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Performing magnetostatic analysis accurately and efficiently is very important for multi-objective optimization of electromagnetic
device designs. In this research, a kernel-free boundary integral method (KFBIM) has been introduced for solving magnetic
computations in a toroidal core geometry in 2-D. This study is very relevant in the design and optimization of toroidal inductors
or transformers used in electrical systems, where lighter weight, higher inductance, higher efficiency, and lower leakage flux are
required. The governing partial differential equations (PDEs) have been formulated as a system of the Fredholm integral equations
of the second kind. Unlike traditional boundary integral methods or boundary element methods, KFBIM does not require an
analytical form of Green’s function for evaluating integrals via numerical quadrature. Instead, KFBIM computes integrals by
solving an equivalent interface problem on a Cartesian mesh. Compared with traditional finite difference methods for solving the
governing PDEs directly, KFBIM produces a well-conditioned linear system. Therefore, the KFBIM requires only a fixed number of
iterations when an iterative method [e.g., generalized minimal residual method (GMRES)] is applied for solving the linear system,
and the numerical solution is not sensitive to computer round-off errors. The obtained results are then compared with a commercial
finite element solver (ANSYS), which shows excellent agreement. It should be noted that, compared with FEM, the KFBIM does not
require a body-fit mesh and can achieve high accuracy with a coarse mesh. In particular, the calculations of the magnetic potential
and the tangential field intensity on the boundaries are more stable and exhibit almost no oscillations.

Index Terms— Boundary element method (BEM), boundary integral method, finite element method (FEM), magnetostatics analysis,
toroidal core.

I. INTRODUCTION

MULTI-OBJECTIVE optimization of electromagnetic
designs has gained considerable attention over the last

few decades, and one of the most important parts is to solve
magnetostatics problems accurately and as rapidly as possible.
Numerical methods have been utilized for solving magneto-
statics problems over the past few decades, and several sig-
nificant advancements have been made. These approaches can
carry out magnetic analysis for almost all device geometries
with the desired accuracy. Of the various commercial tools
available, finite element methods (FEMs) have led numerical
analysis tools for electric machines, such as ANSYS Maxwell
[1] and COMSOL ac/dc module [2]. Although FEM is a
very powerful tool, the computational cost tends to be high,
making it difficult to meet the efficiency goal when solving
machine design problems. The main challenge in using FEM
in optimization applications is the requirement of volumetric
mesh on the entire domain. This meshing stage requires
significant computational resources even for simple topologies,
especially when: 1) small geometries require high mesh resolu-
tion irrespective of whether these geometries are important or
not and 2) all nodes must be shared among elements. In other
words, nodes are usually not allowed to be placed along an
element edge, so large amount of data is required as input for
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the mesh used in terms of nodal connectivity. In addition, the
body fit mesh is adopted, which means that the mesh depends
on the shape of the domains, as shown in Fig. 1 (left). As a
result, the domain needs to be re-meshed for every design.

To overcome several of these drawbacks, integral methods
have been introduced to mitigate the meshing challenges of
FEM, such as the boundary element method (BEM) and
method of moments (MOM) [12], [13], [14], [15], [16], [17],
[18], [19], [20]. The boundary integral method can treat
the boundary or interface conditions exactly and is usually
considered to be the most accurate method, provided that
well-developed accurate and stable quadrature of boundary
integrals are available [21], [22], [23]. Moreover, after inte-
gral formulations, the dimensionality of the homogeneous
partial differential equation (PDE) problem is reduced by
one. Namely, a 2-D domain problem can be solved via the
integration on a 1-D curve; thus, the computational cost is
reduced dramatically.

For solving electromagnetics problems, unlike the FEM
that solves differential equations, the BEM and MOM solve
integral formations of PDEs using magnetic potentials. MoM
and BEM have several similarities: BEM uses fewer elements
in its mesh because it only discretizes the surface or boundary,
and therefore, fewer data are required to perform a calculation.
However, it has several limitations. First, it is not suitable for
nonlinear problems as it is inherently difficult to accommodate
inhomogeneities and nonlinearities in the domain interior. Sec-
ond, it is not straightforward to evaluate a volume integral for a
non-homogeneous PDE. Finally, the analytical form of Green’s
functions for each problem is required to evaluate integrals

0018-9464 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 28,2023 at 22:44:15 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6123-6936
https://orcid.org/0000-0002-4982-6650
https://orcid.org/0000-0002-1851-9666


7400319 IEEE TRANSACTIONS ON MAGNETICS, VOL. 59, NO. 4, APRIL 2023

Fig. 1. Body-fit mesh for FEM (left) and mesh for KFBIM (right).

and to solve the problem, which increases the complexity of
the problem-solving process for engineers because Green’s
function is usually not available for complex geometry and
PDEs with variable coefficients.

In this article, a kernel-free boundary integral method
(KFBIM) has been introduced for electromagnetic analysis,
which is a generalization of the traditional boundary integral
method and is also a Cartesian grid-based integral method.
A unique feature of the KFBIM method is that it does
not require the analytic form of Green’s function or special
quadrature to directly evaluate integrals. Instead, the idea
behind KFBIM is to reinterpret boundary integrals as solutions
to equivalent simple interface problems posed in a rectangle
box, which can be solved efficiently by a finite difference
method coupled with numerical corrections (to gain accuracy),
FFT-based solution, and interpolations (to gain efficiency). The
resulting linear system from the KFBIM approach requires
only a fixed number of iterations when an iterative method
(e.g., the Krylov subspace-based method) is applied. In addi-
tion to the solution of the PDE, the KFBIM also gives a
solution for the layer densities on the boundary or interface,
which is a useful quantity to consider in practice. Moreover,
the KFBIM can solve non-homogeneous elliptic PDEs with
variable coefficients. Therefore, KFBIM can be applied in
electromagnetics problems with non-homogeneous material
properties. It should be noted that, unlike FEM, KFBIM does
not require a body-fit mesh when solving integrals, as shown
in Fig. 1 (right). Also, unlike the finite difference method
for solving a PDE directly, KFBIM is based on the integral
formulation (usually the Fredholm integral equations of the
second kind), and thus, it always produces a well-conditioned
discrete linear system of equations, which is much less sensi-
tive to computer round-off or other errors. In addition, it also
gives monopole and dipole densities at the interface, which
conventional FEM is unable to provide.

The KFBIM approach has been developed to be a general
method for elliptic PDEs in two and three dimensions for
single or double boundary [3], [4], [5], [6], [7], [8], [24].
The integrals are solved on a Cartesian grid-based method,
e.g., a finite difference scheme, which means that it delivers
accurate results using a general grid, and it is not necessary
to re-mesh for every design when it is used for optimization.
Therefore, it can overcome the major shortcomings of FEM.

