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ABSTRACT

We propose the Sparse Abstract Machine (SAM), an abstract ma-

chine model for targeting sparse tensor algebra to recon�gurable

and �xed-function spatial data�ow accelerators. SAM de�nes a

streaming data�ow abstraction with sparse primitives that encom-

pass a large space of scheduled tensor algebra expressions. SAM

data�ow graphs naturally separate tensor formats from algorithms

and are expressive enough to incorporate arbitrary iteration order-

ings and many hardware-speci�c optimizations. We also present

Custard, a compiler from a high-level language to SAM that demon-

strates SAM’s usefulness as an intermediate representation. We

automatically bind from SAM to a streaming data�ow simulator.

We evaluate the generality and extensibility of SAM, explore the

performance space of sparse tensor algebra optimizations using

SAM, and show SAM’s ability to represent data�ow hardware.

CCS CONCEPTS

• Computer systems organization→ Data �ow architectures; •

Software and its engineering→ Compilers.
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1 INTRODUCTION

Specialized streaming data�ow accelerators that leverage pipelin-

ing, locality, and parallelism are becoming increasingly popular

as performance- and energy-e�cient alternatives to CPUs and

GPUs. But the e�ciency comes at the cost of programmability:

all have limits to their application domain, and most have lim-

ited and/or di�cult programming interfaces. As a result, users

often access these accelerators through library calls that are cre-

ated by expert programmers [57, 58]. Recent research has proposed

closing this �exibility and programmability gap by creating recon-

�gurable data�ow architectures or coarse-grained recon�gurable

arrays [7, 13, 22, 37, 38, 40, 43], including compilation tools to map

a class of user applications to these arrays [30, 34, 44, 60, 66].

Given these trends, it is not surprising that interest in general

accelerators for sparse tensor algebra is increasing [13, 22, 48].

Sparse tensor algebra has applications across many �elds including

science, engineering, data and graph analytics, and machine learn-

ing [1, 6, 16, 26, 31, 41]. Tensor algebra generalizes linear algebra

to higher-order tensors, and “sparse” indicates tensor algebra com-

putations where one or more tensors are stored in compressed data

structures that omit zeros. Sparse tensor algebra, expressed as a lan-

guage using tensor index notation or Einstein summation (Einsum)

notation, is an important language with a long history, starting as a

mathematical notation [47]. It has recently gained traction as a com-

putational language [3] that subsumes linear algebra. To accelerate

these computations, many papers have also been published on point

solutions for single-expression hardware, where the expression is

often sparse matrix multiplication [39, 45, 53, 54, 65, 67].

Most sparse tensor algebra accelerators are �xed-function matrix

multiply engines. Arbitrary sparse tensor contractions must there-

fore be reduced to sparse matrix multiplications through algebraic

factorization [51, 52]. Factorization breaks up large expressions us-

ing transpositions, tensor-to-matrix conversions, and temporaries.

However, compared to dense tensor algebra, factorization is signi�-

cantly more expensive for sparse tensor algebra. In fact, a sequence

of matrix multiplications is often more than an order of magnitude

slower compared to bespoke generated tensor contractions. And,

more importantly, the lack of fusion in sparse computations can,
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and often does, lead to inferior worst-case asymptotic complexity:

the runtime of an unfused expression may grow with the number

of tensor components while a fused expression grows with the

number of nonzero components [29]. To address the limitations of

�xed-function accelerators, the SPU [13], ExTensor [22], and Cap-

stan [48] systems propose programmable sparse data�ow hardware.

However, they lack full support for sparse tensor algebra.

We de�ne an abstract machine model for sparse tensor algebra

called the Sparse Abstract Machine (SAM) that accelerates general

sparse tensor algebra. SAM consists of abstract data�ow blocks

that lend themselves to VLSI implementations and compose to im-

plement any sparse tensor algebra expression and to implement

many algorithms for each expression, including fused algorithms,

unfused algorithms with temporaries, tiled algorithms, and paral-

lelized and vectorized algorithms. Thus, SAM can simultaneously

be used to analyze point solutions, be the abstract architecture of a

programmable sparse tensor algebra data�ow implementation, and

be the intermediate representation of its compiler.

We built SAM to be for sparse tensor data�ow accelerators what

LLVM [33] is for instruction-based conventional processors: It de-

�nes the machine functionality and provides an interface between

the compiler and hardware, allowing the end-to-end system to con-

tinue to function while both sides are independently optimized.

SAM also enumerates the primitives that are needed to support all

features of sparse tensor algebra. Our contributions are:

(1) the �rst abstract machine model that expresses the whole

of sparse tensor algebra computations as spatial data�ow

graphs on multidimensional sparse and dense tensors,

(2) cleanly de�ned data�ow primitives for each of the funda-

mental features of sparse tensor algebra,

(3) a representation of multidimensional sparse/dense tensors

as �attened streams with hierarchical control tokens, and

(4) a compilation strategy from a high-level tensor index nota-

tion to our abstract machine model.

