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Modeling the complex dependence in multivariate time series data is a fundamental 
problem in statistics and machine learning. Traditionally, the task has been approached 
with methods such as multivariate autoregressive models and multivariate generalized 
autoregressive conditional heteroskedasticity models, and Gaussian process based methods 
are recently becoming popular by leveraging the flexibility of non-parametric learning. 
However, few methods exist that directly model the dynamics of the covariance matrices 
except generalized Wishart process (GWP), and even the generalized Wishart process 
is limited with applications on small dataset due to the extremely high computational 
capacity induced by multiple Gaussian processes. In this regard, a novel stochastic process 
named as Predictive Wishart Process (PWP) is proposed, which provides a collection of 
positive semi-definite random matrices indexed by input variables. The PWP projects 
process realizations of GWP to a lower dimensional subspace to efficiently estimate every 
GWP . The theoretical properties of it are examined, and both Bayesian inference and 
efficient variational expectation maximization are explored in relation to it. Moreover, 
the PWP is empirically tested on synthetically generated time-series data to validate 
competitive reconstructive performance and efficient predictive performance, and applied 
on a large-scale real functional magnetic resonance imaging (fMRI) dataset from Human 
Connectome Project (HCP) to demonstrate its practicality. A thorough statistical analysis 
with visualizations is conducted on the brain connectivity, and also a PWP-based multi-
task learning framework is proposed to extract meaningful features from individual fMRIs.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Accurate estimation of associations over a set of variables is a fundamental problem in statistics (and machine learning) 
with significant interest from diverse domains. Typically, the associations (e.g., covariance) are assumed to be static, and they 
are often estimated using structural equation models or graphical models (Biswal et al., 1995; Greicius, 2008; Biswal, 2012). 
However, when the given data are time-dependent, they often exhibit heteroscedasticity, i.e., the variances and correlations 
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Fig. 1. A draw from a Predictive Wishart Process (PWP ). Each ellipse is a 2 ×2 covariance matrix index by observed time {ti}Nt=1 or inducing time {z j}Mj=1. 
The rotation indicates the correlation between the two variables, and the major and minor axes scale with the eigenvalues (i.e., λ1, λ2) of the matrix. A 
draw from a PWP consists of two steps: (i), we draw a collection of matrices indexed by inducing time; (ii), we map the collection of matrices to another 
collection of matrices indexed by observed time.

of variables of interest are time-varying (Dai et al., 2016; Seiler and Holmes, 2017; Zhu et al., 2019; Meng et al., 2021, 
2022). Therefore, accounting for both temporal and spatial dependency in the covariance is critical in various motivating 
applications, e.g., capturing the time-varying volatility of a collection of risky assets in econometrics (Cappiello et al., 2006; 
Fox and West, 2011), and modeling spatial variations in correlations for customarily recorded multivariate measurements at 
a large collection of locations for geoscience (Gelfand et al., 2005; Fox and Dunson, 2015).

Such a problem routinely arise in brain connectivity analyses in Neuroimaging, which often requires estimating covari-
ance from a knot of measurements (e.g., timeseries) across spatially parcellated Regions of Interest (ROIs) in the brain. 
Here, the covariance quantifies the level of associations between different ROIs as a functional connectivity (Smith, 2012). 
Conventional connectivity constructions assume that the functional associations are static in time over the entire scan pe-
riod (Varoquaux et al., 2010; Chai et al., 2009). Nevertheless, several studies demonstrate that the functional connectivities 
change over time whose temporal variation may be significant (Hutchison et al., 2013; Hindriks et al., 2016). Therefore, de-
riving dynamic associations between ROIs is an important problem for both statistics and neuroscience, which investigates 
the time-varying co-activation patterns in the brain activities (Hutchison et al., 2013; Keilholz, 2014; Li et al., 2019).

Unfortunately, modeling such dynamic changes of covariance is quite challenging, because the given data are often 
in a large scale in length and typically only a single observation is recorded at each time stamp. In the statistical lit-
erature, modeling the dynamics of covariance has been tackled with Multivariate Generalized Autoregressive Conditional 
Heteroskedasticity (MGARCH) models (Engle, 2002), and alternative approaches were proposed such as Bayesian nonpara-
metric models based on Wishart process (WP) (Fox and West, 2011; Wilson and Ghahramani, 2010). However, recent works 
including Generalized Wishart Process (GWP ) on Bayesian inference for WP are limited as they often require extremely 
high computational capacity due to the burden introduced from latent Gaussian processes, and hence makes it difficult to 
scale down for practical model inference.

To tackle the problem above, we develop Predictive Wishart Process (PWP), which is a novel parsimonious stochastic 
process which approximates the traditional GWP . We thoroughly study the stochastic properties of the PWP and provide 
full Bayesian posterior inference, which has been dismissed in previous literature. This framework is scalable to generate 
time-varying covariance �(x) for a given index x from large-scale data (see Fig. 1) under rigorous mathematical properties. 
The complexity of generating time-varying covariance matrices is linear with respect to the number of covariance matrices 
(N) as opposed to GWP whose complexity of generating latent variables in each GP is cubic in N . Due to the parsimony 
of the predictive process, both Bayesian and variational inferences of the dynamic covariance structure with PWP become 
efficient.

The main contributions of our work are summarized as:

(i) We introduce a novel matrix variate stochastic process and theoretically demonstrate its desirable properties;
(ii) We propose Markov chain Monte Carlo (MCMC) and variational expectation maximization inference associated with 

a hierarchical Gaussian model and illustrate both computational benefits and comparable predictive performance of 
PWP ;

(iii) We provide a multi-task learning framework using PWP to jointly model multiple large-scale signals, and empirically 
prove the efficiency and practicality of PWP by tackling a real large-scale problem where conventional methods fail.

Extensive experiments are carried on synthetic experiments (with ground truth) as well as on a large-scale real Neu-
roimaging study (i.e., Human Connectome Project (HCP)) with resting-state functional MRI (fMRI) (WU-Minn, 2017) for 
reconstruction and prediction of dynamic covariances. Utilizing PWP leads to improvement in characterizing behavioral 
scores with dynamic covariance; our pioneering exploration on modeling dynamic connectivity should be worth pursuing 
further.
2
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2. Related works

There exists a large body of literature on modeling time-varying covariance matrix, and classical strategies for estimating 
the covariance rely on standard regression methods with the Cholesky decomposition of the covariance or precision matrices 
(Pourahmadi, 1999; Zhang and Leng, 2012). Alternatively, nonparametric approaches have been proposed in Yin et al. (2010); 
Fox and Dunson (2015).

For modeling multivariate time series, heteroscedastic modeling has a long history, where the main approaches including 
multivariate GARCH based models (Engle, 2002; Engle and Kroner, 1995; Engle and Sheppard, 2001), dynamic conditional 
correlation models (Lindquist et al., 2014; Lee and Kim, 2021), sliding-window based approach (Monti et al., 2014), mul-
tivariate stochastic volatility models (Chib et al., 2006; Kastner et al., 2017) and Wishart process (Gouriéroux et al., 2009; 
Wilson and Ghahramani, 2010). Specifically, Lindquist et al. (2014) focus on the dynamic conditional correlation model 
(DCC) and show that DCC outperforms the exponential weighted moving average (EWMA) approach and sliding-window 
based approach. Lee and Kim (2021) extend the DCC approach to a copula-based DCC to release the Gaussian distribution 
of the data. Monti et al. (2014) propose the smooth incremental Graphical Lasso estimation algorithm which considers 
both sparsity and temporal homogeneity in the covariance estimation. Warnick et al. (2018) model the dynamic functional 
network connectivity using a hidden Markov model.

Our approach is a Bayesian nonparametric model based on Wishart process, allowing a feasible modeling of spatial and 
temporal correlation of data. There exist two Wishart process based methods: Wishart autoregressive processes (Gouriéroux 
et al., 2009) that construct positive definite volatility matrices with latent autoregressive (AR) models, and generalized
Wishart process (GWP) (Wilson and Ghahramani, 2010) that utilize Gaussian process to model latent process instead of AR 
models. Due to the limited expressiveness of AR models, Wishart autoregressive process cannot handle the long temporal 
dependence. On the other hand, GWP led to a diverse class of covariance dynamics, but it is not scalable to large datasets 
due to the expensive computation induced from corresponding latent Gaussian processes. Our approach attains the best of 
both worlds by utilizing a predictive process to model the dependence within those latent functions.

