula to (3.47) leads to
∫

K

βh�K v · vh dx =
∫

K

curl v ϕh dx −
∫

∂K

v · t̄ϕh ds −
∫

Γ K
h

[v · t̄]ϕh ds (4.13)

where the last term vanishes for v = u. Using the fact that u and ũ match on ∂K and taking
the difference of (4.13) for v = u and ũ, we have

∫

K

βhwh · vh dx =
∫

δK

curl (u − ũ) ϕh dx

︸ ︷︷ ︸
(I)

−
∫

Γ K
h

(u+
E · t̄ − u−

E · t̄)ϕh ds

︸ ︷︷ ︸
(II)

. (4.14)

By Hölder’s inequality and (3.42), we have

(I) � ‖ curl (u+
E − u−

E )‖0,δK ‖ϕh‖0,K � hK ‖ curl (u+
E − u−

E )‖0,δK ‖vh‖0,K . (4.15)

Using the trace inequality in Lemma 4, (3.42), and curl ϕh = βhvh yields

(II) � (h
−1/2
K ‖u+

E · t̄−u−
E · t̄‖0,K +h

1/2
K |u+

E · t̄−u−
E · t̄|1,K ) · (h

−1/2
K ‖ϕh‖0,K +h

1/2
K |ϕh |1,K )

� ‖u+
E · t̄ − u−

E · t̄‖0,K ‖vh‖0,K + hK |u+
E · t̄ − u−

E · t̄|1,K ‖vh‖0,K

� hK ‖u‖E,1,ωK
‖vh‖0,K

(4.16)

where we have used Lemma 15 in the third inequality. Putting (4.15) and (4.16) into (4.14),
letting vh = wh , and cancelling one ‖wh‖0,K on each side, we obtain

‖�K u − �K ũ‖0,K � hK (‖ curl (u+
E − u−

E )‖0,δK + ‖u‖E,1,ωK
). (4.17)

Note that �K u − �K ũ ∈ ∇Sn
h (K ) by the exact sequence. So, using the argument similar to

(4.9), we directly induce (4.12a) from (4.17). ⊓⊔

With this preparation, we will present the following crucial estimate.

Lemma 17 For u ∈ H1(curl, α, β; Th), on any K ∈ T i
h there holds

‖�±
K u − u±

E ‖0,K � hK ‖u‖E,curl,1,ωK
, (4.18a)

‖ curl u±
E − curl± uI ‖0,K � hK ‖u‖E,curl,1,ωK

, (4.18b)

where curl± uI = (curl uI )
± are the two constants used on the whole element.
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Proof The argument is similar to Lemma 13 but slightly more complicated, since we need
to avoid the mismatched region δK by employing the function ũ introduced in Lemma 16.
We decompose the argument into several steps.

Step 1. We show

‖ũ − �K ũ‖0,K � hK ‖u‖E,curl,1,ωK
. (4.19)

Thanks to (3.33), we can write JK u as

JK u = p + p0(−(x2 − xm
2 ), x1 − xm

1 )⊺, (4.20)

where p0 and p are piecewise scalar- and vector-valued constants. In particular, we have
p ∈ ∇Sh(K ) = Ker(curl) ∩ Se

h(K ), and p0 = curl JK u/2. Then, by the best approximation
property of the projection, we have

‖ũ − �K ũ‖0,K � ‖
√

βh(ũ − �K ũ)‖0,K � ‖
√

βh(ũ − p)‖0,K

� ‖ũ − JK u‖0,K + hK ‖ curl JK u‖0,K ,
(4.21)

where in the last inequality we have inserted p0(x2 − xm
2 ,−(x1 − xm

1 ))⊺. Noticing that the
partition of ũ exactly matches JK u, i.e., both of their piecewise definitions are separated by
Γ K

h . Hence, applying Lemma 14 yields (4.19).
Step 2. We refine the estimate in (4.19) to the entire element; namely, with ũ± = u±

E , we
need to show

‖u±
E − �±

K ũ‖0,K � hK ‖u‖E,curl,1,ωK
. (4.22)

Without loss of generality, we focus on �+
K ũ − u+

E . Similar to the argument in Lemma 13,
we only need to estimate ‖�+

K ũ − J+
K u‖0,K −

h
. Again, let us write

�+
K ũ − J+

K u = q + q0(x2 − xm
2 ,−(x1 − xm

1 ))⊺, (4.23)

where q0 and q are piecewise scalar- and vector-valued constants. Next, we notice q+ = Mq−

and α+q+
0 = α−q−

0 . Then, we have

‖�+
K ũ − J+

K u‖0,K −
h

� ‖q+‖0,K −
h

+ hK ‖q+
0 ‖0,K −

h
� ‖Mq−‖0,K −

h
+ hK ‖q−

0 ‖0,K −
h

� ‖�−
K u − J−

K u‖0,K −
h

+ hK ‖ curl(�−
K u − J−

K u)‖0,K −
h
,

(4.24)

where in the last inequality we have inserted q−
0 (−(x2 − xm

2 ), x1 − xm
1 )⊺ and used q0 =

curl(�K ũ−JK u). Now, inserting ũ− = u−
E in the right-hand side of (4.24), applying Lemma

14, and (4.19) in Step 1 lead to the desired estimate (4.22) of Step 2. This wraps up the case of
+. Combing (4.12a) and (4.22) through the triangle inequality finishes the proof of (4.18a).