To evaluate our contributions we implemented SAM as a cycle-

approximate simulator that is generated by our compiler, Custard.

Using the simulations, we search the space of sparse tensor algebra

architectural designs. Finally, we show that SAM can represent

prior sparse data�ow accelerators.

2 BACKGROUND

This section describes the necessary features of a general sparse ten-

sor algebra computing system. We discuss how these features can

be programmed with the input APIs of the TACO compiler [28]. We

describe why TACO only targets von Neumann machines and pro-

pose a new compiler in Section 5 that uses SAM to target data�ow

accelerators. Finally, we discuss limitations of prior work on �xed-

function and programmable sparse tensor algebra hardware.

2.1 The Design Space of Sparse Tensor Algebra

Tensor algebra computations are typically expressed using tensor

index notation (or Einsum notation), where tensors are indexed by

index variables, are multiplied and added, and where results may be

summed over index variables. For example, matrix multiplication

can be written in tensor index notation as -8 9 =
∑
: �8:�: 9 , where

index variables 8 , 9 , and : range over the rows and columns that

they index. Expressions may have more than two operands, such

as sampled dense-dense matrix multiplication (SDDMM) -8 9 =

∑
: �8 9�8:� 9: . For such compound expressions, it is often bene�cial

to fuse the resulting computation (i.e., loop fusion or hardware

pipelining to avoid materializing large temporary data structures).

Tensor index notation only speci�es the expression (or algorithm

of computation) and does not does not include a description of

the schedule (e.g. data�ow traversal order, tiling methodology, and

parallelization). Prior work popularizes the separation of algorithm

and schedule in both software [8, 46, 49, 56] and hardware [9].

Tensor index notation consists of �ve features that must be

supported by any general tensor algebra computing system:

(1) a way to traverse multidimensional tensors;

(2) a way to combine traversal over multiple tensors;

(3) a way to repeat operands over other operands, e.g., in G8 =∑
9 �8 92 9 , 2 must be multiplied by each row of �;

(4) a way to compute scalar additions and multiplications, in-

cluding summation reductions; and

(5) a way to assign results to a tensor.

E�cient sparse tensor algebra computing systemsmust also support

(6) compressed data structures for sparse tensors,

(7) index variable iteration in any order, and

(8) fusion of the computation

in order to avoid inferior worst-case asymptotic complexity [2, 29].

2.2 The TACO Compiler

The TACO compiler [28] and related systems [5, 36, 62–64] compile

tensor index notation to von Neumann architectures, including

CPUs, GPUs [49], and distributedmachines [62, 63]. TACO supports

all �ve features of tensor index notation, as well as compressed data

structures [11, 28], iteration reordering [27], and fusion [28]. The

TACO compiler has three separate languages that independently

describe functionality, data, and optimization: tensor index notation,

a data representation language, and a scheduling language.

Although TACO has the generality we described in Section 2.1,

it only compiles to von Neumann architectures. This limitation is

due to its lowering machinery fundamentally embedding the

(co-)iteration over one or more tensors into general-purpose control

�ow found in von Neumann machines including: indirect index

accesses, while loops, and if statements. The heavy reliance on

these constructs during lowering and code generation for travers-

ing irregular structures makes it inapplicable for recon�gurable

data�ow accelerators since many of these architectures remove gen-

eral control �ow to achieve higher performance [7, 13, 22, 40, 43, 48].

Converting the complex control �ow generated by TACO into a

data�ow abstraction, such as the one we describe in this paper,

would require signi�cant assumptions about data accesses and/or

a complex synthesis system. Instead, we describe an alternative

compiler lowering algorithm that lowers from TACO’s high-level

concrete index notation [27] to the SAM data�ow abstraction.

2.3 Prior Work on Fixed-Function Hardware

There is a large body of recent work on architectures that explore

point solutions in the space of hardened sparse tensor algebra ex-

pressions and algorithms [10, 19, 21, 39, 41, 45, 53, 54, 65], which
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we will call �xed-function accelerators. Many of these implement

sparse matrix multiplication (SpM*SpM) [19, 21, 39, 45, 53, 65]. For

example, SIGMA [45] implements the inner-product 8 → 9 → :

iteration order. Although this order is typically preferred for dense

matrix multiplications, and although it avoids scattering into the

result, it has poor asymptotic performance because it iterates over

all combinations of 8 and 9 before coordinates are intersected at

the contracted variable : . GAMMA [65] applies Gustavson’s [18]

8 → : → 9 iteration order, which improves the asymptotic complex-

ity at the cost of merge hardware to rearrange the reduction step to

allow in-order generation of elements of - . And OuterSPACE [39]

implements the outer-product : → 8 → 9 iteration order, which

for doubly-compressed sparse row (DCSR) matrices has better as-

ymptotic complexity than the 8 → : → 9 order but requires an

additional step for merging whole matrices into - .