In this study, a toroidal core is selected as a candidate for
magnetostatic analysis, which is commonly used in a toroidal

TABLE I
DIMENSIONS OF TOROIDAL CORE

inductor or transformer design because the magnetic flux is
confined in the toroidal core and the inductance is increased
[30]. Toroidal inductors and transformers are used in a wide
range of circuits: power supplies, inverters, and amplifiers,
which are used in lots of electrical systems: TVs, computers,
and audio systems because of their lighter weight, higher
inductance, higher efficiency, and lower leakage flux. This
shape also serves as the foundational structure toward devel-
oping a solution for the design and optimization of electric
machines. Computation from this approach shows excellent
agreement with results from a commercial finite element solver
(ANSYS). Compared with FEM, KFBIM can achieve high
accuracy with a coarse mesh and produces the results of
double- or single-layer densities at the boundary or interface;
particularly, the gradient calculation of the tangential field
intensity on the inner boundary is more stable and exhibits
almost no oscillations.

The organization of this article is given as follows.
In Section II, linear magnetostatic analysis of the toroidal core
is presented. In Section III, the kernel-free boundary integral
method for a doubly connected domain has been derived.
Section IV presents the methodology to implement the KFBIM
for EM design. Section V presents the results from the KFBIM
approach and compares the accuracy and efficiency between
KFBIM and FEM. In Section VI, this article concludes and
discusses potential applications for this new approach.

II. PROBLEM DESCRIPTION OF A TOROIDAL CORE

A. Geometry of the Toroidal Core

Fig. 2 shows the toroidal core problem studied in this article.
The dimension of the core is summarized in Table I. PDEs
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Fig. 2. Toroidal core.

and appropriate boundary conditions governing magnetostatics
form the first step in this process.

B. Partial Differential Equations for Magnetostatics and
Boundary Conditions

We introduce the magnetic vector potential A to solve the
magnetic field

B = µH (1)
µH = ∇ × A (2)

where H is the magnetic field or magnetic field intensity or
strength, B is the magnetic flux density, and µ is the magnetic
permeability.

The PDE for solving A is obtained

∇ ×

(
1
µ

∇ × A
)

= J. (3)

In two dimensions, since A only has a component on z
direction, the equation becomes

∇ ·

(
1
µ

∇ · Az

)
= Jz . (4)

It can be written as

∇ · (ν∇ · Az) = Jz (5)

where ν is the reciprocal of magnetic permeability. The
condition on the boundary of the rectangular box is set to
be

Az = 0. (6)

In addition, Az must satisfy a continuity condition along the
normal direction at the air–iron boundaries

ν0

(
∂Az

∂n

)
air

= ν

(
∂Az

∂n

)
iron

(7)

where ν0 is the reciprocal of magnetic permeability of air,
ν is the reciprocal of magnetic permeability of iron, and n
denotes the unit outward normal vector on each interface.
Other than the conditions mentioned above, the continuity of
the potential A across material boundaries is also needed to
guarantee that the condition on the normal component of B is
satisfied.

Fig. 3. Schematic diagrams of a doubly connected domain for interface
problem.

III. KERNEL-FREE BOUNDARY INTEGRAL METHOD FOR
TWO-INTERFACE 2-D MAGNETOSTATICS PROBLEM

In this section, a general KFBIM has been introduced for
a two-interface 2-D magnetostatic problem. The toroidal core
magnetostatics problem is then reformulated into this KFBIM
framework. The formulation and algorithm presented below
are extensions of the approach developed recently in [24],
and they are reformulated corresponding to the magnetostatics
problem in this article. The main steps are outlined here.

Let B ⊂ Rd(d = 2 or 3) be a rectangular box. 01 and
02 are smooth interfaces in B and partition the box into
three subdomains, �1, �2, and �3, ∂�̄1 ∩ ∂�̄2 = 01, and
∂�̄2 ∩ ∂�̄3 = 02, as shown in Fig. 3. Let p ∈ Rd(d = 2 or 3)
be the space variable. Since the problem is solved in 2-D,
all the field variables are independent of z. As shown in
Section II, the z components Jz and Az are used to solve
the 2-D problem. In this case, Jz1(p), Jz2(p), and Jz3(p) are
z components of the current density J defined, respectively,
in �1, �2, and �3, and they are smooth source functions; Az1,
Az2, and Az3 are z components of magnetic vector potential A
defined in �1, �2, and �3, respectively; ν(p) and ν0(p) are the
reciprocal of magnetic permeability of iron and air, they can
be spatially constant and variable, and the numerical examples
are shown in Section V. The 2-D magnetostatics problem can
be rewritten as an interface problem

A1 Az1 ≡ ∇ · (ν0(p)∇ Az1) = −Jz1(p) in �1 (8)
A2 Az2 ≡ ∇ · (ν(p)∇ Az2) = −Jz2(p) in �2 (9)
A3 Az3 ≡ ∇ · (ν0(p)∇ Az3) = −Jz3(p) in �3 (10)

Az1 − Az2 = 0 and ν0∂n Az1 − ν∂n Az2 = 0 on 01 (11)
Az2 − Az3 = 0 and ν∂n Az2 − ν0∂n Az3 = 0 on 02 (12)

Az3 = 0 on ∂B (13)

where Ai is the differential operator (Laplace operator for
magnetostatics problem) of PDE in �i (i = 1, 2, 3).
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A. Boundary Integrals and Volume Integrals

The boundary integrals and volume integrals are derived
from facts of potential theory [6], [25], [26], [27], [28], [29].
Let G i (p,q) be Green’s function associated with the variable
coefficients PDE on the rectangle B, at a point q; it satisfies

Ai G i (p,q)= ∇p ·
(
νi (p)∇pG i (p,q)

)
=δ(p−q) in B (14)

G i (p,q)= 0 on ∂B (15)

where δ(p − q) is the Dirac delta function; ∇p stands for the
gradient operator with respect to the space variable p ∈ Rd .