Step 3. As for (4.18b), by Lemma 9 and (4.12b), we use that the projections are the best
approximation to obtain

‖√αh(curl ũ − curl uI )‖0,K ≤ ‖√αh(curl ũ − curl JK u)‖0,K � hK ‖u‖E,curl,1,ωK
,

(4.25)

where we have also applied Lemma 14. Again, we have taken the advantage that both ũ and
JK u are piecewisely defined on K separated by Γ K

h . Then, similar to the argument above, it
only remains to estimate

‖ curl (J+
K u − u+

I )‖0,K −
h

≤
α−

h

α+
h

‖ curl (J−
K u − u−

I )‖0,K −
h
.
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The right hand side above follows from inserting curl u−
E in between, and applying (4.25)

and Lemma 14 respectively on the two terms from the triangle inequality. ⊓⊔
Finally, the trace inequality also holds for H(curl) IFE functions regardless of interface

location.

Lemma 18 (A trace inequality for H(curl) IFE functions [31]) For each interface element K

and its edge e, there holds

‖vh‖0,e � h
−1/2
K ‖vh‖0,K , ∀vh ∈ Se

h(K ). (4.26)

5 H
1 Elliptic Interface Problems

In this section, we present the IVE method for solving the H1-elliptic interface problem and
give the optimal order convergence analysis.

5.1 Scheme

Define the local bilinear form on an interface element K as: a
n,K
h (·, ·) : H1(K )× H1(K ) →

R where

a
n,K
h (uh, vh) := (βh∇ΠK uh,∇ΠK vh)K + Sn

K (uh − ΠK uh, vh − ΠK vh). (5.1)

One of the keys for VEM is the choice of the stabilization term. Here, following [10], we
consider the one associated with the H1/2(e) seminorm on e ∈ EK :

(wh, zh)1/2,e :=
∫

e

∫

e

βe

(wh(x) − wh(y))(zh(x) − zh(y))

|x − y|2 ds(x) ds(y), (5.2)

where βe = βh |e. Accordingly, | · |1/2,EK
is defined for any w ∈ Πe∈EK

H1/2(e) as

|w|21/2,EK
:=
∑

e∈EK

(w,w)1/2,e. (5.3)

Then, the stabilization term Sn
K (·, ·) is

Sn
K (wh, zh) :=

∑

e∈EK

βe(wh, zh)1/2,e =
∑

e∈EK

βe(wh(be) − wh(ae))(zh(be) − zh(ae)).

(5.4)

where the second identity is due to that both wh and zh are linear functions on each e ∈ EK .
The difference-type stabilization in (5.4) is first proposed in [73], and then analyzed in [68].
Here we choose the discrete 1/2 inner product as the error analysis is robust to the edge
length. For example, short edges are indeed unavoidable in our setting, of which the presence
does not affect the robustness of the analysis. The proposed IVE scheme for solving (1.1) is
to find uh ∈ V n

h such that

an
h (uh, vh) :=

∑

K∈Th

a
n,K
h (uh, vh) =

∑

K∈Th

( f ,ΠK vh)K , ∀vh ∈ V n
h , (5.5)

where the bilinear form on non-interface elements is simply the standard one (βh∇uh,∇vh)K .
The well-posedness of the scheme above is given by Lemma 19 below. We define the energy
norm
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|||vh |||2n := an
h (vh, vh). (5.6)

Lemma 19 |||·|||n is a norm on H1
0 (Ω) ∩ V n

h .

Proof Suppose |||vh |||n = 0 for some vh ∈ H1
0 (Ω) ∩ V n

h . on any K ∈ T i
h , by (5.1),

‖β1/2
h ∇ΠK vh‖0,K = 0 implies ΠK vh ∈ P0(K ). Moreover, |(I − ΠK )vh |1/2,e = 0 implies

vh ∈ P0(e) on each e ∈ EK . By vh ∈ C0(∂K ) ∩ H1(K ) in (3.1), vh ∈ P0(K ). The same
result holds on non-interface elements trivially. Therefore, the continuity in (3.2) and the
boundary condition on ∂Ω lead to vh ≡ 0. ⊓⊔

5.2 An Error Equation

Given u ∈ H2(β, Th), since the global virtual element space V n
h is conforming, there always

holds u I ∈ H1(Ω) given by (3.25). Our analysis is based on the following error decompo-
sition:

ξh = u − u I and ηh = u I − uh . (5.7)

The estimate of ξh is from the interpolation error estimate and ηh will be derived from an error
equation. The IVE and IFE coincide with the standard simplicial finite element consisting
only polynomials, thus the proposed stabilization vanishes. As a result, estimates on non-
interface elements fall into the standard FEM regime; and our focus will be thus on the
interface elements.

We follow [10] to derive an error equation for ηh = u I − uh .

Lemma 20 (Error equation) Let u ∈ H2(β; Th) be the solution to (1.1) and uh be the solution

to (5.5). Denote by ηh = uh − u I , then the following identity holds

|||ηh |||2n =
∑

K∈Th

{
(βh∇ΠK (u − u I ),∇ΠK ηh)K + (βh∇(u − ΠK u) · n, ηh − ΠK ηh)∂K

− Sn
K (u I − ΠK u I , ηh − ΠK ηh) + ((β − βh)∇u,∇ΠK ηh)K

}
.