Using �xed-function matrix multiplication hardware to com-

pute any expression in tensor algebra relies on factorizing general

expressions into a sequence of invocations of matrix multiplica-

tion operations. Factorizing unfuses the computation and �xes the

data�ow ordering. SAM removes this limitation by having su�-

cient power to express fused expressions on accelerators, letting us

explore both the bene�ts and the costs of these approaches.

2.4 Prior Work on Programmable Hardware

The limitations of �xed-function data�ow hardware motivate pro-

grammable sparse tensor algebra data�ow hardware, which are

implementations of an abstract machine like the one in this paper.

We describe threemajor lines of prior work on programmable sparse

tensor algebra data�ow hardware: the SPU [13], ExTensor [22], and

Capstan [48]. While these designs do not support the full general-

ity described in Section 2.1, they suggest the essential hardware

structures and techniques in data�ow accelerators for sparse tensor

algebra and greatly in�uenced our work.

SPU. The Sparse Processing Unit (SPU) [13, 38] is a spatial stream-

ing data�ow architecture where instructions on a CPU con�gure

a Coarse-Grained Recon�gurable Architecture (CGRA) and then

stream arrays to it. It has e�cient hardware both for combining

streams (e.g., an intersection) and for using one stream to index into

an on-chip array [13]. The SPU can be used to implement binary

vector operations, relational joins, and graph algorithms [12], thus

unifying domains. The SPU also includes an idiom-directed com-

piler [60] from pragma-annotated C loops to CGRA con�gurations.

Although the SPU literature describes operations that support a

broad set of domains—tensor algebra, relational algebra, and graph

operations—the SPU CGRA [13] only supports vector operations,

while higher-order tensor algebra operations appear to be imple-

mented as CPU loops that dispatch inner-loop vector operations

to the CGRA (see Figure 6 from Nowatzki et al. [38], which the

SPU extends). Thus, higher-order expressions must be broken into

pieces with data �owing between the CPU and CGRA engine, re-

ducing pipeline locality. The abstract machine we describe in this

paper provides a complete data�ow model for tensor algebra. Using

it, together with the compiler, to target the SPU and the TACO com-

piler to target the CPU, provides a fruitful path towards compiling

to the SPU system from a higher-level tensor algebra language.

ExTensor. The ExTensor system [22] is a CGRA-style architecture

designed to hierarchically evaluate Einsum operations on sparse

tensors. In ExTensor, a compute element is made up of memory

that stores pieces of tensors, i.e, �bers, and hardware to perform

operations on those �bers (e.g., read/stream them in/out, perform

intersections/MACCs). ExTensor’s design primarily considered a

topology of compute elements that each operated on two �bers

(from two operand tensors) at a time, and was focused on comput-

ing SpM*SpM. To support SDDMM, which has three operands, an

ExTensor instance with additional compute elements was proposed.

However, it cannot perform all Einsum computations, such as those

with union merges for addition. Extensor also did not provide a

programmatic approach to map an arbitrary Einsum to a concrete

ExTensor instance, which makes it hard to add new expressions

that were not tested by the authors. Nor is there a discussion of how

the architecture might change to better suit the needs of arbitrary

Einsums. SAM and our compiler addresses these limitations, and

should allow for the creation of ExTensor con�gurations.

Capstan. Finally, the Capstan system [48] supports hierarchical iter-

ation over dense, compressed, bitvector, and bit-tree data structures.

For some data structure types, it supports any tensor algebra expres-

sion, including additions and multiplications. Its primary limitation

is that it does not support combining two or more compressed data

structures (e.g., by intersection) at one iteration level. Instead, it

relies on bitvectors and bit-trees, which densify the iteration. The

paper argues that this works well for common clustered sparse

tensors, but not for arbitrary sparsity. Finally, the Capstan system

does not support e�cient broadcasting of a tensor over a sparse

inner dimension of another tensor, as it relies on programmed

counters to control broadcasting. While Capstan is programmed

by Spatial [30, 66], a domain speci�c language for hardware accel-

erators based on parallel patterns [42], Spatial is at a lower-level

of abstraction—more descriptive of the hardware accelerator—than

the Custard input APIs. Again SAM provides an opportunity to

provide a higher-level programming interface for this system.

3 THE CORE SPARSE ABSTRACT MACHINE

SAM provides a clean method to transport tensors on wires and to

express all tensor algebra operations, serving as an LLVM-like inter-

face. We de�ne nine types of data�ow blocks that can be composed

to execute arbitrary sparse tensor algebra expressions. Level scan-

ners fetch a tensor’s nonzero coordinates and send them as streams

to intersecters, unioners, and repeaters that combine coordinates

from di�erent tensors. ALUs and reducers compute tensor opera-

tions. Coordinate droppers �lter out unnecessary coordinates, and

level writers write the resulting sparse tensor to arrays in memory.

