2716

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 5, MAY 2021

Strong Coordination Over Noisy Channels
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Abstract— We study the problem of strong coordination of
the actions of two nodes X and Y that communicate over a
discrete memoryless channel (DMC) such that the actions follow
a prescribed joint probability distribution. We propose two novel
random coding schemes and a polar coding scheme for this
noisy strong coordination problem, and derive inner and outer
bounds for the respective strong coordination capacity region.
The first scheme is a joint coordination-channel encoding scheme
that utilizes the randomness provided by the communication
channel to reduce the amount of local randomness required to
generate the sequence of actions at Node Y. Based on this random
coding scheme, we provide a characterization of the capacity
region for a special case of the noisy strong coordination setup,
namely, when the DMC is a deterministic channel. The second
scheme exploits separate coordination and channel encoding
where local randomness is extracted from the channel after
decoding. Moreover, by leveraging the random coding results
for this problem, we present an example in which the proposed
joint encoding scheme is able to strictly outperform the separate
encoding scheme in terms of achievable communication rate for
the same amount of injected randomness into both systems. Thus,
we establish the sub-optimality of the separation of strong coordi-
nation and channel encoding with respect to the communication
rate over the DMC in this problem. Finally, the third scheme
is a joint coordination-channel polar coding scheme for strong
coordination. We show that polar codes are able to achieve
the established inner bound to the strong noisy coordination
capacity region and thus provide a constructive alternative to
a random coding proof. Our polar coding scheme also offers a
constructive solution to a channel simulation problem where a
DMC and shared randomness are employed together to simulate
another DMC.

Index Terms— Strong coordination, joint source-channel cod-
ing, channel resolvability, superposition coding, polar codes.

I. INTRODUCTION

FUNDAMENTAL problem in decentralized networks
is to coordinate activities of different nodes with the
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goal of reaching a state of agreement. The problem of
communication-based coordination of multi-node systems
arises in numerous applications including autonomous robots,
smart traffic control, and distributed computing such as dis-
tributed games and grid computing [3]. Coordination is under-
stood to be the ability to arrive at a prescribed joint distribution
of actions at all nodes in the network. Several theoretical
and applied studies on multi-node coordination have targeted
questions on how nodes exchange information and how their
actions can be correlated to achieve a desired overall behavior.
Two types of coordination have been addressed in the literature
— empirical coordination where the normalized histogram of
induced joint actions is required to be close to a prescribed
target distribution, and sfrong coordination, where the induced
sequence of joint actions of all the nodes is required to be
statistically close (i.e., nearly indistinguishable) from a chosen
target probability mass function (pmf).

Recently, a significant amount of work has been devoted to
finding the capacity regions of various coordination network
problems based on both empirical and strong coordination [3]—
[8]. Bounds on the capacity region for the point-to-point case
were obtained in [9] under the assumption that the nodes
communicate in a bidirectional fashion in order to achieve
coordination. A similar framework was adopted and improved
in [10]. In [6], [8], [11], the authors addressed inner and outer
bounds for the capacity region of a three-terminal network in
the presence of a relay. The work of [6] was later extended
in [7], [12] to derive a precise characterization of the strong
coordination region for multi-hop networks.

While the majority of recent works on coordination have
considered noise-free communication channels, coordination
over noisy channels has received only little attention in the
literature so far. However, notable exceptions are [13]-[15].
In [13]. joint empirical coordination of the channel
inputs/outputs of a noisy communication channel with source
and reproduction sequences is considered, and in [14],
the notion of strong coordination is used to simulate a discrete
memoryless channel (DMC) via another channel. Recently,
the authors of [15] explored the strong coordination variant of
the problem investigated in [13] when two-sided channel state
information is present and side information is available at the
decoder.

As an alternative to the impracticalities of random coding,
solutions for empirical and strong coordination problems have
been proposed based on low-complexity polar-codes intro-
duced by Arikan [16], [17]. For example, polar coding for
strong point-to-point coordination is addressed in [18], [19],
and for empirical coordination in cascade networks in [20],
respectively. The only existing design of polar codes for the
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noisy empirical coordination case [21] is based on the joint
source-channel coordination approach in [13]. A construction
based on polar codes for the noisy sfrong coordination problem
has been first presented in our previous conference work [2],
which is part of this paper.

In this work, we consider the point-to-point coordination
setup illustrated in Fig. 1, where in contrast to [13] and [15]
only source and reproduction sequences at two different nodes
(X and Y) are coordinated by means of a suitable commu-
nication scheme over a DMC. Specifically, we propose two
novel achievable coding schemes for this noisy coordination
scenario, derive inner and outer bounds to the underlying
strong coordination capacity region, and provide the capacity
region for a special case of the noisy strong coordination setup.
In particular, we characterize the capacity region for the case
when the DMC is deterministic. Finally, we design an explicit
low-complexity nested polar coding scheme that achieves the
inner bound of the point-to-point noisy coordination capacity
region.

The first scheme is a joint coordination channel encoding
scheme that utilizes randomness provided by the DMC to
reduce the local randomness required in generating the action
sequence at Node Y (see Fig. 1). It is worth mentioning that
the noisy point-to-point coordination setup is in fact equivalent
to the average case model of asymptotically simulating a DMC
using another DMC of [14]. Due to this equivalency, the pro-
posed joint scheme is related to the scheme in [14]; how-
ever, the presented scheme exhibits a significantly different
codebook construction adapted to our coordination framework.
Our scheme requires to explicitly quantify of the amount of
common randomness shared by the two nodes as well as
the local randomness at each of the two nodes. In contrast
to [14], where local randomness is assumed to be infinite and
inner and outer bounds for the achievable rates are presented
accordingly, we consider common and local randomness to
be limited resources similar to [5], [22]-[24]. Consequently,
we establish a trade-off between the use of communication,
common and local randomness rates. To this end, we propose a
solution that achieves strong coordination over noisy channels
via the soft covering principle [5]. Unlike to solutions inspired
by random-binning' , a soft covering based solution is able
to quantify the local randomness required at the encoder and
decoder to generate correlated action sequences. Note that
quantifying the amount of local randomness is also absent
from the analysis in [15].

Our second achievable scheme exploits separate coordina-
tion and channel encoding where local randomness is extracted
from the channel after decoding. In a separation-based encod-
ing scheme, we consider a two-stage method for solving
the noisy strong coordination problem. Specifically, an outer
strong coordination code for noise-free links is conveyed
over the DMC through an inner capacity achieving channel
code. Finally, to enhance the performance of this benchmark
separation-based scheme, a channel randomness extraction

I'To the best of our knowledge, random binning based tools have not been
fully developed yet to quantify the local randomness required at the encoder
and decoder. However, initial steps along these lines has been taken in [25,
Theorem 4].
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stage is added at the decoder to supplement the local random-
ness required in generating the action sequence at Node Y.
Moreover, when the noisy channel and the correlation between
X to Y are both given by binary symmetric channels (BSCs),
we study the effect of the capacity of the noisy channel on the
sum rate of common and local randomness. We conclude this
section by showing that a joint coordination-channel encod-
ing scheme is able to strictly outperform a separation-based
scheme? in terms of achievable communication rate if the
same amount of randomness is injected into the system in the
high-capacity regime for the BSC, i.e., C' — 1. This example
reveals that separate coordination and channel encoding is
indeed sub-optimal in the context of strong coordination under
the additional constraint of minimizing the communication
rate.

Lastly, the third scheme is a joint coordination-channel
polar coding scheme that employs nested codebooks similar
to polar codes for the broadcast channel [26]. We show that
our proposed construction provides an equivalent constructive
alternative for strong coordination over noisy channels. Here,
by equivalent we mean that for every rate point for which
one can devise a random joint coordination-channel code, one
can also devise a polar coding scheme with significantly lower
encoding and decoding complexity. Also, our proposed polar
coding scheme employs the soft covering principle [19] and
offers a constructive solution to a channel simulation problem,
where a DMC is employed to simulate another DMC in the
presence of shared randomness [14].

The remainder of the paper is organized as follows:
Section II outlines the notation. The problem of strong
coordination over a noisy communication link is presented
in Section III. We then derive achievability results for the
noisy point-to-point coordination in Section IV for the joint
random-coding scheme, discuss the characterization of the
capacity region for a special case of the noisy strong coordi-
nation setup, and derive a general outer bound to the capacity
region. Section V presents the separate encoding scheme with
randomness extraction. In Section VI, we present numerical
results for the proposed joint and separate coordination and
channel encoding schemes, establishing the sub-optimality of
the separate encoding scheme when the target joint distribution
is described by a doubly binary symmetric source and the
noisy channel by a BSC, respectively. In Section VII we pro-
pose a joint coordination-channel polar code construction and
a proof that this construction achieves the random coding inner
bound. Finally, some conclusions are drawn in Section VIIL

II. NOTATION

Throughout the paper, we denote a discrete random variable
with upper-case letters (e.g., X) and its realization with
lower case letters (e.g., =). The alphabet size of the random
variable X is denoted as |X|. We use [n] to denote the set
{1,...,n} for n € N. Similarly, we use X to denote the
finite sequence {Xjy1,Xg2,--.,Xgn} and X;”7 to denote

2Note that when defining separation we also consider the number of channel
uses, ie., the communication rate, as a quantity of interest besides the
communication reliability, i.e., the probability of decoding error.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 29,2023 at 02:09:56 UTC from IEEE Xplore. Restrictions apply.



