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Abstract: It is very important to perform magnetostatic analysis accurately and efficiently when it
comes to multi-objective optimization of designs of electromagnetic devices, particularly for inductors,
transformers, and electric motors. A kernel free boundary integral method (KFBIM) was studied for
analyzing 2D magnetostatic problems. Although KFBIM is accurate and computationally efficient,
sharp corners can be a major problem for KFBIM. In this paper, an inverse discrete Fourier transform
(DFT) based geometry reconstruction is explored to overcome this challenge for smoothening sharp
corners. A toroidal inductor core with an airgap (C-core) is used to show the effectiveness of the
proposed approach for addressing the sharp corner problem. A numerical example demonstrates
that the method works for the variable coefficient PDE. In addition, magnetostatic analysis for
homogeneous and nonhomogeneous material is presented for the reconstructed geometry, and
results carried out using KFBIM are compared with the results of FEM analysis for the original
geometry to show the differences and the potential of the proposed method.

Keywords: boundary integral method; magnetostatic analysis; sharp corner reconstruction; inverse
discrete Fourier transform; iDFT; inductor design

1. Introduction

Significant advancements have been made in solving elliptic partial differential equa-
tions numerically over the past few decades, especially towards solving magnetostatic
problems. The Finite Element Method (FEM) is the prominent numerical method to analyze
magnetostatics problems because of its geometric flexibility with complicated shapes of
electromagnetic devices, especially electrical machines [1–3]. The adaptive and local mesh
refinement algorithm is developed and available in commercial software, for example,
the AC/DC Module of COMSOL [4] and ANSYS Maxwell of ANSYS [5]. However, the
body-fitted unstructured (quality) grids around the surface of the magnetic devices are
required to be meshed by the finite element method, especially in three space dimensions,
which is usually a difficult, expensive, and time-consuming process.

Boundary element/integral methods (BEM/BIM) were introduced in the electromag-
netics domain and have become popular alternative approaches for analyzing magnetic
fields [6–8]. The boundary integral method is often recognized as the most accurate
method since it treats the boundary conditions precisely and provides accurate, stable,
and well-developed quadrature of boundary integrals [9–11]. This kind of method may
be considered the most efficient numerical method theocratically, because this method
reduces one dimension of the problem, for example, the computational cost is reduced
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dramatically if a 2D problem can be solved through the integration of a 1D geometry. For a
homogeneous elliptic partial differential equation (PDE), the potential theory is used to
reformulate the PDE as a boundary integral equation with the help of Green’s functions,
i.e., the solution to the PDE can be described by an integral. Thus, the classical boundary
element method (BEM) discretizes the boundaries instead of the whole volume or area,
which reduces magnetostatic problems by one dimension, which is the benefit of the BEM.
The boundary element/integral method requires computational work that changes lin-
early with the number of unknowns on the boundary. The boundary element methods
(BEM) and the Methods of Moment (MoM) are similar and relatively well-known in the
magnetostatic analysis area. Although benefits from these methods are obvious, BEM and
MoM have several limitations. First, they are not good candidates for nonlinear problems
since it is difficult for them to inherently solve inhomogeneous and nonlinear problems in
the domain interior. Second, the evaluation of volume integrals for a partial differential
equation with variable coefficients is not straightforward for these methods. Third, for
evaluating integrals and solving the problem, the analytic expression of Green’s function
is necessary for these methods for all PDE problems. The analysis process for engineers
is more complicated because the analytic expressions of Green’s functions is typically
impossible to derive for PDEs defined in complex geometry with variable coefficients, and
it is hard to derive it analytically even if it exists theoretically in some cases. Finally, but
importantly, the boundary element/integral method involves singular and hyper-singular
boundary integrals, and improper evaluation of the integrals affects the accuracy and
stability of the method. The disadvantages of the BEM are not negligible, but significant
progress and special treatments have been made and are still going on [12–14].