(5.8)

Proof We start by the following

|||ηh |||2n = an
h (uh, ηh) − an

h (u I , ηh)

=
∑

K∈Th

( f ,ΠK ηh)K − an
h (u I , ηh) (Problem (5.5))

=
∑

K∈Th

(−∇ · (β∇u),ΠK ηh)K − an
h (u I , ηh) (Original PDE)

=
∑

K∈Th

[
(β∇u,∇ΠK ηh)K︸ ︷︷ ︸

(I)

− (β∇u · n,ΠK ηh)∂K︸ ︷︷ ︸
(II)

]
− an

h (u I , ηh). (Integration by parts)

(5.9)

In the last identity above, the flux jump conditions of u (1.2) and the continuity of ΠK ηh on
K are also used. For the term (I) in (5.9), using the definition of ΠK we have

(I) = (βh∇u,∇ΠK ηh)K + ((β − βh)∇u,∇ΠK ηh)K

= (βh∇ΠK u,∇ΠK ηh)K + ((β − βh)∇u,∇ΠK ηh)K .
(5.10)
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For the term (II), since β = βh on ∂K , we obtain
∑

K∈Th

(II) =
∑

K∈Th

(βh∇u · n,ΠK ηh)∂K =
∑

K∈Th

(βh∇u · n,ΠK ηh − ηh)∂K , (5.11)

where in the second identity we have used ηh = uh − u I being continuous across each edge
as it is in the virtual element space V n

h . Using integration by parts on the subelements K ±
h ,

the flux jump conditions of the IFE functions on Γ K
h , ηh − ΠK ηh being continuous across

Γ K
h , and definition of the projection ΠK , we have

(βh∇ΠK u · n, ηh − ΠK ηh)∂K =
∑

s=±
(βh∇ΠK u · n, ηh − ΠK ηh)∂K s

h

=
∑

s=±
(βh∇ΠK u,∇(ηh − ΠK ηh))K s

h
= 0.

(5.12)

Thus, (5.11) further becomes
∑

K∈Th

(II) =
∑

K∈Th

(βh∇(u − ΠK u) · n,ΠK ηh − ηh)∂K . (5.13)

Putting (5.10) and (5.13) into (5.9), and using the formula of an
h (u I , vh), we obtain the desired

result. ⊓⊔

In the derivation above, there are two steps involving integration by parts: the one in (5.9)
is for the exact solution u with respect to the subelements K ±, and another one in (5.12) is for
IVE and IFE functions with respect to the subelements K ±

h . Their difference corresponds to

their respective jump conditions imposed on Γ or Γ K
h , such that those extra terms occurring

on Γ or Γ K
h can be cancelled.

5.3 Error Estimates

In this section, we proceed to estimate the solution errors. Based on the error equation in
Lemma 20, we first get an error bound for uh − u I .

Theorem 5.1 (A priori error bound) Let u ∈ H2(β; Th) be the solution to (1.1) and uh be

the solution to (5.5). Denote by ηh = uh − u I . Then there holds

|||ηh |||n �
∑

K∈Th

[
‖β1/2

h ∇ΠK (u − u I )‖0,K + h
1/2
K ‖β1/2

h ∇(u − ΠK u) · n‖0,∂K (5.14)

+ |β1/2
h (u I − ΠK u I )|1/2,EK

+ ‖β1/2
max∇u‖0,δK

]
. (5.15)

Proof Note that β 	= βh only on δK , thus for the error equation in Lemma 20, applying the
Cauchy-Schwarz inequality, we have

|||ηh |||2n ≤
∑

K∈Th

(
‖β1/2

h ∇ΠK (u − u I )‖0,K ‖β1/2
h ∇ΠK ηh‖0,K

+ ‖β1/2
h ∇(u − ΠK u) · n‖0,∂K ‖β1/2

h (ηh − ΠK ηh)‖0,∂K

+ |β1/2
h (u I − ΠK u I )|1/2,EK

|β1/2
h (ηh − ΠK ηh)|1/2,EK

+ ‖β1/2
max∇u‖0,δK ‖β1/2

max∇ΠK ηh‖0,K

)
.

(5.16)
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In the bound above, it is clear that ‖β1/2
h ∇ΠK ηh‖0,K and |β1/2

h (ηh − ΠK ηh)|1/2,EK
are

bounded above by |||ηh |||n , and ‖β1/2
max∇ΠK ηh‖0,K is also bounded above by |||ηh |||n with a β

dependent constant.
To estimate the remaining second term in (5.16), we note that

∫
∂K

(ηh − ΠK ηh) ds = 0,
thus applying (2.8a) edge-wise in Theorem 2.2 yields

‖β1/2
h (ηh − ΠK ηh)‖0,∂K � h

1/2
K |β1/2

h (ηh − ΠK ηh)|1/2,EK
� h

1/2
K |||ηh |||n .

Combining the estimates above and cancelling out a |||ηh |||n on each side, we get the desired
a priori estimate. ⊓⊔

To get the optimal order of convergence of the proposed method, our task is to estimate
each term on the right-hand side of the error bound (5.14). Before getting into the estimate,
we emphasize that the set EK consists of the edges formed by element vertices and cut points.
Therefore, to avoid confusion in the following discussion, for each edge e ∈ EK that connects
an element vertex and a cut point, we will use ê to denote the edge containing e on the triangle
in the background mesh (e.g. e = a1b1 to ê = a1a2 in Fig. 2a). Now, let us first derive the
estimate of the first term in the right-hand side of the error bound in (5.14).