2718

Source of
Common Randomness

J e [2F] J € [2nF-

xn NodeX| 4n [DMC ) B |NodeY] _ y=
Encoder rl 7 i B|A , ~ Decoder

M, € [27] M, € [2772]

Fig. 1. Point-to-point strong coordination over a DMC.

{Xk,i, Xki+1,-.., Xk} such that 1 < i < j < n. Given
A C [n], we let X"[A] denote the components X; such
that ¢ € A. We use boldface upper-case letters (e.g., X) to
denote matrices. We denote the source polarization transform
as G, = RF®" where R is the bit-reversal mapping defined
in [16], F = [13], and F®" denotes the n-th Kronecker
product of F. The binary entropy function is denoted as ha(-),
and the indicator function by 1(-). P[A] is the probability that
the event A occurs. The pmf of the discrete random variable
X is denoted as Px (x). However, we sometime use the lower
case notation (e.g., px (z)) to distinguish target pmfs or alter-
native definitions. We let D(Px (z)||@x(z)) and ||Px(z) —
Qx (z)||rv denote the Kullback-Leibler (KL) divergence and
the total variation, respectively, between two distributions
Px (z) and Qx () defined over an alphabet X'. Given a pmf
Px(z) we let min}(Px) = mingex {Px(z) : Px(z) > 0}.
7' (Px) denotes the set of e-strongly letter-typical sequences
of length n. We let Py 5 5,  denotes the pmf of n
i.i.d. random variables X7, X5,..., X, associated with the
pmf Px, x,.. x,. Finally, Markov chains, satisfying Pxyz =
Pxy Pz|y, are denoted by X —Y — Z.

III. PROBLEM DEFINITION

The point-to-point coordination setup we consider in this
work is depicted in Fig. 1. Node X receives a sequence
of actions X" € A™ specified by nature where X" is
ii.d. according to a pmf px. Both nodes have access to
shared randomness .J at rate R, bits/action from a common
source, and each node possesses local randomness M, at
rate pg, £ = 1,2. Thus, in designing a block scheme to
coordinate n actions of the nodes, we assume J € [2"%-],
and M, € [2"P¢], k = 1,2, and we wish to communicate
a codeword A"(I) over the DMC Pg|4 to Node Y, where
I denotes the (appropriately selected) coordination message.
The codeword A™(I) is constructed based on the input action
sequence X", the local randomness M; at Node X, and the
common randomness J. Node Y generates a sequence of
actions Y™ € Y™ based on the received channel output B™,
common randomness .J, and local randomness M5. We assume
that the common randomness is independent of the action
specified at Node X. A tuple (R,, p1, p2) is deemed achievable
if for each € > 0, there exists n € N and a (strong
coordination) coding scheme such that the joint pmf of actions
Pxny~ induced by this scheme and the n-fold product’ of the

3This is the joint pmf of n i.i.d. copies of (X,Y) ~ Qxy-
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desired joint pmf Q% are e-close in total variation, i.e.,

e))

Remark 1: One straightforward observation is when the
action at Node Y is a (deterministic) function of the action
supplied to Node X by nature, ie., ¥ = f(X) and
H(Y|X) = 0. For this case, the setup of strong coordination
depicted in Fig. 1 is equivalent to the problem of lossless
compression and communication of the source Y™ over a
noisy communication channel. In fact, this particular case
corresponds to the problem of simulating a noiseless link from
a DMC where the common randomness is known to be useless
(see [14], [27]). This equivalence can also be seen in terms
the total variation distance between the code-induced joint pmf
and the desired joint pmf and the probability of decoding error
as follows

||PX"Y" = Q?(Y”rv =

||PX"Y" - Q%vllxv <e

”Q}R’“IX“ — Q?{Y"Tv
Y QuE"Pynpxn i)
™,y #f(z™)
— Q%vy(z",y")
=PY™ # f(X™)],

where it is well known that the probability of decoding
error P[Y™ # f(X™)] — 0, thus the strong coordination
condition in (1) is satisfied, if H(Y') < CpBlA. Here, ECpBM
is the channel capacity for the channel Py, defined as
Cpy,a £ maxp, I(A; B).

‘We now present the achievable strong coordination schemes.

IV. JOINT COORDINATION CHANNEL ENCODING

The first contribution of this work is the following character-
ization of the inner and outer bounds to the strong coordination
capacity region.

Theorem 1 (Inner Bound): A tuple (R, p1, p2) is achiev-
able for the noisy strong coordination setup in Fig. 1 if
there exist auxiliary random variables (C,A) jointly cor-
related with the actions (X,Y) according to Pxyapc =
PacPxjacPrjaPyse, such that the marginal distribution
Pxy = Qxvy, and

R, +p1 > I(Y; AC|X), (2a)
R, > I(XY;C) — I(B;C), (2b)
p2 > H(Y|BO), 2¢)

I(X;C) < I(B;C). (2d)

In the following, we characterize an outer bound to the
strong coordination capacity region.

Theorem 2 (Outer Bound): If a tuple (R,, p1, p2) is achiev-
able for the noisy strong coordination setup in Fig. 1, then
there must exist auxiliary random variables (C, A, D) jointly
correlated with the actions (X,Y’) according to Pagcpxy =
Pax PgjaPcpyjaBx. such that the marginal distribution

Pxy = Qxyvy,

Ro+ p1 > I(Y; ACD|X) — H(B|A), (3a)
R, > I(XY;CD) — I(B;CD), (3b)
I(X;C) < I(B;C), (3¢)
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A1, J,K),C™(I, J)! CJ :
(r i ).‘: Px|ac > X"

-

] —=>| select codewords
Ke==»| from codebooks
J A and €

Yl"l

A™Y
(pmc ) Br
\ Psia )

Fig. 2. A joint scheme for the allied problem.

where [C| < |A||BIIX||Y] + 5, and [D] < (lA|B|X]|Y] +
5)|AI|B||X][V.

In following subsections, we first construct a joint coor-
dination channel encoding scheme that achieve the rates of
Theorem 1. Then, we show that for a special case the con-
structed scheme is optimal followed by the derivation of the
outer bound of Theorem 2.

A. Inner Bound: Achievability

This scheme follows an approach similar to those in [3],
[6], [7], [12] where coordination codes are designed based
on allied channel resolvability problems [28]. The structure
of the allied problem pertinent to the coordination problem at
hand is given in Fig. 2. The aim of the allied problem is to
generate* n symbols for two correlated sources X™ and Y™
whose joint statistics is close to Q% as defined by (1). To do
so, we employ three independent and uniformly distributed
messages I, K, and J and two codebooks A and € as shown
in Fig. 2. To define the two codebooks, consider auxiliary
random variables A € 4 and C < C jointly correlated
with (X., Y) as PXYABC = PACPX|ACPB|APY|BC and with
marginal distribution Pxy = Qxy.

From this factorization it can be seen that the scheme
consists of two reverse test channels Px|4c and Py |4 used
to generate the sources from the codebooks. In particular,
Pyiac = Y, Pe—bjaPy|B=b.c; i.e., the randomness of the
DMC contributes to the randomized generation of Y.

Generating X™ and Y™ from I, K, J represents a complex
channel resolvability problem with the following ingredients:

i) Nested codebooks: Codebook € of size 2"(Fo+Fe) is gen-
erated i.i.d. according to pmf Fc, i.e., Cjj ~ I, Pc(+)
for all (i,5) € Z x J. Codebook A is generated by

randomly selecting A%, ~ [[._; Pac(-|C};) for all

(i,5,k) € T x J x K, where T £ [2"E<], J £ [2"F-],

and K £ [2"Fe].

4Note that, at this point, we assume that the action sequence X™ is not
available as an input to Node X but is generated as an output. We will show
later on in this subsection that this operation can be reversed to map back to
the original problem setup.

27119

ii) Encoding functions:
c" : 2] x [2"%-] - C*,
A" : [2nB<] x [2nRe] x [2"Fe] — A™.

iii) Indices: I, J, K are independent and uniformly distributed
over 7, J, and K respectively. These indices select the
pair of codewords C7'; and A7},, from codebooks C
and A.

iv) The selected codewords C7; and A7, are then passed
through DMC Px | 4c at Node X, while at Node Y,
codeword A7, is sent through DMC Pg| 4 whose output
B™ is used to decode codeword C? and both are then
passed through DMC Py |p¢ to obtain Y.

