The Sparse Abstract Machine

Olivia Hsu Maxwell Strange Ritvik Sharma
Stanford University Stanford University Stanford University
USA USA
owhsu@stanford.edu mstrange@stanford.edu rsharma3@stanford.edu

Jaeyeon Won Kunle Olukotun Joel S. Emer
MIT Stanford University MIT and NVIDIA
USA USA
jaeyeon@mit.edu kunle@stanford.edu jsemer@mit.edu
Mark A. Horowitz Fredrik Kjelstad
Stanford University Stanford University
USA USA
horowitz@ee.stanford.edu kjolstad@stanford.edu

ABSTRACT

We propose the Sparse Abstract Machine (SAM), an abstract ma-
chine model for targeting sparse tensor algebra to reconfigurable
and fixed-function spatial dataflow accelerators. SAM defines a
streaming dataflow abstraction with sparse primitives that encom-
pass a large space of scheduled tensor algebra expressions. SAM
dataflow graphs naturally separate tensor formats from algorithms
and are expressive enough to incorporate arbitrary iteration order-
ings and many hardware-specific optimizations. We also present
Custard, a compiler from a high-level language to SAM that demon-
strates SAM’s usefulness as an intermediate representation. We
automatically bind from SAM to a streaming dataflow simulator.
We evaluate the generality and extensibility of SAM, explore the
performance space of sparse tensor algebra optimizations using
SAM, and show SAM’s ability to represent dataflow hardware.

CCS CONCEPTS

« Computer systems organization — Data flow architectures; «
Software and its engineering — Compilers.

KEYWORDS

sparse tensor algebra, domain-specific, streams, abstract machine

ACM Reference Format:

Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle Olukotun,
Joel S. Emer, Mark A. Horowitz, and Fredrik Kjelstad. 2023. The Sparse
Abstract Machine. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 3 (ASPLOS °23), March 25-29, 2023, Vancouver, BC, Canada. ACM,
New York, NY, USA, 17 pages. https://doi.org/10.1145/3582016.3582051

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9918-0/23/03.

https://doi.org/10.1145/3582016.3582051

1 INTRODUCTION

Specialized streaming dataflow accelerators that leverage pipelin-
ing, locality, and parallelism are becoming increasingly popular
as performance- and energy-efficient alternatives to CPUs and
GPUs. But the efficiency comes at the cost of programmability:
all have limits to their application domain, and most have lim-
ited and/or difficult programming interfaces. As a result, users
often access these accelerators through library calls that are cre-
ated by expert programmers [57, 58]. Recent research has proposed
closing this flexibility and programmability gap by creating recon-
figurable dataflow architectures or coarse-grained reconfigurable
arrays [7, 13, 22, 37, 38, 40, 43], including compilation tools to map
a class of user applications to these arrays [30, 34, 44, 60, 66].

Given these trends, it is not surprising that interest in general
accelerators for sparse tensor algebra is increasing [13, 22, 48].
Sparse tensor algebra has applications across many fields including
science, engineering, data and graph analytics, and machine learn-
ing [1, 6, 16, 26, 31, 41]. Tensor algebra generalizes linear algebra
to higher-order tensors, and “sparse” indicates tensor algebra com-
putations where one or more tensors are stored in compressed data
structures that omit zeros. Sparse tensor algebra, expressed as a lan-
guage using tensor index notation or Einstein summation (Einsum)
notation, is an important language with a long history, starting as a
mathematical notation [47]. It has recently gained traction as a com-
putational language [3] that subsumes linear algebra. To accelerate
these computations, many papers have also been published on point
solutions for single-expression hardware, where the expression is
often sparse matrix multiplication [39, 45, 53, 54, 65, 67].

Most sparse tensor algebra accelerators are fixed-function matrix
multiply engines. Arbitrary sparse tensor contractions must there-
fore be reduced to sparse matrix multiplications through algebraic
factorization [51, 52]. Factorization breaks up large expressions us-
ing transpositions, tensor-to-matrix conversions, and temporaries.
However, compared to dense tensor algebra, factorization is signifi-
cantly more expensive for sparse tensor algebra. In fact, a sequence
of matrix multiplications is often more than an order of magnitude
slower compared to bespoke generated tensor contractions. And,
more importantly, the lack of fusion in sparse computations can,

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

and often does, lead to inferior worst-case asymptotic complexity:
the runtime of an unfused expression may grow with the number
of tensor components while a fused expression grows with the
number of nonzero components [29]. To address the limitations of
fixed-function accelerators, the SPU [13], ExTensor [22], and Cap-
stan [48] systems propose programmable sparse dataflow hardware.
However, they lack full support for sparse tensor algebra.

We define an abstract machine model for sparse tensor algebra
called the Sparse Abstract Machine (SAM) that accelerates general
sparse tensor algebra. SAM consists of abstract dataflow blocks
that lend themselves to VLSI implementations and compose to im-
plement any sparse tensor algebra expression and to implement
many algorithms for each expression, including fused algorithms,
unfused algorithms with temporaries, tiled algorithms, and paral-
lelized and vectorized algorithms. Thus, SAM can simultaneously
be used to analyze point solutions, be the abstract architecture of a
programmable sparse tensor algebra dataflow implementation, and
be the intermediate representation of its compiler.

We built SAM to be for sparse tensor dataflow accelerators what
LLVM [33] is for instruction-based conventional processors: It de-
fines the machine functionality and provides an interface between
the compiler and hardware, allowing the end-to-end system to con-
tinue to function while both sides are independently optimized.
SAM also enumerates the primitives that are needed to support all
features of sparse tensor algebra. Our contributions are:

(1) the first abstract machine model that expresses the whole
of sparse tensor algebra computations as spatial dataflow
graphs on multidimensional sparse and dense tensors,

(2) cleanly defined dataflow primitives for each of the funda-
mental features of sparse tensor algebra,

(3) arepresentation of multidimensional sparse/dense tensors
as flattened streams with hierarchical control tokens, and

(4) a compilation strategy from a high-level tensor index nota-
tion to our abstract machine model.

To evaluate our contributions we implemented SAM as a cycle-
approximate simulator that is generated by our compiler, Custard.
Using the simulations, we search the space of sparse tensor algebra
architectural designs. Finally, we show that SAM can represent
prior sparse dataflow accelerators.

2 BACKGROUND

This section describes the necessary features of a general sparse ten-
sor algebra computing system. We discuss how these features can
be programmed with the input APIs of the TACO compiler [28]. We
describe why TACO only targets von Neumann machines and pro-
pose a new compiler in Section 5 that uses SAM to target dataflow
accelerators. Finally, we discuss limitations of prior work on fixed-
function and programmable sparse tensor algebra hardware.

2.1 The Design Space of Sparse Tensor Algebra

Tensor algebra computations are typically expressed using tensor
index notation (or Einsum notation), where tensors are indexed by
index variables, are multiplied and added, and where results may be
summed over index variables. For example, matrix multiplication
can be written in tensor index notation as Xjj = }x BjxCyj, where
index variables i, j, and k range over the rows and columns that

O. Hsu, M. Strange, R. Sharma, J. Won, K. Olukotun, J. S. Emer, M. A. Horowitz, and F. Kjelstad

they index. Expressions may have more than two operands, such
as sampled dense-dense matrix multiplication (SDDMM) X;; =
2k BijCix D . For such compound expressions, it is often beneficial
to fuse the resulting computation (i.e., loop fusion or hardware
pipelining to avoid materializing large temporary data structures).
Tensor index notation only specifies the expression (or algorithm
of computation) and does not does not include a description of
the schedule (e.g. dataflow traversal order, tiling methodology, and
parallelization). Prior work popularizes the separation of algorithm
and schedule in both software [8, 46, 49, 56] and hardware [9].
Tensor index notation consists of five features that must be
supported by any general tensor algebra computing system:

(1) a way to traverse multidimensional tensors;

(2) a way to combine traversal over multiple tensors;

(3) a way to repeat operands over other operands, e.g., in x; =
Zj Bjjcj, ¢ must be multiplied by each row of B;

(4) a way to compute scalar additions and multiplications, in-
cluding summation reductions; and

(5) a way to assign results to a tensor.

Efficient sparse tensor algebra computing systems must also support

(6) compressed data structures for sparse tensors,
(7) index variable iteration in any order, and
(8) fusion of the computation

in order to avoid inferior worst-case asymptotic complexity [2, 29].

2.2 The TACO Compiler

The TACO compiler [28] and related systems [5, 36, 62-64] compile
tensor index notation to von Neumann architectures, including
CPUs, GPUs [49], and distributed machines [62, 63]. TACO supports
all five features of tensor index notation, as well as compressed data
structures [11, 28], iteration reordering [27], and fusion [28]. The
TACO compiler has three separate languages that independently
describe functionality, data, and optimization: tensor index notation,
a data representation language, and a scheduling language.
Although TACO has the generality we described in Section 2.1,
it only compiles to von Neumann architectures. This limitation is
due to its lowering machinery fundamentally embedding the
(co-)iteration over one or more tensors into general-purpose control
flow found in von Neumann machines including: indirect index
accesses, while loops, and if statements. The heavy reliance on
these constructs during lowering and code generation for travers-
ing irregular structures makes it inapplicable for reconfigurable
dataflow accelerators since many of these architectures remove gen-
eral control flow to achieve higher performance [7, 13, 22, 40, 43, 48].
Converting the complex control flow generated by TACO into a
dataflow abstraction, such as the one we describe in this paper,
would require significant assumptions about data accesses and/or
a complex synthesis system. Instead, we describe an alternative
compiler lowering algorithm that lowers from TACO’s high-level
concrete index notation [27] to the SAM dataflow abstraction.

2.3 Prior Work on Fixed-Function Hardware

There is a large body of recent work on architectures that explore
point solutions in the space of hardened sparse tensor algebra ex-
pressions and algorithms [10, 19, 21, 39, 41, 45, 53, 54, 65], which

The Sparse Abstract Machine

we will call fixed-function accelerators. Many of these implement
sparse matrix multiplication (SpM*SpM) [19, 21, 39, 45, 53, 65]. For
example, SIGMA [45] implements the inner-producti — j — k
iteration order. Although this order is typically preferred for dense
matrix multiplications, and although it avoids scattering into the
result, it has poor asymptotic performance because it iterates over
all combinations of i and j before coordinates are intersected at
the contracted variable k. GAMMA [65] applies Gustavson’s [18]
i — k — jiteration order, which improves the asymptotic complex-
ity at the cost of merge hardware to rearrange the reduction step to
allow in-order generation of elements of X. And OuterSPACE [39]
implements the outer-product k — i — j iteration order, which
for doubly-compressed sparse row (DCSR) matrices has better as-
ymptotic complexity than the i — k — j order but requires an
additional step for merging whole matrices into X.

Using fixed-function matrix multiplication hardware to com-
pute any expression in tensor algebra relies on factorizing general
expressions into a sequence of invocations of matrix multiplica-
tion operations. Factorizing unfuses the computation and fixes the
dataflow ordering. SAM removes this limitation by having suffi-
cient power to express fused expressions on accelerators, letting us
explore both the benefits and the costs of these approaches.

2.4 Prior Work on Programmable Hardware

The limitations of fixed-function dataflow hardware motivate pro-
grammable sparse tensor algebra dataflow hardware, which are
implementations of an abstract machine like the one in this paper.
We describe three major lines of prior work on programmable sparse
tensor algebra dataflow hardware: the SPU [13], ExTensor [22], and
Capstan [48]. While these designs do not support the full general-
ity described in Section 2.1, they suggest the essential hardware
structures and techniques in dataflow accelerators for sparse tensor
algebra and greatly influenced our work.

SPU. The Sparse Processing Unit (SPU) [13, 38] is a spatial stream-
ing dataflow architecture where instructions on a CPU configure
a Coarse-Grained Reconfigurable Architecture (CGRA) and then
stream arrays to it. It has efficient hardware both for combining
streams (e.g., an intersection) and for using one stream to index into
an on-chip array [13]. The SPU can be used to implement binary
vector operations, relational joins, and graph algorithms [12], thus
unifying domains. The SPU also includes an idiom-directed com-
piler [60] from pragma-annotated C loops to CGRA configurations.

