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Abstract Heat waves are occurring more frequently across the globe and are likely to increase
in intensity and duration under climate change. Much work has already been completed on
attributing causes of observed heat waves and on modeling their future occurrence, but such
efforts are often lacking in exploration of spatial relationships. Based on principles of
landscape ecology, we utilized fragmentation metrics to examine the spatiotemporal changes
in heat wave shape and occurrence across North America. This methodological approach
enables us to examine area, shape, perimeter, and other key metrics. The application of these
shape metrics to high-resolution historical (1950–2013) climate data reveals that the total
number and spatial extent of heat waves are increasing over the continent, but at an individual
heat wave patch level, they are becoming significantly smaller in extent and more complex in
shape, indicating that heat waves have become a more widespread and fragmented
phenomena.

1 Introduction

Heat waves are reportedly occurring more frequently across much of the globe, and under a
warming climate, they are expected to increase in frequency, intensity, and duration
(Diffenbaugh and Ashfaq 2010; Barriopedro et al. 2011; Coumou and Rahmstorf 2012;
IPCC 2014). Heat waves are extreme meteorological events that can have pronounced impacts
on health, air quality, and vegetation (Easterling et al. 2000; Ciais et al. 2005; Vautard et al.
2005; Centers for Disease Control and Prevention (CDC) 2006; Comrie 2007; Ebi 2008). The
occurrence of heat waves and their detrimental health impacts are evident in recent events,
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such as those in 2003 (Central Europe), 2010 (Russia), and 2012 (USA) as high temperatures
exacerbate pre-existing medical conditions and cause overall mortality rates to increase (Kunst
et al. 1993; Curriero et al. 2002; Hajat et al. 2002; Comrie 2007; Ebi 2008). A recent study
found that almost half of the world’s population would likely be annually exposed to lethal
heat wave events by 2100 (Mora et al. 2017). Additionally, changes in heat wave pattern,
intensity, and duration impact the soil water balance across terrestrial ecosystems resulting in
cascading effects to flora, fauna, ecosystem services, and overall landscape production
(Toomey et al. 2011). Heat waves have direct and indirect effects on ecosystems and
agricultural products as a result of higher water loss through evapotranspiration (Zaitchik
et al. 2006; Schlenker and Roberts 2009), and extreme heat is often accompanied by increased
electricity consumption, spikes in air pollution, and wildfires (Bernard et al. 2001; Vautard
et al. 2005; Zamuda et al. 2013).

Heat waves can be defined as a sequence of days/nights with maximum/minimum temper-
ature above a certain high percentile threshold, which have variously been described as being
between the 90th and 99th percentiles of the daily maximum temperature distribution
(Anderson and Bell 2009; Hajat et al. 2006; Keellings and Waylen 2014a; Keellings and
Waylen 2014b; Mazdiyasni and AghaKouchak 2015; Meehl and Tebaldi 2004; Peng et al.
2011; Photiadou et al. 2014). In this study, the 95th percentile of the entire distribution of daily
maximum temperature is adopted as a common threshold to identify an extremely hot day.
These threshold levels are calculated separately for each grid cell from the entire temperature
record (1950–2013) at each grid cell. Heat waves can also be defined by their duration in terms
of how many consecutive days of above threshold temperatures occur (Tan et al. 2007). In this
study, a duration criterion of at least 3, 5, or 7 days of consecutive above threshold days is set.
However, themethods developed here are equally suitable for use with other thresholds, defined
in either the frequency (percentiles) or magnitude (temperature) domains, for specific applica-
tions. Past studies of heat waves over North America have found widespread positive trends in
the frequency of heat waves during the latter half of the twentieth century, with the largest trends
observed in urban locations (Gaffen and Ross 1998; DeGaetano and Allen 2002). A recent
study examined the areal extent of heat waves finding an upward trend in the percent of the
Continental United States (percentage of total land area) in concurrent drought and heat wave
(Mazdiyasni and AghaKouchak 2015). A so-called ‘warming hole’ or negative trend in the
upper tail of daily maximum temperatures was observed in the southeast US during 1951–1975
and then in the central US from 1976 to 2000 (Pan et al. 2013). These warming holes have been
linked to regional changes in the hydrological cycle brought about, at least partly, by the effect
of aerosol emissions on clouds (Leibensperger et al. 2012; Yu et al. 2014) and land surface
interactions (Kunkel et al. 2006). Large-scale atmospheric oscillations, including the Pacific
Decadal Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO), have also been
linked to the appearance of these warming holes (Robinson et al. 2002; Kunkel et al. 2006;
Wang et al. 2009; Meehl et al. 2012; Kumar et al. 2013). The changing phases of the PDO and
AMO are thought to be the cause of the relocation of the warming hole from the southeast to
central US and the appearance of a more recent cooling trend in the northwest US (Pan et al.
2013; Meehl et al. 2015). However, cooling trends or warming holes are thought to be absent in
recent decades across all regions of North America (Grose et al. 2017).