SAM lets programs use as many blocks as needed. Of course, any

physical implementation is constrained to a �nite set of resources.

Our compiler can be used to transform an unconstrained graph to

a speci�c physical backend by breaking up the computation in time

through data movement into temporary memories and block reuse.

SAM is su�ciently expressive to represent any data�ow for

any tensor algebra expression, as it implements all the features in

Section 2.1. Furthermore, SAM implements a streaming model of

those features, and Kovach and Kjolstad have shown an equivalence

proof of sparse tensor algebra and a formal streaming model [32].







ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada O. Hsu, M. Strange, R. Sharma, J. Won, K. Olukotun, J. S. Emer, M. A. Horowitz, and F. Kjølstad

∗ ∗ ∗ ∗ ∗

Figure 6: Repeating a scalar with a repeater block.

every coordinate of the provided coordinate stream. The repeater is

a new primitive that solves limitations on prior work architectures

needing to pre-con�gure higher-order iteration counts [13, 22, 48].

De�nition 3.4 (Repeater). Repeaters have one input coordinate

stream, one input reference stream, and one output reference stream.

Each non-control token in the input reference stream is repeated

< number of times, where< is the number of non-control tokens

from the input coordinate stream before a stop token is seen.

Hierarchical repeating and stream merging compose to express

algorithms for multidimensional tensor contractions. Reconsider

the linear combination of rows SpM*SpM algorithm from Figure 4.

The 8 coordinates loaded from � are not only passed to the 8 level

writer of - by way of the coordinate dropper, but also fed to a

repeater that broadcasts all of �’s : coordinates over each 8 .

3.6 Computation

After stream merging, the remaining coordinates are coordinate

space points that contribute to the result. Their corresponding

reference streams are passed to array blocks that load their values.

De�nition 3.5 (Array). An array block is a proxy for a memory

interface and can be treated as a contiguous section of memory. It

has two interface modes—load, which given one input reference

stream fetches data to produce one output stream of any type,

and store, which given one input reference stream and one input

data stream of any type has a side e�ect that stores the data to its

corresponding reference location in memory.

In SAM, arrays store values, coordinates, and references. In the

computation pipeline, value streams are read from the array of each

operand, with the same coordinates, and combined using streaming

arithmetic-logic units (ALUs). The Figure 4 ALU is a multiply unit.

De�nition 3.6 (ALU). An ALU block consumes two value streams

and produces one value stream. It applies an arithmetic operator

(add, subtract, or multiply) to inputs, treating empty tokens as zeros.

In addition to combining values at the same coordinate, often the

algorithm needs to accumulate a tensor. In our illustrative example

in Figure 4 this occurs at the end, where we sum over the : dimen-

sion (multiple dimensions can be summed by chaining reduction

blocks). Reductions in tensor algebra may occur over any tensor

dimension, independent of the order in which we choose to merge

coordinates. Thus, summation reductions may occur over the coor-

dinate level that is merged last (requiring a scalar to accumulate the

result), over the coordinate-level merged second to last (requiring a

vector to accumulate the results), or over coordinates merged earlier

(requiring a higher-dimensional tensor to accumulate the results).

SAM provides one block for reductions that must be con�gured for

any speci�c dimension of accumulation.

xj =

X
i
Bij

Figure 7: Example using the row reducer, where = = 1, to

accumulate the columns of the matrix from Figure 1a.

De�nition 3.7 (Reducer). A reducer is con�gured by=, the dimen-

sion of the memory needed in the reduction. It inputs and outputs

= coordinate streams and one value stream. The block is sent an

entire =-dimensional (sub-)tensor with repeated points/values and

outputs streams that represent that tensor with unique coordinates

and summed values. Speci�c reducers include: scalar where = = 0,

vector where = = 1, and matrix where = = 2.

The reducer internally adds values corresponding to equiva-

lent coordinate points and stores the results in an internal storage,

which may be a dense or a sparse data structure. Finally, when

an =-level reduction is completed, for example when a whole row

has been processed for the Gustavson’s algorithm in Figure 4, the

reducer emits the resulting tensor as streams with deduplicated

coordinates. When accumulating coordinates with empty �bers,

resulting from ine�ectual intersections, the reducer may be con�g-

ured to either accumulate empty �bers into an explicit zero (the

identity for addition) or to remove the empty �bers by removing

their extra stop tokens. The choice is an implementation decision,

but empty reduction behavior may a�ect SAM graph construction

for other blocks (see De�nition 3.9 and Table 2).

Like with level scanners, various implementations of the reducer

are possible underneath the abstraction, including k-way merging,

dense arrays, compressed data structures, and bitmaps [35, 43, 48].