Since the codewords are randomly chosen, the induced
joint pmf of the generated actions and codeword indices in
the allied problem is itself a random variable and depends on
the random codebook. Given a realization of the codebooks

. I S i
c . (‘Au e) = a’ijk':cij : je[2ﬂRa] 3
ke[2nRa]

“)

the code-induced joint pmf of the actions and codeword indices

in the allied problem is given by

P;’lAC(Iﬂla;}kc%)
gn(R.+Ro+Ra)

x (3 Pya®"1a)Ps e s GI6™, 1) PR (7072,

bm i

PX“Y“IJK(In:ynvi:j:k) =

)
where P f1Brg denotes the operation of decoding the index
I using the common randomness and the channel output
at Node Y. Note that the indices for the C-codeword that
generate X and Y sequences in (5) can be different since the
decoding of the index I at Node Y may fail. We are done if

we accomplish the following tasks:

(1) identify conditions on R,, R., R, under which the
code-induced pmf Px~y=~ is close to the design pmf
Q"% with respect to total variation, i.e.,

n]i_fchC [”pX"Y" = Q}Y“TV] =0

(2) devise a strong coordination scheme by inverting the
operation at Node X in Fig. 2 by enforcing independence
between the action sequence X" and the common ran-
domness J. This translates to identifying the conditions
on R., R, under which the code-induced joint distribu-
tion of X™ and J, Pxn is close to the product of the
marginal distributions, i.e.,

lim Ec[||Px~s — Q%Psllzv] =0,

and the mutual information between the action sequence
X"™ and the common randomness .J is asymptotically
equal to zero, i.e., lim, . J(X";J) =0.

Note that in the above, we let Ec to denote the expectation
over the random realization of the codebooks. Moreover, dur-
ing our analysis, we bound the total variation distance close-
ness via bounding the Kullback-Leibler (KL) divergence of the
relative distributions then utilizing Pinsker’s inequality [29]
to relate the two measurements. This techniques, first used
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in [30], is commonly used in analyzing strong coordination
problems (e.g., [6]. [7] and [15]), since the required analysis
can be carried out more easily than the total variation analysis.
This will be done in following sections by subdividing the
analysis of the allied problem.

1) Resolvability Constraints: Assuming that the decoding of
I and the codeword C}; occurs perfectly at Node Y, we see
that the code-induced joint pmf induced by the allied scheme
for the realization of the codebook C in (4) is

n - k)_ PX|AC(I |at]kctj
0B T T onRer Rot RY)

x (30 Paa® Il PRisc@™ b)) ©)
b"&

» )
Pxnynrsr(z",y

The following result quantifies when the above induced
distribution is close to the n-fold product of the design
pmf Qxy.

Lemma 1 (Resolvability Constraints): The total vari-
ation between the code-induced pmf Pxnyn in (6)
and the desired pmf QY%, asymptotically vanishes, i.e.,
Ec[[|Pxryn ~ Qg ] = 025 m— oo, i

R, + R, +R. > I(XY;AC), 0
R, + R. > I(XY;C). (8)

Note that in the above, we let Ec to denote the expectation
over the random realization of the codebooks.

Proof: In the following, we drop the subscripts from the
pmfs for simplicity, e.g., XIAc(InlAIJk’ C7;) will be denoted
by P(z"|Afy,C;), and Q% (z™,y™) will be denoted by
Q(z™,y™), respectively. Let R £ R, + R, + R,, and choose
e > 0. Consider the derivation for Ec[D(Pxny=|Q%y)]
shown at the bottom of the next page.

In this argument:
(a) follows from the law of iterated expectations, where the

inner conditional expectation denotes the expectation over
all random codewords {A7,,..Cy ;, : i # 1,7 #
J, k' # k} given the codewords A7 ke C" Note that we
have used (af};., ¢f;) to denote the codewords correspond-
ing to the indices (z, 7, k), and (a3 ;. ;) to denote the
codewords corresponding to the indices (', 5/, k).
(b) follows from Jensen’s inequality [31].
(c) follows from dividing the inner summation over the
indices (7', 3/, k') into three subsets based on the indices
(2, 7, k) from the outer summation.
(d) follows from taking the expectation within the subsets in
(c) such that when
- (7,3') = (4,5),(K" # k): ajj; is conditionally
independent of aj;, following the nature of the
codebook construction (i.e., i.i.d. at random);
- (¢,3") # (1, 7): both codewords (afjx, cj;) are inde-
pendent of (af ;. ,cp ;) regardless of the value of
k. As a result, the expected value of the induced
distribution with respect to the input codebooks is
the desired distribution Q% [3].
(e) follows from
- (#,5',K) (i,7,k): there is only one pair of
codewords (azj, cj;):

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 5, MAY 2021

— when (K’ # k) while (¢,5") =
(2"R= — 1) indices in the sum;

- (#',3") # (4, 7): the number of the indices is at most
R

(¢,7) there are

(f) results from splitting the outer summation: The first
summation contains typical sequences and is bounded
by using the probabilities of the typical set. The second
summation contains the tuple of sequences when the pair
of actions sequences =", y™ and codewords c", a™ are not
e-jointly typical (ie., (z",y",a",c") & T (Pxvac))
This sum is upper bounded following [6] with
pxy = min; , (Pxy(z,)).

(g) follows from Chernoff bound on the probability

that a sequence is not strongly typical [32] where

pxyac = ming,, . (Pxyac(z,y,a,c)) and §(e)
denotes a positive function of e that vanishes as n goes
to infinity, i.e., d(¢) — 0 as n — oc.

Consequently, the contribution of typical sequences can

be made asymptotically smaller than some €' > 0 if

R.+ R, +R.>I(XY;AC),

(h)

Ro+ R. > I(XY;0),

while the second term converges to zero exponentially
fast with n, i.e.,

(2/X]| V|| A|[Cle~ <" Bx¥ ¢ ) log(2u3h + 1) 2225 0

and € — 0 as n — oo.

Finally, if (7) and (8) are satisfied, by applying Pinsker’s
inequality [29] we have

Ec[||Pxey» — Q%yllrv] < Ec[y/2D(Pxev=[IQ%y) |
< \/2Ec [D(Pxoy=[|Q@%y)] =F0. )

|

Remark 2: Given e > 0, R,, R,, R, satisfying (7) and (8),

it follows from (9) that there exist an n € N and a random

codebook realization for which the code-induced pmf between
the indices and the pair of actions satisfies

(10)

2) Decodability Constraint: Since the operation at Node Y
in Fig. 2 involves the decoding of I and thereby the codeword
C™(I,J) using B™ and J, the induced distribution of the
scheme for the allied problem that is given in (5) will not
match that of (6) unless and until we ensure that the decoding
succeeds with high probability as n — oc. The following
lemma quantifies the necessary rate for this decoding to
succeed asymptotically almost always.

Lemma 2 (Decodability Constraint): Let I ; C}‘J be the
output of a typicality-based decoder that uses common ran-
domness J to decode the index I and the sequence C}'; from
Bn. Let P[I # I] be the probability that the decoding fails
for a realization of the random codebook. If the rate for the
index I satisfies R, < I(B;C) then,

i) ]EC[P[f 751']] — 0 as n — oo, and
i) n]j_{]goEC[”PX"Y"IJK — Pxnynpik|lrv] =0

||PX"Y" — Q%vyllrv <e.
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Proof: We start the proof of i) by calculating the average
probability of error, averaged over all codewords in the code-
book and averaged over all random codebook realizations as
follows:

Ec[P[f #1]] = Z Pc(c)P[I # 1]
- S ROY wakl 1] E]
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-y 2RRZPc(c)P[17AI| ]

iJ!

@p [I;H’| ] (11)

where in (a) we have used the fact that the conditional
probability of error is independent of the triple of indices due
to the i.i.d nature of the codebook construction. Also, due to
the random construction and the properties of jointly typical

Ec [D(Pxny~||Q%y)]

P(z"| Ay, C) P(y" | Af, C P(z"|AG g Oy )P(y" | AT jogr» Cit )
:Ecl Z Z : nR ! log J nRJ n .n ’ ’
", ym ij.k 2 i ' k' 2 Q(I 2 Y )
P(z"|A%,, C1)P(y"| A%, C P(2"| A7 31> Cp ) P(W" AL 13, Cityr)
_Ecl Z Z gnR g QnRQ(In n)
™. y" ig.k it ' k' Y
@ P(I 1A%k Ci3) P(y"1AG, P(I AT G )P(y |AFjw Coy)
®) P(z"| A%, C5) P(y" A%k, C5) P(I"lA?fjw:Cﬂy)P(y“lAﬁyknC{}y) )
< Z DEAUk 15 2!’1R 10 ( ! fk’C! f[ Z QHRQ(IN yn) A"JkCU:I)
Tm yng ,j_k ‘l! r k! ?
@ P(z" ay ,auk, €iz) P(z"|A% §K Cey)P(y" |A 'K Ciyr)
log (Eas,, cn e
P(z"|AG 4, Ciy )P(y" | AY i G ) -
= Z A:‘"j'k’C?’j’I: QHRQ(I“,yn) ‘ch ]

l JI k!
(@ .3)=(i.3).(K'#k)

o

(t J );e(: %))