3. Preliminary

In this section, we briefly review a predictive process (PP ) (Banerjee et al., 2008; Finley et al., 2009), as it sets the 
foundation of our proposed PWP construction. We begin with distributions over functions u(x) using Gaussian process 
(GP) as

u(x) ∼ GP(m(x),C(x, x′)), (1)

with a mean function m(x) and a covariance function C(x, x′) of choice specified with hyper-parameters τ , and we will refer 
to it as the parent process.

In the remainder of this paper, we consider a zero-mean Gaussian process, i.e., m(x) ≡ 0. Given a collection of inducing 
inputs z = (z1, . . . , zM), the collection of function values u has a joint Gaussian distribution as

u = (u(z1), . . . ,u(zM))T ∼ N (0, C∗), (2)

where C∗ is the covariance matrix introduced by the covariance function C(x, x′) on inducing points z.
A predictive process, i.e. PP , is derived from its parent process (1) on a completely specified lower dimensional subspace. 

Specifically, given (1), the predictive process is defined as ũ(x) ∼PP(0, C(x, x′)) = GP(0, C̃(x, x′)) that is equivalent to a new 
specified Gaussian process defined by the covariance function

C̃(x, x′) = cT (x)C∗−1c(x′) , (3)

where c(x) = (C(x, z1), . . . , C(x, zM))T . Here, two major properties of PP are given (Banerjee et al., 2008):

ũ(x) = cT (x)C∗−1u , (4)

C̃(x, x) ≤ C(x, x) . (5)

Note that (4) shows that the predictive process can be treated as a linear projection on the subspace spanned by u , and 
(5) reveals that the predictive process will underestimate the variance of its parent process. A modified predictive process 
proposed in Finley et al. (2009) can correct the bias of variances by replacing (3) with

C̃(x, x′) =
{
C(x, x′) x = x′

cT (x)C∗−1c(x′) x �= x′.
(6)

In this paper, we construct our PWP based on the native PP rather than the modified version to design a concrete 
predictive process.
3
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4. The predictive Wishart process

In this section, we first introduce the concept and construction of our proposed PWP , then in the following we discuss 
its theoretical properties.

4.1. Construction of predictive Wishart process

Suppose that we have V × D independent predictive process functions with an unit variance in its parent process, i.e. 
C(x, x) = 1 for x ∈X , as

ũvd(x)
ind∼ PP(0,Cd(x, x

′)) , (7)

where v = 1, . . . , V represents the index of the degrees of freedom V , and d = 1, . . . , D is the index of the dimension of 
the multivariate features. We assume V ≥ D to ensure our construction is well defined. Here, the objective is to design a 
collection of positive semi-definite (p.s.d.) random matrices �(x) (e.g., covariance matrices), indexed by any arbitrary input 
variable x ∈ X (e.g., time). Let ũv(x) = (ũv1(x), . . . , ̃uvD(x))T , and let S ∈ SD represent a positive definite matrix with its 
unique lower Cholesky decomposition matrix L such that LLT = S . We also denote Ũ (x) = (ũ1(x), . . . , ũV (x)).

Predictive Wishart Process (PWP) is defined as a collection of p.s.d. random matrices {�(x)} indexed by x ∈ X , by mod-
eling the process as

�(x) = LŨ (x)Ũ (x)T LT =
V∑

v=1

Lũv(x)ũ
T
v (x)LT , (8)

with all latent processes following independent predictive processes. We denote this process as PWP(L, V, τ ) that depends 
on a lower triangular matrix L and a degree of freedom V . The lower triangular matrix L models the marginal variance-
covariance at any fixed timestamp and the degrees of freedom V describes the flexibility of temporal dependence and the 
hyper-parameters τ characterize latent processes.

If each predictive process of ũvd(x) is replaced by its parent process (1), and then this process is formulated as Generalized 
Wishart Process (GWP) (Wilson and Ghahramani, 2010) which is a generalization of the original Wishart process defined by 
Bru (1991). The Predictive Inverse Wishart Process (PIWP), consequently, can be indirectly defined as �(x) = �−1(x), given 
�(x) ∼PWP(L, V, τ ). We note that at any index x, the distribution of �(x) is an inverse Wishart distribution.

4.2. Properties of predictive Wishart process

We first show that the proposed PWP at any input x follows a well-defined Wishart distribution WD in the theorem 
below.

Theorem 1. For any input variable x, the distribution of �(x) ∼ PWP(L, V, τ ) at x is the Wishart distribution such that �(x) ∼
WD(V, S∗), where S∗ = LBLT and B is the diagonal matrix with elements bd = C̃d(x, x) for d = 1, . . . , D.

Remarks 1. Theorem 1 shows the marginal distribution of PWP prior at any input x is a well-defined Wishart distribution, 
and the distribution of �(x) in PWP is different from GWP .

Notice that when the predictive process priors are replaced by modified predictive process priors (Banerjee et al., 2008; 
Finley et al., 2009), the distribution of �(x) at any input variable x is the Wishart distribution such that �(x) ∼ WD(V, S).

For simplicity, in the remainder of paper, we assume that all latent functions ũvd share the same covariance function C . 
We derive expressions for the covariance between elements of �(x) and �(x′) for any pair of inputs x and x′ in Theorem 2, 
assuming L is diagonal and {ũvd} have an identical predictive process prior. Proofs of Theorem 1 and 2 will be given in the 
Appendix A.

Theorem 2. Assume that L is a diagonal matrix and {ũvd} have an independent identical predictive process priors. For any pair of 
inputs variables x and x′ , the covariance between �i j(x) and �kl(x′) is given as

cov(�i j(x),�kl(x
′))

=

⎧⎪⎨
⎪⎩
2Vl4i C̃

2(x, x′), i = j = k = l;
Vl2i l

2
j C̃

2(x, x′), i = k �= j = l;
0, otherwise.

(9)

Remarks 2. Theorem 2 discusses the temporal cross-relation of dynamic covariance matrices. The covariance turns out to 
be proportional to the C̃2(x, x′) and hence shows that the selection of C undoubtedly plays an important role of controlling 
the autocorrelations. The covariance relation can be generalized to any lower triangular L.
4
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Table 1
A summary of inference approaches for PWPs. Here, w , τ , L refer 
to the inducing variables, input-dependent hyper-parameters and input-
independent hyper-parameters, respectively.
Inference + Parameters

w τ L

PWP-MCMC MCMC MCMC MCMC
PWP-VEM VI (optimized) (optimized)

+ PWP-MCMC: Bayesian inference with Markov chain Monte Carlo (MCMC) 
on all parameters, PWP-VEM: Variational expectation maximization (VEM) 
with variational inference (VI) on latent variables w and optimization on 
remaining parameters.

Remarks 3. Although the priors of �(x) from PWP and GWP both belong to Wishart distribution, they have different 
scale matrices, S = LLT for GWP and S∗ = LBLT for PWP . Because C̃d(x, x) = bd and Cd(x, x) = 1, ignoring the subscript 
d, this similarity between PWP and GWP depends on how well C̃ approximates C . Notice that C̃ is the Nyström approx-
imation of C in (3) (Zhang et al., 2008), and the error ‖C̃ − C‖F under the Frobenious norm has an upper bound which is a 
polynomial function of the square root of the quantization error 

∑N
i=1 ‖xi − zc(i)‖ with c coding each input xi with the clos-

est inducing input z j . Therefore, the difference of prior of �(x) from PWP and GWP is determined on the displacement 
of inducing inputs and quantitatively influenced by the quantization error. We suggest the K-mean sampling method for the 
displacement of inducing inputs, and the sampling approach is used to minimize the quantization error.

5. Hierarchical Gaussian model with PWP

Given a D×N dataset Y = (y(x1), · · · , y(xN )) with D-dimensional multivariate features indexed by the input variables 
x1, · · · , xN . We consider a conditional Gaussian model with time-varying covariance modeled by PWP as

yi |�i ∼ N (0,�i),

�(x) ∼ PWP(L,V, τ ), (10)

where yi = y(xi) and �i = �(xi). We propose two inference approaches: 1) Bayesian and 2) Variational inferences. Specifi-
cally, Bayesian inference is a Markov Chain Monte Carlo method (MCMC), which accurately provides the samples of posterior 
distributions. As MCMC can be computationally expensive because it would take long time to converge, we also propose a 
variational inference which is well suited for large datasets. Moreover, in practice, learning the uncertainty of model param-
eters L and τ is not of interest and thus we treat them as hyper-parameters to relieve computational burden. Two inference 
methods are briefly summarized in Table 1 and will be described in details in the following sections respectively.