Figure 7 shows an example of a row (= = 1) reducer.

3.7 Tensor Construction

The �nal step of a SAM graph is to store the resulting tensor streams

back to memory. Speci�cally, the surviving coordinate streams for

the index variables used to index the left-hand side of the Einsum

expression, as well as the computed values, need to be stored back

into per-level tensor memory representations.

De�nition 3.8 (Level writer). Level writers take in either one

value stream or one coordinate stream and store its contents to

memory, internally generating reference information and auxiliary

level data structures. As a result, the block is a wrapper around

the store mode of a coordinate Array (and its metadata) or a value

array. The level writer’s internally generated references store the

data tokens from the input stream in order.

In cases with at least one index-variable level above an inter-

section level, the result coordinate streams must be cleaned before

the level writer stores it back to memory. The coordinate cleanup

removes any outer-level result coordinates that have ine�ectual

inner-level intersections (either empty intersections or zero values)

as shown in Figure 8. We introduce the coordinate dropper block

to handle these cases. Coordinate droppers with value stream in-

puts are optional if explicit zeros need not be removed. In this case,

other coordinate dropper blocks are also optional if the reducer
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Figure 8: Dropping coordinate 2 from the matrix in Figure 1a.

blocks is con�gured to accumulate empty �bers into 0-values, since

ine�ectual (empty) intersections will produce explicit values.

De�nition 3.9 (Coordinate Dropper). The coordinate dropper

takes in one outer-level coordinate stream and one inner-level co-

ordinate or value stream. It removes both the outer-level and inner-

level tokens that came from ine�ectual merging or computation

(empty �bers or zeros) at the inner level.

3.8 Alternatives and Tradeo�s Discussion

We discuss alternatives and tradeo�s of core SAM design decisions,

which we hope will provide insights into our design rationale.

Stream Control Tokens. Section 3.1 presents a solution for stream-

ing data�ow where the control tokens (stop, empty, and done) are

directly passed through the data plane, but alternative solutions to

control �ow for data�ow exist. Other valid data�ow control-�ow so-

lutions include control signaling on dedicated control-only streams,

embedding control (via counters and control tokens) directly into

each primitive, and having a completely separate control plane.

We give examples, discuss the limitations of these approaches, and

justify putting control tokens on the data plane.

In initial iterations of SAM, we considered representations with

primitives that had dedicated control signaling using control-only

streams. For example, we considered passing repeat information by

connecting two level scanners together to exchange signals that de-

note when to stop repeating coordinates. Having streams that only

communicate control information risks underutilization, where no

information is passed through most cycles, and complicates the

composition of multiple blocks, as they would need to be hardened

together. However, the bene�t of this design would be that control

information (when produced) and data can be processed in parallel.

We also considered a SAM design that embedded control directly

into each block, which included embedding repeat counters into

level scanners and done signaling into each primitive. The direct

embedding of counters and other control logic into the primitives

increases the primitive area and hardware complexity. Additionally,

pre-con�guration of counters is usually necessary, meaning that

metadata information (like number of nonempty elements) must be

obtained by the compiler statically during compile time by iterating

over the sparse data at least once on the CPU.

Finally, a design with a separate control plane (not just separate

control wires) would bemore similar to a vonNeumann architecture

than prior work on data�ow architectures. Data�ow architectures

attempt to remove performance overheads of traditional CPUs

by eliminating most general-purpose control, which is done by

removing the control unit and restricting control. Having a separate

control plane on SAM would fundamentally push our design closer

to a von Neumann machine abstraction and would thus not be a

good �t for representing streaming data�ow accelerator backends.

Although having control tokens directly processed on the data

plane may decrease performance—primitives must now process

these tokens—they increase interconnect and logic utilization, de-

crease primitive area, minimize primitive logic complexity, and still

allow for streaming data�ow processing (massive pipelining/paral-

lelism with low control overhead).

Level-Based Stream Representation. Another approach to our level-

based streaming tensor representation would be a less e�cient

point-based streaming representation. One implementation could

stream �attened tensor point tuples with no control tokens. The

tensor from Figure 1 could thus be represented as

(0, 1, 1), (1, 0, 2), (1, 2, 3), (3, 1, 4), (3, 3, 5), �
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

In this representation, the number of processed stream tokens for

identity matrices is 3 ·nnz� , where nnz� is the number of nonzeros

in �. We can compare the two representations to �nd when the

point-based representation has more tokens using the equation

3 · nnz� > (1 + 2) · nnr� + 2 · (1 + 2) · nnz� where 2 is the fraction

of control tokens and nnr� is the number of nonempty rows in

�. Using worst-case numbers from our analysis in Figure 14, we

rewrite the equation to 3·nnz� > 1.3326·dim�8
+2·1.3326·nnz� =⇒

nnz� > 3.98 · dim�8
where dim�8

is the number of rows in �.