For interface problem (8)–(13), Green’s functions corre-
sponding to the three PDEs are generally different. We con-
sider that G1(p,q) is Green’s function associated with (8) in
�1 and satisfies

A1G1(p,q) = δ(p − q) in B (16)
G1(p,q) = 0 on ∂B. (17)

G2(p,q) is Green’s function associated with (9) in �2 and
satisfies

A2G2(p,q) = δ(p − q) in B (18)
G2(p,q) = 0 on ∂B (19)

and G3(p,q) is Green’s function associated with (10) in �3
and satisfies

A3G3(p,q) = δ(p − q) in B (20)
G3(p,q) = 0 on ∂B. (21)

Using density functions ϕ1 and ϕ2, we define double-layer
boundary integrals

M1ϕ1(p) =

∫
01

ν1(q)
∂G1(p,q)
∂nq

ϕ1(q)dsq (22)

M2ϕ1(p) =

∫
01

ν2(q)
∂G2(p,q)
∂nq

ϕ1(q)dsq (23)

M2ϕ2(p) =

∫
02

ν2(q)
∂G2(p,q)
∂nq

ϕ2(q)dsq (24)

M3ϕ2(p) =

∫
02

ν3(q)
∂G3(p,q)
∂nq

ϕ2(q)dsq. (25)

Using density functions ψ1 and ψ2, we define single-layer
boundary integrals

L1ψ1(p) =

∫
01

G1(p,q)ψ1(q)dsq (26)

L2ψ1(p) =

∫
01

G2(p,q)ψ1(q)dsq (27)

L2ψ2(p) =

∫
02

G2(p,q)ψ2(q)dsq (28)

L3ψ2(p) =

∫
02

G3(p,q)ψ2(q)dsq. (29)

The volume integrals are defined as

G1(−Jz1(p)) =

∫
�1

G1(p,q)(−Jz1(p))dq (30)

G2(−Jz2(p)) =

∫
�1∪�2

G2(p,q)(−Jz2(p))dq (31)

G3(−Jz3(p)) =

∫
�3

G3(p,q)(−Jz3(p))dq. (32)

Hypersingular and adjoint double-layer boundary integrals’
operators are denoted as N1, N2, N3, M∗

1, M∗

2, and M∗

3

N1ϕ1(p) =

∫
01

ν1(p)ν1(q)
∂2G1(p,q)
∂nq∂np

ϕ1(q)dsq (33)

N2ϕ1(p) =

∫
01

ν2(p)ν2(q)
∂2G2(p,q)
∂nq∂np

ϕ1(q)dsq (34)

N2ϕ2(p) =

∫
01

ν2(p)ν2(q)
∂2G2(p,q)
∂nq∂np

ϕ2(q)dsq (35)

N3ϕ2(p) =

∫
01

ν2(p)ν2(q)
∂2G3(p,q)
∂nq∂np

ϕ2(q)dsq (36)

M∗

1ψ1(p) =

∫
01

ν1(p)
∂G1(p,q)
∂nq

ψ1(q)dsq (37)

M∗

2ψ1(p) =

∫
01

ν2(p)
∂G2(p,q)
∂nq

ψ1(q)dsq (38)

M∗

2ψ2(p) =

∫
02

ν2(p)
∂G2(p,q)
∂nq

ψ2(q)dsq (39)

M∗

3ψ2(p) =

∫
02

ν3(p)
∂G3(p,q)
∂nq

ψ2(q)dsq. (40)

B. Formulation of Boundary Integral Equations

Let B ⊂ R2 be a rectangular box. �1 ⊂ R2 is a bounded
domain with smooth boundary 01 [see Fig. 4(a)]. The domain
outside 01 is denoted as �

c
1. Az1(x, y) and Az2(x, y) are

unknown functions, as the solutions to an interface problem

A1 Az1 ≡ ∇ · (ν1(p)∇ Az1) = −Jz1(p) in �1 (41)
A2 Az2 ≡ ∇ · (ν2(p)∇ Az2) = 0 in �

c
1 (42)

Az1 − Az2 = g′

1 and ν1∂n Az1 − ν2∂n Az2 = j ′

1 on 01 (43)
Az2 = 0 on ∂B (44)

where �′

2 ⊂ R2 is a bounded domain with a smooth boundary
02 [see Fig. 4(b)]. The domain outside 02 is denoted as
�3. A′

z2(x, y) and Az3(x, y) are unknown functions, as the
solutions to another interface problem

A2 A′

z2 ≡ ∇ ·
(
ν2(p)∇ A′

z2

)
= −Jz2(p) in �′

2 (45)
A3 Az3 ≡ ∇ · (ν3(p)∇ Az3) = −Jz3(p) in �3 (46)

A′

z2 − Az3 = g′

2 and ν1∂n A′

z2 − ν2∂n Az3 = j ′

2 on 02 (47)
Az3 = 0 on ∂B. (48)

Here, both interfaces 01 and 02, PDE operators A1, A2, and
A3, and source terms Jz1, Jz2, and Jz3 are the same as interface
problems (8)–(13). �

c
1 = �2 ∪�3 ∪ 02. �′

2 = �1 ∪�2 ∪ 01.
However, interface conditions g′

1, j ′

1, g′

2, and j ′

2 are different
from the interface conditions in (11) and (12), and they are
not necessarily required for the KFBIM. The solution to the
first interface problem is

Az1(p) = M1ϕ1(p)− L1ψ1(p)+ G1(−Jz1) in �1 (49)
Az2(p) = M2ϕ1(p)− L2ψ1(p) in �

c
1 (50)

and the solution to the second interface problem is

A′

z2(p) = M2ϕ2(p)− L2ψ2(p)+ G1(−Jz2) in �′

2 (51)
Az3(p) = M3ϕ3(p)− L3ψ3(p)+ G1(−Jz3) in �3. (52)
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Fig. 4. Illustration of the two interface problems. (a) Exterior problem. (b) Interior problem.

We have four boundary integral equations on 01 and 02 by
interface conditions (11) and (12)

(M1−M2 + I)ϕ1 + (L2 − L1)ψ1 −M2ϕ2 + L2ψ2

= g1 − G1(−Jz1)+ G2(−Jz2) on 01 (53)

(N1−N2)ϕ1 +
(
M∗

2 −M∗

1 + I
)
ψ1 −N2ϕ2 +M∗

2ψ2

= j1 − np · σ1∇pG1(−Jz1)+ np · σ2∇pG2(−Jz2) on 01

(54)
M2ϕ1−L2ψ1 + (M2 −M3 + I)ϕ2 + (L3 − L2)ψ2

= g2 − G2(−Jz2)+ G3(−Jz3) on 02 (55)
N2ϕ1−M∗

2ψ1 + (N2 −N3)ϕ2 +
(
M∗

3 −M∗

2 + I
)
ψ2

= j2 − np · σ2∇pG2(−Jz2)+ np · σ3∇pG3(−Jz3) on 02.

(56)

In the matrix form, the above integral equations can be
written as in (57), shown at the bottom of the page, where

r1
r2
r3
r4

 =


g1 − G1(−Jz1)+ G2(−Jz2)

j1 − np · σ1∇pG1(−Jz1)+ np · σ2∇pG2(−Jz2)

g2 − G2(−Jz2)+ G3(−Jz3)

j2 − np · σ2∇pG2(−Jz2)+ np · σ3∇pG3(−Jz3)

.
(58)

Here, the notation is ∂p = np · ∇p. After solving the
above linear system by generalized minimal residual method
(GMRES) [21], [22], the final solution Az to the interface
problem is given by

Az(p) = Az1(p) in �1 (59)
Az(p) = Az2(p)+ A′

z2(p) in �2 (60)
Az(p) = Az3(p) in �3. (61)

Fig. 5. Irregular domain with the exterior domain �e and the interior
domain �i .