Although the SPU literature describes operations that support a
broad set of domains—tensor algebra, relational algebra, and graph
operations—the SPU CGRA [13] only supports vector operations,
while higher-order tensor algebra operations appear to be imple-
mented as CPU loops that dispatch inner-loop vector operations
to the CGRA (see Figure 6 from Nowatzki et al. [38], which the
SPU extends). Thus, higher-order expressions must be broken into
pieces with data flowing between the CPU and CGRA engine, re-
ducing pipeline locality. The abstract machine we describe in this
paper provides a complete dataflow model for tensor algebra. Using
it, together with the compiler, to target the SPU and the TACO com-
piler to target the CPU, provides a fruitful path towards compiling
to the SPU system from a higher-level tensor algebra language.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

ExTensor. The ExTensor system [22] is a CGRA-style architecture
designed to hierarchically evaluate Einsum operations on sparse
tensors. In ExTensor, a compute element is made up of memory
that stores pieces of tensors, i.e, fibers, and hardware to perform
operations on those fibers (e.g., read/stream them in/out, perform
intersections/MACCs). ExTensor’s design primarily considered a
topology of compute elements that each operated on two fibers
(from two operand tensors) at a time, and was focused on comput-
ing SpM*SpM. To support SDDMM, which has three operands, an
ExTensor instance with additional compute elements was proposed.
However, it cannot perform all Einsum computations, such as those
with union merges for addition. Extensor also did not provide a
programmatic approach to map an arbitrary Einsum to a concrete
ExTensor instance, which makes it hard to add new expressions
that were not tested by the authors. Nor is there a discussion of how
the architecture might change to better suit the needs of arbitrary
Einsums. SAM and our compiler addresses these limitations, and
should allow for the creation of ExTensor configurations.

Capstan. Finally, the Capstan system [48] supports hierarchical iter-
ation over dense, compressed, bitvector, and bit-tree data structures.
For some data structure types, it supports any tensor algebra expres-
sion, including additions and multiplications. Its primary limitation
is that it does not support combining two or more compressed data
structures (e.g., by intersection) at one iteration level. Instead, it
relies on bitvectors and bit-trees, which densify the iteration. The
paper argues that this works well for common clustered sparse
tensors, but not for arbitrary sparsity. Finally, the Capstan system
does not support efficient broadcasting of a tensor over a sparse
inner dimension of another tensor, as it relies on programmed
counters to control broadcasting. While Capstan is programmed
by Spatial [30, 66], a domain specific language for hardware accel-
erators based on parallel patterns [42], Spatial is at a lower-level
of abstraction—more descriptive of the hardware accelerator—than
the Custard input APIs. Again SAM provides an opportunity to
provide a higher-level programming interface for this system.

3 THE CORE SPARSE ABSTRACT MACHINE

SAM provides a clean method to transport tensors on wires and to
express all tensor algebra operations, serving as an LLVM-like inter-
face. We define nine types of dataflow blocks that can be composed
to execute arbitrary sparse tensor algebra expressions. Level scan-
ners fetch a tensor’s nonzero coordinates and send them as streams
to intersecters, unioners, and repeaters that combine coordinates
from different tensors. ALUs and reducers compute tensor opera-
tions. Coordinate droppers filter out unnecessary coordinates, and
level writers write the resulting sparse tensor to arrays in memory.

SAM lets programs use as many blocks as needed. Of course, any
physical implementation is constrained to a finite set of resources.
Our compiler can be used to transform an unconstrained graph to
a specific physical backend by breaking up the computation in time
through data movement into temporary memories and block reuse.

SAM is sufficiently expressive to represent any dataflow for
any tensor algebra expression, as it implements all the features in
Section 2.1. Furthermore, SAM implements a streaming model of
those features, and Kovach and Kjolstad have shown an equivalence
proof of sparse tensor algebra and a formal streaming model [32].

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

$ P Fibers
1 3 -,

Dimension j

Level i 0

o1 2 3
: oloTaToT0 | | Coordinates
o
o 1O I O Level j (1) (@@)(13"
éz o|ofo]|o i | | | I
23l0|4]0]|5 i | —

[Values 1 2 3 4 5

point (3,1)
(a) Matrix B;; (b) B;j as a fibertree

Coordinates n

(c) B;j stored in memory

O. Hsu, M. Strange, R. Sharma,). Won, K. Olukotun, J. S. Emer, M. A. Horowitz, and F. Kjelstad

Hierarchical stop token
denotes end of a fiber

Segments

D, §y3,1,0
—

Non-control tokens

D,$,3,1,8,2,0,S,, 1

Segments

Coordinates nnn. ci%r::et;)zir;
of a stream

]
3
Values E

D, S, 5,4,S3,2,S,, 1

(d) Bj; sent through a stream

Figure 1: The data model of the SAM models sparse tensors (Figure 1a) as a coordinate fibertree, (Figure 1b) that can be stored
in memory (Figure 1c) as DCSR data structure, or sent through streams (Figure 1d) where time increases from right to left.

3.1 Tensor Data Model

In the SAM abstract data model, each tensor is a coordinate tree
where each tree level represents the coordinates of a different tensor
dimension. This coordinate tree abstraction was first introduced as
part of the TACO system [11, 28] and further abstracted and formal-
ized as fibertrees [55, 61]. Fibertrees are tries where each coordinate
at one level is linked to a fiber—a list of child coordinates—at the
next level. Crucially, only those children whose sub-trees have
nonzeros are stored. Figure 1a shows a sparse matrix and Figure 1b
its corresponding fibertree. The matrix is stored in row-major order,
so the i coordinates (orange circles) are stored at the top fibertree
level. The i coordinate 2 is not stored since its sub-tree (the third
row) has only zeros. The middle level stores a j coordinate for ev-
ery nonzero component and the last level stores nonzero tensor
values. Fibertrees are useful for reasoning about tensors level by
level without considering the exact storage representation.

Fibertrees are stored in memory and transmitted via streams.
When in memory, each tree level is separately assigned a storage
type that specifies its data representation. A level’s data represen-
tation can be an uncompressed level that stores a single number
encoding the fiber size or it may be a compressed data structure
that stores only coordinates with nonempty sub-trees. Many other
data representations are possible with this abstraction [11, 55, 61].
Figure 1c depicts one possible in-memory data structures for the
fibertree in Figure 1b, where both levels are stored in compressed
data structures. This storage format is called doubly-compressed
sparse rows (DCSR), where a segment array denotes the start and
stop reference positions of each segment in the coordinate array. A
segment is one way to encode fiber data associated with an array
representation. Concretely in Figure 1c, the level j segment [3, 5)
refers to the green level j coordinates [1, 3] since the coordinates
are located at indices [3, 4] in the level j coordinate array.

3.2 Tensor Streams

SAM streams are abstractions of physical wires that connect pro-
cessing blocks and transmit data between these blocks. Each SAM
stream is a sequence of tokens that transmits one level of fibertree
data, along with stop tokens (S,) denoting the hierarchical fiber
boundaries within a level, and a done token (D) to mark the end of
a stream. There are three types of SAM streams: coordinate streams
(abbreviated as crd) that transmit coordinate levels, value streams
(vals) that transmit last-level tensor values, and reference streams
(ref) that transmit references to the location of each coordinate’s

child fiber in memory. Figure 1d shows the fibertree in Figure 1b
as coordinate and value streams. Streams can be interpreted as
variable-length nested lists where each stop token represents a
parenthesis. Thus, the value stream in Figure 1d,

1, So, 2, 3, Sp, 4, 5, S1, D

represents the nested value level

((1),(2,3), (4,5)).
The data closest to the arrowhead is sent first, and the done (D)
token terminates the stream.

3.3 Tensor Iteration

SAM sparse dataflow algorithms start with level scanners that load
tensors from memory and turn them into streams.

Definition 3.1 (Level Scanner). A level scanner takes in a ref-
erence stream and outputs two streams: one of coordinates and
one of references. It produces a single fibertree level on its output
coordinate stream, fiber by fiber. Each non-control token on the
input stream is a reference to a single fiber location for a given
level in memory. The level scanner generates all coordinates in that
fiber, along with their corresponding references, and then adds an
additional stop token to denote the end of the fiber.

Each SAM level scanner generates fibers for only one dimension.
Therefore, multiple scanners must be composed to iterate over a
multidimensional tensor. The composition uses the references emit-
ted from each successive level scanner to locate the fibers of the
next level scanner. The key to this composition is that level scanners

Position in array, needed for next fiber lookup

Root /
l Level D,Sg.2,1,0] Level D,S4,4,8,53,2,1,83,0
D,0— scanner [- "1 - *>| Scanner [~-"tToTtToo >
m o |psels 10| TR
compressed compressed | D; $4, 3,1, 8¢, 2,0, S, 1

Figure 2: Composition of level scanner blocks.

l—»
Segment e
I o o>
Array

Compressed Uncompressed

Figure 3: Implementations of the level scanner interface.

The Sparse Abstract Machine

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Xi coordinate stream® I— Level
X3 coordinate stream™ Writer
Level Level] > Xi
D, 0- Scanner f-----cccccc--- Scanner il T > d
Bi Xi coordinate Bk N . Re;;egter Array 5 COMpresse!
o) j .- o
compressed stream] >
compressed g B vals 3 Level
g e Writer
Level = Level . . = X3
e |.. X3 coordinate S J
Re%e_ater » scanner » £ >l scanner J X 5 compressed
D,0--svesommmcnnnnnnns > * ck) ci f----- stream____. » Array g
compressed —l compressed C vals Level
Writer
—>
b q = X vals
roppe compressed

Figure 4: The SAM dataflow graph for sparse matrix multiplication X;; = 3x B;xCy . on DCSR matrices with linear combination
of rows (i —» k — j order). Stipled, solid, and double arrows resemble reference, coordinate, and value streams respectively.

communicate information by embedding both fiber location and
coordinate hierarchy—needed by downstream level scanners—into
the reference streams. Each level scanner adds a level to the hier-
archy by either adding an Sy stop token at the end of each scan or
by incrementing all input stop tokens by one. They thus chain to-
gether to load an entire tensor and to convert it to per-level streams.
Figure 2 shows two level scanners that iterate over the compressed
matrix in Figure 1c. The reference stream emitted by the final-level
scanner is sent to blocks that load values from memory, as described
in Section 3.6. Each level scanner also connects to a memory array
(Definition 3.5) that stores the fiber and coordinate information for
the level, but these are not shown in figures to reduce clutter.

The SAM level scanners support iterating over tensors stored in
various in-memory level formats presented in [11], which decouples
an algorithm from the tensor formats. Thus, the interfaces of the
level scanner are format agnostic and Figure 3 demonstrates how
they remain unchanged as the level format implementation varies.

3.4 Illustrative Example

We will use the linear combination of rows algorithm (sometimes
referred to as Gustavson’s algorithm [18]) for sparse-matrix sparse-
matrix multiplication (SpM*SpM) to illustrate the operation of SAM
blocks, and to demonstrate how their composition defines different
algorithms. The Einstein summation notation for this algorithm is
Xij = 2k Bik*Cy j, where the matrix multiplication is accomplished
by using an index order of i — k — j [65]. The advantage of this
iteration order is that k coordinates are first intersected and only
those ks that survive result in further computation.

Figure 4 shows the algorithm as a SAM dataflow graph. From the
left, the coordinates of the two matrices are loaded from DCSR data
structures in memory by level scanners. The coordinates are then
transformed into a three-dimensional iteration space by chaining
together the i — k coordinates of the B matrix with the k — j
coordinates of the C matrix. This space requires duplicating data to
fill in missing dimensions. In this example each matrix is broadcast
over an index variable of the other matrix (B over j and C over i).