The result demonstrates that our level-based representation, in the

worst-case, processes less tokens than the point-based approach

when there are on average more than 4 elements per row. Of the

matrices we selected in Figure 14, all 5 middle 50 and 5 large 50

matrices satisfy the 4× inequality and are more e�cient in our level-

based representation. Our approach becomes evenmore e�cient for

higher-order tensors. The coordinates at every level are expanded

to the last level—proportional to roughly O(=# ) instead of O(=2) for

matrices, where = is a single tensor dimension and # is the tensor

order—to produce the tensor point tuples.

4 OPTIMIZATION DISCUSSION

The core SAM blocks introduced in Section 3 are complete in the

sense that they compose to express every tensor algebra expres-

sion. Moreover, they su�ce to express all coordinate processing

(data�ow) orders and fusion—the primary tools to construct al-

gorithms with good asymptotic complexity [2]. To express SAM

graphs that further optimize performance and deal with �nite hard-

ware, we have added additional capabilities. These capabilities let

the graphs express parallelism, tiling, and more ways to represent

tensor information either in memory or as streams. In this section,

we discuss how SAM extends to include these additional optimiza-

tions and how they compose with the core SAM from Section 3.

4.1 Tiling

In our data model, tiling a tensor splits a single �bertree level into

multiple levels and then reorders those levels to produce smaller sub-

tensors (tiles). Figure 9 shows how SAM can sequence tiled tensors

between host and accelerator devices for computation with �xed-

size memories. SAM graphs are used in outer levels to sequence the

tile coordinates (tile IDs) for reuse and in the inner levels to per-

form the computation. The tile sequencing is equivalent to tensor

iteration (Section 3.3) and stream merging (Section 3.5), where tile

IDs are coordinates and the values are references to the next level of
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six permutation orders of 8 9: for the SpM*SpM expression using

two distinct 95% sparse uniformly random matrices with di�erent

dimensions of sizes � = � = 250 and  = 100. Figure 12 shows

the inner-product algorithms (8 9: , 98:) perform the worst for ma-

trix multiply. The linear combination of rows (8: 9 , 9:8) and outer

product (:8 9 , : 98) algorithms perform a least an order of magnitude

better. The performance is dictated by the order of : since coordi-

nates are �ltered out (intersected) at : earlier in the data�ow before

repeating along the other dimensions 8, 9 . These algorithms di�er

in their asymptotic complexity [2, 29], so performance di�erences

will increase with increases in sparsity. However, the inner-product

algorithm may be more e�cient with other data and uses asymp-

totically less memory for the reduction (a scalar instead of a row).

Since the e�ciency choice is a tradeo�, sparse hardware should

support many processing orders.

Fusion. We demonstrate the algorithmic performance advantage of

fusion using a common expression from machine learning, the 8 9:-

ordered SDDMM -8 9 =
∑
: �8 9�8:� 9: [4, 17]. We generate a 95%

sparse uniformly random matrix along with two dense matrices of

dimensions � = � = 250 with a sweep of  = {1, 10, 100}. Figure 11

shows that the unfused implementation performs far worse, since

calculating the entire dense matrix multiplication is costly with

mostly wasted work. Given the number of nonzeros in � as nnz� ,

the unfused computation complexity is proportional to max(nnz� ∗

 , locate(nnz�)), while the cost of factorization becomes � ∗ � ∗

 + locate(nnz�). The only case where we would want to factorize

this expression is when the matrix � is almost fully dense and we

have very e�cient dense matrix multiplication hardware. But for a

su�ciently sparse matrix, a fused expression will perform far better.

E�cient sparse hardware must therefore support fused expressions.

We further enhance performance by using locator blocks (Sec-

tion 4.2) to �nd the sampled 8, 9 values, which is trivial in a dense

array. Interestingly, Figure 11 shows that this advantage becomes

negligible as  increases: iteration costs of the dense inner-product

dimension : will dominate the computation time, hiding the bene-

�ts of locating during intersection. But locating provides signi�cant

performance gains when the amount of computation is modest,

which is often true in sparse computations.

Accelerator Structures. We next explore di�erent iteration accelera-

tion techniques by comparing various con�gurations of coordinate-

skipping (Section 4.2), bitvector iteration (Section 4.3), and iteration-

splitting (Section 4.1). Figure 13 compares the performance when

both vectors are in the following formats: one uncompressed level

(Dense), one compressed coordinate level (Crd), one compressed

coordinate level with coordinate-skipping (Crd w/ skip), two com-

pressed coordinate levels (Crd w/ split), one pseudo-dense bitvector

level (BV), and two bitvector levels (BV w/ split), also known as

a bit-tree. For this set of experiments, we assume the coordinates

were already split before this operation1 and use the vector-vector

element-wise multiply expression G8 = 18 ∗ 28 with both 1 and

2 as single dimensional vectors of size 2000. We use three types

of synthetic vectors, namely DA0=3><, AD=B , and 1;>2:B; runs and

blocks are shown in Figure 17. Vectors with AD=B are pairs of vectors

1The splitting operation requires a full scan through the data structure, which for
this example is as expensive as the operation itself.

where one vector will have longer stretches of nonzeros between

the nonzeros of the other vector. Similarly, 1;>2:B are vectors which

have dense blocks of nonzeros placed throughout the vector. For

both these vectors, the number of nonzeros is 400 (20%) with the

index indicating the size of the runs/blocks in each vector.