5.1. Bayesian inference approach

This section discusses a Bayesian inference with PWP . In the context of (10), the objective is to infer the posterior 
p(�(x)|y) using Gibbs sampling (Geman and Geman, 1984), which is a Markov chain Monte Carlo (MCMC) algorithm for 
obtaining a sequence of observations in cycles from the conditional distribution of one parameter with the remaining 
parameters fixed to their current values.

For the sampling, we rewrite (10) as a hierarchical model:

yi |L, Ũ i ∼ N (yi |0, LŨ i Ũ
T
i L

T ), (11)

ũvd = cT C∗−1w vd, (12)

w vd|τ ∼ N (w vd|0,C∗), (13)

where Ũ i = Ũ (xi), ũvd = (ũvd(x1), . . . , ̃uvd(xN ))T , w vd = (uvd(z1), . . . , uvd(zM))T . Here uvd(x) refers to the function of the 
parent process with respect to ũvd(x). On the other hand, C∗ refers to covariance between {zi}Mi=1 and c is cross covariance 
between {xi}Ni=1 and {zi}Mi=1.

As for the prior specification, we set prior of hyper-parameters of GPs τ ∼ π(τ ) and the prior of the lower triangular 
matrix L ∼ π(L). The prior of τ is chosen based on the choice of covariance function C . In the experiments, we consider 
two types of covariance functions, one for periodic covariance function and the other for square exponential function. We 
put a flat normal distribution as a prior of the log of lengthscale parameters. And for π(L), we put independent standard 
Gaussian priors for the entries on or below the diagonal of L. We then design a Gibbs sampling procedure as

p(w|Y , τ , L) ∝ p(Y |w, L, τ )p(w|τ ), (14)
5
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p(τ |Y , w, L) ∝ p(Y |w, L, τ )p(w|τ )π(τ ), (15)

p(L|Y , w, τ ) ∝ p(Y |w, L, τ )π(L), (16)

where w represent the vector of functions evaluated from the inducing points, τ denote the input-dependent hyper-
parameters in PWP and they are also the hyper-parameters in the covariance function C , and L denote the input-
independent hyper-parameters in PWP . Furthermore, we present the details of parameter initialization, posterior sampling 
and inducing point selection regarding the MCMC implementation for the Bayesian inference approach.

5.1.1. Parameter initialization
According to Theorem 1 that �(x) ∼ W(V, S∗), the prior expectation of covariance matrix �(x) equals V S∗ . In the 

initialization step, we assume that �(x1), . . . , �(xN ) are independent, then the covariance matrix �(x) has an unbiased 
estimate �̂(x) = 1

N−1

∑N
i=1 yi y

T
i . Consequently, L̂ can be estimated by the Cholesky decomposition of �̂

V by assuming that 
S∗ is close to S . Then following (10), we estimate the w and τ by maximizing the log likelihood of Y given L̂.

5.1.2. Details on posterior sampling
We first sample the ũvd from its posterior distribution via indirect sampling of w vd using (14). Given the property of 

predictive process (4) and w vd , ũvd is generated via ũvd = cC∗−1w vd . As for the sampling of w , we employ the Elliptical 
Slice sampling and this sampling procedure requires to computing the posterior of w , taking O(M2N) time complexity 
where N is the number of observations and M is the number of inducing points. Therefore the sampling complexity is 
linear to the number of observations N . In contrast to GWP in which sampling the latent function from the posterior 
would take O(N3) time complexity, PWP is much more efficient, especially when the number of inducing points M is 
significantly smaller N , i.e., M�N . Then, we sample τ using (15) and sample L using (16). Since the posterior of τ and L
do not have a closed-form expression, we leverage Metropolis Hastings for sampling.

5.1.3. Inducing points selection
For selecting the inducing points, we take equal-spaced points {zi}Mi=1 over the whole input space X to ensure the 

better prediction performance over the whole input space. These z are fed in (2) that leads to the definition the PWP . 
While Bayesian inference yields the true posterior for better estimation of covariance, it is often intractable due to slow 
convergence with exhaustive sampling. We therefore propose an efficient variational inference in the following.

5.2. Variational expectation maximization

Variational inference provides an alternative efficient inference approach at the price of precision of the posterior ap-
proximation. It is a Bayesian technique of approximating the posterior which has emerged as an important tool (Jordan et 
al., 1999; Blei et al., 2017). We consider the same hierarchical model from ((11), (12) and (13)), and L and τ are treated 
as hyper-parameters as opposed to Bayesian inference. This is because learning the posterior distribution of those hyper-
parameters is not of interest in practice, and it would save computation in training.

Given above specifications, the evidence lower bound (ELBO), a lower bound of the log marginal likelihood is derived 
with Shannon entropy H as

log p(Y ) ≥ Eq(w)[log p(Y , w)] + H(q(w)) = ELBO, (17)

where q(w) is a variational distribution of w .
We assume q(w) belongs to normal distribution. Instead of directly maximizing the ELBO (17) with respect to q(w)

and (L, τ ) via stochastic gradient descend, we iteratively and conditionally update q(w) and (L, τ ) until they converge. It 
is called variational expectation maximization (VEM) inference (Bernardo et al., 2003). Specifically, given (L, τ ), maximizing 
the ELBO (17) is equivalent to minimizing the Kullback-Leibler divergence between the variational distribution q(w) and 
the posterior distribution p(w|y). Due to the Gaussian assumption in q(w), we approximately update q(w) via the Laplace 
approximation (Bishop, 2006) q∗(w). On the other hand, given a q(w), (L, τ ) are updated by

L∗, τ ∗ = argmax
L,τ

N∑
i=1

Eq(w)[logN (yi|0, LŨ i Ũ
T
i L

T )] + R

= argmax
L,τ

N∑
i=1

[logN (yi|0, L〈Ũ i〉〈Ũ i〉T LT )] + R

= argmax
L,τ

N∑
i=1

Li + R, (18)

where both regularization term, the KL divergence between q(w) and p(w), R = KL(q(w)‖p(w)) and latent variables Ũ i
depend on τ , and 〈·〉 = Eq(w)[·]. We iteratively update q(w) and (L, τ ) until they converge.
6
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Algorithm 1: Variational expectation maximization algorithm for multitask learning.
Input : Observations Y , Hyper-parameters of covariance functions τ ;
Output : Variational distribution q(w), Task-specified features {Li}Ni=1;

1 do
2 Fix all task-specified features {Li}Ni=1 and update the variational distribution q(w) by the Laplace

approximation on p(w|Y , {Li}Ni=1);
3 for i ← 1 to N do
4 Fix the variational distribution q(w) and update the Li by

maximizing the term in ELBO that is only related to Li :

L∗
i = argmax

Li

Ni∑
j=1

[logN (yi, j |0, Li〈Ũ i j〉〈Ũ i j〉T LTi )], (23)

where 〈·〉 = Eq(w)[·];
5 end
6 while Both q(w) and {Li}Ni=1 converge;

5.3. Prediction of covariance at new timestamp

For both Bayesian and variational EM inferences, given a new time stamp x∗ , we extract posterior samples {w(s), τ (s),

L(s)}Ss=1 from MCMC or variational distributions, then we sample the corresponding ũ∗
vd = ũvd(x∗) using

ũ∗(s)
vd = c∗T C∗−1w(s)

vd , (19)

where c∗ denotes the vector of covariance functions evaluated between the new time stamp x∗ and inducing inputs {zi}Mi=1, 
i.e. c(x∗), and w(s)

vd represents the sth posterior sample. Consequently, according to the construction (8), we obtain the 
posterior predictive samples of �∗ = �(x∗) by

�∗(s) =
V∑

v=1

L(s)ũ∗(s)
vi ũ∗(s)

v j L(s)T . (20)

At last, we estimate �∗ using the posterior predictive mean of the samples {�∗(s)}Ss=1.