Then, the flux density can be calculated by B(p) =

curlAz(p) or

Bx (p) =
∂Az(p)
∂y

(62)

By(p) = −
∂Az(p)
∂x

. (63)

C. Evaluation of Boundary or Volume Integral

In general, Green’s function used in boundary integrals
is not available for elliptic PDEs with variable coefficients.


M1 −M2 + I L2 − L1 −M2 L2
N1 −N2 M∗

2 −M∗

1 + I −N2 M∗

2
M2 −L2 M2 −M3 + I L3 − L2
N2 −M∗

2 N2 −N3 M∗

3 −M∗

2 + I



ϕ1
ψ1
ϕ2
ψ2

 =


r1
r2
r3
r4

 (57)
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Fig. 6. Flowchart of the overall algorithm.

Fig. 7. FEM mesh (left) and KFBIM (right) mesh for the toroidal core.

The KFBIM circumvents the direct evaluation of boundary
integrals and computes the value of boundary or volume
integrals as an interpolation of Cartesian grid value from a
discretized equivalent interface problem.

1) Reinterpretation of Integrals: By the continuity proper-
ties of the boundary and volume integrals, we may reinterpret
each of them as a solution to an equivalent interface problem.

In a rectangular box B, an irregular interface 0 separates it
into two domains �i and �e (see Fig. 5 for an illustration).
A piecewise smooth function w(p) is defined in B, which
has possible discontinuity only on the interface 0. We denote
w+(p) and w−(p) as the restriction of w(p) in �i and �e,
respectively. When p ∈ 0, w+(p) and w−(p) mean the limit
values of w(p) from the interior domain �i and the exterior
domain �e, respectively. It is assumed the interior domain �i

is on the positive side of the interface 0, while the exterior
domain �e is on the negative side. The possible disconti-
nuity is described as jumps in the function w(p) across the
domain boundary from the negative side to the positive side,
which is denoted by[

w(p)
]

= w+(p)− w−(p) on 0. (64)

Using the jumps defined above, the double-layer boundary
v(p) = Mi,eϕ(p) satisfies an interface problem

Ai,ev ≡ ∇ ·
(
νi,e(p)∇v

)
= 0 in B\0 (65)

[v] = ϕ on 0 (66)[
νi,e∂nv

]
= 0 on 0 (67)

v = 0 on ∂B (68)

and the single-layer boundary integral v(p) = −Li,eψ(p)
satisfies an interface problem

Ai,ev ≡ ∇ ·
(
νi,e(p)∇v

)
= 0 in B\0 (69)

[v] = 0 on 0 (70)[
νi,e∂nv

]
= ψ on 0 (71)

v = 0 on ∂B. (72)

Finally, the volume integral v(p) = Gi (−Jzi (p)) satisfies
the following interface problem:

Aiv ≡ ∇ · (νi (p)∇v) = −Jzi in �i (73)
Aev = 0 in �e (74)

[v] = 0 on 0 (75)
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Fig. 8. Comparison of the magnetic potential on the inner boundary between
KFBIM on different grids for Example 1.

Fig. 9. Comparison of the magnetic potential on the outer boundary between
KFBIM on different grids for Example 1.

[νi∂nv] = 0 on 0 (76)
v = 0 on ∂B. (77)

The volume integral v(p) = Ge(−Jze(p)) satisfies the
following interface problem:

Aiv = 0 in �i (78)
Aev ≡ ∇ · (νe(p)∇v) = −Jze in �e (79)

[v] = 0 on 0 (80)
[νe∂nv] = 0 on 0 (81)

v = 0 on ∂B (82)

where �i and �e are the interior domain and the exterior
domain of certain boundaries, and boundary or volume inte-
grals are defined the same as those used in Sections III-A

Fig. 10. Comparison of the tangential field intensity on the inner boundary
between KFBIM on different grids for Example 1.

Fig. 11. Comparison of the tangential field intensity on the outer boundary
between KFBIM on different grids for Example 1.

and III-B; Jzi and Jze are current densities on the interior
domain and the exterior domain. The equivalence between the
interface problem and boundary or volume integrals can be
found in [7] and [24]. Technical details for solving the integrals
have been included in the Appendix, including PDE discretiza-
tion, correction in the discrete system, solution of the discrete
finite difference equations, interpolation of integrals on the
interface, and computation of jumps of partial derivatives [6],
[7], [8].

In summary, the given PDE problem is first decomposed
problems into two interface problems and then rewritten into
a linear system [see (53)–(56)] using well-defined single-
or double-layer integrals. These integrals are then solved
on a Cartesian grid-based method, e.g., a finite difference
approach. To improve the accuracy of the integral evaluation,
corrections are only made for points near the interface. The
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Fig. 12. Comparison of the magnetic potential on the inner boundary between
KFBIM on different grids for Example 2.

Fig. 13. Comparison of the magnetic potential on the outer boundary between
KFBIM on different grids for Example 2.

resulting linear system is solved iteratively using a Krylov
subspace method (GMRES) [10], [11]. During each itera-
tion, a geometric multigrid preconditioned conjugate gradient
method (GMG-PCG) is used to solve the equivalent interface
problem [see (65)–(82)]. These simple equivalent interface
problems (65)–(82) are solved using Appendices A–C. The
correction in Appendix B for the discrete interface equations
needs the jumps of partial derivatives, which are computed
by the method presented in Appendix E. After the discrete
equations are solved, the grid-based solution is interpolated to
the interface using Appendix D, which also needs the jumps
of partial derivatives calculated by the method in Appendix E.
The following algorithm is used for solving the interface
problem [see (8)–(13)]. As mentioned previously, the jumps
of partial derivatives are the possible discontinuities of partial
derivatives on the boundary in a function. The flowchart of
the overall algorithm is shown in Fig. 6.

Fig. 14. Comparison of the tangential field intensity on the inner boundary
between KFBIM on different grids for Example 2.

Fig. 15. Comparison of the tangential field intensity on the outer boundary
between KFBIM on different grids for Example 2.

IV. IMPLEMENTING THE KFBIM

KFBIM is a non-dimensional approach. Therefore, to solve
the toroidal core problem, the first step is to de-unitize the
problem. The characteristic length is selected to be 10 cm.
Thus, the nondimensional rectangular box is 2 × 2, the inner
radius is 0.45, and the outer radius is 0.65. The radius of
current sources is 0.14, and centers are located at (0.27, 0)
and (0.83, 0). The material in �1 and �3 is air, and the
material in �2 is the iron. For the permeability of air, it is set
to be constant permeability of free space, which is 4π×10−7.
For the permeability of iron, there are two setting in our
study: for the first case, the relative permeability of iron is
1000; for the other case, the iron is treated as an inhomo-
geneous permeable material, and the relative permeability is
(5000/1 + 2(x2

+ y2)) + 200 to test the ability of KFBIM
to solve nonhomogeneous electromagnetic problem. Following
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Fig. 16. Comparison of flux density results for coarsest mesh. (a) Flux density results from KFBIM (256 × 256). (b) Flux density results from FEM on the
coarsest mesh (16 129 elements). (c) Difference of the flux density between FEM on coarsest mesh (16 129 elements) and KFBIM for Example 1.