Figure 13a shows the performance as a function of sparsity for

DA0=3>< data with bitvector bitwidth 1 = 64 and split factor (how

many chunks the vector is divided up into) B = 64, where applicable,

and shows the limitations of a single-level bitvector. As the sparsity

increases, the compressed coordinate format becomes better than

the bitvectors, since bitvectors are still a dense representation. The

coordinate-skipping behaves exactly the same as the compressed

coordinate format since DA0=3>< tensors on average have small

(around 1.5) run lengths.

Figure 13b shows the utility of coordinate skipping and split-

ting. As run lengths increase, there are more opportunities to skip

invalid input coordinates or avoid computation at the outer-level

intersection. The bitvector remains �at since the number of nonze-

ros remains about the same for various run lengths. This advantage

of skipping and splitting remains in the 1;>2:B case, without the

dependence on block size, since intersections can also be dense.

Overall, these results show the advantage of the implicit parallelism

of bitvectors, but show that they need to be organized hierarchically

for robust performance.

6.4 Modeling Exploration

Stream Analysis. We analyze the token breakdown of the SAM �at-

tened stream representation and identify that the stream control

overhead is modest. We use Custard to compile the SAM graph

for the matrix identity expression -8 9 = �8 9 , where � is a sparse

DCSR matrix, and count the token types for each coordinate stream

at the output of each level scanner. In our simulator, we model

streams as Python lists and all control tokens as strings.2 We run

the expression on 15 matrices of various sizes from the SuiteS-

parse matrix collection [14] (see Table 3 in the Appendix for matrix

characteristics and selection criteria).

The control token overhead of our representation is reasonable,

with an average non-idle control overhead reaching 0.95% for outer

levels and 16.20% for inner levels as shown in Figure 14. (Section 3.8

shows the control overhead of the alternative of using non-�attened

point streams would be higher.) The average inner-level percentage

means that rows have an average of 5 nonzeros, an appropriate

number of coordinates for this set of matrices. The outer-level �8
stream and inner-level � 9 stream refer to the coordinate stream

outputs of the �rst �8 level scanner and the second � 9 level scanner,

respectively. We do not show the �E0;B breakdown since it is the

same as � 9 . Most tokens, on average 83.32%, on the �8 stream

are idle since the �8 level scanner is in the done state while the

inner-level iterates through its coordinates. This behavior occurs in

compressed arrays, as in Figure 1c, because there are exponentially

more coordinates for each lower level of a tensor. The done state

of the primitive is e�cient as it is idle and avoids computation

2In hardware implementations, however, one possible way to implement the
control tokens would be as a tagged-union on the wire. There are alternative imple-
mentations, like hardcoding the control token level for each primitive, which removes
the need for a stop level in the stream but complicates and hardens the state-machine
logic of each primitive.
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A ARTIFACT APPENDIX

A.1 Abstract

This appendix describes how to set up and run our Sparse Abstract

Machine (SAM) Python simulator and the C++ CUSTARD compiler,

which compiles from concrete index notation (CIN) to SAM graphs

(represented and stored in the DOT �le format). The appendix also

describes how to reproduce the quantitative experimental results in

this paper. The artifact can be executed with any X86-64 or M-series

Apple machine with Docker, Python 3, Git, and Bash support, at

least 32 GB of RAM, and more than 20 GB of disk space.

A.2 Artifact Check-List (Meta-Information)
• Compilation: C++ compiler (either gcc or clang). The gcc 9.4.0

compiler is included with the Docker image. A fork of the TACO

compiler (found here) is included as a submodule in our artifact

(fork weiya711/taco, commit hash cf8f007).

• Data set: Suitesparse Matrix Market matrices (a script to down-

load the dataset is included and the full dataset can be found at

https://sparse.tamu.edu/), Frostt Tensor Dataset tensors (a script to

download the dataset is included and the full dataset can be found at

http://frostt.io/), and synthetically generated matrices/higher-order

tensors (included).

• Run-time environment: Docker, git, Python 3, and bash need

to be installed on the local machine. Docker is available for many

operating systems. Pro�ciency in bash and git is recommended.

• Hardware: Any conventional x86 CPU with at least 32 GB of RAM

should work.