Lemma 21 Let u ∈ H2(β; Th), then on any K ∈ T i
h there holds

‖β1/2
h ∇ΠK (u − u I )‖0,K � hK ‖u‖E,2,ωK

. (5.17)

Proof By the definition of projection, we immediately have

‖β1/2
h ∇ΠK (u − u I )‖2

0,K = (βh∇ΠK (u − u I ),

∇ΠK (u − u I ))K = (βh∇ΠK (u − u I ),∇(u − u I ))K .

Using integration by parts on the subelements K ±
h , ΠK (u−u I ) satisfying the jump condition

on ΓK , and u − u I ∈ H1(K ), we have

‖β1/2
h ∇ΠK (u − u I )‖2

0,K =(βh∇ΠK (u − u I ) · n, u − u I )∂K

≤‖β1/2
h ∇ΠK (u − u I ) · n‖0,∂K ‖β1/2

h (u − u I )‖0,∂K .
(5.18)

For each edge on ∂K , applying the IFE trace inequality in Theorem 11, we obtain

‖β1/2
h ∇ΠK (u − u I ) · n‖0,e ≤ ‖β1/2

h ∇ΠK (u − u I ) · n‖0,ê

� h
−1/2
K ‖β1/2

h ∇ΠK (u − u I )‖0,K .
(5.19)

Putting (5.19) into (5.18) and cancelling out the term ‖β1/2
h ∇ΠK (u − u I )‖0,K leads to

‖β1/2
h ∇ΠK (u − u I )‖0,K � h

−1/2
K ‖β1/2

h (u − u I )‖0,∂K . (5.20)

So it remains to estimate the right-hand side above. Notice βh is constant on each edge
e ∈ EK . Without loss of generality, consider an e ⊂ ∂K +, by the interpolation estimate on
this edge, we have

‖β1/2
h (u − u I )‖0,e � h

3/2
e |u|3/2,e � h

3/2
K |u+

E |3/2,ê � h
3/2
K |u+

E |2,K (5.21)

where in the last inequality, we have also applied the trace inequality in [10, Lemma 6.2] on
∇u+

E |ê. Putting (5.21) into (5.20) gives the desired estimate on this edge. Similar arguments
apply to the case e ⊂ ∂K − which together finishes the proof. ⊓⊔
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The estimate of the second and third terms in the right-hand side of the error bound (5.14)
relies on the estimate of every polynomial component of Π±

K on the whole element K which
has been established in Lemma 13.

Lemma 22 Let u ∈ H2(β; Th), then on any K ∈ T i
h there holds

‖β1/2
h ∇(u − ΠK u) · n‖0,∂K � h

1/2
K ‖u‖E,2,ωK

+ h
−1/2
K |u|E,1,δK . (5.22)

Proof Without loss of generality, we only consider + side. Given an edge e ∈ EK with
e ⊆ K +

h and its extension ê as an edge of K , we apply the trace inequality to obtain

‖βh∇(u − ΠK u) · n‖0,e ≤ (β+)1/2‖∇(u+
E − Π+

K u) · n‖0,ê

� h
−1/2
K |u+

E − Π+
K u|1,K + h

1/2
K |u+

E |2,K

which yields the desired result by Lemma 13. ⊓⊔

Lemma 23 Let u ∈ H2(β; Th), then on any K ∈ T i
h there holds

|β1/2
h (u I − ΠK u I )|1/2,EK

� hK ‖u‖E,2,ωK
+ |u|E,1,δK . (5.23)

Proof Recall that | · |1/2,EK
is defined in (5.3). It suffices to establish an edge-wise estimate

under | · |1/2,e of which the definition is given in (5.2). For each edge, since βh is a constant,

|β1/2
h (u I − ΠK u I )|1/2,e � |u I − ΠK u|1/2,e︸ ︷︷ ︸

(I)

+ |ΠK (u − u I )|1/2,e︸ ︷︷ ︸
(II)

.

In the following discussion, without loss of generality we only consider e ⊆ K +
h . For (I),

since u I −ΠK u is linear on e, and u and u I match at the end points ae and be of e, we obtain

(I) =
∣∣∣(u I − Π+

K u)|be
ae

∣∣∣ =
∣∣∣(u − Π+

K u)|be
ae

∣∣∣ =
∣∣∣∣
∫

e

∂e(u − Π+
K u) ds

∣∣∣∣ ≤ h
1/2
e |u − Π+

K u|1,e.

(5.24)

Replacing u by its extension u+
E and recalling that Π+

K u is a polynomial being trivially used
on the whole element K , we apply the standard trace inequality and Lemma 13 to get

(I) ≤ h
1/2
K |u+

E − Π+
K u|1,ê � |u+

E − Π+
K u|1,K + hK |u+

E |2,K � hK ‖u±
E‖2,ωK

+ |u±
E |1,δK .

(5.25)

For (II), applying the trace inequality for IFE functions in Theorem 11, and Lemma 21,
we obtain

(II) =
∣∣∣ΠK (u − u I )|be

ae

∣∣∣ =
∣∣∣∣
∫

e

∂eΠK (u − u I ) ds

∣∣∣∣

≤h
1/2
e |ΠK (u − u I )|1,ê � h

−1/2
K h

1/2
e |ΠK (u − u I )|1,K ≤ hK ‖u±

E‖2,ωK
.

(5.26)

Combining the estimates of (I) and (II), we have the desired result. ⊓⊔

Combining the results of Lemmas 21, 22 and 23 and the error bound in Theorem 5.1, we
achieve the following conclusion.