Fig. 17. Comparison of flux density results for coarser mesh. (a) Flux density results from FEM on coarser mesh (65 025 elements). (b) Difference of the
flux density between FEM on coarser mesh (65 025 elements) and KFBIM for Example 1.

Fig. 18. Comparison of flux density results for dense mesh. (a) Flux density results from FEM on dense mesh (261 121 elements). (b) Difference of the
flux density between FEM on dense mesh (261 121 elements) and KFBIM for Example 1.

the general framework of KFBIM discussed in Section III, the
source function Jz is defined as followings.

In the EM package of commercially available FE software,
the current value or current density is assigned to the coil,

which is 100 A and 162 403 A/m2 (1000 and 16 240.3 after
nondimensionalization), and the zero current is applied to iron
for this case. In the KFBIM approach, Jz2(x, y) is 0 on �2, and
smooth Sigmoid functions are used to evenly model distributed
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Fig. 19. Comparison of the magnetic potential on the inner boundary between
KFBIM (256 × 256) (almost no oscillations) and FEM (more oscillations)
for Example 1.

current source flow through the coil. Mathematically, we take

Jz1(x, y) =
16241.0

1 + exp
{

35.0
(
(x−0.27)2

0.142 +
y2

0.142

)
− 1

} (83)

and

Jz3(x, y) = −
16241.0

1 + exp
{

35.0
(
(x−0.83)2

0.142 +
y2

0.142

)
− 1

} . (84)

Note that the integration of the above Sigmoid functions
in the domain is 1000, which is exactly the value after the
de-unitization of 100 A. The shape of these two functions
is very close to cylinders located at the coils of the original
problem.

V. KFBIM RESULTS AND COMPARISON WITH FEM

A. FEM Mesh Configuration

In this study, FEM forms the baseline of numerical
electromagnetic problems in terms of accuracy and com-
putational efficiency, which is carried out using a com-
mercial package, ANSYS Electronics. In the software, the
2-D electromagnetics problems are solved using the Maxwell
2-D package.

In the Maxwell 2-D software, a 2-D triangular adaptive
uniform (TAU) mesher is used, which generates a fully
automated initial mesh. TAU creates a uniform, high-quality,
solver-driven mesh and can be instructed to refine the mesh
by reducing the length of elements. Three conditions are
considered—a dense mesh with 268 535 elements; a coarser
mesh with 68 439 elements; and the coarsest mesh with
16 027 elements. The reason for choosing these three meshes
is that they have similar resolutions for KFBIM, which cor-
responds to 261 121, 65 025, and 16 129 elements on 512 ×

512, 256 × 256, and 128 × 128 grids, respectively, to have a
fair comparison. The meshed geometry is shown in Fig. 7.

Fig. 20. Comparison of the magnetic potential on the outer boundary between
KFBIM (256 × 256) and FEM for Example 1.

B. KFBIM Results

This section starts with a comparison of KFBIM results
solved on 1024 × 1024, 512 × 512, 256 × 256, and 128 ×

128 grids. It is understood that, if the values on the boundary
converge, the values on the whole domain converge. Therefore,
the values solved on the boundary, vector potential, and
tangential field intensity are compared.

Example 1 (Spatially Constant Permeability): For the first
example, the relative permeability on the toroidal core is
spatially constant 1000, as mentioned in Section IV. The
vector potential comparisons on inner and outer boundaries
are shown in Figs. 8 and 9. The tangential field intensity
comparisons on inner and outer boundaries are shown in
Figs. 10 and 11.

Example 2 (Nonhomogeneous Permeable Material): For this
example, the relative permeability on the toroidal core is
spatially variable (5000/1 + 2(x2

+ y2))+ 200, as mentioned
in Section IV. The vector potential comparisons for inner and
outer boundaries are shown in Figs. 12 and 13. The tangential
field intensity comparisons for inner and outer boundaries are
shown in Figs. 14 and 15.

Based on the comparisons of boundary values of the two
examples, it is clear that the problems start to converge when
it is solved on the 256 × 256 grid. The values solved on the
256 × 256 grid are very close to the 512 × 512 grid and
the 1024 × 1024 grid. Since the 256 × 256 case is the most
computationally efficient between these three cases without
losing accuracy, it is taken as an example to be compared
with FEM in terms of accuracy of flux density on the whole
domain and boundary values.

C. Accuracy Comparison

Example 1 (Spatially Constant Permeability): For the first
example, the relative permeability on the toroidal core is
spatially constant 1000, as mentioned in Section IV. The
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Fig. 21. Comparison of the tangential field intensity on the inner boundary between KFBIM (256 × 256) (almost no oscillations) and FEM (more oscillations)
for Example 1.

Fig. 22. Comparison of the tangential field intensity on the outer boundary between KFBIM (256 × 256) (almost no oscillations) and FEM (more oscillations)
for Example 1.

magnitude of flux density is compared for each point first.
The magnetostatics problem is solved using KFBIM on a
256 × 256 grid. For FEM, the problem is solved for each
condition, i.e., from the coarsest mesh to the densest mesh.
Figs. 16–18 compare the accuracy of the calculations for
each point on the 256 × 256 grid. The comparison is done

between KFBIM and FEM using three different meshes, and
the maximum differences are 6.14%, 3.18%, and 0.52%,
respectively. The difference is calculated by

Differencek =
|Bk,FEM − Bk,KFBIM|

Bk,FEM
. (85)
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Fig. 23. Densities on the inner and outer boundaries computed by KFBIM for Example 1.

Fig. 24. Comparison of flux density results for coarsest mesh. (a) Flux density results from KFBIM (256 × 256). (b) Flux density results from FEM on the
coarsest mesh (16 129 elements). (c) Difference of the flux density between FEM on coarsest mesh (16 129 elements) and KFBIM for Example 2.

Fig. 25. Comparison of flux density results for coarser mesh. (a) Flux density results from FEM on coarser mesh (65 025 elements). (b) Difference of the
flux density between FEM on coarser mesh (65 025 elements) and KFBIM for Example 2.

The normalized rms difference is computed by

DifferenceNRMS

=
100%

Bmax,FEM − Bmin,FEM

√
1
K

∑K

k=1

(
Bk,FEM − Bk,KFBIM

)2 (86)

and found to be 0.046%, 0.022%, and 0.015% for the three
comparisons mentioned above. Apparently, the closest result

to the KFBIM is the FEM on the densest mesh, and with
increasing mesh density, the result becomes closer.