6. Multi-task learning with PWP

In this section, we consider a scenario of feature selection for multiple tasks, where each task is assigned with unique 
features. Assume that we have N tasks in which the ith task consists of a multivariate time series with length Ni , i.e. 
Y i = {yi, j}Ni

j=1. The corresponding time stamps are denoted as xi = {xi, j}Ni
j=1 and each observation yi, j ∈ RM is assigned to 

the time stamp xi, j . A hierarchical model is formulated as

yi, j|�i, j ∼ N (0,�i, j) ,

�i(x) ∼ PWP(Li,V, τ ) , (21)

where �i, j = �i(xi, j). We assume that the model of �i(·) shares the same degree of freedom V and the same hyper-
parameters in GPs τ , but has individual effect modeled by the task-specified lower triangular matrix Li for the ith task. This 
specification suggests that covariances across tasks share the same latent temporal process prior, and covariances within 
each task share a task-specified correlation structure modeled by the lower triangular matrix Li . Thus, we take the Li as a 
feature for task i which directly refers to task-specific feature.

To find out task-specific features, we estimate Li(τ ) for each task i under different settings of τ where τ can be treated 
as different scale and Li(τ ) is the feature at the scale τ . Because in the multi-task learning context, extracting task-specified 
feature is of interest and thus we treat Li(τ ) as model parameters. Specifically, we consider a square exponential covariance 
function in PWP where τ is the length scale parameter, and we define a PWP Multi-scale Descriptor (PWPMD) as

PWPMDτ (i) = {L∗
i ; L∗

i ,q
∗(w) = arg max

Li ,q(w)
(ELBO|τ )}. (22)

Here, under each setting of τ , L∗
i becomes a feature for the ith task. It has the same size of the feature of each task 

regardless of the number of observations Ni , and can be used for downstream prediction tasks. To infer the multi-scale 
descriptor, we propose a variational EM algorithm and describe it in Algorithm 1.
7



R. Meng, F. Yang and W.H. Kim Computational Statistics and Data Analysis 185 (2023) 107763
Table 2
Parameter posterior credible intervals 50 (2.5, 97.5), RMSE of the reconstruction for �s, NLML with mean (standard deviation) and corresponding average 
inference time for 100 iterations.

True GWP PWP(B)20 PWP(B)50 PWP(B)100 PWP(VI)20 PWP(VI)50 PWP(VI)100 DCC
L00 1 1.12(0.98,1.28) 1.36(0.97.1.68) 1.17(1.06,1.43) 0.99(0.84, 1.08) 1.63 1.55 1.57 -
L01 0 -0.02(-0.04,0.07) -0.06(-0.19, -0.01) 0.04(-0.03, 0.15) 0.02(-0.02,0.08) 0.33 0.31 0.31 -
L11 1 1.04(0.92,1.11) 1.05(0.87, 1.21) 1.12(1.02,1.26) 1.02(0.78,1.46) 1.16 1.10 1.10 -

RMSE (�00) - 1.15 1.23 1.10 0.55 0.84 0.81 0.95 2.71
RMSE (�01) - 0.48 0.95 0.74 0.90 0.67 0.65 0.70 1.67
RMSE (�11) - 0.53 0.46 0.61 0.49 0.95 0.85 0.88 1.50

NLML - 1098.94(2.88) 1105.88(6.69) 1096.82(3.37) 1105.27(4.19) 1082.05 1083.90 1081.53 -

Time (sec) - 50.24 25.39 35.97 43.81 - - - -

Subscript indicates the number of inducing points used in each model. (B) refers to Bayesian inference and (VI) refers to Variation inference. For all Bayesian 
inference, we have informative initialization on all latent variables based on the true values. We also provide the ground true parameters L.

7. Simulation study

In this section, we performed an experiment on the synthetic multivariate time-series data which were generated based 
on ground truth covariance matrices �s to validate both covariance reconstruction and predictive performance of PWP .

7.1. Experimental setup

Synthetic Data Generation. We generated multivariate time series data using the GWP model with a periodic covariance 
function for all {uvd(x)} such that k(x, x′) = σ 2e−2 sin(π∗(x−x′)/p)2 , with a scale parameter σ and a period parameter p. 
Specifically, N = 350, D = 2 and V = 3, L was chosen as an identity matrix and hyper-parameters were set as σ = 1, p =
100, assuming that the period of the time series is 100. The first 300 data points were used for training and the following 
50 samples were used for testing.
Baselines. Most recent methods such as GWP and zero-mean multivariate GARCH models, i.e., Dynamic Conditional Corre-
lation (DCC) (Orskaug, 2009), were chosen as the baseline methods.
Setup. For PWP , different number of inducing points (i.e., M = 20, 50, and 100) with the same type of periodic covariance 
function were investigated. We implemented both Bayesian inference and variational EM inference for PWP . We fixed the 
hyper-parameter p = 100 since that is difficult to learn.

For Bayesian inference, we initialized L at the values near the true values in GWP , latent variables w at the estimates 
via the inverse of (12) with the true Ũ . This yields informative initialization to identify the property of the global optima in 
GWP and PWP for inferences. During the Bayesian inference of PWP , we used 5000 samples whose first 2500 samples 
were burned-in. For variational EM inference, L and w were randomly initialized.
Evaluation Metric. In Table 2, we displayed the root mean square error (RMSE) of parameters for L as the evaluation 
of inference. We displayed the RMSE between true variance-covariance matrices and corresponding reconstruction as the 
evaluation of covariance reconstruction. Moreover we also provided the negative log marginal likelihood (NLML) to evaluate 
the model fitting.

In Table 3, We showed the predictive performance of PWP with i-step ahead forecast, where observations until the last 
timestamp x in training data are considered to predict �(x + i) and i = 1, . . . , 50.

7.2. Results and discussions

Parameter estimation and model fitting results in Table 2 illustrate that PWP has a significantly better covariance 
matrix estimation performance than the DCC model due to the notably smaller RMSE. Comparing with the GWP , with a 
suitable number of inducing points, PWP has a competitive result for both parameter estimation and covariance matrix 
estimation. As for the computational benefits, the computation time of PWP is significantly lowered compared with GWP
in the same Bayesian setting.

As for the predictive performance, we conducted Bayesian inference for PWP as a fair comparison with the Bayesian 
inference in GWP . We reported the RMSEs of predicted covariance matrices and true covariance matrices for GWP , PWP
with 20, 50 and 100 inducing points and DCC models in Table 3. The averaged RMSEs over all entries for the five models are 
0.53, 0.52, 0.70, 0.70 and 2.53. It shows that PWP has a comparable performance compared with GWP and significantly 
outperforms the DCC . Moreover, we visualized the ground truth for �s and the reconstruction of �s in PWP100 in 
Fig. 2 and showed the uncertainty quantification of covariance matrices in PWP , illustrating that PWP achieves a great 
uncertainty quantification in the sense that the confident intervals cover almost the true values with a narrow band-width.

With respect to the computational benefits, we find that as the number of inducing points decrease the computation time 
would be significantly shorter than that from GWP . It matches the theoretical analysis of the computational complexity 
which is linear to the number of observations N in contrast to the O(N3) in GWP .
8
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Fig. 2. Top: Reconstruction of �s; Bottom: 95% confident intervals (shown in red dashed lines) in the reconstruction with PWP100, (a) the marginal 
variances at the first dimension (1st diagonal element of �s), (b) the marginal variances at the second dimension (2nd diagonal element of �s), (c) 
the covariances (symmetric off-diagonal element of �)s. Our proposed PWP delivers smoother estimations compared with DCC and also provides a 
comparable fitting performance compared to GWP . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Table 3
RMSE between predicted �̂∗ and true �∗ element-wisely for the next 
50 timestamps. PWP has a comparable performance with GWP even 
with much less inducing points.
Model+ Variance 1 Variance2 Covariance

GWP 0.72 0.49 0.45
PWP20 0.50 0.84 0.36
PWP50 0.93 0.70 0.58
PWP100 0.75 0.95 0.55

DCC 5.10 2.19 1.41

+ Subscript indicates the number of inducing points used for PWP . For 
GWP and PWP , Bayesian inference and informative initialization on 
all latent variables based on the true values were used.