Theorem 5.2 Let u ∈ H2(β; Th) be the solution to (1.1) and uh be the solution to (5.5), we

have

|||u − uh |||n � h‖u‖2,∪Ω± . (5.27)
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Proof The triangle inequality yields |||u −uh |||n ≤ |||u −u I |||n +|||u I −uh |||n . For |||u I −uh |||n ,
combining the results of Lemmas 21, 22 and 23 and the error bound in Theorem 5.1, we have

|||u I − uh |||n �
∑

K∈T
n

h

hK ‖u‖2,K +
∑

K∈T
i

h

(
hK ‖u‖E,2,ωK

+ |u|E,1,δK

)

� h‖u‖E,2,Ω � h‖u‖2,∪Ω± ,

(5.28)

where we have used the finite overlapping property of ωK and the strip argument in Lemma
2 to control |u|1,δK and finally the boundedness for Sobolev extensions.

Then we proceed to estimate |||u − u I |||n . Since it is trivial on non-interface elements, we
only need to estimate it on interface elements. By the triangle inequality, we have

|||u − u I |||n �
∑

K∈T
i

h

(
‖β1/2

h ∇ΠK (u − u I )‖0,K + |u − u I |1/2,EK

)
+
∑

K∈T
n

h

hK ‖u‖2,K .

(5.29)

The first term can be handled by Lemma 21. For the second term, given e ∈ EK and without
loss of generality assuming it is K +

h , by the interpolation estimate in 1D and the trace
inequality [10, Lemma 6.2], we have

|u − u I |1/2,e � he|u|3/2,e � he|u+
E |3/2,ê � hK ‖u+

E‖2,K (5.30)

where ê is the extension of e. Putting (5.30) to (5.29) and applying the boundedness for
Sobolev extensions, we have the desired result. ⊓⊔

6 H(curl) Interface Problems

In this section, we present an IVEM for the H(curl)-elliptic interface problem and give an
optimal order error estimate.

6.1 Scheme

We first present the scheme for the H(curl) interface problem. Define the local discrete
bilinear form on an interface element K as: a

e,K
h (·, ·) : H(curl; K ) × H(curl; K ) → R

where

a
e,K
h (uh, vh) := (αh curl uh, curl vh)K + (βh�K uh,�K vh)K

+ Se
K (uh − �K uh, vh − �K vh).

(6.1)

Similarly, �K reduces to an identity operator on non-interface elements, and thus the local
bilinear forms do not contain any projection or stabilization terms. Following [12], using the
same βe in (5.4), we directly employ the DoFs to construct the stabilization Se

K (·, ·) :

Se
K (wh, zh) :=

∑

e∈EK

βe(wh · t, zh · t)0,e. (6.2)

With these preparations, the IVEM for solving (1.3a) is to find uh ∈ Ve
h such that

ae
h(uh, vh) :=

∑

K∈Th

a
e,K
h (uh, vh) =

∑

K∈Th

(f,�K vh)K , ∀vh ∈ Ve
h, (6.3)
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where the local bilinear form on non-interface elements is the standard one (αh curl uh,

curl vh) + (βhuh, vh).

Remark 6 Note that the scaling in (6.2) is different from the conventional VEM using h [12,
67, 70] (or h1/2 on the boundary terms in the induced norm). In this work, the proposed
stabilization term above is larger than the one with the h weight, yet this will not downgrade
the coercivity constant to become mesh size dependent, see Lemma 25 below. The consistency
error may consequently become bigger. However, since the stabilization is only needed near
the interface, the overall consistency error is still of the optimal order. We postpone the
detailed mathematical reasoning to Remark 8. Here we emphasize that the constant weight
stabilization is one of the keys to ensure the optimal order of convergence, see Lemma 30
and Remark 8.

6.2 Coercivity

We begin with defining an energy norm:

|||vh |||2e := ae
h(vh, vh). (6.4)

We first show the quantity in (6.4) is indeed a norm.

Lemma 24 Given vh ∈ Ve
h(K ), there holds

‖vh‖0,K �
βmax

βmin

⎛
⎝hK ‖ curl vh‖0,K + h

1/2
K

∑

e∈EK

‖vh · t‖0,e

⎞
⎠ . (6.5)

Proof Given each vh ∈ Ve
h(K ), let ϕh be the corresponding function in Remark 5. Then,

−∇ · (β−1
h ∇ϕ) = curl vh and β−1

h ∇ϕ · n = −vh · t on ∂K . Using integration by parts, we
obtain

‖vh‖2
0,K =

∫

K

β−1
h curlϕh · β−1

h curlϕh dx � β−1
min

∫

K

β−1
h ∇ϕh · ∇ϕh dx

= β−1
min

(
−
∫

K

ϕh∇ · (β−1
h ∇ϕh) dx +

∫

∂K

ϕhβ−1
h ∇ϕh · n ds

)

� β−1
min

(
‖ϕh‖0,K ‖ curl vh‖0,K + ‖ϕh‖0,∂K ‖vh · t‖0,∂K

)
.

(6.6)

Applying (3.42) and cancelling one term of ‖vh‖0,K leads to the desired result. ⊓⊔

We highlight that the hidden constant in Lemma 24 is still independent of the interface
location. But, compared with Proposition 4.1 of [70], our result involves the extra term
hK ‖ curl vh‖0,K . It yields the following coercivity.