Most analyses of climate and weather extremes, such as heat waves, typically tend to focus
on identifying trends, attributing causes of observed events, and on modeling their future
occurrence using methods from climatology such as time-series analysis, dynamical modeling,
synoptic classification, and extreme value analysis. For example, past studies of heat waves
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have generally focused on identifying trends in heat wave characteristics such as frequency,
magnitude, or duration (Coumou and Robinson 2013; Perkins et al. 2013; Keellings and
Waylen 2014a). Much of this work focuses on changing temporal relationships within
observations or simulations, but it is often lacking in exploration of spatial relationships within
the dataset as conclusions are often drawn across the entire extent of the dataset or at individual
regions, points, or grid cells within it. While heat waves are known to have become ever more
frequent and intense, little is known about changes in the spatiotemporal patterns of heat waves
across the globe. Such information is currently lacking, but is critical to gaining further
understanding of the influence landscape processes, such as land cover change, have on
extreme heat and giving insight into how climate change may be manifesting itself on the
distribution of heat waves across the land surface. The lack of existing research on changes in
important heat wave indicators such as areal extent has been highlighted by other researchers
(Chen and Li 2017). Spatiotemporal patterns of extreme heat are also important in planning for
future public health impacts and response during heat wave events (Hattis et al. 2012).

In this study, we examine a high-resolution historical temperature dataset using combined
methodology from the fields of Climatology and Landscape Ecology to identify changes in
both the temporal and spatial characteristics of heat waves across North America from 1950 to
2013. We conceptualize heat waves as patches of heat on the landscape and evaluate changes
in the number, area or size, and shape of heat wave patches throughout the record. Through
this combined methodology, we demonstrate how simple shape metrics may be used to assess
trends in the spatial extent (size of areas impacted during a heat wave) and fragmentation
(spottiness of areas impacted during a heat wave) of heat waves across North America.

2 Data

The temperature dataset is model-derived from observed data developed for the North
American Land Data Assimilation System Variable Infiltration Capacity simulations over
North America (http://www.colorado.edu/lab/livneh/data) (Maurer et al. 2002; Livneh et al.
2015). These daily data have a spatial resolution of 1/16° for the period 1950–2013. The
dataset is compiled from over 10,000 National Oceanic and Atmospheric Administration
(NOAA) Cooperative Observer Network (COOP) stations, gridded using a synergraphic
mapping system (SYMAP) algorithm (Shepard 1984; Widmann and Bretherton 2000), and
then interpolated using an asymmetric spline (Maurer et al. 2002).

The regions used to subset the North American data were constructed to be identical to the
regions used by the North American Regional Climate Change Assessment Program
(NARCCAP) (Mearns et al. 2012). The NARCCAP regions are essentially based on eco-
regions that have similar variations in temperature and precipitation and can therefore be
considered to have a similar climatology.

3 Methods

To delineate heat wave areas, each grid cell exceeding its 95th percentile of the entire (1950–
2013) summertime (June–September) daily maximum temperature is identified. We have
repeated the analysis using the 85th percentile threshold with those results shown in Supple-
mentary Materials. Thus, a binary image of heat waves, above each percentile threshold, is
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created for each summertime day; then, at each grid cell, the total summer heat wave days are
summed to create a new single image for the entire summertime. A count of 3, 5, and 7
consecutive summer heat wave days is also summed for each grid cell. For example, a 5-day
heat wave above the 95th percentile threshold is defined as 5 consecutive days of maximum
temperature exceeding the 95th percentile of the entire summertime climatology at that grid
cell. Events are considered to be independent if separated by at least 4 days of below threshold
temperatures; otherwise, data of consecutive events are amalgamated (Keellings and Waylen
2014b). Independence criterion was set in this manner to account for the possible public health
impact of having fewer than four relief days between events (Curriero et al. 2002). The total
summertime count values in each grid cell of the image are then reclassified based on their
relative position in the cumulative distribution function (CDF) of all counts greater than 0, the
higher the count the less probable its occurrence and the higher the classification (Table S1). In
this manner, we can create a single surface of reclassified counts for each summer. For
example, the summer raster layers (one layer for each of 64 summers, 1950–2013) for events
above the 95th percentile lasting 7 days in duration will be made up of only the class values of
1, 2, or 3 and no data for cells where the threshold was not exceeded or duration not met
(Table S1). More than one heat wave may occur during a single summer, and by using this
approach, we can account for multiple heat wave events in any given grid cell. The reclassi-
fication of each grid cell based on number of events and the empirical CDF gives an indication
of heat wave event frequency in each cell as the higher the classification, the greater the
prevalence of heat wave during that summertime. For example, a grid cell with a 5-day event
classification of 2 signifies that two 5-day events occurred in that grid cell during a single
summertime and falls between the 0.92 and 0.99 cumulative probability of all 5-day event
counts (Table S1).