A new boundary integral method named the Kernel Free Boundary Integral Method
(KFBIM) was recently developed and introduced in electromagnetics [15]. The uniqueness
of the KFBIM method is that special quadrature, or kernels, are not needed for the eval-
uation of integrals directly. The kernel is the analytic expression of Green’s functions in
KFBIM. The concept behind KFBIM is reinterpreting each volume and boundary integral
as results of solving simple equivalent interface problems created in a rectangular domain
box. In KFBIM, interface problems are solved by a finite difference method (FDM) cou-
pled with numerical corrections at irregular points and fast Fourier transform (FFT) based
solvers and interpolations to obtain efficiency and accuracy. Furthermore, the KFBIM can
solve inhomogeneous variable coefficients’ elliptic PDEs. In addition, KFBIM accurately
computes singular and hyper-singular boundary integrals that appear in the boundary
integral formulation. No special treatments are required to overcome the limitations of the
traditional BEM. In addition, different to the FDM, which directly solves a partial differen-
tial equation, KFBIM is based on the formulation of integrals, therefore, a well-conditioned
discrete linear system of equations is produced by KFBIM. Thus, the sensitivity of KFBIM
to computer errors is much lower and more accurate. KFBIM was proposed to be a general
method to solve constant or variable elliptic PDEs for single or double boundaries in two
or three dimensions [16–22]. Cartesian grid-based methods are used in KFBIM to solve the
integrals, which means a body-fitted mesh is not required to solve the problems and can
obtain higher accuracy on a coarser mesh when solving integrals when compared to FEM
and BEM. Detailed comparisons of the common numerical methods are shown in Table 1.

Problems with smooth boundaries in electromagnetics in two-dimensions are well
understood. It was found that they can be solved by the boundary integral method ac-
curately and efficiently [6–8,15]. However, sharp corners can be a problem for integral
method analysis—the derivation of integral methods assumes that domain boundaries
are smooth in general. At sharp corners, the flux field can be singular (or nearly so) and
discontinuous. Such singular behavior affects the accuracy of the numerical methods
throughout the whole domain. Sharp corners exist in several applications in the engineer-
ing area, especially electromagnetics, such as the rotor pole and stator pole in electrical
machines and corners of the inductors and transformers. However, there are almost no
smooth boundaries in the applications. Therefore, it must be addressed using some treat-
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ments for BIMs. Several special treatments for BEM have been made, mathematically or
geometrically [23,24]. However, for KFBIM, there is no special treatment reported yet.
In this paper, a geometry reconstruction method to smooth the shape of the boundary is
proposed for KFBIM. The zero-padded/filled inverse discrete Fourier transform (iDFT)
is used to smooth the boundary, which is commonly seen in image processing. Although
this method is used when the data is limited and data extrapolation is needed [25–27], it
has the effect of removing the sharp edge. After the original boundary is reconstructed by
zero-padded/filled IDFT, the sharp corner is removed theoretically.

Table 1. Comparison between common numerical methods’ strengths and weaknesses.

FEM BEM/BIM KFBIM

Body fitted mesh Body fitted mesh Unstructured mesh
High computational time Lowest computational time Low computational time

Differential method Integral method Integral method

/ Analytic expression of Green’s
functions required

Analytic expression of Green’s functions
is not required

Adaptable to nonlinear Nonlinear difficult Adaptable to nonlinear
Adaptable to complex geometry with

sharp corners Sharp corner difficulty Sharp corner difficulty

Symmetric, banded large, sparse
discrete system

Well-conditioned small dense
discrete system Well-conditioned discrete system

In this study, a C-core (toroid core with gap) shape with a corner is taken as a mag-
netostatic analysis example to show the effectiveness of the smooth method. The toroidal
core is often used in designs of toroidal transformers and inductors because the inductance
of the toroidal core is higher. Most magnetic flux enclosed in the toroidal core leads to
higher inductance [28]. Due to the advantages of toroidal transformers and inductorssuch
as higher efficiency and inductance, lower flux leakage and lighter weight, they are often
used in the following applications: amplifiers, inverters, and power supplies [15]. They
are widely used in high power low-frequency power electronics applications. One prime
example of such applications is power conversion [29]. The air gap introduces a large
amount of magnetic reluctance within the core. The slope of the B–H curve is reduced by
the airgap. Therefore, the inductor can handle more current without saturation, compared
to the original toroid core, although the saturation flux density does not change. The
air-gapped toroid core is only used in power conversion; it is used as a surge protector
device [30]. A real air-gapped core is shown in Figure 1.