3.5 Stream Merging

Once the operand coordinate streams have been generated, the next
task is to merge them. The index variables of a tensor index notation
expression create an iteration space that we must cover, taking
advantage of both the sparsity of the tensors and the mathematical

properties of the operations to avoid unnecessary computation. Our
design covers this sparse iteration space hierarchically by merging
the coordinates of one dimension at a time, with the surviving
coordinates from one dimension dictating what fibertree fibers
need to be merged in the next dimension. The hierarchical merging
is implemented with per-level merging blocks (intersection and
union) and repetition machinery to handle the case where a tensor
is broadcast [20, 25] across the dimension of another tensor, as
required by our illustrative example in Figure 4.

The merging operations combine m streams, representing the
same coordinate level of all operand tensors, fiber by fiber. Coordi-
nate merging is inherently a set operation: specifically, intersection
(since a- 0 = 0) and union (since a+ 0 = a) suffice for tensor algebra.

Definition 3.2 (Intersecter). An intersecter has m pairs of coordi-
nate and reference streams go in and one coordinate stream and m
reference streams come out. It outputs coordinates and correspond-
ing input references when all input coordinates are equivalent.

Definition 3.3 (Unioner). A unioner has the same input/output
interface as the intersecter. However, it outputs coordinates and
their associated input references whenever there exists at least one
coordinate from any input. If the coordinate exists only on p inputs
where p < m, the union block outputs an empty (N) token on the
the other m — p output reference streams.

Figure 5 shows an example of a binary unioner that produces
a coordinate stream that is the union of two input streams, along
with the references from each input reference stream whose co-
ordinates survived the union. Both emitted reference streams are
augmented with empty tokens (N) to have the same shape as the
emitted coordinate stream.

As we saw in Figure 4, it is common for expressions to replicate
one tensor across a dimension of another, often called array broad-
casting. Figure 6 shows a simple vector scaling example. It demon-
strates how the repeater block replicates a reference stream over

D, Sy, 4,3,2,1,0

............ »

D, S5, 9,8,7,6,4,2,0
21 2 3456789 ———

b P _{
zT R T D,SO,9,8,6,2,0

. L

D, Sy, 4,3,N,2,N, 1,0

Unioner
.
.
.
.
.
.
\J

—]
D, SO‘ 8,7,6,4,2

D, S, N, 4,3,2,1,0,N
o202 10

Empty token

Figure 5: Example of union coiteration for b; + c;

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

01234567389 10 Level |D,8q,4,8,2,1,
b —e—e—ee— |Scanner| " >

1 + s LA i
ko o > D, Sy 9,8,6,2,0
([J ® . [Repeater
Replicate D, 0--» c .
C ¢ D, $y,0,0,0,0,0

Figure 6: Repeating a scalar with a repeater block.

every coordinate of the provided coordinate stream. The repeater is
a new primitive that solves limitations on prior work architectures
needing to pre-configure higher-order iteration counts [13, 22, 48].

Definition 3.4 (Repeater). Repeaters have one input coordinate
stream, one input reference stream, and one output reference stream.
Each non-control token in the input reference stream is repeated
m number of times, where m is the number of non-control tokens
from the input coordinate stream before a stop token is seen.

Hierarchical repeating and stream merging compose to express
algorithms for multidimensional tensor contractions. Reconsider
the linear combination of rows SpM*SpM algorithm from Figure 4.
The i coordinates loaded from B are not only passed to the i level
writer of X by way of the coordinate dropper, but also fed to a
repeater that broadcasts all of C’s k coordinates over each i.

3.6 Computation

After stream merging, the remaining coordinates are coordinate
space points that contribute to the result. Their corresponding
reference streams are passed to array blocks that load their values.

Definition 3.5 (Array). An array block is a proxy for a memory
interface and can be treated as a contiguous section of memory. It
has two interface modes—load, which given one input reference
stream fetches data to produce one output stream of any type,
and store, which given one input reference stream and one input
data stream of any type has a side effect that stores the data to its
corresponding reference location in memory.

In SAM, arrays store values, coordinates, and references. In the
computation pipeline, value streams are read from the array of each
operand, with the same coordinates, and combined using streaming
arithmetic-logic units (ALUs). The Figure 4 ALU is a multiply unit.

Definition 3.6 (ALU). An ALU block consumes two value streams
and produces one value stream. It applies an arithmetic operator
(add, subtract, or multiply) to inputs, treating empty tokens as zeros.

In addition to combining values at the same coordinate, often the
algorithm needs to accumulate a tensor. In our illustrative example
in Figure 4 this occurs at the end, where we sum over the k dimen-
sion (multiple dimensions can be summed by chaining reduction
blocks). Reductions in tensor algebra may occur over any tensor
dimension, independent of the order in which we choose to merge
coordinates. Thus, summation reductions may occur over the coor-
dinate level that is merged last (requiring a scalar to accumulate the
result), over the coordinate-level merged second to last (requiring a
vector to accumulate the results), or over coordinates merged earlier
(requiring a higher-dimensional tensor to accumulate the results).
SAM provides one block for reductions that must be configured for
any specific dimension of accumulation.

O. Hsu, M. Strange, R. Sharma, J. Won, K. Olukotun, J. S. Emer, M. A. Horowitz, and F. Kjelstad

D, S$4,3,1,84,2,0,S, 1 D, Sy, 3,2,1,0

CL‘]‘ = 27 Bi]‘

Vector
Reducer

D,$4,5,4,84,3,2, S, 1 D.Sg.5.3.5,2
——————p -

Figure 7: Example using the row reducer, where n = 1, to
accumulate the columns of the matrix from Figure 1a.

Definition 3.7 (Reducer). A reducer is configured by n, the dimen-
sion of the memory needed in the reduction. It inputs and outputs
n coordinate streams and one value stream. The block is sent an
entire n-dimensional (sub-)tensor with repeated points/values and
outputs streams that represent that tensor with unique coordinates
and summed values. Specific reducers include: scalar where n = 0,
vector where n = 1, and matrix where n = 2.

The reducer internally adds values corresponding to equiva-
lent coordinate points and stores the results in an internal storage,
which may be a dense or a sparse data structure. Finally, when
an n-level reduction is completed, for example when a whole row
has been processed for the Gustavson’s algorithm in Figure 4, the
reducer emits the resulting tensor as streams with deduplicated
coordinates. When accumulating coordinates with empty fibers,
resulting from ineffectual intersections, the reducer may be config-
ured to either accumulate empty fibers into an explicit zero (the
identity for addition) or to remove the empty fibers by removing
their extra stop tokens. The choice is an implementation decision,
but empty reduction behavior may affect SAM graph construction
for other blocks (see Definition 3.9 and Table 2).

Like with level scanners, various implementations of the reducer
are possible underneath the abstraction, including k-way merging,
dense arrays, compressed data structures, and bitmaps [35, 43, 48].
Figure 7 shows an example of a row (n = 1) reducer.

3.7 Tensor Construction

The final step of a SAM graph is to store the resulting tensor streams
back to memory. Specifically, the surviving coordinate streams for
the index variables used to index the left-hand side of the Einsum
expression, as well as the computed values, need to be stored back
into per-level tensor memory representations.

Definition 3.8 (Level writer). Level writers take in either one
value stream or one coordinate stream and store its contents to
memory, internally generating reference information and auxiliary
level data structures. As a result, the block is a wrapper around
the store mode of a coordinate Array (and its metadata) or a value
array. The level writer’s internally generated references store the
data tokens from the input stream in order.

In cases with at least one index-variable level above an inter-
section level, the result coordinate streams must be cleaned before
the level writer stores it back to memory. The coordinate cleanup
removes any outer-level result coordinates that have ineffectual
inner-level intersections (either empty intersections or zero values)
as shown in Figure 8. We introduce the coordinate dropper block
to handle these cases. Coordinate droppers with value stream in-
puts are optional if explicit zeros need not be removed. In this case,
other coordinate dropper blocks are also optional if the reducer

The Sparse Abstract Machine

Outer-coordinate ™

exists D, Sy 3,2,1,0 D, 8y, 8,1,0

Ineffectual inner-fiber
intersection

D, 8y, 3,1,65,8g 2. 0,8y, 1

To Level Writers...
D, S1, 3,1, SO, 2,0, SO, 1
e

Figure 8: Dropping coordinate 2 from the matrix in Figure 1a.

blocks is configured to accumulate empty fibers into 0-values, since
ineffectual (empty) intersections will produce explicit values.

Definition 3.9 (Coordinate Dropper). The coordinate dropper
takes in one outer-level coordinate stream and one inner-level co-
ordinate or value stream. It removes both the outer-level and inner-
level tokens that came from ineffectual merging or computation
(empty fibers or zeros) at the inner level.

3.8 Alternatives and Tradeoffs Discussion

We discuss alternatives and tradeoffs of core SAM design decisions,
which we hope will provide insights into our design rationale.

Stream Control Tokens. Section 3.1 presents a solution for stream-
ing dataflow where the control tokens (stop, empty, and done) are
directly passed through the data plane, but alternative solutions to
control flow for dataflow exist. Other valid dataflow control-flow so-
lutions include control signaling on dedicated control-only streams,
embedding control (via counters and control tokens) directly into
each primitive, and having a completely separate control plane.
We give examples, discuss the limitations of these approaches, and
justify putting control tokens on the data plane.

In initial iterations of SAM, we considered representations with
primitives that had dedicated control signaling using control-only
streams. For example, we considered passing repeat information by
connecting two level scanners together to exchange signals that de-
note when to stop repeating coordinates. Having streams that only
communicate control information risks underutilization, where no
information is passed through most cycles, and complicates the
composition of multiple blocks, as they would need to be hardened
together. However, the benefit of this design would be that control
information (when produced) and data can be processed in parallel.

We also considered a SAM design that embedded control directly
into each block, which included embedding repeat counters into
level scanners and done signaling into each primitive. The direct
embedding of counters and other control logic into the primitives
increases the primitive area and hardware complexity. Additionally,
pre-configuration of counters is usually necessary, meaning that
metadata information (like number of nonempty elements) must be
obtained by the compiler statically during compile time by iterating
over the sparse data at least once on the CPU.

Finally, a design with a separate control plane (not just separate
control wires) would be more similar to a von Neumann architecture
than prior work on dataflow architectures. Dataflow architectures
attempt to remove performance overheads of traditional CPUs
by eliminating most general-purpose control, which is done by
removing the control unit and restricting control. Having a separate
control plane on SAM would fundamentally push our design closer
to a von Neumann machine abstraction and would thus not be a
good fit for representing streaming dataflow accelerator backends.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Although having control tokens directly processed on the data
plane may decrease performance—primitives must now process
these tokens—they increase interconnect and logic utilization, de-
crease primitive area, minimize primitive logic complexity, and still
allow for streaming dataflow processing (massive pipelining/paral-
lelism with low control overhead).

Level-Based Stream Representation. Another approach to our level-
based streaming tensor representation would be a less efficient
point-based streaming representation. One implementation could
stream flattened tensor point tuples with no control tokens. The
tensor from Figure 1 could thus be represented as

(0,1,1), (1,0,2), (1,2,3), (3,1,4), (3,3,5), D

In this representation, the number of processed stream tokens for
identity matrices is 3 - nnzp, where nnzg is the number of nonzeros
in B. We can compare the two representations to find when the
point-based representation has more tokens using the equation
3-nnzg > (1+c¢) -nnrg + 2 - (1+¢) - nnzg where c is the fraction
of control tokens and nnrp is the number of nonempty rows in
B. Using worst-case numbers from our analysis in Figure 14, we
rewrite the equation to 3-nnzg > 1.3326-dimp,+2-1.3326-nnzg =
nnzg > 3.98 - dimp, where dimp, is the number of rows in B.
The result demonstrates that our level-based representation, in the
worst-case, processes less tokens than the point-based approach
when there are on average more than 4 elements per row. Of the
matrices we selected in Figure 14, all 5 middle 50 and 5 large 50
matrices satisfy the 4X inequality and are more efficient in our level-
based representation. Our approach becomes even more efficient for
higher-order tensors. The coordinates at every level are expanded
to the last level—proportional to roughly O(nN) instead of O(n?) for
matrices, where n is a single tensor dimension and N is the tensor
order—to produce the tensor point tuples.