Fragmentation metrics were calculated in R, using the SDMTools (Species Distribution
Modeling Tools) and raster packages, for the spatial and temporal span of the data set. Such
metrics are traditionally computed based on land cover classifications. Here, the classification
of each grid cell is determined by the CDF-based reclassification of counts of heat wave events
occurring in each grid cell. In this instance, the reclassified heat wave rasters were utilized as
Bclasses,^ meaning that we could determine the changes in shape and size of multiple heat
waves across North America based on summertime frequency, duration, and threshold ex-
ceedance. In R, the clump function was used to identify each individual heat wave patch by
class across the landscape with adjacent cells sharing at least a corner (Queen’s case). The
output of this analysis included individual patch area (square meters) and patch perimeter
(meters). The perimeter/area ratio of each patch was calculated from this output. From these
individual patch metrics, the following aggregated statistics were then calculated: mean
perimeter/area ratio, mean patch area, total patch area, and patch count. Each of these metrics
was produced for the entirety of North America and within each ecoregion.

Changes in each of the heat wave spatial metrics through the record are investigated here to
give a quantification of how heat waves may be evolving spatially. Each metric indicates
different spatial aspects such as extent and fragmentation. Patch area and patch count sepa-
rately show the extent and frequency of heat waves on the landscape and when combined give
an indication of heat wave fragmentation. If, for example, individual patch area declines are
accompanied by increased patch count then fragmentation must increase, as there are more,
smaller patches. It is also of interest to examine the spatial configuration of heat wave patches
beyond the simple measure of area. We explore heat wave patches further by examining heat
wave patch complexity, which refers to the actual geometry or shape of patches. Shape is
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difficult to capture given the high variability that may be possible in the configuration of
patches, but a simple measure of shape is the ratio of perimeter to area. Higher values of
perimeter/area ratio equate to greater shape complexity or further departure from simple
Euclidean geometry (Mcgarigal 2015). For an illustrated description of these metrics, please
see Fig. S7.

The two-sample Kolmogorov-Smirnov (KS) test assesses differences between CDFs based
on distance between empirical distribution functions. This is a non-parametric test with the null
hypothesis that the two distribution functions are drawn from the same continuous distribution
(Stephens 1970). A bootstrapped version of the KS test that is insensitive to ties with discrete
data is implemented here (Sekhon 2011). Here, we use the two-sample KS test with
bootstrapping to determine whether data from the first half of the record (1950–1981) and
the second half of the record (1982–2013) come from the same distribution at the 0.05
significance level (95% confidence). The use of the KS test in this manner allows us to
identify long-term trends or shifts in the distribution of individual patch metrics (Mazdiyasni
and AghaKouchak 2015). The Mann-Kendall (MK) trend test (Mann 1945; Kendall 1955)
assesses the presence of a statistically significant (0.05 significance level) trend in the time
series of total patch area and patch count through the entire record (1950–2013). The non-
parametric MK trend estimator is commonly used in climatology to assess trends in time
series, and here, we apply the MK trend with pre-whitening to remove possible autocorrelation
of summertime periods (Wang and Swail 2001).