Lemma 25 For all vh ∈ Ve
h , there holds

‖vh‖H(curl;Ω) � |||vh |||e. (6.7)

Proof As the norm induced by a
e,K
h (·, ·) agrees with ‖ · ‖H(curl;Ω) on non-interface elements,

it suffices to establish the estimates on an interface element K . The triangle inequality directly
yields

‖vh‖0,K ≤ ‖�K vh‖0,K + ‖vh − �K vh‖0,K . (6.8)
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We note that �K vh ∈ Ve
h(K ), then it follows from Lemma 24 and hK � O(1) that

‖vh − �K vh‖0,K � hK ‖ curl vh‖0,K + h
1/2
K

∑

e∈EK

‖(vh − �K vh) · t‖0,e. (6.9)

Summing up (6.8) and (6.9) on all elements yields the desired result. ⊓⊔

Remark 7 In particular, (6.7) implies the coercivity of the bilinear form a
e,K
h (·, ·), and thus

guarantees the existence and uniqueness of the solution to (6.3). Comparing (6.9) and the
stabilization term (6.2), we see that such coercivity still holds independent of the mesh size

as the applied stabilization is stronger (O(1) v.s. O(h
1/2
K )).

6.3 An Error Equation

Similar to the H1 case, the analysis is based on the following error decomposition:

ξh = u − uI and ηh = uh − uI , (6.10)

where uI is given by (3.25). Let us present the error equation and error bounds.

Lemma 26 (Error equation) Let u ∈ H1(curl, α, β; Th) be the solution to (1.3a) and uh be

the solution to (6.3). Then the following identity holds

|||ηh |||2e =
∑

K∈Th

{ ∫

∂K

αh(curl u − curl uI )(ηh · t − �K ηh · t) ds + ((β − βh)u,�K ηh)K

+ (βh(u − �K uI ),�K ηh)K − Se
K (u − �K uI , ηh − �K ηh)

}
.

(6.11)

Proof We proceed similarly as (5.9) in Lemma 20. Using the discretized problem (6.3), the
original PDE (1.3a), and integration by parts elementwisely, we have

|||ηh |||2e = ae
h(uh, ηh) − ae

h(uI , ηh)

=
∑

K∈Th

(f,�K ηh)K − (αh curl uI , curl ηh)K − (βh�K uI ,�K ηh)K

− Se
K (uI − �K uI , ηh − �K ηh)

=
∑

K∈Th

(curl α curl u,�K ηh)K︸ ︷︷ ︸
(Ia)

− (αh curl uI , curl ηh)K︸ ︷︷ ︸
(Ib)

+ (βu,�K ηh)︸ ︷︷ ︸
(IIa)

− (βh�K uI ,�K ηh)K︸ ︷︷ ︸
(IIb)

−Se
K (uI − �K uI , ηh − �K ηh).

(6.12)

For (Ia), integration by parts and the continuity conditions for curl u ∈ H̃1(α, Th) and
ηh ∈ H(curl;Ω) imply

∑

K∈Th

(Ia) = −
∑

K∈Th

∫

∂K

α curl u (�K ηh · t)

ds =
∑

K∈Th

∫

∂K

α curl u (ηh · t − �K ηh · t) ds.

(6.13)
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In addition, since αh curl uI is a constant and �K ηh ∈ ∇Sn
h (K ) by the exact sequence (3.38),

we obtain
∫

∂K

αh curl uI (�K ηh · t) ds = αh curl uI

∫

∂K

�K ηh · t ds = 0. (6.14)

So, using integration by parts again together with (6.14), we have

(Ib) =
∫

∂K

αh curl uI (ηh · t) ds =
∫

∂K

αh curl uI (ηh · t − �K ηh · t) ds. (6.15)

As α matches αh on ∂K , we obtain

∑

K∈Th

(Ia) + (Ib) =
∑

K∈Th

∫

∂K

αh(curl u − curl uI )(ηh · t − �K ηh · t) ds. (6.16)

For the terms (II), we simply have

(IIa) − (IIb) = ((β − βh)u,�K ηh)K + (βh(u − �K uI ),�K ηh)K . (6.17)

As for the stabilization term, using the fact that (ηh − �K ηh) · t =: c is a constant on e,
applying the definition of the interpolation

∫
e
(uI · t)c ds =

∫
e
(u · t)c ds yields the desired

result. ⊓⊔

With the error equation above, we are able to derive the error bound for ηh .

Theorem 6.1 (A priori error bound) Let u ∈ H1(curl, α, β; Th) be the solution to (1.3a) and

uh be the solution to (6.3). Then it follows that

|||ηh |||e �
∑

K∈Th

(
‖αh(curl u − curl uI )‖0,∂K + ‖

√
βh (u − �K uI )‖0,K

+ ‖
√

βh (u − �K uI )‖0,∂K

)
+ h‖u‖1,Ω .

(6.18)

Proof It directly follows from the Cauchy-Schwarz inequality and the definition of stabiliza-
tion Se

K (·, ·), where the last term is due to Lemma 2. ⊓⊔

6.4 Convergence Analysis

We proceed to estimate each term in (6.18).