4 OPTIMIZATION DISCUSSION

The core SAM blocks introduced in Section 3 are complete in the
sense that they compose to express every tensor algebra expres-
sion. Moreover, they suffice to express all coordinate processing
(dataflow) orders and fusion—the primary tools to construct al-
gorithms with good asymptotic complexity [2]. To express SAM
graphs that further optimize performance and deal with finite hard-
ware, we have added additional capabilities. These capabilities let
the graphs express parallelism, tiling, and more ways to represent
tensor information either in memory or as streams. In this section,
we discuss how SAM extends to include these additional optimiza-
tions and how they compose with the core SAM from Section 3.

4.1 Tiling

In our data model, tiling a tensor splits a single fibertree level into
multiple levels and then reorders those levels to produce smaller sub-
tensors (tiles). Figure 9 shows how SAM can sequence tiled tensors
between host and accelerator devices for computation with fixed-
size memories. SAM graphs are used in outer levels to sequence the
tile coordinates (tile IDs) for reuse and in the inner levels to per-
form the computation. The tile sequencing is equivalent to tensor
iteration (Section 3.3) and stream merging (Section 3.5), where tile
IDs are coordinates and the values are references to the next level of

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

To CPU and Main Memory ...
‘ ’ Dataflow Accelerator

Buffer Memory Til
le

SAM Tile Sequencing Graph

1)
SAM Computation Graph

o L

)

[Scratchpad Memory

Figure 9: How to sequence tiled tensors (shown in blue) to
fit in finite memory for SpM*SpM. The SAM computation
graph is the same as in Figure 4, and the SAM tile sequencing
graph performs coiteration and merging of tile coordinates.

tiles. As in ExTensor [22] and Capstan [48], we assume that tensors
are tiled beforehand so that each tile fits in the dataflow acceler-
ator’s memory hierarchy. We demonstrate in Section 6.4 SAM’s
ability to fit tensors into finite memories and the tradeoff space
of different memory configurations (dictated by architectural and
implementation-specific memory configurations, like the maximal
tile size and bandwidth at each level of the memory hierarchy).

4.2 Tensor Locating

In Section 3, all intersections are performed using coiteration, where
the coordinates are intersected using a two-finger merge strategy.
This is sufficient for computational correctness, however, it can be
asymptotically inefficient. (The core SAM has to coiterate between
an uncompressed dense counter level and a compressed level even
though it is sufficient to iterate through just the sparse level.) We
can often improve intersection efficiency if one tensor has far fewer
elements than the other. Rather than waiting for the larger tensor
to stream all its level coordinates, it can be more efficient to ask
the larger tensor if it contains any of the coordinates from the
smaller tensor. This operation, known as iterate-locate or leader-
follower intersection, is possible with another SAM block that uses
a coordinate instead of a reference to index an array.

Definition 4.1 (Locator). A locator takes in one coordinate and
reference stream and outputs one coordinate and two reference
streams. For each coordinate, the block finds the associated refer-
ence within an array block, if it exists, and outputs that reference
and the input coordinate and reference. Otherwise, it emits an
empty fiber on all streams.

With locators, we can reorganize SAM graphs to remove inter-
secters. A prominent example that benefits from this optimization
is the inner product sparse matrix-vector multiplication, where the

O. Hsu, M. Strange, R. Sharma,). Won, K. Olukotun, J. S. Emer, M. A. Horowitz, and F. Kjelstad

vector is dense. By streaming through the coordinates of each ma-
trix row and locating into the vector, we avoid loading the values of
the vector whose corresponding matrix value is zero. Locate blocks
can also be used to scatter into a result that supports random insert,
such as a dense left-hand-side tensor. Thus, the linear combination
of rows matrix-vector multiplication can avoid a vector reducer.
Locators can also speed up intersection when used in conjunc-
tion with intersecters that communicate information back to level
scanners about coordinate ranges that are no longer needed. This
optimization, called coordinate skipping or galloping, is common
in software and has also been proposed in hardware [22]. In coordi-
nate skipping, the intersecter sends a signal back to the trailing level
scanner (extending the interface of both blocks from the definitions
in Section 3), informing it of the coordinate that is needed next.
The level scanner, in conjunction with a locator, then skips ahead
to this coordinate and avoids sending useless coordinates between
its current coordinate and the coordinate sent by the intersecter.

4.3 Bitvectors

Bitvectors are a natural way to compress coordinate information
since bits are easy to implement in hardware. Bitvectors have a 1
in positions where explicit coordinates exist and a 0 for empty (or
zero) coordinates. Bitvectors have a pseudo-dense iteration space—
one that iterates proportional to some constant factor of the dense
dimension of each tensor level. This iteration is usually asymptoti-
cally worse in performance when compared to compressed iteration,
especially with increasing sparsity. However, bitvectors may also
increase efficiency since an n-bit bitvector, encoding n coordinate
elements, can be processed in one cycle. In some prior-work hard-
ware like Capstan [48] and SIGMA [45], bitvectors are the only
compression protocol. Bitvectors may also be offered in addition
to compressed coordinates, with blocks that convert between their
stream protocols. We introduce a bitvector converter that trans-
forms a coordinate stream into a new bitvector stream protocol and
describe a level scanner for the bitvector level format.

Definition 4.2 (Bitvector Converter). Bitvector converters trans-
form b coordinates from the input coordinate stream into a single
bitvector token of b bits on the bitvector stream output. Each bit
indicates whether it has children or whether its sub-tree is empty.

The SAM bitvector level scanner is similar to Definition 3.1, but
it outputs a bitvector stream instead of a coordinate stream. The
bitvector level scanner also changes the reference stream behav-
ior presented in Section 3.2. Consider the b vector from Figure 6
that produces the coordinate stream D, Sy, 9, 8, 6, 2,0 compressed

as the 4-bit bitvector stream D, Sy, 0011,0100,0101. As a reminder,

the compressed level scanner would output a reference stream
of D, So, 4,3,2,1,0 to indicate contiguous references (positions) in
_—

memory. However, the bitvector level scanner instead produces
the reference stream D, Sy, 3, 2, 0 that sums bitcounts (popcounts)
—_

to find the positions in memory for the next level. The bitvector
format thus demonstrates how SAM handles various stream types
as different compression protocols on the wires (coordinates versus
bitvectors), along with various reference stream protocols, while
maintaining composability.

The Sparse Abstract Machine

4.4 Parallelization

Given the spatial streaming abstraction in SAM, parallelism is easily
representable via vectorization and graph duplication. Conceptually
the simplest extension is to vectorize streams as wire buses and to
update the blocks to handle the increased data rates.

To enable coarse-grained parallelism, SAM dataflow graphs can
fork streams with a parallelizer and join streams with a serializer.
The parallelizer block takes in a sequential tensor stream and parcels
out different elements to multiple output streams concurrently. The
serializer block works inversely and joins parallel streams into a
sequential stream by interleaving their coordinates.

5 THE CUSTARD COMPILER

The Compiler for Unified Sparse Tensor Algebra Reconfigurable
Dataflows (Custard) is our compiler to SAM which acts as an in-
termediate representation. Custard compiles tensor algebra expres-
sions with associated data structure specifications [11] and sched-
ules [27, 49] to SAM dataflow graphs (see Figure 10). Custard is an
open-source C++ project that utilizes the TACO front-end [28] but
supplies a new lowerer and code generator. Custard uses TACO’s
three input APIs (tensor index notation, a format language, and
a scheduling language) and the code that transforms these into a
high-level IR called concrete index notation—an abstract loop nest
with scheduling information shown in Figure 10. Although Custard
generates SAM dataflow graphs, automatic binding to prior-work
hardware backends described in Section 6.5 is left as future work.

Figure 10 illustrates a partial compilation to the SAM dataflow
graph for the ik j-order SpM*SpM example from Section 3.4. Custard
converts the concrete index notation to a graph that represents each
tensor’s path through the index variables (shown as colored arrows
with tensor labels in Figure 10). Custard then builds the following
three sections in order: tensor iteration and merging, computation,
and tensor construction. It builds the tensor iteration and merging
by iterating over the Cartesian product of index variables and input
tensors, which in our example is {i, k, j} by {B, C}. For every index
variable in a tensor’s path, Custard places and connects a level
scanner, which we color corresponding to its associated tensor
path. For every index variable absent from a tensor’s path that
does not have an outer index variable reduction, Custard inserts
a repeat block. Finally, if multiple tensor paths exist for an index
variable, then Custard inserts an intersecter (for multiplication)
or unioner (for addition). Next, the output reference streams from
the first part are connected to the compute tree, which consists of
scalar operations and reductions, (extracted from the concrete index
notation). Finally, the output values from the computation section
and each index variable’s final coordinate stream are connected to
the output construction blocks (denoted by the orange in Figure 10)
with coordinate drop blocks inserted as necessary.

6 EVALUATION

We use Custard to compile disparate sparse tensor algebra algo-
rithms into SAM graphs that are automatically lowered to a cycle-
approximate functional simulator. The Custard code, used to auto-
matically compile SAM graphs, is compiled using GCC 9.4.0. The
SAM lowering and SAM simulator are written in Python 3.8. Our
SAM simulator tracks each cycle iteration and models SAM graphs

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Format Language
B=({comp.,comp.},
Expression {mode0,model}) Schedule

Xij = B;i *Ck] C=({comp., comp.}, reorder(i, k, J)
{model, mode0})
VinVinj = Xk (B * ij)ﬂ\

Concrete Index
C Notation
1

i lteration
Transformation i B

—_—_———_—— ~

1

Tensor Paths

reess== \ |
| Level '
1| Writer |
: Xi [
1
| 1
1| Level : Level -

- * Scanner ki ->{ Scanner . Repeater + - B
i Bi ! Bk o - 5
] g et
I ey < 2
: : Level S Level g

- - Repeater 1, - | Scanner o SEIET
: ! Ck Cij
N

Level |
Writer
X

Lower to Example Implementation

Figure 10: Custard’s steps for compiling SAM tensor itera-
tion, merging, and construction for the SpM*SpM example
in Section 3.4. We abbreviate compressed as comp. From top
to bottom, Custard uses the TACO input APIs to generate con-
crete index notation, creates index-variable paths for each
tensor, and constructs the partial SAM graph (where the color
of each block corresponds to a tensor path—purple for B, blue
for C, and orange for X). Custard lowers the dotted red region
of the tensor paths to the dotted red region of SAM blocks.

as fully pipelined (i.e. every primitive produces one token each
cycle). It is cycle approximate since we assume for this section—
except Modeling Hardware with Finite Constraints in Section 6.4—
that: input queues are infinite, data fetched from arrays (memory)
take only one cycle, memories are pre-initialized, and primitives are
not time-shared. These assumptions do not affect our evaluation
conclusions since this section only contains comparisons against
simulator cycles. All benchmarks are run on a 2.2 GHz Intel Xeon
Silver 4214 24-core CPU with a 16 MB LLC running Ubuntu 18.04.