Ean,.cn, [

P A0 C2 PP IAS e
2"RQ(I"., yn)

Ukcm])

P(z",y"|c3;)

(d) Z Z Z P(I 1y a:_‘,lk? t_‘,l) og

‘P(I Y |a|Jk? l_‘,l) 4
QRRQ{IR’ n)

2—nH(XYIAC){1—e)

e r QHRQ(IT“J yn)
1.7 K
(#.3")=(1.9)(K'#k)

QE",y")
2nRQ(In1yn)

P(z", y™|c"
(2,130) (I Y |c|_',l] +1)

2R0(z", y")

9—nH (XY|C)(1—€)

™y 1,5,k atj.k cl_‘,l
T 2
f -‘ kf
(t’ J')#(t J)
(e) P(z",y"|aj;c, 6})
< Z P(:z;"—j yﬂ’ a?_:,ik? C:E') log ( QHRQ( ':J n)lJ
™y, :‘jk’cij d
()
< 2,

L (z™,y™.a™,en)eT ™ (Pxyac)

P(Injyﬂ?aﬂjcﬂ}log (2nRQ—nH{XY)(1+£) +

In(Ro+R:)9—nH(XY )(1+€) + 1)]

+P((z",y",a",c") ¢ T"(Pxy ac)) log(2uxy +1)

< .

L (z™,y™,a™,c™) €T (Pxy ac)

PE"0"a", ") log (

onR

on(Ro+R:)

InI(XY;AC)+5(e))  on(I(XYiC)+6(e)
+ +

+ (21X V|| A[Cle~ " #X¥ ¢ ) log(2u5T + 1)
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set, we have
P((A%y;, B",Chy) € T (Pasc)) —— 1.

We now continue the proof by constructing the sets for each
j and b™ € B™ that Node Y will construct to identify the
transmitted index as

Sjomc 2 {i: (", ) € T™(Psc)}-

The set ,SA'_,-_Ibn,c consists of indices 7 € I such that for a given
common randomness index J = j and channel realization
B™ =b", the sequences (b", cj;) are jointly-typical. Assuming
(i,5,k) = (1,1,1) was realized, and if S; pn c = {1}, then
the decoding will be successful. The probability of this event

occurring is divided into two steps as follows.
o First, assuming (7,7,k) = (1,1,1) was realized, for
successful decoding, 1 must be an element of S'J, B c-
The probability of this event can be bounded as follows:

I=1
=]
K=1

= Y (PEEPic(a"c)Pa("a")

a™ bm,en

Ec [JP [1 S LR

x 1((c",b") € 'J;"(PBC)))

=) P, eL((8",¢") € I"(Psc))
bm,em

(a) g

> 1—4d(e) == 1,
where (a) follows from the properties of jointly typical
sets and d(e) — 0 as n — oc.

« Next, assuming again that (i, j,k) = (1,1,1) was real-

ized, for successful decoding, no index greater than or

equal to 2 must be an element of S g~ c. The probability
of this event can be bounded as follows:

o =1
ECP[SLB“,CQ (2,...,2"F} = @|J=1]
K=1

I=1
=1 3 EcPi € Symc 1]
. K=1
= 1- 3" PI(C}, B") € T(Pac)]
i'#1
i hIY Balia it
i'#1

— 1— (2"Be — 1)~ "U(BO)-5(9)

— e 2—n(I(B;C)—RC—§(e)) T 2—nI(B;C)

® n—so0

SR R,

where (a) follows from the packing lemma [33], and (b)
results if R, < I(B;C) — 6(¢) and sufficiently large n

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 5, MAY 2021

yield é(e) — 0. Then from (11), the claim in i) follows

as given by
Ec[PIf 1] = EcP[f # 1| /1]
< (EcP|I ¢ 85.8m.c| 1]

+ ]Eclp [S'J,B",C n {27 S ?2HRC}#®‘;{§=%J)
=0

Finally, the proof of ii) follows in a straightforward manner.
If the previous two conditions are met, then Ec[P[f # I]] — 0
and ]Ec[PﬂB”(ﬂb“,j)] — 8,7, where 4,; denotes the Kro-
necker delta. Consequently, the claim then follows by simple
algebraic manipulation of (5) and (6) as

n]j_{lgc Ec[||Pxryr1ix — Pxrynrikl|lev] = 0. (12)

|

3) Independence Constraint: We complete modifying the
allied structure in Fig. 2 to mimic to the original problem with
a final step. By assumption, we have a natural independence
between the action sequence X ™ and the common randomness
J. As a result, the joint distribution over X™ and J in the
original problem is a product of the marginal distributions Q%
and P;. To mimic this behavior in the scheme for the allied
problem, we artificially enforce independence by ensuring that
the mutual information between X™ and J vanishes. This
process is outlined in Lemma 3.

Lemma 3 (Independence constraint): Consider the scheme
for the allied problem given in Fig. 2. Both I(J; X™) — 0
and Ec[||Px»; — Q%Psl|lrv] — 0 as n — oo if the code
rates satisfy

B4R WX AC),
R. > I(X;0).

(13)
(14)

The proof of Lemma 3, shown in Appendix A, builds on
the results of Section IV-A2 and the proof of Lemma 1 in
Section I'V-Al, resulting in

Ec[[|Px=1—Q% Prllrv] < Ec[y/2D(PxnslIQ% Py |

< \/2Ec[D(Px-s11QL P)] 0. (15)

Remark 3: Given € > 0, R,, R. meeting (13) and (14),
it follows from (15) that there exists an n € N and a random
codebook realization for which the code-induced pmf between
the common randomness .J and the actions of Node X satisfies

1Px=s — Q% Psllrv <«

In the original problem of Fig. 1, the input action sequence
X™ and the index J from the common randomness source
are available and the A- and C-codewords are to be selected.
Now, to devise a scheme for the strong coordination problem,
we proceed as follows. We let Node X choose indices I and K
(and, consequently, the A- and C-codewords) from the realized
X™ and J using the conditional distribution 13}, K|xn,J- The
joint pmf of the actions and the indices is then given by

(16)

a7

« R . .
Pxnynrix = Q% PrPr i xn s Pyni1, 5 k-

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 29,2023 at 02:09:56 UTC from IEEE Xplore. Restrictions apply.



OBEAD et al.: STRONG COORDINATION OVER NOISY CHANNELS

from codebooks |’
A and €

L EA"J DMC ) B*

| Psa )

Fig. 3. The joint strong coordination encoding scheme.

As a result, from the allied scheme of Fig. 2 we obtain the
joint scheme illustrated in Fig. 3.

Finally, we can argue that

Jim Ec[|Pxny» — Q%yllrv] =0, (18)
since the total variation between the marginal pmf anfYn
and the design pmf Q% can be bounded as

| Pxnyn — Q%yllrv

(a) . . "

< ||Pxnyn — Pxnyn||zv + || Pxry= — Q%y|lzv
(b). .= - .

< [|Pxnynrix — PxnsPrxy = x» gllvv

+ [|Pxny» — Qxyllzv
@ T ) » n
= [|@x Ps — Pxnjllrv + | Pxnyn — Qxy lrv

where

(a) follows from the triangle inequality;

(b) follows from (17) and [5, Lemma V.1];

(e) follows from [5, Lemma V.2].

Note that the terms on the RHS of the above equation can be
made vanishingly small provided the resolvability, decodabil-
ity, and independence conditions are met. Thus, by satisfying
the conditions stated in Lemmas 1-3, the coordination scheme
defined by (17) achieves strong coordination asymptotically
between Nodes X and Y by communicating over the DMC
Pg| 4. Note that since the operation at Nodes X and Y amount
to index selection according to 15;__ K|x~,J- and generation of
Y™ using the DMC Py |gc, both operations are randomized.
The last step consists in viewing the local randomness as the
source of randomness in the operations at Nodes X and Y.
This is detailed in the following paragraph.

4) Local Randomness Rates: As seen from Fig. 3,
at Node X, local randomness M; is employed to randomize
the selection of indices (I, K) by synthesizing the channel
IDJIK| x=7 Whereas Node Y utilizes its local randomness M5
to generate the action sequence Y™ by simulating the channel
Py |pc. Using the list decoding and likelihood arguments
of [7, Section IV.B], [5, Section IILE], we can argue that
for any given realizations of J, the minimum rate of local
randomness required for the probabilistic selection of indices
I, K can be derived by quantifying the number of A and C
codewords (equally identifying a list of index tuples (I, K))
jointly typical with X™ = z™. Quantifying the list size as
in [7] yields p1 > R, + R, — I(X;AC). At Node Y,
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the necessary local randomness for the generation of the
action sequence is bounded by the channel simulation rate
of DMC Py gc [23]. Thus, po > H(Y|BC). Combining
the local randomness rates constraints with the constraints
in Lemmas 1-3, we obtain the inner bound to the strong
coordination region

Ra+ R, + R. > I(XY; AC), (19a)
B+ R.5 HXY;6), (19b)
Ro+R. > I(X;AC), (19¢)

R.> I(X;C), (19d)
R. < I(B;C), (19%)
p1 > Ra+ R. — I(X; AC),  (19f)
p2 > H(Y|BC). (19g)

In this work, we are in particular interested in both
local and common randomness rates. Therefore, we deploy
Fourier-Motzkin elimination [34] on the rate constraints of
(19) to obtain the rates constraints of Theorem 1.