This paper is organized as follows: Partial differential equations governing magne-
tostatic analysis and inductance calculation of the C-core are presented in Section 2. The
Kernel Free Boundary Integral Method framework is derived for single boundary mag-
netostatic problem analysis in Section 3. Section 4 shows the sharp corner reconstruction
technique to smooth the boundary and implementation of the Kernel Free Boundary In-
tegral Method for electromagnetics analysis. Section 5 shows results carried out from
the Kernel Free Boundary Integral Method framework compared to the FEM results and
includes a discussion of the results. In the last section, the conclusion is drawn, and future
studies and potentials are discussed for the sharp corner reconstruction of the Kernel Free
Boundary Integral Method for electromagnetic problem analysis.



Energies 2023, 16, 5420 4 of 16Energies 2023, 16, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Toroidal inductor with an air gap [30]. 

This paper is organized as follows: Partial differential equations governing magneto-
static analysis and inductance calculation of the C-core are presented in Section 2. The 
Kernel Free Boundary Integral Method framework is derived for single boundary magne-
tostatic problem analysis in Section 3. Section 4 shows the sharp corner reconstruction 
technique to smooth the boundary and implementation of the Kernel Free Boundary In-
tegral Method for electromagnetics analysis. Section 5 shows results carried out from the 
Kernel Free Boundary Integral Method framework compared to the FEM results and in-
cludes a discussion of the results. In the last section, the conclusion is drawn, and future 
studies and potentials are discussed for the sharp corner reconstruction of the Kernel Free 
Boundary Integral Method for electromagnetic problem analysis. 

2. The C-core Problem 
2.1. The Dimensions of C-core 

The sharp corner reconstruction and magnetostatic problem of the C-core are studied 
in this paper. Figure 2 shows the rectangular box, coils, and C-core. Table 2 summarizes 
the dimensions of the C-core geometry. It should be noted that the C-core models in the 
study are idealized mainly for modeling purposes. Partial differential equations (PDEs), 
proper boundary conditions (BCs) governing the magnetostatics analysis problem, and 
the equations of the inductance calculation form the first step in this study presented in 
Sections 2.2 and 2.3. 

Figure 1. Toroidal inductor with an air gap [30].

2. The C-core Problem
2.1. The Dimensions of C-core

The sharp corner reconstruction and magnetostatic problem of the C-core are studied
in this paper. Figure 2 shows the rectangular box, coils, and C-core. Table 2 summarizes
the dimensions of the C-core geometry. It should be noted that the C-core models in the
study are idealized mainly for modeling purposes. Partial differential equations (PDEs),
proper boundary conditions (BCs) governing the magnetostatics analysis problem, and
the equations of the inductance calculation form the first step in this study presented in
Sections 2.2 and 2.3.
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Table 2. C-core dimensions.

Region Dimensions

Rectangular domain box (cm2) 20 × 20
Center of rectangular box (cm) (0,0)
The inner radius of C-core (cm) 4.5
The outer radius of C-core (cm) 6.5

Center of C-core (cm) (0,0)
The radius of coils (cm) 1.4

Center of the left coil (cm) (−2.7, 0)
Center of the right coil (cm) (−8.3, 0)

Current (A) 100

2.2. PDEs and BCs for Magnetostatic Analysis

The PDEs and BCs are derived from a previous study [26]. The PDE is

∇ × (ν∇ × A) = J, (1)

where A is the magnetic vector potential, J is current density, and ν is denoted as the
reciprocal of magnetic permeability. In 2D, it can be rewritten as

∇ · (ν∇ · Az) = Jz, (2)

where Jz and Az are current density and magnetic vector potential in the z direction. The
BC of the boundary of the rectangular air box is

Az = 0. (3)

Additionally, a continuity condition of Az must be satisfied at the air–iron boundaries
along the normal direction,

ν0(
∂Az

∂n
)

air
= ν(

∂Az

∂n
)

iron
. (4)

where the ν0 and ν denotes the reciprocal of magnetic permeability of air or vacuum and
iron, respectively, and n is the outward normal unit vector on each boundary. The continuity
of the magnetic vector potential on boundaries between different domains is required to
ensure the continuity of the normal vector of magnetic flux density.