6.1 Empirical Study of the Generality of SAM

We demonstrate the generality of SAM by generating dataflow
graphs for a wide range of useful sparse tensor algebra expres-
sions, shown in Table 1, including all expressions used in the TACO
paper [28]. These real-world applications comprise of algorithms
such as factor analysis (e.g. alternating least squares), graph con-
volutional networks, and tensor factorization and decomposition

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

O. Hsu, M. Strange, R. Sharma,). Won, K. Olukotun, J. S. Emer, M. A. Horowitz, and F. Kjelstad

Table 1: SAM primitive counts for a wide range of real-world expressions, demonstrating the expressiveness and generality of
SAM. Each expression also contains a breakdown of the sparse tensor algebra features it contains. All features and primitive
counts are obtained assuming the expression uses an alphabetical dataflow index-variable ordering except in SpM*SpM.P

| Sparse Tensor Algebra Feature |

SAM Primitive Composition (count)

Name Expression Out Input Num. Reduce Broad- Lvl Rep- Inter- Uni- ALU Red- Crd Lvl Arr-
order order inputs order cast Scan eat sect on uce Drop? Wr ay
SpMV Xi :ZjBijcj 1 1,2 2 0 * 3 1 1 1 1 1 2 2
SpM*SpM Xij = Yx BikCrj 2 2 2 0-2b * 4 2 1 1 1 o0-2b 3 2
SDDMM Xij = S BijCik Djk 2 2 3 0 v | 6 3 3 2 1 2 3 3
InnerProd X = Zijk BijkCijk 0 3 2 0 X * 6 3 1 3 1 2
TTV Xij = Y Bijkck 2 13 2 0 | 4 2 1 1 1 2 3 2
T™ Xijk = P Bij1Cri 3 23 2 0 * 5 3 1 1 1 3 4 2
MTTKRP Xij = Sr1 BiriCikDji | 2 23 3 0 7 5 3 2 2 3 33
Residual xi=bi—Y; Cijdj 1 1,2 3 0 *, 4 1 1 1 2 1 1 2 3
MatTransMul x; = 3; aBijcj + pd; 1 0-2 5 1 y *+ 4 4 1 1 4 1 1 2 5
MMAdd Xij = Bij +Cij 2 2 2 X X + | 4 2 1 3 2
Plus3 Xij =Bij+cij+Dij 2 2 3 X X + 6 2 2 3 3
Plus2 Xijk = Biji + Cijic 3 3 2 X X + | 6 3 1 4 2

Coordinate dropper primitive counts in the SAM graphs assume that the reducer is configured to filter out and remove reductions of empty fibers.
b In SpM*SpM we show the features and primitive counts for all dataflow orderings: inner product, linear combination of rows, and outer product.

Table 2: The number of sparse tensor algebra algorithms
from the TACO website that are not expressible if a SAM
primitive is removed. The All and Unique columns analyze
all input algorithms and distinct algorithms, respectively.

Expressions Lost Percentage (%)

SAM Primitive Removed Unique All Unique All
1 Comp. Level Scanner 2773 19363 7223 81.38
2 Comp. + Uncomp. Level Scanners 3814 23713 99.35 99.66
3 Repeater 3162 19924 82.37 83.74
4 Unioner 600 2229 15.63 9.37
5 Intersecter keep Locator 720 2715 18.75 1141
6 Intersecter w/ Locator Removed 1878 15777 48.92 66.31
7 Adder 1023 3118 26.65 13.1
8 Multiplier 3220 20986 83.88 88.2
9 Reducer 3008 20036 78.35 84.21
10 Coordinate Dropper 617 2292 16.07 9.63
11 Comp. Level Writer 1075 5525 28 23.22
12 Comp. + Uncomp. Level Writers 3698 23260 96.33 97.76

for domains like machine learning, data analytics, and scientific
computing. Table 1 lists the sparse tensor algebra features used
by each expression and the number of primitives it uses (empty
cells denote a primitive is not used). We see the primitive counts
for level scanners and writers are higher, since they are used for
tensor iteration and correspond to the tensor orders of all inputs
and outputs respectively. The primitive composition counts also
show that most blocks are uniformly used. It is interesting to note
that two expressions use all primitive types. In addition, we au-
tomatically lowered all graphs to our simulator and checked for
functional correctness on the set of all real and integer SuiteSparse
matrices [14] and FROSTT tensors [50] that fit into memory and
the Facebook tensor [59].

6.2 Ablation Study on the Utility of SAM Blocks

Each SAM block in Section 3 is essential for expressing the domain
of sparse tensor algebra for dataflow. In order to demonstrate the
usefulness of each primitive, we analyze the entire set of algorithms

Cycles

IFused coiteration
-Fused locating
-Unfused
10° I 10°
L 10%

K dlmen3|on Index Variable Order
Figure 11: Performance of fused Figure 12: Performance
and unfused SDDMM algorithms. of SpM*SpM dataflows.

input by users into the TACO website, provided by the TACO
authors, and show which algorithms are not expressible if a given
SAM primitive does not exist. We use the TACO website as our
dataset since it is representative of real-world sparse tensor algebra
computations. From the website, users have successfully compiled
23,794 sparse tensor algebra algorithms to date—of which 3,839 were
distinct algorithms (unique combinations of expression and format)
and 1,745 were unique solely in expression. Table 2 shows that
removing any SAM primitive limits the expressible algorithms in
the domain of sparse tensor algebra. Most blocks are used for most
applications, and, moreover, full algorithmic generality requires all
the primitives presented in Section 3.

6.3 Asymptotic Tradeoff Analysis

We next explore the performance attributed to: dataflow order-
ing, fusion, and various acceleration techniques. While the former
fundamentally change the dataflow of the computation, the other
optimizations presented are orthogonal and, only affecting a single
tensor level, can be used in conjunction with any dataflow.

Dataflow Ordering. The index-variable order avoids different data-
dependent asymptotic behaviors [23, 62] and allows for generality
in the execution of a particular dataflow algorithm. We simulate all

The Sparse Abstract Machine

six permutation orders of ijk for the SpM*SpM expression using
two distinct 95% sparse uniformly random matrices with different
dimensions of sizes I = J = 250 and K = 100. Figure 12 shows
the inner-product algorithms (i jk, jik) perform the worst for ma-
trix multiply. The linear combination of rows (ikj, jki) and outer
product (kij, kji) algorithms perform a least an order of magnitude
better. The performance is dictated by the order of k since coordi-
nates are filtered out (intersected) at k earlier in the dataflow before
repeating along the other dimensions i, j. These algorithms differ
in their asymptotic complexity [2, 29], so performance differences
will increase with increases in sparsity. However, the inner-product
algorithm may be more efficient with other data and uses asymp-
totically less memory for the reduction (a scalar instead of a row).
Since the efficiency choice is a tradeoff, sparse hardware should
support many processing orders.

Fusion. We demonstrate the algorithmic performance advantage of
fusion using a common expression from machine learning, the ijk-
ordered SDDMM X;j = ¥k BijCirDji [4, 17]. We generate a 95%
sparse uniformly random matrix along with two dense matrices of
dimensions I = J = 250 with a sweep of K = {1, 10, 100}. Figure 11
shows that the unfused implementation performs far worse, since
calculating the entire dense matrix multiplication is costly with
mostly wasted work. Given the number of nonzeros in B as nnzp,
the unfused computation complexity is proportional to max(nnzp *
K, locate(nnzg)), while the cost of factorization becomes I * J
K +locate(nnzg). The only case where we would want to factorize
this expression is when the matrix B is almost fully dense and we
have very efficient dense matrix multiplication hardware. But for a
sufficiently sparse matrix, a fused expression will perform far better.
Efficient sparse hardware must therefore support fused expressions.

We further enhance performance by using locator blocks (Sec-
tion 4.2) to find the sampled i, j values, which is trivial in a dense
array. Interestingly, Figure 11 shows that this advantage becomes
negligible as K increases: iteration costs of the dense inner-product
dimension k will dominate the computation time, hiding the bene-
fits of locating during intersection. But locating provides significant
performance gains when the amount of computation is modest,
which is often true in sparse computations.

Accelerator Structures. We next explore different iteration accelera-
tion techniques by comparing various configurations of coordinate-
skipping (Section 4.2), bitvector iteration (Section 4.3), and iteration-
splitting (Section 4.1). Figure 13 compares the performance when
both vectors are in the following formats: one uncompressed level
(Dense), one compressed coordinate level (Crd), one compressed
coordinate level with coordinate-skipping (Crd w/ skip), two com-
pressed coordinate levels (Crd w/ split), one pseudo-dense bitvector
level (BV), and two bitvector levels (BV w/ split), also known as
a bit-tree. For this set of experiments, we assume the coordinates
were already split before this operation! and use the vector-vector
element-wise multiply expression x; = b; * ¢; with both b and
c as single dimensional vectors of size 2000. We use three types
of synthetic vectors, namely urandom, runs, and blocks; runs and
blocks are shown in Figure 17. Vectors with runs are pairs of vectors

IThe splitting operation requires a full scan through the data structure, which for
this example is as expensive as the operation itself.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

where one vector will have longer stretches of nonzeros between
the nonzeros of the other vector. Similarly, blocks are vectors which
have dense blocks of nonzeros placed throughout the vector. For
both these vectors, the number of nonzeros is 400 (20%) with the
index indicating the size of the runs/blocks in each vector.

Figure 13a shows the performance as a function of sparsity for
urandom data with bitvector bitwidth b = 64 and split factor (how
many chunks the vector is divided up into) s = 64, where applicable,
and shows the limitations of a single-level bitvector. As the sparsity
increases, the compressed coordinate format becomes better than
the bitvectors, since bitvectors are still a dense representation. The
coordinate-skipping behaves exactly the same as the compressed
coordinate format since urandom tensors on average have small
(around 1.5) run lengths.

Figure 13b shows the utility of coordinate skipping and split-
ting. As run lengths increase, there are more opportunities to skip
invalid input coordinates or avoid computation at the outer-level
intersection. The bitvector remains flat since the number of nonze-
ros remains about the same for various run lengths. This advantage
of skipping and splitting remains in the blocks case, without the
dependence on block size, since intersections can also be dense.
Overall, these results show the advantage of the implicit parallelism
of bitvectors, but show that they need to be organized hierarchically
for robust performance.

6.4 Modeling Exploration

Stream Analysis. We analyze the token breakdown of the SAM flat-
tened stream representation and identify that the stream control
overhead is modest. We use Custard to compile the SAM graph
for the matrix identity expression Xj; = B;j, where B is a sparse
DCSR matrix, and count the token types for each coordinate stream
at the output of each level scanner. In our simulator, we model
streams as Python lists and all control tokens as strings.? We run
the expression on 15 matrices of various sizes from the SuiteS-
parse matrix collection [14] (see Table 3 in the Appendix for matrix
characteristics and selection criteria).

The control token overhead of our representation is reasonable,
with an average non-idle control overhead reaching 0.95% for outer
levels and 16.20% for inner levels as shown in Figure 14. (Section 3.8
shows the control overhead of the alternative of using non-flattened
point streams would be higher.) The average inner-level percentage
means that rows have an average of 5 nonzeros, an appropriate
number of coordinates for this set of matrices. The outer-level B;
stream and inner-level B; stream refer to the coordinate stream
outputs of the first B; level scanner and the second B; level scanner,
respectively. We do not show the B, ;s breakdown since it is the
same as Bj. Most tokens, on average 83.32%, on the B; stream
are idle since the B; level scanner is in the done state while the
inner-level iterates through its coordinates. This behavior occurs in
compressed arrays, as in Figure 1c, because there are exponentially
more coordinates for each lower level of a tensor. The done state
of the primitive is efficient as it is idle and avoids computation

%In hardware implementations, however, one possible way to implement the
control tokens would be as a tagged-union on the wire. There are alternative imple-
mentations, like hardcoding the control token level for each primitive, which removes
the need for a stop level in the stream but complicates and hardens the state-machine
logic of each primitive.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada

O. Hsu, M. Strange, R. Sharma, J. Won, K. Olukotun, J. S. Emer, M. A. Horowitz, and F. Kjelstad

—e Crd ¥ Dense A Crdw/Skip —M Crdw/Split —+ BVw/Split —4— BV
103+
[2]
o
(8]
>
4)
: | 10’y o | i |
10 102 103 100 102 100 10 102
nonzeros Run length

(a) Performance vs. sparsity of uniformly ran-
dom synthetic vectors on a log-log scale

(b) Performance vs. run length of synthetic
vectors with runs on a log-log scale

Block Size

(c) Performance vs. block size of blocked
synthetic vectors on a log-log scale

Figure 13: Simulated performance of various optimization techniques (compression, splitting, skipping, and bitvectors) for
sparse vector sparse vector element-wise multiplication where the vectors have a dense dimension size of 2000.