Remark 4: Due to the equivalence between the noisy point-
to-point strong coordination problem and the average DMC
simulation problem, the achievable strong coordination rates
of Theorem 1 are equivalent to the channel simulation rates
derived in [14, Theorem 4] when we assume infinite local
randomness. That is, when p; and po are infinite, the rate
constraints of Theorem 1 reduce to

R, +I(B;C) > I(XY;C),
I(X;C) < I(B;C).

B. Capacity Region for a Special Case

Here we characterize a special case of the proposed joint
coordination-channel encoding scheme in which the scheme
is optimal.

1) Deterministic Channel: This is the case when the chan-
nel output B is a deterministic function of the channel input A
i.e., H(B|A) = 0. Although this special case is discussed in
the context of simulating a DMC channel over a deterministic
channel [14]. we present this case in the context of our
achievable construction with rates as stated in Theorem 1.

In this case, we select the auxiliary random variables A
and C as follows. Let C' = (U, A) and select A independent
of X|Y, and U with P4 to be the capacity achieving input
distribution of the channel Pg| 4, i.€., Cp,,, = maxp, H(B).
Let U be an auxiliary random variable related to X and Y via
the Markov chain X —U —Y . As a result, the joint distribution
of Theorem 1 takes the form Py P4PgjaPx |y Py and the
problem reduces to a two-terminal strong coordination over
a noiseless channel and a separate channel coding problem.
Accordingly, from Theorem 1, the following rates are achiev-
able.

(@)
> I(Y;U|X)

R, +p1 (20a)

®)
R, >I(XY;U) — I(A; B)

=I(XY;U) — Cp,,, (20b)
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(e)
I(X;U) <Cp,,

(20c)
(d)
p2 2H(Y|U) (20d)
where (a)-(d) follows from the choice of A and C = (U, A);

(b)-(c) follows from the fact that the channel Pp)4 is determin-
istic and from the selection of P, to be the capacity achieving
input distribution.

Now, the optimality of (20a)-(20d) follows in a straightfor-
ward way from channel coding for and strong coordination
over noise-free channels [7, Theorem 3] for the special case
of a single hop.

C. Outer Bound: Converse
Let € > 0 and the tuple (R,, p1, p2) is achievable by the
length-n code that induces a distribution Px =~ y~ that satisfies

|1 Pxnyn — PE2llzv <e, (21)

Let T" be is a time-sharing random variable uniformly
distributed on the set {1,...,n} and independent of the
induced joint distribution. We infer from [35, Sec.V.A] the
following useful inequalities,

HX™,Y") — " H(X..Y:)| < né,
i=1

[H(Y™|X™) =) H(Y:|X:)| < né,
=1

I(XT,Yr;T) < nde, (22)

for some d. — 0 as e — 0.
Step 1, consider the constraint of (3a) for R, + pi.

n(Ro + p1) = H(J M)
> I(X™Y™; JM,)

@ reyn; M xm)

@ r(ym; AmTM X ™)

> I(Y™; A"J|X"™)

© 3 [1(v*; B, AN 9| X™) — I(Y*; BR A™J|X™)]
i=1

(@) —
2y [ XY

—I(Y" ' B|X"B}, ;A" J)]

—
m
ot

[¥]=

|1 BE, , AR XY X)

=
Il
—

—I(Y* Y B|X"Bp,,A"J)| —

—_
~
—

NE

[I(Ye; Ac(J B XHY 1| X)

=
Il
-

—I(Y™; B,|X" By, A"J)| — né,

i+1

Xt—l)yt—l IXt}

[

I(Ye; Ad(JBEy

=
Il
-

— I(Y™; B"|X"A"J) —
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()=
> 3 I L LR X 1)
t=1
— H(B"|A™) — né.

-]

® Y (Y Ad(IBR, XYY X,) — H(B:|A;)] — née

=1

k
@ UV ACDIXe) — H(Bel 4] —

-]

H

=n (YT ArCrDr|X1T) — nH(Br|ArT) — né.

D nI(Yer; ArCrDrT\Xr) — nl(Ye; T Xr) — né.

— nH(Br|ArT)
(m)
> nI(Y;ACD|X) — nH(B|A) — nd

where

(a) follows from that fact that X™ and (J, M) are indepen-
dent of each other;

(b) follows since A™ is a function of (X", J, M;);

(c) follows by introducing a telescoping sum of which only
one term from the previous equation remains uncanceled;

(d) follows by canceling the common term
I(Y*=1; BP, ;A" J|X™) from both terms in the previous
equatlon

(e) follows since (X",Y™) are nearly i.i.d., and hence (22)
applies;

(f) follows by dropping (A1, AT +1) from the first term,
and replacing Y™ in place of Y~ ! in the second;

(g) follows by combining all the negative terms;

(h) follows by upper bounding the second term by a condi-
tional entropy term;

(7) follows from the fact that B; is conditionally independent
of every other B and A variables given A;;

(k) follows from the definition of the auxiliary random vari-
ables C; & (X*'B},;J) and D, £ Y*!

(I) follows from the definition of the auxiliary random vari-
able C £ (Cr,T), and the fact that T is independent of
Br;

(m) follows by defining 8, £ I(Yz; T|Xr)+6. where by [35,
Sec.V.A] 4, — 0 with € — 0.

Step 2, we now move to the constraint of (3b) for R,.
nl, = H(J) = (XY ";.T)

@V [r(xty?; Br, J) — [(X1YtL; BR)]

_—
=~
M='
L

[ XY B J XY

S [0, i) el B:|B},,J)]

> Y [[(X:Ys; By, IX* YY)
— (XYL By B T)] —
> Y [I0GYs (B X 1)y )

—I(By; X* 'Y 1B, J)] — né,
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—_

M-

e

[I(X:Yy; (JBE, XY )
1

=
Il

—I(By; (JB; XY )] —né.
é Z I(XgK,Cth) —I(Bt,Cth ]—né

— (XTYT? CTDT|T) = ﬂI(BT, CTDTlT) = n§
> nI(XrYr; CrDrT) — I(Br; CrDT) — né,
= nI(XY;CD) — nl(B;CD) — né,

where
(a) follows by introducing a telescoping sum of which only
one term from the previous equation remains uncanceled;
(b) follows by  canceling the common term
I(X*'Y*"1; B, J) from both terms in the previous
equation;
(c) follows since (X™,Y™) are nearly i.i.d., and hence (22)
applies;
(d) follows by magnifying the second term suitably;
(e) follows by combining appropriate terms;
(f) follows from the definition of the auxiliary random vari-
ables Cr and Dr.

Step 3, finally we consider the constraint of (3c)

1C: X) @ 1(CrT; X7)
b
= I(CT,XT|T)

== ZI(C;;X;}
(c) 1 ZI(Xt 1B t+1J b A

@ 1 -
ZI{BH-I-JXdXt L1

t |

Gl ZJ(Xﬂ 1. B,|BF,,J)
t= 1

@ 1
ZI{X‘ B2, J; B,

=_ ZI(Ct;Bt)
g i=1

= I(Cr; Br|T)
< I(CrT; Br)
= I(C;B),

where

(a) follows from the definition of the auxiliary random vari-
able C,

(b) holds due to the fact that X is independent of T';

(c) follows from the definition of the auxiliary random vari-
able Cr;

(d) follows from the fact that X™ is i.i.d and independent of
the common randomness .J;

(e) follows from Csiszar sum identity [33, Sec 2.3];

(f) follows from chain rule of mutual information.
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Finally, we prove the cardinality bound for the outer bound
of Theorem 2. To bound the cardinality of the auxiliary random
variables, we only need to worry about the cardinalities C' and
D, since those of A and B are specified by the channel.