2.3. Inductance Calculation

The inductance of this study is analyzed using magnetic energy. For this method, the
magnetic energy term is used, for each point, the energy per unit volume is:

ρ =
1
2

H · B (5)

Therefore, the magnetic energy is:

E =
1
2

∫
H · BdV (6)

In the 2D case, it should be

E =
1
2

∫
HBdV (7)

which is
E =

1
2

∫
νB2dV (8)
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The relationship between magnetic energy and inductance is

E =
1
2

LI2 (9)

where L is inductance, and I is the current.
So, in general, the average B is calculated from iron and air and then applied to the

formula, respectively, to compute the total magnetic energy.

3. KFBIM Framework for Single Boundary Magnetostatic Problems

A general KFBIM framework to solve the single boundary electromagnetic problem
is derived in this section. The KFBIM framework is implemented for the C-core magneto-
statics problem shown in the next section to study the sharp corner reconstruction method.
Similar work has been performed for a toroidal core magnetostatics problem with double
boundaries [15]. In this paper, the presented formulation is extended from the method
developed in recent years [16] and is reformulated for the single boundary magnetostatics
problem. The derivations are shown by the following.

B ⊂ R2 is a rectangular box. Γ is defined as a smooth boundary in B and splits the
rectangular box into two partitions, Ωi and Ωe, ∂Ωi ∩ ∂Ωe = Γ, which are presented
in Figure 3. p ∈ Rd (d = 2 or 3) is defined as the spatial variable. Due to the interface
problem it is analyzed in 2D. All the variables of this problem are independent of z. The
components in the z direction Jz and Az are used to analyze the 2D problem, which is
shown in Section 2. For this problem, Jzi(p) and Jze(p) are z direction components of J
(current density), and they are defined as smooth functions; Azi and Aze are components
of A in the z direction, which are defined in Ωi and Ωe, respectively; ν0(p) and ν(p) are
defined in Ωe and Ωi for the property of air and iron, respectively. The 2D single boundary
magnetostatics problem is rewritten as a single interface problem

Ai Azi ≡ ∇ · (ν(p)∇Azi ) = − Jzi(p) in Ωi, (10)

Ae Aze ≡ ∇ · (ν0(p)∇Aze) = − Jze(p) in Ωe, (11)

Azi − Aze = 0 and σi∂n Azi − σe∂n Aze = 0 on Γ, (12)

Aze = 0 on ∂B, (13)

Here Ai and Ae are the differential operators of PDEs in Ωi and Ωe.
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Regarding the single interface problem (10)–(13), Green’s functions associated with
two partial differential equations are in general not identical. Ge(p, q) is considered as the
Green’s function corresponding to PDE (10) defined in the interior domain Ωi and satisfies

AiGi(p, q) = δ(p − q) inB, (14)

Gi(p, q) = 0 on ∂B; (15)

Ge(p, q) is the Green’s function corresponding to (11) in the exterior domain Ωe
and satisfies

AeGe(p, q) = δ(p − q) inB, (16)

Ge(p, q) = 0 on ∂B. (17)

Using density function ϕ, double layer boundary integrals are written as

Mi ϕ(p) =
∫

Γ
νi(q)

∂Gi(p, q)
∂nq

ϕ(q)dsq, (18)

Me ϕ(p) =
∫

Γ
νe(q)

∂Ge(p, q)
∂nq

ϕ(q)dsq. (19)

Using density function ψ, single layer boundary integrals are written as

Liψ(p) =
∫

Γ
Gi(p, q)ψ(q)dsq, (20)

Leψ(p) =
∫

Γ
Ge(p, q)ψ(q)dsq. (21)

The interior and exterior volume integrals are written as

Gi(− Jzi(p)) =
∫

Ωi

Gi(p, q)(− Jzi(p)) dq, (22)