The results in Table 2 show that: For Bayesian inference, as the number of inducing inputs (M) increases, the parameter 
estimates of L become closer to the true values. However, the performance of covariance reconstruction and data fitting 
does not always improve as M increases in our setting. This may be caused by the efficiency of sampling the inducing 
variables w . Even with an efficient elliptical slice sampling, as the size of w increases, the sampling step suffers from the 
slow mixing of sampling and cause undesirable fitting performance. It demonstrates that PWP becomes more expressive 
with more inducing points but fitting becomes more difficult, which emphasizes that the importance of the selection of 
inducing points.

On the other hand, PWP has a comparable prediction performance with GWP even with less inducing points. This 
may be because the learning of Gaussian processes in GWP is affected by over-fitting, while the learning of predictive 
processes in PWP resists this issue.

As for the variational EM inference of PWP , it would provide biased estimates on L but we find that those estimates 
are consistently robust under different settings of the inducing points. Beside that, the variational EM inference provides 
comparable performance on both covariance reconstruction and model fitting.

7.3. PWP inference in high dimensional time series

In this section, we explored the model performance of PWP in high dimensional time series. In particular, we kept 
the original settings except for dimension size D, degree of freedom V and hyperparameter σ 2, and investigated the 
9
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Table 4
RMSE of the reconstruction across all elements in �s and RMSE of L.
Metric D PWP(B)20 PWP(B)50 PWP(B)100 PWP(VI)20 PWP(VI)50 PWP(VI)100

RMSE(L)

2 0.15 0.10 0.02 0.38 0.37 0.42
5 0.30 0.33 0.34 0.26 0.26 0.26
10 0.48 0.32 0.37 0.30 0.31 0.32
20 0.47 0.48 0.51 0.29 0.35 0.36

RMSE(�)

2 0.25 0.39 0.21 0.25 0.25 0.27
5 0.21 0.25 0.19 0.13 0.13 0.13
10 0.39 0.27 0.30 0.16 0.17 0.17
20 0.67 0.73 0.75 0.15 0.20 0.21

Subscript indicates the number of inducing points used for PWP .

model behavior. Specifically, we considered the dimension size D = 2, 5, 10, 20 with degree of freedom V = 3, 6, 11, 21
and hyperparameter σ 2 = 1

3 , 15 , 111 , 121 respectively. In this case, the marginal distribution at each time sample would follow 
�(x) ∼W(V, 1V I), implying that the expectation of covariance matrix should be an identity matrix, i.e., E[�(x)] = I . Such a 
setting should make the model comparison fair since the generated data are under an unit scale. We then conducted both 
Bayesian inference and variational EM inference, and reported the root mean square error (RMSE) across each element in 
the lower triangular matrix L denoted as RMSE(L) and the RMSE across all covariance matrices and all elements �i j denoted 
as RMSE(�). The evaluation metrics are given in Table 4.

The result shows that the Bayesian inference performs worse as the dimension size increases in terms of both parameter 
estimation RMSE(L) and the reconstruction RMSE(�). Also, as dimension size D increases, the larger number of inducing 
points does not significantly improve the parameter estimation performance. It may be because the inference is more 
difficult for high dimensional cases. On the other hand, in the case of D = 2, variational inference performs worse than 
Bayesian inference in terms of parameter estimation RMSE(L), while as D increases variational inference performs better 
than Bayesian inference. It suggests that in our model, the variational inference would be preferred for high dimensional 
data, since optimization in variational inference would be more robust for sampling in MCMC for high dimensional data.

8. Analysis of dynamic brain connectivity

We performed two experiments on dynamic functional brain connectivity using real brain imaging data to confirm the 
practicality of PWP . As GWP was not scalable for the real data, we compared PWP with DCC-GARCH models for the 
individual analysis of dynamic functional connectivity. Then, we performed a multi-task learning task on multiple rs-fMRI 
timeseries via variational EM algorithm to identify associations between functional connectivity and behavioral scores.

8.1. Experimental setup

Human Connectome Data. The pre-processed resting-state functional MRI (rs-fMRI) data used in this experiment were 
obtained from the Human Connectome Project (HCP) S1200 data release (Smith et al., 2013) for 812 subjects whose fMRI 
data were complete and reconstructed using the improved r227 recon algorithm. Timeseries data were generated through 
the HCP preprocessing pipeline (WU-Minn, 2017) which yielded one representative timeseries across 4800 timestamps per 
independent component analysis (ICA) component for each subject at several different dimensionalities. Specifically, we used 
the rs-fMRI timeseries from 15 ICA components with a length of 4800.
Setup. We took the whole 4800 observations to estimate covariance matrices and computed the log likelihood at each 
timestamp. For PWP , we selected 50 inducing points uniformly located in the whole time interval. Squared exponential 
covariance function was employed here to model the dynamics of covariance matrix of HCP data. We considered a weakly 
informative prior on the length scale parameter log τ ∼ N (0, 102) and a data-driven prior on L, Li j ∼ N (0, 202) for i ≥ j. 
On our server machine with 128G RAM (which is not small), GWP model failed to run on the HCP dataset due to its 
lack in scalability. Therefore, we compared our results with four parametric DCC-GARCH models. Three of them employ a 
autoregression-moving-average model with order (1,1) for the mean but leverage different types of noise following multivari-
ate Normal (MVN ), multivariate Student-t (MVT ) and multivariate Laplace distributions (MVL). The last DCC-GARCH 
model sets zero mean and has noise following multivariate Normal distributions (MVN 0).

Since the Markov chain Monte Carlo would yield less biased result than variational EM algorithm as shown in Table 3, to 
compare the performance with other models, we conducted the Markov chain Monte Carlo inference and estimated model 
parameters using the maximum a posteriori. Moreover, given those estimates, we reconstructed covariance matrices on the 
observed timestamps.

8.2. Individual functional connectivity construction

We randomly selected one participant (ID: 990366) for the demonstration of individual dynamic functional connectiv-
ity derivation. The log-likelihood of observation (i.e., ICA) at each timestamp was computed and plotted as a boxplot for 
10
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Fig. 3. Dynamic correlations between ICA components (i.e., dynamic functional connectivity) and corresponding network representations derived from 
the estimations of �(x) at x = 1001, 2001, 3001, 4800 with HCP timeseries data. Top row: connectivity matrices; Middle row: corresponding network 
representations (thicker edge represents larger absolute edge values and the colormap renders the value of the edge from low to high); Bottom row: three 
true ICA components and corresponding inferred dynamic correlation processes. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Fig. 4. Boxplots of log-Likelihood w.r.t. the whole 4800 timestamps (i.e., time) with the reconstructed covariance matrix. PWP shows better stability than 
DCCs with less extreme outliers and lower variance.

all observations in Fig. 4. We also plotted the same boxplots of log-likelihoods estimated from DCC models. PWP and 
DCCMVN0 assume zero mean, which makes them comparable. The figure shows that PWP performs relatively worse 
than DCC models in terms of the mean of log-likelihood, but it provides more stable results than DCC models in the sense 
of less extreme outliers and lower variance.

In Fig. 3, we presented dynamic correlation matrices and the structural networks derived from the estimated �(x) at 
timestamp x = 1001, 2001, 3001, 4800 to show the changes of their functional brain connectivity across time. This result 
proves the hypothesis in Hutchison et al. (2013) that the structure of covariance along time in functional connectivity 
may be significant, and shows a significant potential that our PWP is a very powerful tool to visualize the estimate 
of covariance in time-varying data. Moreover, to directly illustrate the temporal relation, we provided the plot of three 
ICA components as well as their corresponding inferred correlation processes in Fig. 3. It illustrates that the correlations 
between ICA components are not random and they have certain patterns.
11
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Table 5
R2 scores of linear model fitting with different features for different exogenous vari-
ables.

Feature Linear Regression

MMSE PSQI PainIntens PainInterf Mars

Baseline features 0.21 0.19 0.16 0.18 0.19
PWPMD 0.48 0.50 0.45 0.48 0.58

MMSE: Mini Mental Status Exam; PSQI: Pittsburgh Sleep Questionnaire; PainIntens: 
Pain Intensity Raw Score; PainInterf: Pain Interference T-score; Mars: Mars Contrast 
Sensitivity Test.

8.3. Multi-task learning on HCP data

In order to show the applicability of our dynamic brain connectivity features, we compared the fitting performances of 
PWPMD against baseline features.