Lemma 27 Let u ∈ H1(curl, α, β; Th). Then it follows that

‖αh(curl u − curl uI )‖0,∂K � h
1/2
K ‖u‖E,curl,1,ωK

. (6.19)

Proof Since K is shape regular, given an edge e ∈ EK , suppose e ⊂ ∂K + without loss of
generality, then applying the trace inequality in Lemma 3 for extensions on the whole K

yields

‖ curl u − curl uI ‖0,e � h
−1/2
K ‖ curl u+

E − curl u+
I ‖0,K + h

1/2
K | curl u+

E |1,K (6.20)

which yields the desired result by (4.18b) in Lemma 17. ⊓⊔

In order to estimate the rest terms of (6.18), we need the following result.
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Lemma 28 Let u ∈ H1(curl, α, β; Th). Then it follows that

‖
√

βh �K (u − uI )‖0,K � hK ‖u‖E,1,K . (6.21)

Proof Since �K (u − uI ) ∈ ∇Sh(K ), by (3.41) we have a ϕh ∈ S̃n
h (K ) from Remark 5 such

that curl ϕh = βh�K (u − uI ). Then, integration by parts leads to

‖
√

βh �K (u − uI )‖2
0,K =

∫

K

curl ϕh · (u − uI ) dx = −
∫

∂K

ϕh(u − uI ) · t ds. (6.22)

Next, the Hölder’s inequality, estimate (3.42), and the definition of uI together lead to

‖
√

βh �K (u − uI )‖2
0,K ≤ ‖ϕh‖0,∂K ‖(u − uI ) · t‖0,∂K

� h
1/2
K ‖βh�K (u − uI )‖0,K h

1/2
K ‖u‖1/2,∂K .

(6.23)

Note that ‖u‖1/2,∂K � ‖u‖E,1,K . Hence, cancelling one term ‖
√

βh �K (u − uI )‖0,K yields
the desired result. ⊓⊔

Lemma 29 Let u ∈ H1(curl, α, β; Th). Then it follows that

‖
√

βh (u − �K uI )‖0,K � hK ‖u‖E,curl,1,ωK
+ ‖u‖E,0,δK . (6.24)

Proof The desired result directly follows from the following decomposition

‖
√

βh (u − �K uI )‖0,K ≤ ‖
√

βh (u − �K u)‖0,K + ‖
√

βh �K (u − uI )‖0,K (6.25)

together with (4.19) and Lemma 28. ⊓⊔

Lemma 30 Let u ∈ H1(curl, α, β; Th). Then it follows that

‖
√

βh(u − �K uI )‖0,∂K � h
1/2
K ‖u‖E,curl,1,ωK

. (6.26)

Proof Similar to (6.25), we first write

‖
√

βh (u − �K uI )‖0,∂K ≤ ‖
√

βh (u − �K u)‖0,∂K + ‖
√

βh �K (u − uI )‖0,∂K . (6.27)

Then, using a similar trace inequality argument with that in Lemma 27 and (4.18a) in Lemma
17 lead to

‖u − �K u‖0,e � h
−1/2
K ‖u+

E − �+
K u‖0,K + h

1/2
K |u+

E |1,K � h
1/2
K ‖u‖E,curl,1,ωK

. (6.28)

The estimate of the second term in (6.27) follows from the trace inequality for IFE functions
in Lemmas 18 and 28. ⊓⊔

We are ready to present the main theorem in this section.

Theorem 6.2 Let u ∈ H1(curl, α, β; Th) be the solution to (1.3a) and uh be the solution to

(6.3). Then,

|||u − uh |||e � hK ‖u‖H1(curl;∪Ω±). (6.29)

Proof Note the decomposition u − uh = ξh + ηh in (6.10). The estimates on non-interface
elements are standard. Using Theorem 6.1 with the Lemmas 27–30, we obtain

|||ηh |||e �
∑

K∈T
i

h

(
h

1/2
K ‖u‖E,curl,1,ωK

+ ‖u‖E,0,δK

)
+
∑

K∈T
n

h

hK ‖u‖H1(curl;K )

� h
1/2
K ‖u‖E,curl,1,ΩhΓ

+ ‖u‖E,curl,1,Ωδ0
+ h‖u‖H1(curl;∪ Ω±) � h‖u‖H1(curl;∪Ω±),

(6.30)
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where we have used Lemma 2 with the estimates for hΓ and δ0. In addition, by the definition
of |||·|||e, we have

|||ξh |||e �
∑

K∈Th

‖ curl ξh‖0,K + ‖�K ξh‖0,K + ‖ξh − �K ξh‖0,∂K (6.31)

where the estimates of the first two terms follow from (4.18b) in Lemma 17 and Lemma 28,
respectively. For the last term in (6.31), we notice that

‖(u − uI ) − �K (u − uI )‖0,∂K ≤ ‖u − uI ‖0,∂K + ‖�K (u − uI )‖0,∂K (6.32)

where the estimate of the first term is similar to (6.23), and the estimate of the second term
comes from the trace inequality for IFE functions in Theorem 11 together with Lemma 28.

⊓⊔

Remark 8 If the “right" scaling h is used in stabilization (6.2) that induces a discrete H−1/2

norm to match the regularity of the trace of an H(curl) vector field in 2D, then, in the derivation
of the a priori error bound in Theorem 6.1, one has to use the following estimate:

∫

∂K

αh(curl u − curl uI )(ηh · t − �K ηh · t) ds

≤ h−1/2‖αh(curl u − curl uI )‖0,∂K h1/2‖ηh · t − �K ηh · t‖0,∂K .

(6.33)

Opting for this route, the term h1/2‖ηh · t −�K ηh · t‖0,∂K is a part of the norm |||ηh |||e. Thus,
the term h−1/2‖αh(curl u − curl uI )‖0,∂K needs to yield an h to deliver the optimal order
convergence. However, using (6.19) in Lemma 27 to estimate this term will immediately
lead to the loss of a further h1/2 order convergence, such that the final error estimate is
only suboptimal. Furthermore, we highlight that such a trick to achieve optimal convergence
highly relies on the property that VEM can obtain coercivity even for an “underweight”
scaling parameter. In contrast, h−1 scaling has to be used for the purpose of coercivity (norm
equivalence) in some unfitted mesh methods, which causes suboptimal convergence.