Ge(− Jze(p)) =
∫

Ωe
Ge(p, q)(− Jze(p)) dq. (23)

Besides, the operator of adjoint double layer and hyper-singular single layer boundary
integrals areM∗

i ,M∗
e , Ni and Ne, respectively, defined as

M∗
i ψ(p) =

∫
Γ

νi(p)
∂Gi(p, q)

∂nq
ψ(q)dsq, (24)

M∗
e ψ(p) =

∫
Γ

νe(p)
∂Ge(p, q)

∂nq
ψ(q)dsq, (25)

Ni ϕ(p) =
∫

Γ
νi(p)νi(q)

∂2Gi(p, q)
∂nq∂np

ϕ(q)dsq, (26)

Ne ϕ(p) =
∫

Γ
νe(p)νe(q)

∂2Ge(p, q)
∂nq∂np

ϕ(q)dsq. (27)

The solution to the single interface problem is then defined as

Azi(p) = Mi ϕ(p) − Liψ(p) + Gi(− Jzi) in Ωi, (28)

Aze(p) = Me ϕ(p) − Leψ(p) + Gi(−Jze) in Ωe. (29)
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Two boundary integral equations are derived from Γ by interface condition (15)

(Mi − Me + I)ϕ + (Le − Li)ψ = g − Gi(− Jzi) + Ge(− Jze) on Γ, (30)

(Ni − Ne)ϕ + (M∗
e − M∗

i + I)ψ = j − np · νi∇pGi(− Jzi) + np · νe∇pGe(− Jze) on Γ. (31)

The integral equations shown above can be written in matrix form(
Mi − Me + I Le − Li

Ni − Ne M∗
e − M∗

i + I

)(
ϕ
ψ

)
=

(
g − Gi(− Jzi) + Ge(− Jze)

j − np · νi∇pGi(− Jzi) + np · νe∇pGe(− Jze)

)
. (32)

Generally, the analytic expression of Green’s function is typically impossible to derive
for PDEs defined in complex geometry with variable coefficients and it is hard to derive
even if it is available in some cases, as mentioned before. Instead of direct calculation of
boundary integrals, the KFBIM evaluates volume and boundary integrals as a result of
solving an equivalent interface problem which is an interpolation of values on a Cartesian
grid. To solve the newly defined equivalent interface problems, first, the interface problem
is discretized using a finite difference scheme; second, the numerical corrections are made at
irregular points in the discrete system to ensure the second order accuracy; third, fast PDE
solvers are utilized to solve the equivalent interface problems, for example, the geometric
multigrid preconditioned conjugate gradient iterative method (GMG-PCG); lastly, the
boundary integral values are interpolated by the Birkhoff interpolation on the interface.
Using a Generalized Minimal Residual (GMRES), the resultant linear system is solved
iteratively [31,32]. Details such as discretization of PDE, corrections for the discrete system,
solutions and fast solvers of the discretized system of finite difference equations, and
interpolation method of volume and boundary integrals on the boundary are presented
in [16–22].

4. Boundary Reconstruction and Implementation of the Kernel Free Boundary
Integral Method

This section presents the proposed boundary reconstruction approach and the imple-
mentation of the KFBIM for magnetostatics analysis. To do the geometry reconstruction and
analyze the problem of C-core, first, since the KFBIM is not dimensional, the de-unitization
of the problem must be performed. The chosen characteristic length is 10cm. After de-
unitization, the rectangle air box becomes 2× 2, 2× 2 which is the size of the outer box by
default in the algorithm. For the original C-core boundary with sharp corners, the inner
radius and the outer radius are 0.45 and 0.65, respectively. The centers of the two coils are
located at (−0.27, 0) and (−0.83, 0) with a radius of 0.14.