Here we utilized all 812 subjects in the multi-task learning experiment, and considered a three-level multi-scale de-
scriptor from (22) where the length scale parameter τ in the squared exponential covariance function is set to 500, 2000
and 5000. We used the matrix from Cholesky decomposition of the sample covariance matrix as the baseline features for 
each subject as conducted in Van Den Heuvel and Pol (2010); Biswal (2012); Leonardi et al. (2013). Then we conducted the 
linear regression between the features extracted from the rs-fMRI timeseries and exogenous variables.

We considered five behavioral scores available in the HCP dataset as exogenous variables: MMSE, PSQI, PainIntens (raw), 
PainInterf T-score and Mars Log Scores. Specifically, Mini Mental Status Exam (MMSE) (Folstein et al., 1975; Crum et al., 
1993) is a broad measure of cognitive status, Pittsburgh Sleep Questionnaire (PSQI) (Buysse et al., 1989) is a measure of 
sleep quality, Pain Intensity Raw Score (PainIntens) (Gershon et al., 2013) consists of a single item measuring immediate 
(i.e., acute) pain in adults, Pain Interference T-score (PainInterf) (Gershon et al., 2013) measures the degree to which pain 
interferes with other activities in life in adults, and Mars Contrast Sensitivity Test (Mars) (Arditi, 2005; Dougherty et al., 
2005; Haymes et al., 2006) is a brief and reliable measure that assesses color contrast sensitivity.

The resulting R2 scores from linear model fitting are reported in Table 5. It is apparent that the PWPMD achieves 
the best fitting performance across all five HCP behavioral measures. Notably, the PWPMD exhibits better performance 
by 39% when compared with the baseline feature on behavioral measurement Mars Log Score, and also outperforms the 
baseline by 27%, 31%, 29%, 30% on MMSE score, PSQI score, PainIntens raw score, PainInterf T-score, respectively. Our ex-
periments illustrate that our proposed dynamic brain connectivity features PWPMD significantly improve the regression 
performance as compared with the baseline features. The promising results from these experiments on HCP dataset impli-
cate a great potential for our PWP for multi-task learning in real-world clinical applications.

9. Conclusion

There is a significant interest in modeling time-varying changes of relationships between different variables in both the-
oretical and application-wise perspectives. As previous stochastic approaches heavily suffer from computational burden, we 
introduced a novel stochastic process, i.e., PWP , which can model dynamic covariance matrices accurately and efficiently. 
Not only we provide theoretical guarantee that it is a well defined process, but also illustrate that it is easy to be incorpo-
rated into different models such as hierarchical Gaussian model and multi-task model. Moreover, we empirically evaluate 
our ideas and its usefulness with two independent sets of experiments. Especially for the real experiment on HCP data, 
features derived from dynamic functional connectivity can be useful for multi-task learning over traditional approaches ex-
tracting features from covariance matrices. We believe there is a significant potential that PWP can be further utilized in 
various areas where time-varying associations between variables need to effectively characterized.

Although PWP can handle considerably long time series, it does not necessarily emphasize approximation and inference 
for high dimensional data. As we noted in Section 7.3, the inference would be more difficult when the dimension of channels 
for the time-series increases. One would need to leverage factor analysis (Cunningham and Yu, 2014; Meng and Bouchard, 
2021) or introduce the sparsity via shrinkage priors (Huber and Feldkircher, 2019) for covariance matrix modeling to make 
PWP make suitable for high dimensional data. Distributed learning for PWP may be another feasible approach as the data 
sizes of various recent datasets are continuously increasing, but it is beyond the scope of current work and remains as a 
future direction to consider.
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Appendix A. Theorem proving

A.1. Proof of Theorem 1

Here we present the proofs of Theorem 1 as below.

Proof. In the construction of PWP , {ũvd} have independent predictive process priors. Therefore, we have

ũv(x) = (ũv1(x), . . . , ũvD(x))T ∼ ND(0, B), (A.1)

where B is the diagonal matrix with elements bd = C̃d(x, x). Because of Cd(x, x) = 1 and the property (5), bd ≤ 1 for d =
1, . . . , D. According to the property of multivariate Gaussian distribution, it immediately follows that

Lũv(x) ∼ ND(0, S∗), (A.2)

where S∗ = LBLT . Due to (A.3) and according to the definition of Wishart distribution, we have �(x) ∼ WD(V, S∗). Since 
V ≥D in the construction, this Wishart distribution is well defined. �
A.2. Proof of Theorem 2

Here we present the proofs of Theorem 2 as below.

Proof. We denote the diagonal elements of L as (l1, . . . , lD), then according to

�(x) = LŨ (x)Ũ (x)T LT

=
V∑

v=1

Lũv(x)ũ
T
v (x)LT , (A.3)

the (i, j)th element of the covariance �(x) is given as

�i j(x) =
V∑

v=1

li ũvi ũv jl j . (A.4)

According to (7), we let ũ0d
iid∼ PP(0, C̃(x, x′)), and then we have

cov(�i j(x),�kl(x
′))

=
V∑

v=1

lil jlkllcov(ũvi(x)ũv j(x), ũvk(x
′)ũvl(x

′))

=Vlil jlkllcov(ũ0i(x)ũ0 j(x), ũ0k(x
′)ũ0l(x

′)). (A.5)

Because of the symmetric property of covariance, let s �= t , and we only need to consider three classes summarized as the 
following three cases:

(i) cov(�ss(x), �ss(x′)).
(ii) cov(�st(x), �st(x′)) and cov(�st(x), �ts(x′)).
(iii) Otherwise.

For the first case, without loss of generality, we assume i = j = k = l, then we rewrite (A.5) as

cov(�i j(x),�kl(x
′))

=Vlil jlkll
(
E(ũ2

0i(x)ũ
2
0i(x

′)) − E(ũ2
0i(x))E(ũ

2
0i(x

′))
)

=Vlil jlkll
(
C̃(x, x)C̃(x′, x′) + 2C̃2(x, x′) − C̃(x, x)C̃(x′, x′)

)
=2Vl4i C̃

2(x, x′). (A.6)
13



R. Meng, F. Yang and W.H. Kim Computational Statistics and Data Analysis 185 (2023) 107763
Fig. B.5. Dynamic correlations (i.e., dynamic functional connectivity between ICA components) derived from the estimations of �(x) at x =1001, 2001, 3001
and 4800 with HCP timeseries data. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

In the second case, without loss of generality, we assume i = k �= j = l, then we rewrite (A.5) as

cov(�i j(x),�kl(x
′))

=Vlil jlkll
(
E(ũ0i(x)ũ0i(x

′))E(ũ0 j(x)ũ0 j(x
′))

− E(ũ0i(x)ũ0 j(x))E(ũ0i(x
′)ũ0 j(x

′))
)

=Vl2i l
2
j C̃

2(x, x′). (A.7)

The third case includes two situations: (a) i �= j, k, l, or (b) i = j �= k = l. As for situation (a), (A.5) is rewritten as

cov(�i j(x),�kl(x
′))

=Vlil jlkll
(
E(ũ0i(x)ũ0 j(x)ũ0k(x

′)ũ0l(x
′))

− E(ũ0i(x)ũ0 j(x))E(ũ0k(x
′)ũ0l(x

′))
)

=Vlil jlkll
(
E(ũ0i(x))E(ũ0 j(x)ũ0k(x

′)ũ0l(x
′))

− E(ũ0i(x))E(ũ0 j(x))E(ũ0k(x
′)ũ0l(x

′))
) = 0. (A.8)

And it is trivial that situation (b) has the same result. �
Appendix B. Dynamic correlation matrices on more participants

We also display the dynamic correlation matrices derived from the estimated �(x) at timestamp x = 1001, 2001, 3001
and 4800 on more randomly selected participants with IDs 169946, 199958 and 668361 in Fig. B.5 part (a), (b) and (c), 
14
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respectively. These plots show the changes of brain connectivity across time as well and further provide evidences that the 
structure of covariance/correlation may be significantly time-varying.

References

Arditi, A., 2005. Improving the design of the letter contrast sensitivity test. Investig. Ophthalmol. Vis. Sci. 46 (6), 2225–2229.
Banerjee, S., Gelfand, A.E., Finley, A.O., Sang, H., 2008. Gaussian predictive process models for large spatial data sets. J. R. Stat. Soc., Ser. B, Stat. Methodol. 70 

(4), 825–848.
Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., West, M., et al., 2003. The variational bayesian em algorithm for incomplete data: 

with application to scoring graphical model structures. Bayesian Stat. 7 (453–464), 210.
Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer.
Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. 