Next, the values calculated on the boundary are compared
between KFBIM and FEM. Figs. 19 and 20 show the vector
potential comparison. The tangential field intensity is also
compared to the boundaries in Figs. 21 and 22. For a 256 ×

256 grid, there are 181 and 261 points on the inner and outer
boundaries, respectively. The results of 300 points from FEM

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 28,2023 at 22:44:15 UTC from IEEE Xplore.  Restrictions apply. 



JIN et al.: KFBIM FOR 2-D MAGNETOSTATICS ANALYSIS 7400319

Fig. 26. Comparison of flux density results for dense mesh. (a) Flux density results from FEM on dense mesh (261 121 elements). (b) Difference of the
flux density between FEM on dense mesh (261 121 elements) and KFBIM for Example 2.

Fig. 27. Comparison of the magnetic potential on the inner boundary between KFBIM (256 × 256) (almost no oscillations) and FEM (more oscillations)
for Example 2.

are taken for the inner boundary and the outer boundary.
In Fig. 23, a sample of double- or single-layer densities is
presented for the boundary, which cannot be extracted from
the FEM data.

Example 2 (Nonhomogeneous Permeable Material): For
this example, the relative permeability on the toroidal core
is spatially variable (5000/1 + 2(x2

+ y2)) + 200, as men-
tioned in Section IV. These accuracy comparisons for this
problem include flux density, boundary magnetic potential, and

boundary field intensity, which uses the same setup as the first
example. The point-by-point difference and rms difference are
calculated using the same definitions as the first example as
(85) and (86). The point-by-point differences are shown in
Figs. 24–26, and the maximum differences are 6.83%, 2.09%,
and 0.67%, respectively. The normalized rms differences are
0.03%, 0.017%, and 0.008%, respectively.

Figs. 27 and 28 show the vector potential comparison. The
tangential field intensity is also compared to the boundaries in
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Fig. 28. Comparison of the magnetic potential on the outer boundary between KFBIM (256 × 256) and FEM for Example 2.

Fig. 29. Comparison of the tangential field intensity on the inner boundary between KFBIM (256 × 256) (almost no oscillations) and FEM (more oscillations)
for Example 2.

Figs. 29 and 30. In Fig. 31, the sample of double- or single-
layer densities is presented for the boundary as well.

Based on the accuracy comparisons of the two examples,
the results of point-by-point field density solved from KFBIM

agree with FEM very well, and it is shown that KFBIM with
coarser mesh can have the same accuracy level of FEM with
denser mesh. The difference is less than 1%. However, for
the magnetic potential and field intensity on the boundaries,
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Fig. 30. Comparison of the tangential field intensity on the outer boundary between KFBIM (256 × 256) (almost no oscillations) and FEM (more oscillations)
for Example 2.

Fig. 31. Densities on the inner and outer boundaries computed by KFBIM for Example 2.

the KFBIM does a better job than FEM because the KFBIM
results are smoother than those from FEM (which tends
to oscillate). Instead of solving the unknown values on the
boundaries, such as KFBIM, FEM solves for unknown values
in the domain, so the values on the boundaries are interpolated
from the calculated values on each mesh node by the FEM
software. Thus, the values on the boundaries from FEM tend
to oscillate. In addition, the results of double- or single-layer
densities at the boundary can be obtained as well.

D. Efficiency Comparison

All numerical computations for both KFBIM and FEM are
performed on a computer with Intel1 Core2 i5-8400 CPU

1Registered trademark.
2Trademarked.

@ 2.8 GHz and 12.0 GB RAM. For KFBIM, comparisons
of computation time (measured in CPU seconds) between
different grids for two examples are shown in Table II. The
computation CPU time is almost linearly proportional to the
number of grid nodes. The computation time of FEM for
the two problems solved on different grids is summarized in
Table III. For the coarser mesh, the KFBIM is faster than
FEM. However, for the dense mesh that we compared, the
computational time of those two methods is almost the same.

It should be noted that the KFBIM with a coarser mesh
can solve the problem with at least the same level of accuracy
as the FEM with the denser mesh, as shown in Section V-C.
It takes 25.78 and 28.00 s for KFBIM to solve Example 1 and
Example 2, respectively, using the 256×256 grid. However, for
FEM (ANSYS), it takes 114.04 and 131.60 s to solve Exam-
ple 1 and Example 2, respectively, using the denser mesh,
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TABLE II
CPU CLOCK TIME OF KFBIM

TABLE III
CPU CLOCK TIME OF FEM (ANSYS)

which could reach the accuracy of the KFBIM. In other words,
it takes more time for FEM to get the same level of accuracy
as KFBIM, which confirms that KFBIM is computationally
more efficient of the two approaches. This benefit can be
particularly significant in complex geometries, such as electric
machines, where iterative designs and optimization are often
needed. However, these cases also introduce two additional
problems, which can be challenging: the first is a moving
boundary, and the second is the analytical description of a
sharp edge. These two aspects are currently being investigated
and will be presented in subsequent publications.

This study shows that not only can the constant permeability
material problem be solved by KFBIM shown in Example 1,
but Example 2 also shows that the nonhomogeneous permeable
material problem can be solved accurately and efficiently
by KFBIM, which is one of the advantages of KFBIM as
well compared to other traditional boundary integral methods.
Incorporating the impact of material with the B–H curve may
need some additional techniques, such as supine interpola-
tion and proper iterative methods coupled to find the proper
permeability for the material at each location based on the
B–H curve, which is an extension of this work. While the
3-D application is not the current focus of this article, the work
has been reported in this space [4]. The 3-D framework of
the kernel-free boundary integral method has been developed
for boundary value problems [4], but the interface problem
solver is still underdeveloped. Since the 2-D results of the
magnetostatics problem are encouraging, the immediate future
work would be to finish the 3-D solver for interface problems
and apply the 3-D solver for the magnetostatics problems,
where the B–H curve will be incorporated into the framework
as well.

VI. CONCLUSION

This article presents a comprehensive study of a kernel-
free boundary integral method and explores its effectiveness
in solving PDEs for 2-D magnetostatic field analysis. In this
study, KFBIM is used to solve the electromagnetics problem
on a toroidal core for both constant permeability material and
non-homogeneous material, and the results are compared with
commercial FEM software. Based on the results, the KFBIM

is found to be at least as accurate as FEM, with much better
computational efficiency. A finite difference method is used
in KFBIM, so it does not require a body-fit mesh. Also, the
finite difference method is coupled with numerical corrections
and based on the integral formulation to produce a well-
conditioned discrete linear system. Thus, KFBIM gains high
accuracy and improved computational efficiency simultane-
ously. The proposed analysis has been carried out for a toroidal
inductor core, which is commonly used in inductor and trans-
former designs. It forms the first step for application toward
more complex geometries and applications such as electric
machines. The high accuracy and computational efficiency of
KFBIM are very important to the multi-objective optimization
within the field of electromechanics for complex geometries
because a single design often needs to be optimized iteratively.
Therefore, KFBIM can potentially be used as an alternative
method in the analysis of electromagnetics problems, espe-
cially in the optimization of electric machine designs, and can
serve as a valuable tool for design engineers. This approach
is currently under development for application-specific design;
such an approach will be very useful for practicing engineers
tasked with the design of size-constrained electromagnetic
transducers. Subsequent publications will present the use of
this approach for such designs.