4.1. Boundary Reconstruction

To reconstruct the boundary, the zero-padded/filled inverse discrete Fourier transform
(inverse DFT) is adopted. The first step is to perform the discrete Fourier transform (DFT)
on the boundary. Since this problem is 2D based, the boundary can be represented on
the complex plane as zn = xn + iyn, n = 0, 1, · · ·, N − 1. However, it is easier to use N
simple coordinate pairs of real numbers (xn, yn), n = 0, 1, · · ·, N − 1, in real space, to get
two Fourier Series for two real functions since they have the same period and they are
synchronized together by definition. Additionally, the DFT of both xn and yn are

Xk =
N−1

∑
n=0

xne−i2π nk
N , (33)

Yk =
N−1

∑
n=0

yne−i2π nk
N . (34)
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To fill the zeros in the data sets, the Fourier Transforms are rearranged by shifting the
zero-frequency-component to the center of data set, so for the odd number N, the sequence
becomes k = − (N− 1)/2, · · ·, (N− 1)/2 k = − (N − 1)/2, · · ·, (N − 1)/2, and for the
even number N, k = −N/2, · · ·, N/2 − 1 k = −N/2, · · ·, N/2 − 1. For the odd number
k, the zero-padded data is defined as

Xk =

{
Xk |k| ≤ N−1

2
0 |k| > N−1

2
. (35)

For even number k, the zero-padded data defined as

Xk =


Xk |k| ≤ N

2 − 1
1
2 Xk |k| = N

2
0 |k| > N

2

. (36)

Then, the data is reconstructed by filling with zeros up to the size of N′ and applying
the inverse DFT for the zero-padded data sets.

xn =
1

N′
N′−1

∑
n=0

Xkei2π nk
N′ , (37)

yn =
1

N′
N′−1

∑
n=0

Ykei2π nk
N′ . (38)

The original and reconstructed boundaries are shown in Figures 4 and 5. The curve
is smoothed by the zero-padded inverse DFT method, so theoretically, the problem can
be solved accurately. The example shown is the boundary for the grid of 256 × 256, the
number of points is filled from 288 to 440, and 440 is the boundary number suitable for a
256 × 256 grid calculated based on the arc length to make sure there is only one point in
one element of the mesh grid.

N′ =
arclength/h + 0.5

2
, (39)

where h is the length of each element meshed by the finite difference mesh methods.
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4.2. Implementation of KFBIM

In Ωe, the material is air or vacuum, and the material in Ωi is iron. Following the
formulation of KFBIM derived in Section 3, the single boundary magnetostatic problem in
2D is defined as

Ai Azi ≡ ∇ · (
1
µ
∇Azi) = − Jzi(x, y) in Ωi, (40)

Ae Aze ≡ ∇ · (
1

µ0
∇Aze) = − Jze(x, y) in Ωe, (41)

Azi − Aze = 0 and
1

µ0
∂n Azi −

1
µ

∂n Aze = 0 on Γ, (42)

Aze = 0 on ∂B. (43)

The permeability µ0 in Ωi is set to be 4π × 10−7, which is the permeability of air or
vacuum. In this study, there are two cases for the permeability of iron µ: for one of two
settings, the relative permeability of the material of the C-core is spatially constant at 1000;
for the other setting, an inhomogeneous permeable material is used to represent the iron
and the relative permeability of the iron of the C-core is set to 5000

1+2(x2+y2)
+ 200.
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In the electromagnetic package of commercially available FEM, for example, ANSYS
Maxwell, the constant current of 100 A or current density 162,403 A/m2 is set for the coils
(1000 and 16,240.3 after de-unitization) for this problem. For KFBIM, Jzi(x, y) is 0 in Ωi
because there are no current flows in the C-core, and for the current flow through the coils,
a smooth modified Sigmoid function is selected to model distributed current source. The
smooth modified Sigmoid function is defined as

Jze(x, y) =
16240.3

1 + exp
{

35.0
(

(x+0.27)2

0.142 + y2

0.142

)
− 1

} − 16240.3

1 + exp
{

35.0
(

(x+0.83)2

0.142 + y2

0.142

)
− 1

} . (44)

Note that the integral of the first portion and second portion of Sigmoid functions
shown above in the domain box are both 1000, which is the same value of the de-unitization
of 100A, but the center of two portions are different and located at the center of the two
coils, and the 3D shape of two portions are very similar to shapes of two coils of the C-core
magnetostatics problem.