Done B Idle B Stop B Non-Control |
Outer-level Bi Stream Breakdown

100%

o
o
X

0%

Inner-level Bj Stream Breakdown
100% muy w— =

Token Composition

o
2
X

0%

30 o6 0N LN (00 ot (02° 0% AL 9T oD ok 0@ ool
DB B9 A0S 60 9000 B2509% (a7 AL 9 B! WOV (i au?
X \9\/\ \f 0‘(\& 0‘\1 o «“\7‘) \Q/“‘ 5\0““9’ ‘\e(“se O

SuiteSparse Matrix Name

Figure 14: Breakdown of the outer B; level stream and inner
Bj level stream by token type for the matrix identity expres-
sion X;; = B;; where B is a sparse DCSR matrix

activity. Improving efficiency and utilization of idle primitives could
include switching the outer level scanner to other tasks through
time multiplexing, which we leave as future work. At the lower level
of the matrix, control overhead is dominated by stop tokens. The
stop token overhead ranges from 0.12% (for rail507) to 33.26% (for
ch7-6-b1). Again, these breakdowns are reasonable since higher
percentages of stop tokens occur only in small matrices.

Modeling Hardware with Finite Constraints. Although SAM is an
abstract machine with infinite resources, it can also represent finite
hardware with finite memory. ExTensor [22] is one design point in
the space of sparse tensor algebra accelerators, and SAM is suffi-
ciently expressive to model it. We find that SAM can recreate the
performance characteristics of ExTensor’s evaluation. We recreate
the synthetic data study, Figure 19 Section 8.4, in the ExTensor
paper that measures “SpM*SpM performance across varying dimen-
sion sizes with a constant number of nonzeros per matrix” as shown
in Figure 15. Our SAM model contains the hierarchical coordinate
skipping, fixed-memory tiling, sparse tile skipping, and n-buffering
techniques of ExTensor. Our performance matches the three per-
formance regions of the ExTensor study: increasing runtime due to

le7

—— 10000 NNZ
A— 5000 NNZ
—8— 25000 NNZ
—e— 50000 NNZ

w

IS

N

Runtime (Cycles)
w

i

) = — ¢ > > ¢ —2 > 4
2000 4000 6000 8000 10000 12000 14000 16000
Matrix Dimension Size

o

Figure 15: Recreation of ExTensor’s “SpM*SpM performance
across varying dimension sizes with a constant number of
nonzeros per matrix” study using our SAM simulator.

more non-empty tiles at small dimensions, decreasing runtime due
to sparse tile skipping, and decreasing runtime with saturating per-
formance. Concretely, we model two levels of memory hierarchy, a
last-level buffer (LLB) and a processing element buffer (PEB). SAM
is used to sequence the sparse tile coordinates including the CPU
loop-nests and using a DRAM bandwidth of 68.256 GB/s, an LLB
size of 17MB, and a processing element (PE) tile size of 128x128
(configured using implementation-specific information).

6.5 Backend Case Studies

By construction, we designed SAM to easily represent dataflow
hardware. To evaluate its likeness and ability to bind to hard-
ware, we qualitatively analyze how SAM is able to represent fixed-
function and reconfigurable dataflow backends including Gamma
[65], OuterSPACE [39], ExTensor [22], and Capstan [48]. For exam-
ple, Gamma’s dataflow is similar to Figure 4. The main difference is
that Gamma adds a parallelizer after the intersection unit and then
uses a multi-input vector reducer to rejoin the parallel threads.
For space reasons, we only provide a concrete SAM graph for
OuterSPACE (see Figure 16), which leverages an outer-product
dataflow (k — i — j). We chose OuterSPACE because it factor-
izes SpM*SpM into two stages: a multiply phase (Yj; = BjxC ;)
and a merge phase (X;j = Y ;), thus showing how SAM supports
factorization. For efficiency, B;; and Cy; are respectively stored

The Sparse Abstract Machine

Level Level |
----- = - -»] .
D, 0---] Scanner Scanner vi coordinate
Bk a B Bi stream
uncompressed] compressed
b3
Level o
..... pl Efrcercrrccccccaa. L -
D 0---» Scanner £ : Repeater
J Ck . h ci
uncomoressed Yk coordinate - - ¥ 1
P stream
S—

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

............... > Repeater Yi coordinate stream—»{ Level
B4 Writer
J__-» Aray Yi
B Values uncompressed
Level Y3 coordinate Level
Scanner stream — Writer
Cj froottottmomes > Array Y vals
compressed C Values
Level Level
¥j coordinate__ | Writer Writer
stream ¥j Yk coordinate stream—>] Yk
compressed linked-list

Figure 16: The SAM dataflow graph for SpM*SpM that represents the OuterSPACE multiply phase, which is followed by the
OuterSPACE merge phase. Compare this outer product graph to the linear combination graph in Figure 4.

in column-major and row-major order. The first phase computes
outer products between all columns of B and all rows of C and
stores the partial result into a 3-dimensional tensor Yy ;, as shown
in Figure 16. To efficiently merge in the next phase, the interme-
diate result Y is stored in ik j-order, which is discordant with the
dataflow kij. To efficiently support a discordant write of the tensor
streams, OuterSPACE utilizes a linked-list representation as the
level-format for k. Because our level writer is not restricted to a
specific representation, SAM supports this dataflow. The merge
phase (not shown to conserve space) then accumulates the partial
product Yj;; from the previous phase into a final result Xj;. This
dataflow consists of three cascaded level scanners to generate the
values Y ; that need to be summed, a vector reducer to sum the k
dimension, and three level writers to store the X;; results.

ExTensor’s Stream Coordinator [22] is naturally representable
with SAM. It is a hardware unit consisting of, in order, their Stream
Sequencer, two of their Scanners, their Intersection unit, and two
Data Storage units. The Stream Sequencer (and its Configure()
command) is representable with two SAM repeater primitives, with
the added benefit that SAM’s repeaters do not have to be pre-
configured. We represent their Scanner as a composition of n SAM
level scanners with coordinate-skipping since their Scanner can
scan through n levels of a fibertree. Finally, their Intersect and Data
Storage units are equivalent to our intersecter and array primitives.
We note that each ExTensor Coordinator is fixed for two input ten-
sors (hence two Scanners with Data Storage) with the intersection
always occurring at the last level of each unit. These implemen-
tation choices limit Extensor-like SAM graphs to a subset of the
entire space producible by SAM.

Finally, we analyze the Capstan [48] specialized loop-header
hardware, since it is one of the main contributions of that work.
Capstan can represent this specialized hardware as a two-operand
bitvector scanner that can be configured with or or and. Using SAM,
the hardware is equivalent to two bitvector level scanners (one for
each tensor) followed by an intersecter for and or a unioner for or.
The output values produced by the Capstan hardware: addresses
for both tensors, a store address, and a dense index correspond to
SAM'’s post-intersect/union reference streams, result level writer
address generation, and post-intersect/union coordinate stream, re-
spectively. The vectorized loop bodies in Capstan are representable
using n-lane stream buses (bundles), SAM arrays to get the data, a
single SAM ALU, and level writers. Again, the class of SAM graphs

that represent a single Capstan loop-header is fixed to two sparse
operands with only a subset of SAM’s expressibility. Additionally,
the Capstan-like SAM only iterates through bitvectors, which is
great for vectorization but is fixed to a pseudo-dense iteration space.

7 CONCLUSION

We introduced the Sparse Abstract Machine, an abstract machine
model for both reconfigurable and fixed-function spatial dataflow
accelerators for sparse tensor algebra. Our design led to a stream
representation and a small set of physical blocks with well-defined
interfaces. Our Custard compiler demonstrates SAM’s utility as a
compiler target. In addition, the flexibility and generality of SAM let
us fairly evaluate optimization and dataflow alternatives for accel-
erating sparse tensor algebra algorithms. We hope that the Sparse
Abstract Machine model will enable the microarchitectural design
of future accelerators and inform the design decisions of architects.
We also hope that compiler designs like Custard, targeting an ab-
stract machine for portability, will improve the programmability
and usability of this space.

ACKNOWLEDGMENTS

We thank Manya Bansal, Zimren Dixon, Scott Kovach, Zachary
Myers, Aviral Pandey, Alexander Rucker, Matthew Sotoudeh, Shiv
Sundram, Joseph Tan, and Rohan Yadav for their helpful feedback.
We would also like to thank Ajay Brahmakshatriya, Jake Ke, Kalhan
Koul, Qiaoyi Li, Keyi Zhang, Saman Amarasinghe, Riyadh Baghdadi,
and Priyanka Raina for discussion and help with evaluation. Olivia
Hsu was supported by an NSF GRFP Fellowship, Maxwell Strange
was supported by the Apple Stanford Electrical Engineering PhD
Fellowship in Integrated Systems, and Ritvik Sharma was supported
by the Stanford Graduate Fellowship. This work was supported
in part by the NSF under grant numbers 1937301, 2028602, CCF-
1563078, and 1563113; by DARPA under the Domain-Specific Sys-
tem on Chip (DSSoC) Program; and by the DoE National Nuclear Se-
curity Administration (NNSA) under grant number DE-NA0003965.
This research was also supported in part by the Stanford Agile Hard-
ware (AHA) Center, Google Research Scholar program, and Stanford
Data Analytics for What’s Next (DAWN) Affiliate Program. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the aforementioned funding agencies.

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

A ARTIFACT APPENDIX
A.1 Abstract

This appendix describes how to set up and run our Sparse Abstract
Machine (SAM) Python simulator and the C++ CUSTARD compiler,
which compiles from concrete index notation (CIN) to SAM graphs
(represented and stored in the DOT file format). The appendix also
describes how to reproduce the quantitative experimental results in
this paper. The artifact can be executed with any X86-64 or M-series
Apple machine with Docker, Python 3, Git, and Bash support, at
least 32 GB of RAM, and more than 20 GB of disk space.

A.2 Artifact Check-List (Meta-Information)

e Compilation: C++ compiler (either gcc or clang). The gcc 9.4.0
compiler is included with the Docker image. A fork of the TACO
compiler (found here) is included as a submodule in our artifact
(fork weiya711/taco, commit hash cf8f007).
Data set: Suitesparse Matrix Market matrices (a script to down-
load the dataset is included and the full dataset can be found at
https://sparse.tamu.edu/), Frostt Tensor Dataset tensors (a script to
download the dataset is included and the full dataset can be found at
http://frostt.io/), and synthetically generated matrices/higher-order
tensors (included).
e Run-time environment: Docker, git, Python 3, and bash need
to be installed on the local machine. Docker is available for many

operating systems. Proficiency in bash and git is recommended.
e Hardware: Any conventional x86 CPU with at least 32 GB of RAM
should work.

Metrics: Cycles (modeled as iteration counts in our simulator and

source code), expression counts, and primitive counts

e Output: Terminal outputs, files, tables, and graphs (PDF figures,
PNG figures, and DOT file format [15] graphs). Expected results are
included in the submitted paper.

o Experiments: All steps are detailed in the README . md in
https://github.com/weiya711/sam-artifact. The steps include pulling
a Docker image and running/attaching a container, running scripts
within the docker, running one Python 3 script locally outside of
the Docker to copy results, and verifying result images/files. The
experiments should have less than 5% variation since the simulator
is deterministic. The 5% variation is caused by different data patterns
in synthetic data generation (even with sparsity held constant due
to random statistics). However, these variations do not affect the
paper’s conclusions.

e How much disk space required (approximately)?: Approxi-
mately 20GB of space should be sufficient.

o How much time is needed to prepare the workflow (approxi-
mately)?: About 10-15 minutes.

o How much time is needed to complete experiments (approxi-

mately)?: To complete all experiments it takes approximately 65

hours. We also include scripts to complete a subset of the experi-

ments, which include Table 1, Table 2, Figure 11, Figure 12, Figure 13,

Figure 14, and only 8 points in Figure 15, that takes about 10 hours

to run on a standard machine.