Cardinality bounds: To bound the cardinality of C, note
that the RHS of the equations of the outer bound in (3) are
preserved if we preserve:

i) the distribution Pxyagp(z,y,a,b) for each tuple
(z,y,a,b);
ii) the information functionals H(YD|ACX) and

H(D|ACY X) (together, they preserve H(Y |ACDX)),
iii) the information functionals H (XY D|C) and H(D|C)
(together, they preserve H(XY |CD)),
iv) and the information functionals H(BD|C') and H (D|C)
(together, they preserve H (B|CD)).
By viewing each of these quantities as a function of Pe
and Pxy agp|c» and by invoking the Support Lemma [33],
we can see that the size of alphabet of C can be restricted to
|X||V||A||B| — 1+ 6 = | X||YV||A||B| + 5. Once this is done,
we can preserve the distribution of Pxy apc(z,v,a,b,c) for
each tuple (z,y, a, b, ¢) by another application of the Support
Lemma [33], which will allow us to restrict the size of D to at
most |X[|V||A||BI[C] = (1X||VIIAIIB| +5)|X|[VI|AlB]. =

V. SEPARATE COORDINATION-CHANNEL ENCODING
SCHEME WITH RANDOMNESS EXTRACTION

In the previous section, we have presented a joint
coordination-channel encoding scheme that utilizes the ran-
domness provided by the DMC. This randomness is required
to reduce the amount of local randomness needed to generate
the sequence of actions at Node Y. As a basis for comparison,
we will now introduce a separate encoding scheme that
involves randomness extraction from the channel to supple-
ment the local randomness required at Node Y.

In this scheme we consider a two-stage method for achiev-
ing strong coordination over noisy channels. As depicted
in Fig. 4, an outer code represented by a strong coordination
code is designed to coordinate the sequence of actions between
the two nodes, i.e., achieve strong coordination as defined in
Section III. The coordination encoder generates, based on the
common randomness index J, a coordination message I at
rate R, to encode the action sequence X" for Node Y. This
message is then reliably communicated over the DMC at rate
R, using an inner capacity achieving channel code.

The following theorem describes an inner bound to the
strong coordination region using the separate encoding scheme
with randomness extraction.

Theorem 3: There exists an achievable separate
coordination-channel encoding scheme for the noisy strong
coordination setup in Fig 4 such that (1) is satisfied if

Ro +p1 = I(Y; U|X), (23a)
R, > I(XY;U) — I(A; B), (23b)
I(4; B) > I(X;U), (230)
p2 > max (0, H(Y |U) — H(B|A)). (23d)

where U is an auxiliary random variable jointly correlated with
the actions (X,Y),ie, X - U -Y.
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Fig. 4. Separate encoding for point-to-point strong coordination over a DMC.

A. Inner Bound: Achievability

We first use a (2"F<, 2" n) strong coordination code for
noise-free channels [3] to a generate coordination message [
of rate R.. A noiseless strong coordination code consists from
a codebook U of size 2"(Ro+E<) generated i.i.d. according to
pmf Py, ie., U ~ [[/—; Py(-) for all (i,5) € T x J where

2 [2nE<], J £ [2"F-], an encoding function I : X™ x
[27B-] — [2"F<] and a decoding function Y™ : [2"R<] x
[27B-] — V™. Such a code exists and satisfies (1) (see [3],
[51, [35], [36]) if and only if the rates R,, R, satisfy

Re+ R, > I(XY;U),
R. > I(X;U),

(24a)
(24b)

and U is selected such that X —U —Y forms a Markov chain.
This coordination message I is then communicated over the
noisy channel using a rate-R, channel code over m channel
uses with codebook A. Hence, R, = AR,. where A = m/n.
The probability of decoding error, i.e, P&/ 2 P[I # ), can
be made vanishingly small if R, < I(A;B). Then, from
the channel decoder output I and the common randomness
message J we reconstruct the coordination sequence U™ and
pass it though a test channel P(Y |U) to generate the action
sequence at Node Y.

At this point, we have obtained the necessary conditions
on the coordination rate R., the common randomness rate R,
and the communication rate R, to achieve strong coordination
over the noisy DMC. Now, similar to the joint scheme, we can
quantify the local randomness at both nodes [5], [7]. At
node X, this yields py > R. — I(X;U). At Node Y, the
necessary local randomness for the generation of the action
sequence is bounded by the channel simulation rate of the
DMC Py |y [23], ie., p2 = H(Y|U).

Remark 5: Note that this separate encoding scheme without
the randomness extraction phase can be constructed as a
special case of the joint coordination-channel scheme in Fig. 3
by simply choosing C = U, Psc = P4Py, and A being
independent of X, Y, and C.

In the following we: (a) consider the randomness extraction
phase at the decoder; (b) derive the necessary condition on
the communication rate F,; and (c) quantify the rate of the
extracted randomness. The derived condition on the communi-
cation rate R, guarantees that the randomness extracted from
the channel output provides (nearly) uniformly distributed bits
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that are independent of the message communicated over the
channel.

1) Intrinsic Randomness Extraction: In the following we
consider channel transmission with a super-block consisting
of x blocks of length m, where k € N is a large but fixed
number. At the transmitter, the coordination super-message I
is split as I = (I,...,I;) where each I; has mR, bits.
Then in each sub-block i = 1,.. ., k, the transmitter sends the
coordination message I; using an optimal channel code of
block-length m. From the channel coding theorem we obtain
that P{™ < 2-m¢ for some ¢ > 0 if R, < I(A;B).
Consequently, it follows that, P[I~ # [*] < k2-™¢' for fixed
k. We can then utilize a randomness extractor on the channel
super-block output B*™ to supplement the local randomness
available at Node Y. The following lemma establishes a much
needed fact about the randomness extractions stage that the
channel output can be used to not only decode, but also to
extract randomness (at a particular rate) that is guaranteed
to be nearly independent of the message conveyed over the
channel.

Lemma 4: Consider the separation based scheme over a
DMC Ppgj4 where an optimal channel code of length m
symbols is used « times. If R, < I(A4; B), then we can extract
a nearly uniformly distributed randomness M with alphabet
[25™%] of rate R < H(B|A) use such that:

i) I(I,I;M)—0

ii) |||—_),ét—| — Pyg|lev < 277 for some 3 > 0.
Proof: Observe that the messages and the sequence of
channel outputs B™"~ € B™"

(Ii'c1 an) — {(Ij: B(j—l)m—i—ltjm)}j:l

are k i.i.d. copies according to Pj, g=. We consider (I*, B™*)
as a discrete memoryless multiple source (DMMS). We can
then utilize the intrinsic randomness extraction results of [37]
that guarantees the following.

For any 4 > 0, there exist & > 0 and 3 > 0 such that for
sufficiently large k any S C B™" with P(S) > 27"* has a
bin (color) mapping ¢ : S — M, M £ [25™mR] such that
for ¢ (B™) = M:

1

@ .5
"

< 2

?

TV
(b)
| Prxyy — Pr=Pyllev < i

provided:

_(0)
mR < H(B™L) -

=H(B™ I,)—H(,) -6

= mH(B) — mRqy + H(I;|B™) — 6

(d)

< mH(B) —mR, + H(P{M) + P{™ log |T| - &,
where (a)-(c) follow directly from [37, Proposition 1] and (d)
follows from Fano’s inequality. Consequently,
HP) + PP log |T| — 6

m

ﬁ < H(B) — Ra the
"Z°H(B) — R,,
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Therefore, when R, is close to I(A;B), one can extract
randomness of rate R close to H(B|A) bits/channel use.
Moreover, if |[M| > 4 [37, Lemma 1] then

M|
||Pr-=f.} = PI"PA} [|rv

I(I%;M) < ||Pyejz — Pi=Pyllxv log

I(I%; M) < 2~ (log M| —1—0{1)) .

Finally, we have

I(I,1; M) =I(I; M) + I(I; M|I)
=17(1~ M)+ HI|1)- H(I|I, M)

[

1o—nf (log |IM| -|—o(1}) +H(I|I)

< 127 (log |MM| +o(1)) + H(PSP) +P{P log 7]

!
|

Remark 6: Randomness extraction from an arbitrary source
was first studied in [38], and then in [37] and [39]. Note
that the results of channel randomness extraction with asymp-
totic independence in [39] can also be used to prove
Lemma 4.

Now, we set A = 1 to facilitate a comparison with the joint
scheme from Section IV and supplement the local randomness
at Node Y with the randomness extracted from the channel
noise. Thus, p; > max (0, H(Y|U) — H(B|A)). Combining
the obtained local randomness rate constraints with the con-
straints of (24) for the outer strong coordination scheme and
the inner channel code, we obtain the inner bound to the strong
coordination region

R, + R, > I(XY;U), (25a)
R. > I(X;U), (25b)
R. < I(A; B), (25¢)
p1> R.—I(X;U), (25d)
p2 > max (0, H(Y|U) — H(B|A)). (25¢)

Followed by performing Fourier-Motzkin elimination [34],
we obtain the inner bound to the strong coordination region
described in Theorem 3. The proof follows in a straightforward
way from the proof of Theorem 1 with the selection of
auxiliary random variables C, A and the decomposition of
P4 as stated in Remark 5 combined with Lemma 4, and
thus is omitted.

VI. AN EXAMPLE

In the following we compare the performance of the joint
scheme in Section IV and the separation-based scheme in
Section V using a simple example. Specifically, we let X to
be a Bemoul]i-% source, the communication channel Pg|4 to
be a BSC with crossover probability p, (BSC(p,)). and the
conditional distribution Py-|x to be a BSC(p).