4 North America results

We evaluated spatial changes in heat wave patches during the entire record (1950–2013) using
simple spatial metrics of individual patch area and the ratio of perimeter to area as well as
aggregated metrics of total patch area and patch count. In agreement with previous work by
Mazdiyasni and AghaKouchak (2015), we find that the total area of North America that
experiences a heat wave has increased through the record (Fig. S1, Table S2). The total number
of heat wave patches occurring in each warm season also shows an upward trend through the
record (Fig. S2, Table S3). This indicates, as others have found, that both the total area
impacted by heat waves and the frequency of these events have increased. We argue that this
does not give a complete picture of heat waves; therefore, here, we focus on exploration of the
spatial characteristics of individual heat wave patches to further develop an understanding of
how heat waves manifest spatially on the surface landscape.

Investigating the empirical cumulative distribution function (CDF) of individual heat wave
patch area reveals substantial change in 1982–2013 relative to 1950–1981. The two-sample
Kolmogorov-Smirnov (KS) test (see methods) confirms a statistically significant difference
between these two periods at the 0.05 significance level for all durations and classes
(Table S4). This is further confirmed by an Anderson-Darling test. Figure 1 displays CDFs
of individual heat wave patch area for all durations and classes. Heat wave patches have
become generally smaller in the latter half of the record with the greatest declines in areal
extent occurring in the larger patches (Fig. 1). The leftward shift of the more recent CDF is
particularly pronounced in higher classes and longer duration events (Fig. 1).

Similarly to heat wave patch area, we find a substantial change in heat wave patch
perimeter/area ratio in 1982–2013 relative to 1950–1981. The KS test again confirms a
statistically significant difference between these two periods at the 0.05 significance level
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for all durations and classes (Table S4). Again, this is further confirmed by an Anderson-
Darling test. Figure 2 shows the CDFs of individual heat wave patch perimeter/area ratios from
1950 to 1981 and 1982–2013 for all durations and classes. The CDFs from 1982 to 2013 have
shifted to the right of those from 1950 to 1981, indicating generally higher perimeter/area
ratios in the latter half of the record and, therefore, suggests that heat wave patches have
generally become more complex in shape. From this analysis, it also becomes apparent that
higher classes and longer duration events have generally higher perimeter/area ratios and
exhibit the largest increases in the more recent period.

5 Regional results

In order to better determine where changes in spatial characteristics of heat wave patches have
occurred within North America, a regional analysis was also performed. Here, the mean values
of patch area and perimeter/area ratio of every heat wave patch as well as the total area and count

Fig. 1 The empirical CDF of heat wave patch area from 1950 to 1981 (blue) and 1982–2013 (red) for events
above the 95th percentile of daily maximum temperatures. The rows change in heat wave class and the columns
change in duration
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of all patches falling within each ecoregion are examined, and the percent difference between
1982 and 2013 and 1950–1981 is calculated. These changes are shown in Figs. 3, 4, and 5.
Negative change indicates decreases in the more recent period and positive changes indicate
increases in the more recent period. Bar plots show changes between the two time periods for
each heat wave class (1–4), and the KS and MK tests are used to highlight regions with
statistically significant changes. It is immediately apparent in all figures that mean heat wave
patch area has generally decreased by up to 20% or more across the majority of regions (Figs. 3a,
4, and 5a). There is much spatial variability in patch area, but the largest reductions are generally
found in the southwest, plains, and southeast. Mean perimeter/area ratio has increased across the
majority of regions by up to 10% (Figs. 3b, 4, and 5b). This is particularly apparent in the
southwest, plains, southeast, and great lakes. There is a broad trend of increased total patch area
across the domain with the largest gains of up to 20% or more found in the southwest, southeast,
and Atlantic regions (Figs. 3c, 4, and 5c). Counts of heat wave patches have increased across
almost the entire domain with the largest increases in the southwest, southeast, Atlantic, and
plains (Figs. 3d, 4, and 5d). In general, there is an apparent pattern across the domain of increases

Fig. 2 The empirical CDF of heat wave patch perimeter/area ratio from 1950 to 1981 (blue) and 1982–2013
(red) for events above the 95th percentile of daily maximum temperature. The rows change in heat wave class
and the columns change in duration
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in total heat wave area and count accompanied by decreasing heat wave patch area and
increasing heat wave patch shape complexity. Several regions are notable exceptions to this
general pattern among the aggregated data. For example, the north Atlantic and northeast Pacific