5. Results and Discussion of KFBIM
5.1. Numerical Example

Before comparing the results of the smoothed C-core, computed by KFBIM and the
results of the original C-core calculated by FEM, there is a general numerical test to show
how much accuracy can be improved by the smoothed C-core for the KFBIM to overcome
the singularity problem on the sharp corner. The examples are solved on the 256 × 256 grid.
In [26], it has been found that problems converge when KFBIM solves them on the 256 × 256
grid, and a more convergent study of the boundary integral method can be found in [11].
In addition, using the 256 × 256 grid, the KFBIM is more computationally efficient than
FEM (ANSYS). The boundary conditions for the following examples can be found in the
equations in Section 2.2.

Example: In this example, we consider an interface problem as follows

Aiui ≡ ∇ · (νi(p)∇ui) = fi(p) in Ωi, (45)

Aeue ≡ ∇ · (νe(p)∇ue) = fe(p) in Ωe, (46)

ui − ue = g and νi∂nui − νe∂nue = j on Γ, (47)

ue = 0 on ∂B, (48)

with the KFBIM for the problem with the boundary before and after the reconstruction.
For the interface problem, the sources fi and fe, and the interface conditions g and j are
selected so that the solution reads exactly

ui = e−x cos(y) + e−y cos(x) in Ωi, (49)

νi = 1.5 + 0.5 (sin(x) + cos(y)) in Ωi, (50)

ue = sin(
π

2
(x + 3)) sin(

π

2
(y + 1)) in Ωe, (51)

νe = 2 + cos(π(x + y)) in Ωe. (52)

The errors are shown in Table 3.
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Table 3. Errors of the original boundary and the reconstructed boundary.

Boundary ‖eh‖l2 ‖eh‖∞

Original Boundary (sharp corner) 2.47 × 10−4 2.21 × 10−3

Reconstructed Boundary 9.00 × 10−5 4.23 × 10−4

As shown in the Table, the numerical errors are reduced significantly on the smoothed
boundary. The l2 error can be improved around three times, and the max error can be
improved by around five times.

5.2. Comparison between KFBIM and FEM on Magnetostatic Analysis

The field computation results from KFBIM are compared with FEM and discussed in
this section. The FEM computations are delivered using a commercial FEM package for elec-
tromagnetics problems; ANSYS Electronics, which is a popular numerical field analysis tool.
In the software, the Maxwell 2D package is used to solve 2D electromagnetics problems.
The simulations are processed using an Intel(R) Core (TM) i7-8750H CPU @ 2.20 GHz.

Example 1: spatially constant permeable material.
First, the comparison of flux density magnitude is conducted point-by-point. For

KFBIM, a 256 × 256 grid is used to analyze the C-core magnetostatics problem. The
problem is analyzed by FEM using the mesh of 268,535 elements since the study [26] shows
the accuracy level of KFBIM on the 256 × 256 grid is the same as FEM using a mesh of
268,535 elements. Figure 6 shows the field density results analyzed for each point on the
256 × 256 grid by FEM and KFBIM. Figure 7 shows the comparison of flux densities in 3D.

Based on the difference between the results of FEM and KFBIM, there is some degree of
differences in the reconstructed boundary, especially on the corners. The reason why some
differences exist is after the reconstruction, the corner of boundary is smoothed and not the
same as the original boundary. However, from the figure, we can see that the difference
is not high, and the peak value around the corner is almost the same. Additionally,
the normalized RMS difference is very low. The normalized RMS difference (NRMS) is
computed by:

DifferenceNRMS =
100%

Bmax,FEM − Bmin,FEM

√√√√ 1
K

K

∑
k=1

(Bk,KFBIM − Bk,FEM)2, (53)

which is 0.7%. In addition, the inductance is also compared between KFBIM and FEM. The
inductance calculated by FEM is 3.76439 × 10−6 H and 3.7592 × 10−6 H is calculated by
KFBIM. The difference is 0.13% of the FEM results. If this method is extended to the area of
the electrical machine, the field at the airgap is more important, because the magnetic forces
are calculated by the flux density on the airgap. The difference in airgap is very small. The
computational time of FEM and KFBIM is 117.84 s and 4.67 s, respectively.