2727

A. Basic Separation Scheme With Randomness Extraction

To derive the rate constraints for the basic separation
scheme, we consider® X — U — Y with U NBemoulli-%,
Py x =BSC(p1), and Py|y =BSC(p2), p2 € [0,p]. ;1 =
P—P2
1—2ps
required for Theorem 3, we get

. Using this to obtain the mutual information terms

I(X;U)=1-—ha(p1), I(A; B) =1 — ha(po), (26a)
I(XY;U) =1+ ha(p) — ha(p1) — h2(p2), (26b)
and H(Y'|U) = ha(pa2). (26¢)

After a round of Fourier-Motzkin elimination by using
(26a)-(26c) in Theorem 3, we obtain the following constraints
for the achievable region using the separation-based scheme
with randomness extraction:

R, + p1 + p2 > ha(p) — min (h2(p2), h2(po)),
ha(p1) > ha(po)-

Note that (27a) presents the achievable sum rate constraint
for the required randomness in the system.

(27a)
(27b)

B. Joint Scheme

The rate constraints for the joint scheme are constructed
in two stages. First, we derive the scheme for the codebook
cardinalities |4 =2 and |C| =2, an extension to larger |C|
is straightforward but more tedious (see Figs. 5 and 6).°
The joint scheme correlates the codebooks while ensuring
that the decodability constraint (19e) is satisfied. To find
the best tradeoff between these two features, we find the
joint distribution P4 that maximizes [(B;C). For |C| =2
this is simply given by P4jc = dac, Where d,. denotes the
Kronecker delta. Then, the distribution Px Pc 4\ x Pgja Py |sc
that produces the boundary of the strong coordination region
for the joint scheme is formed by cascading two BSCs
and another symmetric channel, yielding the Markov chain
X —(C,A) — (C,B) - Y, with the channel transition matri-
ces

_[1-m 00 m
PCAjX o | P 0 B0 1— p1:| 1 (28)
_ k! —Po Po 0 0
PC'B|CA e ) 0 0 Do 1 _po] H (29)
r T
l—a 1-8 B a
Pyicp = | = B =g 1= a] (30)

for some o, 3 € [0, 1].

SFora doubly symmetric binary source (DSBS) given by Pxy = Px Py |x
where Py |x is a BSC(p), the BSC(p) is realized through a cascade of two
BSCs with an intermediate random variable U. The resulting joint distribution
of (X,Y,U) produce the boundary of the rate region, satisfies the Markov
chain X — U — Y, and the marginal distribution for (X,Y) is Pxy [40].
Finally, since the BSC input X is given by X NBemoulli—% it follows that
U ~ Bemoulli-1.

SNote that these cardinalities are not necessarily optimal. They are, however,
analytically feasible, provide a good intuition about the performance of the
scheme, and satisfy the bound |C| < |A||B||X||Y|+ 5 = 21 as given in
Theorem 2.
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Fig. 5. Randomness sum rate vs. BSC crossover probability po for target

distribution Qy|x = BSC(0.4).

Then, the mutual information terms required for Theorem 1
can be expressed with py £ (1 — p,)a + p,f3 as

I(X;AC) = I(X;C) =1 = ha(p1),
I(XY; AC) = I(XY; C) = 1+ ha(p) — ha(p1) — ha(p2),
I(B;C)=1— ha(p,), and
H(Y|BC) = poh2(8) + (1 —po)h2(a).

To find the minimum achievable sum rate, we minimize the
rate constraints in Theorem 1 with respect to the parameters
p2, «, and 3 as follows:

Ro+p1+p2 =p%gﬁ(hz(p)—hz(pz)+(1—po)hz(aHpohz(ﬂ))

ha(p1) > ha(po),

subject to
p = p1—2pip2 +po.

(31)

C. Numerical Results

Fig. 5 presents a comparison between the minimum random-
ness sum rate R, + p; + p2 required to achieve coordination
using both the joint and the separate scheme with randomness
extraction. The communication channel is given by BSC(p,),
and the target distribution is set as Qyx = BSC(0.4).
The rates for the joint scheme are obtained by solving the
optimization problem in (31). Similar results are obtained for
the joint scheme with |C| > 2. For the separate encoding
scheme we choose ps such that ha(p1) = ha(pg) to max-
imize the amount of extracted channel randomness. We also
include the performance of the separate coding scheme without
randomness extraction.

As can be seen from Fig. 5, both the joint scheme and the
separate scheme with randomness extraction provide the same
sum rate R, + p; + po for p, < p| where p), = b@.
We also observe that for noisier channels with p, > p)
the joint scheme approaches the performance of the separate
encoding scheme when the cardinality of C is increased. The
increase of R, + p1 + p2 for p, > p), is due to the fact
that in this regime the channel provides more than sufficient
randomness for simulating the action sequence Y™ via the
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Fig. 6. Communication rate vs. BSC crossover probability po for target

distribution Qy|x — BSC(0.4).

test channel Py |pc (see Fig. 3). As a result, the parameters
a and f associated with Py|g- must be adjusted to ensure
that (1) is still satisfied. As p, increases further, the required
total randomness of the joint scheme approaches the one for
the basic separate scheme again.

Note that when p, = p), the distributions Pxyy and
Pxyac of the separate encoding and joint coding scheme,
respectively, become the distributions which achieve Wyner’s
common information [40]. Here, Wyner’s common informa-
tion is defined as C(X;Y) £ miny.x_y_y I(XY;U), with
U = (A, C) for the case of the joint scheme. In other words,
the two BSCs Py x =BSC(p1) and Py |y =BSC(p) in
Section VI. A are both identical to the communication channel
Ppg4 and their cascade is equal to the target Qy|x. Let us
first consider the separate encoding scheme. Here, we fix
P1 = Po to maximize the randomness extracted from the
channel. Therefore, when p; = p, i.e., the DMC cross-over

probability is equal to p, = p/, by solving p; = 1p—_21?2 for

po results in pp = b@ = pl. At this point, Wyner’s
common information is achieved, i.e., I(XY; U) is minimized.
As a result, we obtain the minimum coordination rate when
no common randomness is available [3], [5], i.e., R, = 0.
Combining that with the fact that we extract H (Y |U) from
the channel, which leads to a local randomness rate of p; =
H(Y|U)— H(B|A) =0, results in the minimum randomness
sum rate as observed in Fig. 5. On the other hand, let us
consider the joint scheme for the special case of |C|=2.
In this case, in order to exploit the channel randomness we
fix p» = p, to maximize the amount of implicitly extracted
randomness. This is done by selecting « =0and =1 in
(30) up until p, < p,. As a result, the test channel Py gc
becomes a deterministic channel, i.e., po = 0. At p, = p|,
the joint distribution Pxy 4c becomes the distribution which
achieves Wyner’s common information with cascade BSCs:
PC'A|X as a BSC(pl) with ™M :p"o, R/K,'A as a BSC(p:,) and
we obtain again the minimum randomness sum rate.

Fig. 6 provides a comparison of the communication rate
i.e., the number of channel uses per n time slots required to
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achieve strong coordination, for both schemes. Note that the
joint scheme provides significantly smaller rates than the sep-
aration scheme with randomness extraction for p, < p/, inde-
pendently of the cardinality of |C|. Thus, in this regime joint
coordination-channel coding provides an advantage in terms
of communication cost and outperforms a separation-based
scheme for the same amount of randomness injected into the
system.

VII. NESTED POLAR CODE FOR STRONG
COORDINATION OVER NOISY CHANNELS

Since the proposed joint coordination-channel coding
scheme, displayed in Fig. 3, is based on a channel resolv-
ability framework, we adopt a channel resolvability-based
polar construction for noise-free strong coordination [19] in
combination with polar coding for the degraded broadcast
channel [26]. In this section, we propose a strong coordination
scheme based on polar coding that achieves the inner bound
stated in Theorem 1. For some N £ 2" n € N, let the
joint pmf of actions induced by the polar coding scheme
be _pryN. For strong coordination coding scheme, ?XNYN
must be close in total variation to the N i.i.d. copies of desired
joint pmf (X,Y) ~ Qxy, Q¥ ie.,

| Pxvy~ — Q¥yllrv <& (32)

Theorem 4: For a binary input DMC and a target distri-
bution Qxy defined over X' x )/, with an auxiliary random
variable C' defined over the binary alphabet, there exist a polar
coding scheme that satisfies (32) and achieves the region stated
in Theorem 1.

We now construct the polar coding scheme of Theorem 4.

A. Coding Scheme

Consider the random variables X,Y, A, B, C, C distributed
according to Q xy 4 o Over X x Y x Ax B x C xC such that
X —(A,C)—(B,C)—Y forms a Markov chain. Assume that
|[A| = 2 and the target joint distribution over the actions X
and Y, Qxy, is achievable with |C| = 2.1 Let N £ 2", n € N.
We describe the polar coding scheme as follows.