APPENDIX A
PDE DISCRETIZATION

Let box B = [a, b] × [c, d]. N is the mesh size on each
axis direction. hx = (b − a/N ); h y = (d − c/N ). Assume
that hx = h y = h for simplicity. xi = a + ih; y j = c + jh;
pi, j = (xi , y j ), i, j = 0, 1, . . . , N . The PDE is discretized
Av ≡ ∇ · (ν(p)∇v) = f in B\0 on the Cartesian grid with a
modified finite difference scheme

Ahvi, j ≡
si, j − 4ν̄i, jvi, j

h2 = fi, j (87)

si, j = νi+ 1
2 , jvi+1, j + νi− 1

2 , jvi−1, j + νi, j+ 1
2
vi, j+1

+ νi, j− 1
2
vi, j−1 (88)

σ̄ i, j =

νi+ 1
2 , j + νi− 1

2 , j + νi, j+ 1
2
+ νi, j− 1

2

4
(89)

where vi, j is a finite difference approximation of v(pi, j ),
νi+(1/2), j = ν(xi + h/2, y j ), νi−(1/2), j = ν(xi − h/2, y j ),
νi, j+(1/2) = ν(xi , y j + h/2), νi, j−(1/2) = ν(xi , y j − h/2), and
fi, j = f (xi , y j ). The finite difference scheme here is based on
a five-point stencil. Equation (76) has a second-order accuracy
if without discontinuities across 0.

APPENDIX B
CORRECTION IN DISCRETE SYSTEM

If a node pi, j and any of its neighbors pi+1, j , pi−1, j , pi, j+1,
and pi, j−1 are on different sides of 0, we call pi, j as an irregu-
lar node. Otherwise, pi, j is a regular node. The truncation error
of the finite difference method is large at those irregular nodes.
If (xi , y j ) is a regular point, Ahv(xi , y j )− f (xi , y j ) = O(h2);
if (xi , y j ) is an irregular point, Ahv(xi , y j ) − f (xi , y j ) =

O(h−2). The scheme needs to be corrected at irregular points
to keep the second-order accuracy on the whole mesh. The
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Fig. 32. Irregular node.

Fig. 33. Interpolation points’ selection.

correction procedure using a simple case is shown in Fig. 32,
where 0 intersects a horizontal grid line at (zi , y j ), xi ≤ zi <

xi+1.
The local truncation error is

Eh,x
(
xi , y j

)
≡

νi+ 1
2 , j

(
v+

(
xi+1, y j

)
− v−

(
xi , y j

))
h2

−

νi− 1
2 , j

(
v−

(
xi , y j

)
− v−

(
xi−1, y j

))
h2

−
∂

∂x

(
ν
∂

∂x
v−

(
xi , y j

))
(90)

and v±(xi+1, y j ) is v±(xi+1, y j ) expanded at (zi , y j ) using a
Taylor expansion at the zi point as

v±
(
xi+1, y j

)
= v±

(
zi , y j

)
+ ∂xv

±
(
zi , y j

)
(xi+1 − zi )

+
1
2
∂xxv

±
(
zi , y j

)
(xi+1 − zi )

2

−
1
6
∂xxxv

±
(
zi , y j

)
(xi+1−zi )

3
+O

(
h4). (91)

The truncation error derived at (xi , y j ) is

Eh,x
(
xi , y j

)
≡

νi+ 1
2 , j

(
v+

(
xi+1, y j

)
− v−

(
xi , y j

))
h2

=

νi− 1
2 , j

h2

{
[v] + [vx ](xi+1 − zi )+

1
2

[vxx ](xi+1 − zi )
2

+
1
6

[vxxx ](xi+1 − zi )
3
}

+ O
(
h2). (92)

In this equation, [v] = v+(zi , y j ) − v−(zi , y j ), [vx ] =

∂xv
+(zi , y j ) − ∂xv

−(zi , y j ), [vxx ] = ∂xxv
+(zi , y j ) −

∂xxv
−(zi , y j ), and [vxxx ] = ∂xxxv

+(zi , y j ) − ∂xxxv
−(zi , y j )

are jumps of v value and its partial derivatives across the
interface 0.

Then, a correction term is added on the right-hand side of
the finite difference equation as

C+

h,x

(
xi ,y j

)
=

νi+ 1
2 , j

{
[v]+[vx ](xi+1−zi )+

1
2 [vxx ](xi+1−zi )

2}
h2 .

(93)

The computation of jumps [v], [vx ], and [vxx ] are given in
Appendix E. Similarly, if a horizontal gird line intersects 0
between xi−1 and xi , a correction term is added as

C−

h,x

(
xi , y j

)
= −

νi− 1
2 , j

{
[v]+[vx ](xi−1−zi )+

1
2 [vxx ](xi−1−zi )

2}
h2 . (94)

0 may intersect grid lines horizontally and vertically multi-
ple times. For every intersection point, necessary correction
terms are added among C+

h,x , C−

h,x , C+

h,y , and C−

h,y on the
right-hand side of (87). Ch(xi , y j ) is denoted as a summa-
tion of all corrections at (xi , y j ). Then, a modified finite
difference equation is summarized. If (xi , y j ) is a regular
point, Ahvi, j = fi, j , and if (xi , y j ) is an irregular point,
Ahvi, j = fi, j + Ch(xi + y j ). The finite difference method
here has a second-order accuracy except at irregular points,
where first-order accuracy is expected. However, as shown in
[6] and [7], the solution to the corrected linear system has a
second-order accuracy.