Magn. Reson. Med. 34 (4), 537–541.
Biswal, B.B., 2012. Resting state fMRI: a personal history. Neuroimage 62 (2), 938–944.
Blei, D.M., Kucukelbir, A., McAuliffe, J.D., 2017. Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112 (518), 859–877.
Bru, M.F., 1991. Wishart processes. J. Theor. Probab. 4 (4), 725–751.
Buysse, D.J., Reynolds III, C.F., Monk, T.H., Berman, S.R., Kupfer, D.J., 1989. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and 

research. Psychiatry Res. 28 (2), 193–213.
Cappiello, L., Engle, R.F., Sheppard, K., 2006. Asymmetric dynamics in the correlations of global equity and bond returns. J. Financ. Econom. 4 (4), 537–572.
Chai, B., Walther, D.B., Beck, D.M., Fei-Fei, L., 2009. Exploring functional connectivity of the human brain using multivariate information analysis. Neural Inf. 

Process. Ser. 22, 270–278.
Chib, S., Nardari, F., Shephard, N., 2006. Analysis of high dimensional multivariate stochastic volatility models. J. Econom. 134 (2), 341–371.
Crum, R.M., Anthony, J.C., Bassett, S.S., Folstein, M.F., 1993. Population-based norms for the mini-mental state examination by age and educational level. 

JAMA 269 (18), 2386–2391.
Cunningham, J.P., Yu, B.M., 2014. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17 (11), 1500–1509.
Dai, M., Zhang, Z., Srivastava, A., 2016. Testing stationarity of brain functional connectivity using change-point detection in fMRI data. In: CVPR Workshop, 

pp. 19–27.
Dougherty, B.E., Flom, R.E., Bullimore, M.A., 2005. An evaluation of the Mars letter contrast sensitivity test. Optom. Vis. Sci. 82 (11), 970–975.
Engle, R., 2002. Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J. Bus. 

Econ. Stat. 20 (3), 339–350.
Engle, R.F., Kroner, K.F., 1995. Multivariate simultaneous generalized arch. Econom. Theory 11 (1), 122–150.
Engle, R.F., Sheppard, K., 2001. Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH. Tech. rep. National Bureau of 

Economic Research.
Finley, A.O., Sang, H., Banerjee, S., Gelfand, A.E., 2009. Improving the performance of predictive process modeling for large datasets. Comput. Stat. Data 

Anal. 53 (8), 2873–2884.
Folstein, M.F., Folstein, S.E., McHugh, P.R., 1975. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. 

Psychiatr. Res. 12 (3), 189–198.
Fox, E.B., Dunson, D.B., 2015. Bayesian nonparametric covariance regression. J. Mach. Learn. Res. 16 (1), 2501–2542.
Fox, E.B., West, M., 2011. Autoregressive models for variance matrices: stationary inverse Wishart processes. arXiv preprint. arXiv:1107.5239.
Gelfand, A.E., Banerjee, S., Gamerman, D., 2005. Spatial process modelling for univariate and multivariate dynamic spatial data. Environmetrics 16 (5), 

465–479.
Geman, S., Geman, D., 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6 

(6), 721–741.
Gershon, R.C., Wagster, M.V., Hendrie, H.C., Fox, N.A., Cook, K.F., Nowinski, C.J., 2013. NIH toolbox for assessment of neurological and behavioral function. 

Neurology 80 (11), S2–S6.
Gouriéroux, C., Jasiak, J., Sufana, R., 2009. The Wishart autoregressive process of multivariate stochastic volatility. J. Econom. 150 (2), 167–181.
Greicius, M., 2008. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 21 (4), 424–430.
Haymes, S.A., Roberts, K.F., Cruess, A.F., Nicolela, M.T., LeBlanc, R.P., Ramsey, M.S., Chauhan, B.C., Artes, P.H., 2006. The letter contrast sensitivity test: clinical 

evaluation of a new design. Investig. Ophthalmol. Vis. Sci. 47 (6), 2739–2745.
Hindriks, R., Adhikari, M.H., Murayama, Y., Ganzetti, M., Mantini, D., Logothetis, N.K., Deco, G., 2016. Can sliding-window correlations reveal dynamic 

functional connectivity in resting-state fMRI? NeuroImage 127, 242–256.
Huber, F., Feldkircher, M., 2019. Adaptive shrinkage in bayesian vector autoregressive models. J. Bus. Econ. Stat. 37 (1), 27–39.
Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., Della Penna, S., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J., et al., 

2013. Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80, 360–378.
Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K., 1999. An introduction to variational methods for graphical models. Mach. Learn. 37 (2), 183–233.
Kastner, G., Frühwirth-Schnatter, S., Lopes, H.F., 2017. Efficient bayesian inference for multivariate factor stochastic volatility models. J. Comput. Graph. 

Stat. 26 (4), 905–917.
Keilholz, S.D., 2014. The neural basis of time-varying resting-state functional connectivity. Brain Connect. 4 (10), 769–779.
Lee, N., Kim, J.-M., 2021. Dynamic functional connectivity analysis based on time-varying partial correlation with a copula-dcc-GARCH model. Neurosci. 

Res. 169, 27–39.
Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.-M., Schluep, M., Vuilleumier, P., Van De Ville, D., 2013. Principal components of functional 

connectivity: a new approach to study dynamic brain connectivity during rest. NeuroImage 83, 937–950.
Li, L., Pluta, D., Shahbaba, B., Fortin, N., Ombao, H., Baldi, P., 2019. Modeling dynamic functional connectivity with latent factor gaussian processes. In: 

Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (Eds.), Advances in Neural Information Processing Systems, vol. 32. Curran 
Associates, Inc. https://proceedings .neurips .cc /paper /2019 /file /bf499a12e998d178afd964adf64a60cb -Paper.pdf.

Lindquist, M.A., Xu, Y., Nebel, M.B., Caffo, B.S., 2014. Evaluating dynamic bivariate correlations in resting-state fmri: a comparison study and a new approach. 
NeuroImage 101, 531–546.

Meng, R., Bouchard, K., 2021. Bayesian inference in high-dimensional time-series with the orthogonal stochastic linear mixing model. arXiv preprint. arXiv:
2106 .13379.

Meng, R., Soper, B., Lee, H.K., Liu, V.X., Greene, J.D., Ray, P., 2021. Nonstationary multivariate gaussian processes for electronic health records. J. Biomed. 
Inform. 117, 103698.

Meng, R., Lee, H., Bouchard, K., 2022. Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Network. arXiv preprint. arXiv:
2106 .00719.
15