Example 2: inhomogeneous permeable (spatially variable permeability) material.
The relative permeability in this example of the C-core material is: 200 + 5000

1+2(x2+y2)
,

which is the spatial variable mentioned in Section 4. For this example, the comparisons of
the results include inductance and flux density, which is similar to the first example. The
field density results analyzed for each point on the 256 × 256 grid by FEM and KFBIM are
shown in Figure 8. In addition, Figure 9 shows the flux densities comparison in 3D.

The difference in the corner is almost the same as Example 1. The normalized RMS
difference is computed to be 0.602%. The inductance calculated by FEM is 3.8510 × 10−6 H,
and 3.8696 × 10−6 H is calculated by KFBIM. The computational time of FEM and KFBIM
is 133.78 s and 5.07 s, respectively. Although the Gibbs phenomenon is not obvious in this
case, for some cases, it may need to be taken into account using some special methods [18].
The Gibbs ringing artifact appears because a discontinuity cannot be represented by the
Fourier series with a finite number of harmonics. Therefore, the discontinuity leads to a
decaying, oscillating spectrum.
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(c) Difference of flux density (T) between FEM and KFBIM.
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Figure 8. Flux density results comparison between KFBIM for the reconstructed boundary and FEM
for the original boundary for Example 2: (a) Flux density (T) of the reconstructed C-core problem
(KFBIM) (256 × 256); (b) Flux density (T) of the original C-core problem (FEM) (268,535 elements);
(c) Difference of flux density (T) between FEM and KFBIM.
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This study shows that the proposed sharp corner reconstruction method works for the
magnetostatics analysis of C-core, which could be used for the inductor design. For the gen-
eral numerical example, using the reconstructed method, the l2 error and the max error can
be improved by several times. Not only can the constant permeability material problem be
solved by KFBIM as shown in Example 1, but Example 2 also shows the nonhomogeneous
permeable material problem can be solved by KFBIM, which is one of the advantages of KF-
BIM as well compared to other traditional boundary integral methods. Although the impact
of the material with the B-H curve is not considered in this study, it will be incorporated
in a future study with some additional techniques such as spline interpolation or other
proper iterative methods. While the three-dimensional application is not the current focus
of this paper, KFBIM in three-dimensions has been developed in this paper [31]. However,
the interface problem solver in three-dimensions is still underdeveloped. Therefore, after
the 3D interface problem solver is finished, it could be applied to magnetostatics analysis
with the proposed boundary reconstruction method. Although the numerical results are
not compared with actual C-core behaviors, experimental studies will be conducted on the
development of the KFBIM and after finishing an optimization scheme.

6. Conclusions

This paper introduces a new approach to deal with sharp corners in the kernel-free
boundary integral method. It investigates the effectiveness of a sharp corner reconstruction
method in solving two-dimensional magnetic field problems, specifically those involving
geometries with sharp corners. The study utilizes a boundary reconstruction method
based on the discrete Fourier transform (DFT) and inverse DFT to smoothen the sharp
corners. The kernel-free boundary integral method (KFBIM) is then employed to analyze a
2D electromagnetics problem involving a toroidal core with an airgap and sharp corners.
The numerical example demonstrates the effectiveness of the boundary reconstruction
technique. Additionally, the paper compares the flux density, inductance, and computa-
tional time results obtained from KFBIM with those from the finite element method (FEM)
software (ANSYS) applied to the original geometry.

The findings indicate that while there may be slight differences in flux density at the
corners, the overall discrepancy and the variation in inductance are minimal. This suggests
that the boundary reconstruction method provides a relatively high level of accuracy for
magnetostatic analysis. The combination of a smoothed boundary through reconstruction
and the computational efficiency of KFBIM is crucial for optimizing electromagnetic designs,
even in complex geometries with sharp corners. As a result, KFBIM emerges as a reliable
alternative method, along with the sharp corner reconstruction approach, for analyzing
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electromagnetics problems, particularly in the design of devices such as inductors and
transformers. It can potentially serve as a valuable analysis and design tool for engineers
in this field.
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