• Metrics: Cycles (modeled as iteration counts in our simulator and

source code), expression counts, and primitive counts

• Output: Terminal outputs, �les, tables, and graphs (PDF �gures,

PNG �gures, and DOT �le format [15] graphs). Expected results are

included in the submitted paper.

• Experiments: All steps are detailed in the README.md in

https://github.com/weiya711/sam-artifact. The steps include pulling

a Docker image and running/attaching a container, running scripts

within the docker, running one Python 3 script locally outside of

the Docker to copy results, and verifying result images/�les. The

experiments should have less than 5% variation since the simulator

is deterministic. The 5% variation is caused by di�erent data patterns

in synthetic data generation (even with sparsity held constant due

to random statistics). However, these variations do not a�ect the

paper’s conclusions.

• How much disk space required (approximately)?: Approxi-

mately 20GB of space should be su�cient.

• How much time is needed to prepare the work�ow (approxi-

mately)?: About 10-15 minutes.

• How much time is needed to complete experiments (approxi-

mately)?: To complete all experiments it takes approximately 65

hours. We also include scripts to complete a subset of the experi-

ments, which include Table 1, Table 2, Figure 11, Figure 12, Figure 13,

Figure 14, and only 8 points in Figure 15, that takes about 10 hours

to run on a standard machine.

• Publicly available?: Yes, on Github at the sam repository

(https://github.com/weiya711/sam) for active development of source

code and at the sam-artifact repository

(https://github.com/weiya711/sam-artifact) for the artifact evalua-

tion of this paper. The speci�c commits for this artifact are tagged

with asplos23-ae in both repositories.

• Code licenses (if publicly available)?: MIT License

• Work�ow framework used?: Docker

• Archived (provide DOI)?: Yes, the DOI is

https://doi.org/10.5281/zenodo.7591742 [24].

A.3 Description

A.3.1 How to Access. The code repository for this submission can

be downloaded from https://github.com/weiya711/sam-artifact. The

repository includes a Docker�le from which a Docker image can

be built for full evaluation of the artifact.

A.3.2 Hardware dependencies. We recommend a machine with a

conventional x86 CPU and at least 32GB of memory. We found that

some of the experiments will be OOM killed on a machine with

only 16GB of memory.

A.3.3 So�ware Dependencies. Evaluation of the artifact requires a

machine with Docker and Python 3 installed. We tested the artifact

evaluation on the following con�gurations and found them to work:

Ubuntu 20.04/Docker 20.10.12/Python 3.8 (AMD-based machine),

and MacOS 13.1/Docker 20.10.22/Python 3.9 (Intel-based machine).

We expect other versions of MacOS, Ubuntu, Docker, and Python 3

con�gurations to work as well.

Table 3: Matrices from the SuiteSparse matrix collection [14]

used to analyze the overhead of our stream representation

in matrix identity (Section 6.4). We randomly selected each

set of 5 matrices (delineated in the table above) from the

smallest, median, and largest 50 SuiteSparse matrices—based

on dense dimension size—that would �t in memory.

Name Domain Dimensions Nonzeros Density (%)

relat3 Combinatorics 8 × 5 24 60.0
lpi_itest6 Linear Programming 11 × 17 29 15.5
LFAT5 Model Reduction 14 × 14 46 23.5
ch4-4-b1 Combinatorics 72 × 16 144 12.5
ch7-6-b1 Combinatorics 630 × 42 1260 4.8

bwm2000 Chemical Process Simulation 2000 × 2000 7996 0.2
G32 Undirected Weighted Random Graph 2000 × 2000 8000 0.2
progas Linear Programming 1650 × 1900 8897 0.3
lp_maros Linear Programming 846 × 1966 10137 0.6
G42 Undirected Weighted Random Graph 2000 × 2000 23558 0.6

stormg2-27 Linear Programming 14, 439 × 37, 485 94274 0.02
lpl3 Linear Programming 10, 828 × 33, 686 100525 0.03
nemsemm2 Linear Programming 6943 × 48, 878 182012 0.05
rlfdual Linear Programming 8052 × 74, 970 282031 0.05
rail507 Linear Programming 507 × 63, 516 409856 1.3

A.3.4 Data sets. The evaluation requires matrices from the Suites-

parse Matrix Market dataset (script to download the dataset is

included, full dataset can be found at https://sparse.tamu.edu/),

the Frostt Tensor Dataset (script to download the dataset is in-

cluded, full dataset can be found http://frostt.io/), and synthetically

generated matrices/higher-order tensors (included in the artifact

evaluation). The synthetic data generation pattern for Section 6.3

is shown in Figure 17.

A.4 Installation

To install, �rst clone the sam-artifact repository to the local machine

and initialize all submodules, then build the docker image:

$ git clone https://github.com/weiya711/sam-artifact

$ cd sam-artifact
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