http://refhub.elsevier.com/S0167-9473(23)00074-9/bib99FF55ABCB6062C682611F52BA0ED7F0s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibA42F71AD21F98F2CE06236336138B6C5s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibA42F71AD21F98F2CE06236336138B6C5s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib3AFA073806EA0569A606E8F1EDBF41DCs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib3AFA073806EA0569A606E8F1EDBF41DCs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibFA1CABCA5F42FCE421FFB108D3F60EC4s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib0D888A623DC4C6C980C760237FE67FBAs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib0D888A623DC4C6C980C760237FE67FBAs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibFBCBEDC1C513231BEB019106CCE28F6Bs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib54F52761D82B989060735D917ECDCB06s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib1CEF62F7E867BED9DB120F24994EA780s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib0D1DB3B6EBA458E11D810FB2CA2D88C0s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib0D1DB3B6EBA458E11D810FB2CA2D88C0s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibE9EB770B59DE70B41CC59AA57A966A98s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib7EC594E16F7C174CDA2CC9E1892555E9s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib7EC594E16F7C174CDA2CC9E1892555E9s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib880D896F476A56C7A19C1977A7FF4F5As1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibB7743FFF94F49C8CF04FDC5994D481FCs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibB7743FFF94F49C8CF04FDC5994D481FCs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib0C58F556FAFE511C28B42D67C1658E98s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibAF9A64CF1625B0BC177EEE1156831705s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibAF9A64CF1625B0BC177EEE1156831705s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibE25B604DE9010CB091003AEDED9E7D5Ds1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibE7635B5FD07A8889B35FC9AA5ABBFF55s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibE7635B5FD07A8889B35FC9AA5ABBFF55s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib52C53B387058E41FF8EFB9F674CC3711s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib7C1EE2132DF63FFF26ACFBF80DDD38A2s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib7C1EE2132DF63FFF26ACFBF80DDD38A2s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib66BA6502FD00F82F03D1A0F8EFFC8FE4s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib66BA6502FD00F82F03D1A0F8EFFC8FE4s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibD3BA5B3978FC8D63D310FCFB435F2269s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibD3BA5B3978FC8D63D310FCFB435F2269s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibDADA1F499C842AC38138ED88651B5955s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib0E08B76DBC0A489E6B7070BF5D18EB6As1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibA4FE1C273B4EFB9703A70A8AAAE560E5s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibA4FE1C273B4EFB9703A70A8AAAE560E5s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib5E8BC573AD0C02B91584B043C5F7077Ds1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib5E8BC573AD0C02B91584B043C5F7077Ds1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibFFEECC343673AA82A535DB61F79E12D9s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibFFEECC343673AA82A535DB61F79E12D9s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib8B4ABED78F97895977A15C45A9B118BBs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib45DD5E3079CF429D819811BD340077C7s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibBA1A6FE03C87777570C51921121AA4ACs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibBA1A6FE03C87777570C51921121AA4ACs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibAA9F30E53EC3DFCE8EBE89D4BF92815As1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibAA9F30E53EC3DFCE8EBE89D4BF92815As1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibA4CC2CCC3C5F7BDD172A557AC2396E84s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib2FD74169523AFFF4482071E56015EEFFs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib2FD74169523AFFF4482071E56015EEFFs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib4A4525B9120D42C2332EEB4E6983A461s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib33A428E8B2CBF867A6B75ADBB9BC24E2s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib33A428E8B2CBF867A6B75ADBB9BC24E2s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib98207DD7F56CBFDE2EC554EA0B0F32CDs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibA4C6D7EF51B3B565EFC47A09AA37EC9Es1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibA4C6D7EF51B3B565EFC47A09AA37EC9Es1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibB61FD097A1CB433C0C3D24F87F731668s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibB61FD097A1CB433C0C3D24F87F731668s1
https://proceedings.neurips.cc/paper/2019/file/bf499a12e998d178afd964adf64a60cb-Paper.pdf
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib336FEDF3F1031A2A0B4D4CAF75F055E6s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib336FEDF3F1031A2A0B4D4CAF75F055E6s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibD861E1F428CA594E76DC600A8D7DDE09s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibD861E1F428CA594E76DC600A8D7DDE09s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib6E89CBF006E2482BB8281F54E4D888F4s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib6E89CBF006E2482BB8281F54E4D888F4s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibA9A716D5F9D4AE772B408963A19A6E41s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibA9A716D5F9D4AE772B408963A19A6E41s1


R. Meng, F. Yang and W.H. Kim Computational Statistics and Data Analysis 185 (2023) 107763
Monti, R.P., Hellyer, P., Sharp, D., Leech, R., Anagnostopoulos, C., Montana, G., 2014. Estimating time-varying brain connectivity networks from functional 
mri time series. NeuroImage 103, 427–443.

Orskaug, E., 2009. Multivariate DCC-GARCH model:-with various error distributions. Master’s thesis. Institutt for Matematiske Fag.
Pourahmadi, M., 1999. Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86 (3), 677–690.
Seiler, C., Holmes, S., 2017. Multivariate heteroscedasticity models for functional brain connectivity. Front. Neurosci. 11, 696.
Smith, S.M., 2012. The future of fmri connectivity. NeuroImage 62 (2), 1257–1266.
Smith, S.M., Beckmann, C.F., Andersson, J., Auerbach, E.J., Bijsterbosch, J., Douaud, G., Duff, E., Feinberg, D.A., Griffanti, L., Harms, M.P., et al., 2013. Resting-

state fMRI in the human connectome project. NeuroImage 80, 144–168.
Van Den Heuvel, M.P., Pol, H.E.H., 2010. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20 

(8), 519–534.
Varoquaux, G., Gramfort, A., Poline, J.-B., Thirion, B., 2010. Brain covariance selection: better individual functional connectivity models using population 

prior. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems, vol. 2. NIPS’10. Curran Associates Inc., Red Hook, 
NY, USA, pp. 2334–2342.

Warnick, R., Guindani, M., Erhardt, E., Allen, E., Calhoun, V., Vannucci, M., 2018. A bayesian approach for estimating dynamic functional network connectivity 
in fmri data. J. Am. Stat. Assoc. 113 (521), 134–151.

Wilson, A.G., Ghahramani, Z., 2010. Generalised Wishart processes. arXiv preprint. arXiv:1101.0240.
WU-Minn, H., 2017. 1200 subjects data release reference manual. https://www.humanconnectome .org.
Yin, J., Geng, Z., Li, R., Wang, H., 2010. Nonparametric covariance model. Stat. Sin. 20, 469.
Zhang, K., Tsang, I.W., Kwok, J.T., 2008. Improved Nyström low-rank approximation and error analysis. In: ICML, pp. 1232–1239.
Zhang, W., Leng, C., 2012. A moving average Cholesky factor model in covariance modelling for longitudinal data. Biometrika 99 (1), 141–150.
Zhu, Y., Zhu, X., Kim, M., Kaufer, D., Laurienti, P.J., Wu, G., 2019. Characterizing dynamic functional connectivity using data-driven approaches and its 

application in the diagnosis of Alzheimer’s disease. In: Connectomics. Elsevier, pp. 181–197.
16

http://refhub.elsevier.com/S0167-9473(23)00074-9/bibDAF317F69DF5CC202BB81DAC1CBC9EE5s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibDAF317F69DF5CC202BB81DAC1CBC9EE5s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib4DD7E09ADC66F78DC9E749864DEB0867s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib2100F9F82A07DAAAF153E0C17B4B8FD8s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib0E5FA9D9B6F957E9B50905F4A0E1E798s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib9C54810E1833AF19B415DB8D83DE6103s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib50802017AD159748C6A80237859F12E4s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib50802017AD159748C6A80237859F12E4s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib6B4AFA89906A856D644F29488EF3F8E2s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib6B4AFA89906A856D644F29488EF3F8E2s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib7540DB4137746236F93AEA4184D7ACCFs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib7540DB4137746236F93AEA4184D7ACCFs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib7540DB4137746236F93AEA4184D7ACCFs1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib0EFB023CB5B36FA71B1059949FE72E80s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib0EFB023CB5B36FA71B1059949FE72E80s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibA026B2E5EBC90DE27B5D03996320305Es1
https://www.humanconnectome.org
http://refhub.elsevier.com/S0167-9473(23)00074-9/bibA66A10407C7313FABA5738D44CB53667s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib90417DDFF4C1D9AC4D42FF3FC7916176s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib487E2D686D92809C876256180D6C44A7s1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib1B23A1DEAA2F222F7D4CCB11976F533As1
http://refhub.elsevier.com/S0167-9473(23)00074-9/bib1B23A1DEAA2F222F7D4CCB11976F533As1

	Dynamic covariance estimation via predictive Wishart process with an application on brain connectivity estimation
	1 Introduction
	2 Related works
	3 Preliminary
	4 The predictive Wishart process
	4.1 Construction of predictive Wishart process
	4.2 Properties of predictive Wishart process

	5 Hierarchical Gaussian model with PWP
	5.1 Bayesian inference approach
	5.1.1 Parameter initialization
	5.1.2 Details on posterior sampling
	5.1.3 Inducing points selection

	5.2 Variational expectation maximization
	5.3 Prediction of covariance at new timestamp

	6 Multi-task learning with PWP
	7 Simulation study
	7.1 Experimental setup
	7.2 Results and discussions
	7.3 PWP inference in high dimensional time series

	8 Analysis of dynamic brain connectivity
	8.1 Experimental setup
	8.2 Individual functional connectivity construction
	8.3 Multi-task learning on HCP data

	9 Conclusion
	Acknowledgement
	Appendix A Theorem proving
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2

	Appendix B Dynamic correlation matrices on more participants
	References