Fig. 3 Change in 3-day events shown as percent difference between 1982–2013 and 1950–1981 by region for
the following: amean heat wave patch area; bmean heat wave patch perimeter/area ratio; c total heat wave patch
area; d count of heat wave patches. Positive values indicate increases in the more recent period; negative values
indicate decreases in the more recent period. Regions with statistically significant changes, as per the KS/MK
test, are outlined in bold black. Non-significant regions are faded. Inset bar plots show percent difference between
the two periods by heat wave class for each region
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Fig. 4 Change in 5-day events shown as percent difference between 1982–2013 and 1950–1981 by region for
the following: amean heat wave patch area; bmean heat wave patch perimeter/area ratio; c total heat wave patch
area; d count of heat wave patches. Positive values indicate increases in the more recent period; negative values
indicate decreases in the more recent period. Regions with statistically significant changes, as per the KS/MK
test, are outlined in bold black. Non-significant regions are faded. Inset bar plots show percent difference between
the two periods by heat wave class for each region
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Fig. 5 Change in 7-day events shown as percent difference between 1982–2013 and 1950–1981 by region for
the following: amean heat wave patch area; bmean heat wave patch perimeter/area ratio; c total heat wave patch
area; d count of heat wave patches. Positive values indicate increases in the more recent period; negative values
indicate decreases in the more recent period. Regions with statistically significant changes, as per the KS/MK
test, are outlined in bold black. Non-significant regions are faded. Inset bar plots show percent difference between
the two periods by heat wave class for each region
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regions exhibit significant increases in 3-day mean patch area, but on closer examination, the
higher classes show large reductions in area. It is important to note that across all regions and
spatial metrics, the higher classes and longer duration events tend to exhibit the largest changes.
These large changes in themore intense classes are not always apparent in the aggregated metrics
or significance tests as these classes are by definition more extreme and thus rare.

6 Conclusions

Past studies have shown that the land area affected by extreme heat has increased through the
latter half of the Twentieth Century and that the trend is expected to continue and strengthen
during this century (Hansen et al. 2012; Coumou and Robinson 2013; Mazdiyasni and
AghaKouchak 2015). The methodology outlined in this paper confirms this upward trend
across much of North America while also showing changes in heat waves spatially. The results
presented here indicate that, despite an overall increase in the total land area affected by heat
and an increase in the frequency of heat waves, there is a reduction in heat wave patch size and
increase in the complexity of patch shape. The findings of this paper suggest that heat waves
are becoming more fragmented across the land surface of North America. At a regional scale,
the southwest, the southeast, and plains exhibit the largest decreases in heat wave patch area
and largest increases in shape complexity. It also should be stressed, to avoid misinterpretation
of these results, that changes to individual heat wave patches in these areas are accompanied
by increases in heat wave total area and frequency, particularly in the higher classes and longer
duration events. The conceptual model of heat waves and spatial metrics applied here shows
statistical changes in heat waves beyond those that have been hitherto determined through
traditional, somewhat aspatial, climatological methods.

A limitation of the current work results from our definition of heat wave patches as single
value summertime aggregates of multiple day events, classification of heat waves based on
these aggregates, and the subsequent clumping of patches. In this manner, we have simplified
and aggregated heat wave patches through each summer. We do lose some of the daily
behavior of the patches but still capture the summer season frequency of events in each grid
cell and from that we clump adjacent cells with the same summer frequency for analysis as
individual patches. The definition of patches in this manner was made essential by consider-
ations of computational expense and, if it were not for the restraints of processing time, the
clumping function could certainly be run for each summertime day in every summer allowing
for daily fluctuations in grid cells included in a single heat wave patch to be reduced to a core
area of 3, 5, or 7 consecutive days of persistent heat. Such an analysis would be conceptually
similar to land cover change on a landscape where interiors of a particular patch of a certain
land cover are separated into core area versus edge where the edge is more likely to be
heterogeneous and in relatively high flux (Mcgarigal 2015). Such a complex analysis is
reserved for future work at perhaps a smaller spatial scale of study area.

The spatial configuration (area, fragmentation, shape) of heat waves on the landscape may
be of great importance to the understanding of what drives heat wave events and how climate
change is interacting with extreme surface temperatures. Heat wave shape may also be a
determinant for locating the most intense region within a heat wave patch, just as tropical
cyclone shape is an important variable in determining the location of intense precipitation
(Matyas 2008; Zick andMatyas 2016). The extent and cohesiveness of heat waves may also be
of vital importance to public health planning for emergency management during these
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potentially life-threatening events. Further analysis of both large and small-scale atmospheric
and land surface drivers of extreme heat are needed to understand the physical processes
associated with these spatial changes in heat waves.
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