Publicly available?: Yes, on Github at the sam repository

(https://github.com/weiya711/sam) for active development of source

code and at the sam-artifact repository

(https://github.com/weiya711/sam-artifact) for the artifact evalua-

tion of this paper. The specific commits for this artifact are tagged

with asplos23-ae in both repositories.

e Code licenses (if publicly available)?: MIT License

o Workflow framework used?: Docker

O. Hsu, M. Strange, R. Sharma, J. Won, K. Olukotun, J. S. Emer, M. A. Horowitz, and F. Kjelstad

o Archived (provide DOI)?: Yes, the DOI is
https://doi.org/10.5281/zenodo.7591742 [24].

A.3 Description

A.3.1 How to Access. The code repository for this submission can
be downloaded from https://github.com/weiya711/sam-artifact. The
repository includes a Dockerfile from which a Docker image can
be built for full evaluation of the artifact.

A.3.2 Hardware dependencies. We recommend a machine with a
conventional x86 CPU and at least 32GB of memory. We found that
some of the experiments will be OOM killed on a machine with
only 16GB of memory.

A.3.3 Software Dependencies. Evaluation of the artifact requires a
machine with Docker and Python 3 installed. We tested the artifact
evaluation on the following configurations and found them to work:
Ubuntu 20.04/Docker 20.10.12/Python 3.8 (AMD-based machine),
and MacOS 13.1/Docker 20.10.22/Python 3.9 (Intel-based machine).
We expect other versions of MacOS, Ubuntu, Docker, and Python 3
configurations to work as well.

Table 3: Matrices from the SuiteSparse matrix collection [14]
used to analyze the overhead of our stream representation
in matrix identity (Section 6.4). We randomly selected each
set of 5 matrices (delineated in the table above) from the
smallest, median, and largest 50 SuiteSparse matrices—based
on dense dimension size—that would fit in memory.

Name Domain ‘ Dimensions ‘ Nonzeros Density (%)
relat3 Combinatorics 8 X5 24 60.0
Ipi_itest6 Linear Programming 11 x 17 29 15.5
LFAT5 Model Reduction 14 X 14 46 235
ch4-4-b1 Combinatorics 72 X 16 144 125
ch7-6-b1 Combinatorics 630 X 42 1260 4.8
bwm2000 Chemical Process Simulation 2000 x 2000 7996 0.2
G32 Undirected Weighted Random Graph | 2000 X 2000 8000 0.2
progas Linear Programming 1650 X 1900 8897 0.3
Ip_maros Linear Programming 846 X 1966 10137 0.6
G42 Undirected Weighted Random Graph | 2000 X 2000 23558 0.6
stormg2-27 Linear Programming 14,439 X 37,485 94274 0.02
1pl3 Linear Programming 10, 828 X 33,686 100525 0.03
nemsemm2 Linear Programming 6943 X 48,878 182012 0.05
rifdual Linear Programming 8052 X 74,970 282031 0.05
rail507 Linear Programming 507 X 63,516 409856 13

A.3.4 Data sets. The evaluation requires matrices from the Suites-
parse Matrix Market dataset (script to download the dataset is
included, full dataset can be found at https://sparse.tamu.edu/),
the Frostt Tensor Dataset (script to download the dataset is in-
cluded, full dataset can be found http://frostt.io/), and synthetically
generated matrices/higher-order tensors (included in the artifact
evaluation). The synthetic data generation pattern for Section 6.3
is shown in Figure 17.

A.4 Installation
To install, first clone the sam-artifact repository to the local machine
and initialize all submodules, then build the docker image:

$ git clone https://github.com/weiya711/sam-artifact
$ cd sam-artifact

The Sparse Abstract Machine

o .

g — — /ﬁl‘” — Run of size 4
BT T T T [TTTTT [T1TT]

2 between two

g nonzeros

g — — =

2 N —

Runs Dataset

T T T T
EII|EYIIE||IEEE|

Blocks Dataset

Block size of
4 for both
vectors.

Vector b Vectorc

Figure 17: Sample runs and blocks vector data patterns used
for our synthetic data generation in Section 6.3.

$ git submodule update --init --recursive
$ docker build -t sam-artifact .

The docker container can be started with the following command:

$ docker run -d -it --rm sam-artifact bash

A docker container ID will be printed upon completion of this
command, and the container can be attached to with:

$ docker attach <CONTAINER_ID>

Once inside the container, a fire test can be conducted via the
commands:

$ cd /sam-artifact/sam/
$ python scripts/collect_node_counts.py

A.5 Experimental Workflow

The experimental workflow for this artifact includes running a set
of scripts within the Docker environment to generate tables/figures
from the paper. The complete instructions can be found in the
README . md included within the sam-artifact repository.

A.6 Evaluation and Expected Results

The following subsection includes information on how to reproduce

all the automatically generated result figures/tables in the paper.

We note that the left-hand side of Table 1 (Sparse Tensor Algebra
Features) and Figure 16 were manually derived by the authors and
have no associated source code.

Tables 1, Table 2 and Figures 11-14 can be generated with the
following commands:

In Docker Container

$ cd /sam-artifact

$ source scripts/generate_all_results.sh

ctrl-p ctrl-q # Detach from Docker container

In local machine

$ python sam/scripts/artifact_docker_copy.py \
--output_dir <OUTPUT_DIRECTORY> \
--docker_id <DOCKER_ID>

The expected results for the above commands are:

e Table 1: The standard output from the fire test, which is
also saved at /sam-artifact/sam/tab1.1log in the Docker
container, should match the right hand side of Table 1. The

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

left-hand side (Sparse Tensor Algebra Features) contains
manually derived summaries of the expressions.

e Table 2: The file /sam-artifact/taco-website/tab2.log
in the Docker container should match Table 2.

e Figure 11: The file fig11.pdf on the local machine should
match Figure 11.

e Figure 12: The file fig12.pdf on the local machine should
match Figure 12.

o Figure 13: The files fig13a.pdf, figl13b.pdf, and
fig13c.pdf on the local machine should match Figure 13a,
Figure 13b, and Figure 13c respectively.

o Figure 14: The file fig14.pdf on the local machine should
match Figure 14.

Figure 15 generation is time-consuming to compute so we have
given three options—one data point, a few data points, or all data
points—each with size configurations, leading to 5 options total.

In Docker container
cd /sam-artifact/sam
[Option 1] Choose and run one point from Figure 15
./scripts/single_point_memory_model_runner.sh \
extensor_<NNZ>_<DIMSIZE>.mtx
[Option 2] Run eight points from Figure 15
$./scripts/few_points_memory_model_runner.sh <GOLD>
[Option 3] Run all points from Figure 15
$./scripts/full_memory_model_runner.sh <GOLD>
ctrl-p ctrl-q # Detach from Docker container
In local machine
$ python sam/scripts/artifact_docker_copy.py \
--output_dir <OUTPUT_DIRECTORY> \
--docker_id <DOCKER_ID>

where NNZ € {5000, 10000, 25000, 50000}, DIMSIZE €
range(1024,15721,1336),and GOLD € {0, 1}, where 0 means no
gold checking and 1 includes gold checking. A single point run
has gold enabled by default and runs for between 20 minutes to
17 hours, depending on which NNZ and DIMSIZE combination is
chosen. The few points script takes approximately 8 hours to run
with no gold and 19 hours to run with gold enabled. The full script
takes approximately 64 hours to run with no gold and 92 hours to
run with gold enabled.

e Figure 15: The file fig15.pdf on the local machine should
contain a subset of scatter points that match Figure 15.
e Figure 16: This figure is manually derived.

©® H

A.7 Experiment Customization

Detailed experiment customization can be found in the sam-artifact
README .md section titled How to Reuse Artifact Beyond the
Paper.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 265-283.

[2] Peter Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Autoscheduling
for Sparse Tensor Algebra with an Asymptotic Cost Model. In Proceedings of the
43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI) (San Diego, CA, USA) (PLDI 2022). Association for

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

=

=

[

=

Computing Machinery, New York, NY, USA, 269-285. https://doi.org/10.1145/
3519939.3523442

Brett W. Bader and Tamara G. Kolda. 2007. Efficient MATLAB Computations
with Sparse and Factored Tensors. SIAM Journal on Scientific Computing 30, 1
(December 2007), 205-231. https://doi.org/10.1137/060676489

Vivek Bharadwaj, Aydin Bulug, and James Demmel. 2022. Distributed-Memory
Sparse Kernels for Machine Learning. https://doi.org/10.48550/ARXIV.2203.07673
Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasilache, Bixia
Zheng, and Fredrik Kjolstad. 2022. Compiler support for sparse tensor computa-
tions in MLIR. ACM Transactions on Architecture and Code Optimization (TACO)
19, 4 (2022), 1-25.

A. Canning, G. Galli, F. Mauri, A. De Vita, and R. Car. 1996. O(N) tight-binding
molecular dynamics on massively parallel computers: an orbital decomposition
approach. Computer Physics Communications 94, 2 (April 1996), 89-102. https:
//doi.org/10.1016/0010-4655(96)00009-4

Alex Carsello, Kathleen Feng, Taeyoung Kong, Kalhan Koul, Qiaoyi Liu, Jackson
Melchert, Gedeon Nyengele, Maxwell Strange, Keyi Zhang, Ankita Nayak, Jeff
Setter, James Thomas, Kavya Sreedhar, Po-Han Chen, Nikhil Bhagdikar, Zachary
Myers, Brandon D’Agostino, Pranil Joshi, Stephen Richardson, Rick Bahr, Christo-
pher Torng, Mark Horowitz, and Priyanka Raina. 2022. Amber: A 367 GOPS, 538
GOPS/W 16nm SoC with a Coarse-Grained Reconfigurable Array for Flexible
Acceleration of Dense Linear Algebra. IEEE Symposium on VLSI Technology &
Circuits.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (Carlsbad, CA, USA) (OSDI'18).
USENIX Association, USA, 579-594.

Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127-138. https:
//doi.org/10.1109/JSSC.2016.2616357

Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292-308. https://doi.org/10.1109/JETCAS.2019.2910232

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Abstrac-
tion for Sparse Tensor Algebra Compilers. Proc. ACM Program. Lang. 2, OOPSLA,
Article 123 (October 2018), 30 pages.

Vidushi Dadu, Sihao Liu, and Tony Nowatzki. 2021. PolyGraph: Exposing the
value of flexibility for graph processing accelerators. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 595—
608.

Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. 2019. Towards general
purpose acceleration by exploiting common data-dependence forms. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
924-939.

Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011),
1-25.

John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C. North, and Gordon
Woodhull. 2002. Graphviz— Open Source Graph Drawing Tools. In Graph Draw-
ing, Petra Mutzel, Michael Jiinger, and Sebastian Leipert (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 483-484.

Richard Feynman, Robert B. Leighton, and Matthew L. Sands. 1963. The Feynman
Lectures on Physics. Vol. 3. Addison-Wesley.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU
Kernels for Deep Learning. IEEE Press, Chapter 17, 1-14.

Fred G. Gustavson. 1978. Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition. ACM Trans. Math. Softw. 4, 3 (1978).

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,
and William J Dally. 2016. EIE: Efficient inference engine on compressed deep
neural network. ACM SIGARCH Computer Architecture News 44, 3 (2016), 243—
254.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Bret, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (2020), 357-362.

Xin He, Subhankar Pal, Aporva Amarnath, Siying Feng, Dong-Hyeon Park,
Austin Rovinski, Haojie Ye, Yuhan Chen, Ronald Dreslinski, and Trevor Mudge.
2020. Sparse-TPU: Adapting Systolic Arrays for Sparse Matrices. Association
for Computing Machinery, New York, NY, USA, Chapter 19, 1-12. https:
//doi.org/10.1145/3392717.3392751

O. Hsu, M. Strange, R. Sharma, J. Won, K. Olukotun, J. S. Emer, M. A. Horowitz, and F. Kjelstad

[22] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer

Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. 2019. ExTen-
sor: An accelerator for sparse tensor algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 319-333.