APPENDIX C
SOLUTION OF THE DISCRETE FINITE

DIFFERENCE EQUATIONS

The coefficient matrix created by the finite difference
method is a symmetric positive definite matrix because of its
diagonal dominance. For a constant coefficient PDE, i.e., the
Laplacian or modified Helmholtz operator, a fast Fourier
transform-based elliptic PDE solver can be used to solve (93)
efficiently. For a PDE with variable coefficients, we imple-
ment a GMG-PCG [10], [11]. The whole routine is a full
multigrid process where a preconditioned conjugate gradient
iterative method is coupled with every single V-cycle, while
the preconditioning is a single multigrid V cycle process. The
pre-smoothing and the post-smoothing are one forward and
one backward Gauss–Seidel iterations. The prolongation is
calculated by a bi-linear interpolation, and the restriction is
the adjoint of the prolongation. The coarsest grid has only
one point inside box B.
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APPENDIX D
INTERPOLATION OF INTEGRALS ON THE INTERFACE

Assume that vh is a piecewise smooth function that satisfies
the PDE operator A. It has discontinuities of function value
and partial derivatives across 0. Let vh(pi, j ) = vi, j ; here, vi, j

is the numerical solution given by the finite difference method.
vh(p) is expanded on one point q ∈ 0

vh(p) = v+

h (q)+
∂v+

h (q)
∂x

ξ +
∂v+

h (q)
∂y

η

+
1
2
∂2v+

h (q)
∂x2 ξ 2

+
∂2v+

h (q)
∂x∂y

ξη +
1
2
∂2v+

h (q)
∂y2 η2

+ O
(
|p − q|

3) if p ∈ �i (95)

and

vh(p) = v−

h (q)+
∂v−

h (q)
∂x

ξ +
∂v−

h (q)
∂y

η

+
1
2
∂2v−

h (q)
∂x2 ξ 2

+
∂2v−

h (q)
∂x∂y

ξη +
1
2
∂2v−

h (q)
∂y2 η2

+ O(|p − q|
3) if p ∈ �e (96)

where v+

h and v−

h are restrictions of vh in �i and �e, and
(ξ, η) = p − q. The way to choose six grid nodes around q is
given as follows. First, the closest mesh point p0 is picked to q.
Then, four neighbors of p0 are chosen correspondingly. p5 is
the last one to construct a small rectangle, which contains q
as shown in Fig. 33.

For brevity, the restriction of vh and its partial derivative
are denoted as V ±

≡ v±

h (q), V ±
x ≡ (∂v±

h (q)/∂x), V ±
y ≡

(∂v±

h (q)/∂y), V ±
xx ≡ (∂2v±

h (q)/∂x2), V ±
xy ≡ (∂2v±

h (q)/∂x∂y),
and V ±

yy ≡ (∂2v±

h (q)/∂y2). They are limit values from the
corresponding side, i.e., V +

= limp′→q vh(p′), p′
∈ �i . vh(p)

is represented as V +
+V +

x ξ j +V +
y η j +(1/2)ξ 2

j V +
xx +V +

xyξ jη j +

(1/2)V +
yyη

2
j = V j if p j ∈ �i ; if p j ∈ �e, V −

+ V −
x ξ j +

V −
y η j + (1/2)ξ 2

j V −
xx + V −

xyξ jη j + (1/2)V −
yyη

2
j = V j . Besides,

J j = [V ] + [Vx ]ξ j + [Vy]η j + (1/2)[Vxx ]ξ
2
j + [Vxy]ξ jη j +

(1/2)[Vyy]η
2
j is denoted and reorganized into V +

+ V +
x ξ j +

V +
y η j + (1/2)ξ 2

j V +
xx + V +

xyξ jη j + (1/2)V +
yyη

2
j = V j + J j , for

j = 0, 1, . . . , 5; here, (ξ j , η j ) = p j − q and V j = vh(p j ).
There are six unknowns V +, V +

x , V +
y , V +

xx , V +
xy , and V +

yy for
each boundary node q. Also, there are six equations to solve
them. After jumps are computed (details given in Appendix E),
it is straightforward to solve a 6 × 6 linear system.

APPENDIX E
COMPUTE JUMPS OF PARTIAL DERIVATIVES

Assume that v(p) satisfies the interface problem

Av ≡ ∇ · (ν∇v) = f in B\0 (97)
[v] = ϕ on 0 (98)

[ν∂nv] = ψ on 0. (99)

The parametric description of 0 is considered as follows:
x = x(θ) and y = y(θ). The tangent and normal vec-
tors are given, respectively, by τ = (xθ , yθ ) and n =

((yθ/(x2
θ + y2

θ )
1/2), (−xθ/(x2

θ + y2
θ )

1/2)); here, xθ = (∂x/∂θ)
and yθ = (∂y/∂θ). Meanwhile, ∂τ = τ1(∂/∂x)+τ2(∂/∂y) and

∂n = n1(∂/∂x)+ n2(∂/∂y) are denoted. Tangential derivative
of (98) is taken on 0 to be ∂τ [v] = ∂τϕ, and the right-
hand side is expanded as ∂τϕ = xθϕx + yθϕy = ϕθ . Also,
n1[vx ] + n2[vy] = (ψ/ν) and xθ [vx ] + yθ [vy] = ϕθ are
derived; after solving these two equations, [vx ] and [vy] are
obtained. These two jumps are plugged into (97) on 0 to
be ∇ · (ν∇[v]) − κ[v] = [ f ], and it is expanded to get
νx [vx ]+ν[vxx ]+νy[vy]+ν[vyy] = [ f ]. The double tangential
derivative of (98) is taken on 0 to be ∂ττ [v] = ∂ττϕ, and it is
equivalent to x2

θ [vxx ] + y2
θ [vxx ] + 2xθ yθ [vxy] + (xθ (∂xθ/∂x)+

yθ (∂xθ/∂y))[vx ]+(xθ (∂yθ/∂x)+yθ (∂yθ/∂y))[vy] = ϕθθ ; here,
ϕθθ = (∂2ϕ/∂θ2), xθθ = (∂2x/∂θ2), and yθθ = (∂2 y/∂θ2).
The tangential derivative of (99) is taken on 0, ∂τ {[ν∂nυ]} =

∂τψ , and it is expanded as

ψθ = n1[vx ]
(
νx xθ + νy yθ

)
+ n2

[
vy

](
νx xθ + νy yθ

)
+ ν[vx ]

(
xθ
∂n1

∂x
+ yθ

∂n1

∂y

)
+ ν

[
vy

](
xθ
∂n2

∂x
+ yθ

∂n2

∂y

)
+ νn1xθ [vxx ] + νn2 yθ

[
vyy

]
+ ν

[
vxy

]
(n1 yθ + n2xθ ).

The following equations are derived:

[vxx ] +
[
vyy

]
=

{
−σx [vx ] − σy

[
vy

]
+

[
f
]}
/ν (100)

x2
θ [vxx ] + y2

θ

[
vyy

]
+ 2xθ yθ

[
vxy

]
= ϕθθ − xθθ [vx ] − yθθ

[
vy

]
(101)

n1xθ [vxx ] + n2 yθ
[
vyy

]
+

[
vxy

]
(n1 yθ + n2xθ )

=
ψθ

ν
−
σθ

ν

{
n1[vx ]+n2

[
vy

]}
−
∂n1

∂θ
[vx ]−

∂n2

∂θ

[
vy

]
3. (102)

[vxx ], [vxy], and [vyy] are obtained after solving these three
equations.
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