7 Numerical Experiments

In this section, we present some numerical results to validate the analysis above. Here we
focus on the H(curl) problem, as the main motivation for this work is to address the related
non-conformity issue that challenges many unfitted mesh methods [14, 15, 31]. We consider
a domain Ω = (−1, 1) × (−1, 1) with a structured Cartesian triangular mesh. Our test
example is borrowed from [34] where the interface is a circle given by Γ : x2 + y2 = r2

1 that
cuts Ω into the inside and outside subdomains denoted by Ω− and Ω+. The exact solution
is given by

u =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
α−

((
−k1(r

2
1 − x2 − y2)y

)
(
−k1(r

2
1 − x2 − y2)x

)
)

in Ω−,

1
α+

((
−k2(r

2
2 − x2 − y2)(r2

1 − x2 − y2)y
)

(
−k2(r

2
2 − x2 − y2)(r2

1 − x2 − y2)x
)
)

in Ω+.

(7.1)

The boundary conditions and the right hand side f are calculated accordingly. We set k2 = 20,
k1 = k2(r

2
2 −r2

1 ) with r1 = π/5 and r2 = 1, and consider the parameters: fixing α− = β− =
1 and varying α+ = β+ = 10 or 100. We present the numerical results in the following
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Fig. 4 Errors of the IVE for the H(curl) interface problem: α+ = β+ = 10 (left) and α+ = β+ = 100
(right). The dashed lines are the reference lines indicating an optimal convergence of order O(h)

Fig. 4 which clearly show an optimal convergence and outperform many other unfitted mesh
methods in the literature.

8 Concluding Remarks

We have developed IVE methods for solving H1 and H(curl) elliptic interface problems in
two dimensions. Conventional finite element spaces are conforming but do not satisfy the
jump conditions, while the IFE spaces in current literature satisfy the jump conditions but are
not conforming. The proposed IVE spaces are conforming and satisfy the jump conditions
simultaneously. In our opinion, they are candidates for the “ideal” spaces to solve interface
problems. This unique attribute makes the proposed methods inherit the advantages of both
fitted and unfitted mesh methods. Similar to the classic VEM, the newly constructed spaces
are projected to the IFE spaces which is computable directly through DoFs.

There are several major differences of the proposed IVEM from the classic IFEM. First,
the proposed method does not require those DG-like edge terms originated from integration
by parts. The only edge-based term is the stabilization term. Opposing to IPDG-like methods
that has the symmetry-coercive dilemma, what is even more favorable about IVEM is that the
resulting discretization is parameter-free, and yields a symmetric system which can be solved
by fast linear solvers. This is particularly useful for the H(curl) case, since it avoids using
h−1 scaling in the stabilization that causes a loss of convergence order for non-conforming
methods [14, 15, 31]. Second, the stabilization is completely local, and consequently the
assembling does not need to compute the interaction between two neighbor elements’ DoFs.
This trait makes this method more parallelizable. In addition, there are more DoFs locally on
each interface element than classic IFEM, and these extra DoFs are introduced by the cutting
points which can better resolve the geometry.

The proposed method is also distinguished from the classic VEM in the fact that anisotropic
elements cut by the interface are treated together as a shape regular element. Thanks to this
treatment and the properties of IFE spaces, the robust error analysis with respect to cut-
ting points can be achieved which is also much easier and more systematic. In fact, for the
analysis of classical VEM on anisotropic elements [10, 12], the main difficulty is to obtain
an error bound that is independent of element anisotropy such as shrinking elements. We
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highlight that one of the key obstacles for anisotropic analysis is the failure of the standard
trace inequalities as the height of an edge may be very small and thus unable to support a
smooth extension of a function defined on an edge toward the interior. For example for the
present situation, in the estimation of (5.19) and (5.26), the standard trace inequality can-
not be applied directly to each polynomial on each subelement as it may shrink, and thus
the hidden constant may not be uniform with respect h anymore. Consequently, the estima-
tion for VEM generally requires some dedicated analysis techniques such as the Poincaré
inequality on an anisotropic cut element developed in [10, 12]. This is especially difficult
for the H(curl) case that demands a virtual mesh, see [12]. These specialized analysis may
limit the scope of its applicable elements. However, in the proposed analysis of this paper,
these special treatments are not needed anymore. This improvement comes from the ben-
efit of adopting the piecewise polynomial IFE functions as our projection space, which do
admit cutting geometry-independent trace inequalities on interface elements as shown in
Lemmas 11 and 18. These trace inequalities significantly simplify the analysis, which are
now streamlined to resemble more to the standard analysis on isotropic elements.

Similar to many unfitted mesh methods in the literature, the present analysis relies on
that the interface is smooth. If the interface is non-smooth (even piecewise smooth), many
critical tools for the analysis will not be available anymore. For example, if the interface has
geometrical singularities, the solutions will have lower regularity ([59]). Consequently, (i)
H2 and H1(curl) Sobolev extensions become obscure, (ii) commuting diagrams with extra
smoothness in Sect. 2.2 do not hold anymore.

We focus on two-dimensional problems in this work to introduce the methodology, which
can shed light on the 3D case. In a more recent work [13], the IVE spaces and the schemes
are extended to the 3D case. As one can imagine, the definition of IVE and IFE spaces as
well as anisotropic error analysis in 3D will be much more complicated.
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