Rawn Henry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun, Saman
Amarasinghe, and Fredrik Kjolstad. 2021. Compilation of Sparse Array Program-
ming Models. Proc. ACM Program. Lang. 5, OOPSLA, Article 128 (October 2021),
29 pages. https://doi.org/10.1145/3485505

Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle Olukotun,
Joel S. Emer, Mark Horowitz, and Fredrik Kjolstad. 2023. The Sparse Abstract
Machine. https://doi.org/10.5281/zenodo.7591742 Olivia Hsu was supported by
an NSF GRFP Fellowship, Maxwell Strange was supported by the Apple Stanford
Electrical Engineering PhD Fellowship in Integrated Systems, and Ritvik Sharma
was supported by the Stanford Graduate Fellowship. This work was supported
in part by the NSF under grant numbers 1937301, 2028602, CCF-1563078, and
1563113; by DARPA under the Domain-Specific System on Chip (DSSoC) Program;
and by the DoE National Nuclear Security Administration (NNSA) under grant
number DE- NA0003965. This research was also supported in part by the Stanford
Agile Hardware (AHA) Center, Google Research Scholar program, and Stanford
Data Analytics for What’s Next (DAWN) Affiliate Program..

Kenneth E Iverson. 1962. A programming language. In Proceedings of the May
1-3, 1962, spring joint computer conference. 345-351.

Jeremy Kepner and John R. Gilbert (Eds.). 2011. Graph Algorithms in the Language
of Linear Algebra. Software, environments, tools, Vol. 22. SIAM. http://dblp.uni-
trier.de/db/books/collections/KG2011.html

Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe. 2019.
Tensor Algebra Compilation with Workspaces. In 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 180-192. https://doi.
0rg/10.1109/CG0.2019.8661185

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-
inghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1-29.

Fredrik Berg Kjolstad. 2020. Sparse tensor algebra compilation. Ph. D. Dissertation.
Massachusetts Institute of Technology.

David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Had-
jis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. 2018. Spatial: A Language and Compiler for Applica-
tion Accelerators. In Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Philadelphia, PA, USA) (PLDI
2018). Association for Computing Machinery, New York, NY, USA, 296-311.
https://doi.org/10.1145/3192366.3192379

Tamara G. Kolda and Jimeng Sun. 2008. Scalable Tensor Decompositions for
Multi-aspect Data Mining. In 2008 Eighth IEEE International Conference on Data
Mining. 363-372. https://doi.org/10.1109/ICDM.2008.89

Scott Kovach and Fredrik Kjolstad. 2022. Correct Compilation of Semiring Con-
tractions. https://doi.org/10.48550/ARXIV.2207.13291

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In CGO. San Jose, CA, USA,
75-88.

Qiaoyi Liu, Dillon Huff, Jeff Setter, Maxwell Strange, Kathleen Feng, Kavya
Sreedhar, Ziheng Wang, Keyi Zhang, Mark Horowitz, Priyanka Raina, and Fredrik
Kjolstad. 2021. Compiling Halide Programs to Push-Memory Accelerators. CoRR
abs/2105.12858 (2021). arXiv:2105.12858 https://arxiv.org/abs/2105.12858
Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2019. PHI: Ar-
chitectural Support for Synchronization- and Bandwidth-Efficient Commuta-
tive Scatter Updates. In Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (Columbus, OH, USA) (MICRO °52). As-
sociation for Computing Machinery, New York, NY, USA, 1009-1022. https:
//doi.org/10.1145/3352460.3358254

Erdal Mutlu, Ruigin Tian, Bin Ren, Sriram Krishnamoorthy, Roberto Gioiosa,
Jacques Pienaar, and Gokcen Kestor. 2020. COMET: A Domain-Specific Compila-
tion of High-Performance Computational Chemistry. In Languages and Compilers
for Parallel Computing: 33rd International Workshop, LCPC 2020, Virtual Event,
October 14-16, 2020, Revised Selected Papers. Springer-Verlag, Berlin, Heidelberg,
87-103. https://doi.org/10.1007/978-3-030-95953-1_7

Quan M. Nguyen and Daniel Sanchez. 2021. Fifer: Practical Acceleration of
Irregular Applications on Reconfigurable Architectures. In MICRO-54: 54th An-
nual IEEE/ACM International Symposium on Microarchitecture (Virtual Event,
Greece) (MICRO ’21). Association for Computing Machinery, New York, NY, USA,
1064-1077. https://doi.org/10.1145/3466752.3480048

Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-dataflow acceleration. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). 416-429. https:
//doi.org/10.1145/3079856.3080255

Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-
ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,
and Ronald Dreslinski. 2018. OuterSPACE: An outer product based sparse ma-
trix multiplication accelerator. In 2018 IEEE International Symposium on High

The Sparse Abstract Machine

Performance Computer Architecture (HPCA). IEEE, 724-736.

[40] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago,
Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer Jaleel,
Randy Allmon, Rachid Rayess, Stephen Maresh, and Joel Emer. 2013. Triggered
Instructions: A Control Paradigm for Spatially-Programmed Architectures. In
Proceedings of the 40th Annual International Symposium on Computer Architecture
(Tel-Aviv, Israel) (ISCA °13). Association for Computing Machinery, New York,
NY, USA, 142-153. https://doi.org/10.1145/2485922.2485935

[41] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-

harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and

William J. Dally. 2017. SCNN: An accelerator for compressed-sparse convolu-

tional neural networks. In 2017 ACM/IEEE 44th Annual International Symposium

on Computer Architecture (ISCA). 27-40. https://doi.org/10.1145/3079856.3080254

Raghu Prabhakar, David Koeplinger, Kevin J. Brown, HyoukJoong Lee, Christo-

pher De Sa, Christos Kozyrakis, and Kunle Olukotun. 2016. Generating Config-

urable Hardware from Parallel Patterns. In Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages and Operat-
ing Systems (Atlanta, Georgia, USA) (ASPLOS ’16). Association for Computing Ma-
chinery, New York, NY, USA, 651-665. https://doi.org/10.1145/2872362.2872415

Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,

Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.

Plasticine: A Reconfigurable Architecture For Parallel Paterns. SIGARCH Comput.

Archit. News 45, 2 (June 2017), 389-402. https://doi.org/10.1145/3140659.3080256

[44] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-

Kelley, and Mark Horowitz. 2017. Programming Heterogeneous Systems from

an Image Processing DSL. ACM Trans. Archit. Code Optim. 14, 3, Article 26 (aug

2017), 25 pages. https://doi.org/10.1145/3107953

Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-

vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse

and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.

In 2020 IEEE International Symposium on High Performance Computer Architecture

(HPCA). 58-70. https://doi.org/10.1109/HPCA47549.2020.00015

[46] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Ama-
rasinghe, and Frédo Durand. 2012. Decoupling Algorithms from Schedules for
Easy Optimization of Image Processing Pipelines. ACM Trans. Graph. 31, 4,
Article 32 (July 2012), 12 pages. https://doi.org/10.1145/2185520.2185528

[47] M.M.G. Ricci and T. Levi-Civita. 1901. Méthodes de calcul différentiel absolu et

leurs applications. Math. Ann. 54 (1901), 125-201. http://eudml.org/doc/157997

Alexander Rucker, Matthew Vilim, Tian Zhao, Yaqi Zhang, Raghu Prabhakar,

and Kunle Olukotun. 2021. Capstan: A Vector RDA for Sparsity. In MICRO-54:

54th Annual IEEE/ACM International Symposium on Microarchitecture (Virtual

Event, Greece) (MICRO °21). Association for Computing Machinery, New York,

NY, USA, 1022-1035. https://doi.org/10.1145/3466752.3480047

[49] Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen
Chou, Shoaib Kamil, Saman Amarasinghe, and Fredrik Kjolstad. 2020. A Sparse
Iteration Space Transformation Framework for Sparse Tensor Algebra. Proc.
ACM Program. Lang. 4, OOPSLA, Article 158 (Nov. 2020), 30 pages. https:
//doi.org/10.1145/3428226

[50] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu,

and George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse

Tensors and Tools. http://frostt.io/

Edgar Solomonik and Torsten Hoefler. 2015. Sparse Tensor Algebra as a Parallel

Programming Model. CoRR abs/1512.00066 (2015). arXiv:1512.00066 http://arxiv.

org/abs/1512.00066

[52] Edgar Solomonik, Devin Matthews, Jeff R. Hammond, John F. Stanton, and James
Demmel. 2014. A massively parallel tensor contraction framework for coupled-
cluster computations. J. Parallel and Distrib. Comput. 74, 12 (2014), 3176-3190.

[42

[43

[45

[48

(51

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

https://doi.org/10.1016/j.jpdc.2014.06.002 Domain-Specific Languages and High-
Level Frameworks for High-Performance Computing.

Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.
MatRaptor: A sparse-sparse matrix multiplication accelerator based on row-wise
product. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 766-780.

Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi, and
Zhiru Zhang. 2020. Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense
Tensor Computations. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 689-702. https://doi.org/10.1109/HPCA47549.
2020.00062

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2020. Efficient
Processing of Deep Neural Networks. Morgan & Claypool Publishers.

Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data Trans-
formations for Sparse Matrix Code. SIGPLAN Not. 50, 6 (June 2015), 521-532.
https://doi.org/10.1145/2813885.2738003

Matthew Vilim, Alexander Rucker, and Kunle Olukotun. 2021. Aurochs: An
Architecture for Dataflow Threads. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 402-415. https://doi.org/10.1109/
ISCA52012.2021.00039

Matthew Vilim, Alexander Rucker, Yagi Zhang, Sophia Liu, and Kunle Olukotun.
2020. Gorgon: Accelerating Machine Learning from Relational Data. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
309-321. https://doi.org/10.1109/ISCA45697.2020.00035

Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P Gummadi. 2009.
On the evolution of user interaction in facebook. In Proceedings of the 2nd ACM
workshop on Online social networks. 37-42.

Jian Weng, Sihao Liu, Dylan Kupsh, and Tony Nowatzki. 2022. Unifying spatial
accelerator compilation with idiomatic and modular transformations. IEEE Micro
42, 5 (2022), 59-69.

Yannan Nellie Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel S.
Emer. 2022. Sparseloop: An Analytical Approach To Sparse Tensor Accelerator
Modeling. https://doi.org/10.48550/ARXIV.2205.05826

Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. DISTAL: The Distributed
Tensor Algebra Compiler. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (San Diego,
CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY,
USA, 286-300. https://doi.org/10.1145/3519939.3523437

Rohan Yadav, Alex Aiken, and Fredrik Kjolstad. 2022. SpDISTAL: Compiling
Distributed Sparse Tensor Computations. arXiv preprint arXiv:2207.13901 (2022).
Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2022. SparseTIR:
Composable Abstractions for Sparse Compilation in Deep Learning. https:
//doi.org/10.48550/ARXIV.2207.04606

Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. 2021. GAMMA:
leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 687-701.

Yaqi Zhang, Nathan Zhang, Tian Zhao, Matt Vilim, Muhammad Shahbaz, and
Kunle Olukotun. 2021. SARA: Scaling a Reconfigurable Dataflow Accelerator. In
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA). 1041-1054. https://doi.org/10.1109/ISCA52012.2021.00085

Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020. SpArch:
Efficient architecture for sparse matrix multiplication. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 261-274.

Received 2022-10-20; accepted 2023-01-19

	Abstract
	1 Introduction
	2 Background
	2.1 The Design Space of Sparse Tensor Algebra
	2.2 The TACO Compiler
	2.3 Prior Work on Fixed-Function Hardware
	2.4 Prior Work on Programmable Hardware

	3 The Core Sparse Abstract Machine
	3.1 Tensor Data Model
	3.2 Tensor Streams
	3.3 Tensor Iteration
	3.4 Illustrative Example
	3.5 Stream Merging
	3.6 Computation
	3.7 Tensor Construction
	3.8 Alternatives and Tradeoffs Discussion

	4 Optimization Discussion
	4.1 Tiling
	4.2 Tensor Locating
	4.3 Bitvectors
	4.4 Parallelization

	5 The Custard Compiler
	6 Evaluation
	6.1 Empirical Study of the Generality of SAM
	6.2 Ablation Study on the Utility of SAM Blocks
	6.3 Asymptotic Tradeoff Analysis
	6.4 Modeling Exploration
	6.5 Backend Case Studies

	7 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experimental Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization

	References