Consider a 2-user physically degraded discrete memoryless
broadcast channel (DM-BC) P44 in Fig. 7 where A denotes
the channel input and A, B denote the output to the first
and second receiver, respectively. In particular, the channel
DMC Peg,4 is physically degraded with respect to the perfect
channel P44 (we denote this as P44 ~ Pg4). We construct

tFor the sake of exposition, we only focus on the set of joint distributions
over X x Y that are achievable with binary auxiliary random variables C, A,
and over a binary-input DMC. The scheme can be generalized to non-binary
C, A with non-binary polar codes in a straightforward way [41].
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the nested polar coding scheme in a similar fashion as in [26]
as this mimics the nesting of the codebooks € and A in Step
i) of the random coding construction in Section IV-A. Here,
the second (weaker) user is able to recover an estimate I
for its intended message I, while the first (stronger) user is
able to recover estimates K, I for both messages K and I,
respectively. Let C be the auxiliary random variable (cloud
center) required for superposition coding over the DM-BC
leading to the Markov chain C — A — (A, B). As a result,
the channel Pgj- is also degraded with respect to Pyc
(i.e., Pyjc = Pgjc) [26, Lemma 3]. Note that we let C be
the random variable resulting from recovering C"V at Node Y
from I and the shared randomness message J. Let V be a
matrix of the selected codewords AV and CV as

N

va [éN} .

Now, apply the polar linear transformation G, where G,, is
defined in Section II, as

Ué[

(33)

Uy

Uév] - VGn,

(34)

where the joint distribution of the random variables in U
is given by QY v, (ul,ud) = QYc(uY G, ud G,). First,
consider CVN £ UNG,, from (33) and (34) where UY is
generated by the second encoder &; in Fig. 7. For 3 < % and
A — 30 ? we define the very high and high entropy sets

Ve 2{ic[N]:H(U2;|Ui™) > 1 - 4n}, (35a)
Veix 2{i€[N]:HU2,:|U; ' XN)>1 - dn} CVe, (35b)
Veixy ={i€[N] :H(U,|U; " XNYN)>1—édn}C Veix s

(35¢)
Heig 2{i€[N]:H({U2:|Us 'B") > én}, (35d)
Hoja 2{i€[N]:H(U2,:|U; ' AY) > bn}, (35€)
which by [42, Lemma 7] satisfy
. Vel .. Weix|.
N]J_I.ﬂx N =H(0), Nh—[:lm N TR
. WVexyl . |Hesl
en g ek g T =G
. |Hcjal
B )

These sets are illustrated in Fig. 8. Note that the set H¢p
(exemplary denoted in red in Fig. 8) indicates the noisy
bits of the DMC Ppg| (i.e., the unrecoverable bits of the
codeword CV intended for the weaker user in the DM-BC
setup in Fig. 3) and is in general not aligned with other sets.
Let

L1 £Vc \ Hejas L2 2 Ve \ Heys,

where the set H| 4 indicates the noisy bits of the DMC Py
(i.e., the unrecoverable bits of the codeword CV intended for
the stronger user). From the relation P4|c - Pg|c we obtain
Hcja € Heyp and 'Ha B C 'Hf;.l - Tespectively. This ensures
that the polarization indices are guaranteed to be aligned
(ie., L2 C L;) [43], [26, Lemma 4]. As a consequence,
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the bits decodable by the weaker user are also decodable by
the stronger user.

Accordingly, in terms of the polarization sets in (35a)-(35d)
we define the sets combining channel resolvability for strong
coordination and broadcast channel construction as

F1 = (Voix \ Voixy) N He s,
F2 £ Ve ixy NHE g,

F i VE‘IX n Hc|B - Hc|B X HCins
F1 £ Veix NHes = Heysx,

Fa2 Hesxy

.H Hesx \HeBxy

£ Ve \Vex) N HE 5

Now, consider AN £ UNG,, (see (33) and (34)), where
U} is generated by the first encoder £ with CV as a side
information as seen in Fig. 7. We define the very high entropy
sets illustrated in Fig. 9 as

a2 {ic[N]:H(U1:|UY)>1-6n}, (36a)
Vajc 2 {i€[N]: H({U1,4|U{'CN)>1—6n} C Va,

(36b)
Vajex £ {i€[N]: H(U1:|U; 'CN XN)>1-6n}
€ Vajes (36¢)
Vajoxy 2 {i€[N]: HU:|\UT'CY XY N) > 165}
C Vajcx, (36d)
satisfying
V. - vA CcX
Jim_ I;I H(4),  lm Vaiex| _ g aiex),
im 24l _ gage), 1m 2aexvl_ gacxy).
N—ooo N NS an N

Note that, in contrast to Fig. 8, here there is no channel
dependent set overlapping with all other sets as P44 is a
noiseless channel with rate H(A) and hence H 44 = 0.
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Similarly, in terms of the polarization sets in (36a)-(36d)
we define the sets combining channel resolvability for strong
coordination and broadcast channel construction as shown
in Fig. 9
Fs 2 Vaic \ Vaex,
Fo£Va\Vac.

Fe 2 Vaiex \ Vaexy
Fr £ Vacxy,

Finally, we define the sequence TV as the polar linear
transformation of YV ie, TV £ YNG,. Now consider
YN = TNG,. By invertibility of G, we define the very
high entropy set:

Vyvisc 2 {ic[N]: H(T;|T*'BNCV)>log |Y|—-én}, (37)
satisfying
WiBc|
i — H(Y|BC).

This set is useful for expressing the randomized generation
of Y via simulating the channel Py ¢ in Fig. 3 as a source
polarization operation [17], [19]. Note that here, we let G,, be
a polar code generator matrix defined appropriately based on
the alphabet of Y, e.g., if | | is the prime number ¢ > 2, G, is
as defined in Section II. However, the matrix operation is now
carried out in the Galois field GF'(g) and the entropy terms
of the polarization sets are calculated with respect to base-gq
logarithms [17, Theorem 4]. We now proceed to describe the
encoding and decoding algorithms.

1) Encoding: The encoding protocol described in Algo-
rithm 1 is performed over & € N blocks of length N
resulting in a storage complexity of O(kKN) and a time
complexity of O(kN logN). In Algorithm 1 we use the
tilde notation (i.e., UN,UN, AN, and CV) to denote the
change in the statistics of the length-N random variables
(ie., UN,UYN AN, and C™) as a result of inserting uniformly
distributed message and randomness bits at specific indices
during encoding. Since for strong coordination the goal is
to approximate a target joint distribution with the minimum
amount of randomness, the encoding scheme performs channel
resolvability while reusing a fraction of the common ran-
domness over several blocks (i.e., randomness recycling) as
in [19]. The encoding scheme also leverages a block chaining
construction [21], [42]-[44] to achieve the rates stated in
Theorem 1.

More precisely, as demonstrated in Fig. 3, we are interested
in successfully recovering the message I that is intended
for the channel of the weak user Pg|4 in Fig. 7. However,
the challenge is to communicate the set F5 that includes bits
of the message I that are corrupted by the channel noise.
This suggests that we apply a variation of block chaining
only at encoder &, generating the codeword CV as follows
(see Fig. 10). At encoder &;, the set F3 of block i € [k]
is embedded in the reliably decodable bits of F; U Fy of
the following block i + 1. This is possible by following the
decodability constraint (see (19d), (19e) of Theorem 1) that
ensures that the size of the set /3 is smaller than the combined
size of the sets F; and F3 [21]. However, since these sets
originally contain uniformly distributed common randomness
J [19], the bits of F3 can be embedded while maintaining
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Fig. 10. Chaining construction for block encoding.

the uniformity of the randomness by taking advantage of
the Crypto Lemma [45, Lemma 2], [46, Lemma 3.1]. Then,
to ensure that 73 is equally distributed over /7 U Fa, F3
is partitioned according to the ratio between |7;| and |f'2|
To utilize the Crypto Lemma, we introduce F3, and f31 s
which represent uniformly distributed common randomness
used to randomize the information bits of 5. The difference is
that F3,, as F», represents a fraction of common randomness
that can be reused over k blocks, whereas a realization of the
randomness in .F3 needs to be provided in each new block.
Note that, as visualized in Fig. 6, both the subsets fgl a2
and ng C F2 represent the resulting uniformly distributed
bits of F3 of the previous block, where |F3,| = |F3,| and
|#s,| = |Fs,|. Finally, in an additional block k + 1 we
use a good channel code to reliably transmit the set F3 of
the last block k. Note that since uniformly random bits are
reused to convey information bits, chaining can be seen as a
derandomization strategy.

2) Decoding: The decoder is described in Algorithm 2.
In Algorithm 2, we use the hat notation, i.c., UY and CV,
to distinguish the reconstruction of the N-length random vari-
ables, i.e., UY and consequently C2¥, from the corresponding
quantities at the encoder. Recall that we are only interested in
the message I intended for the weak user channel given by
Pg|4 in Fig. 7. As a result, we only state the decoding protocol
at D, that recovers the codeword CV . Note that the decoding
is done in reverse order after receiving the extra k£ + 1 block
containing the bits of set F3 of the last block k. In particular,
in each block ¢ € [1,k — 1] the bits in F3 are obtained
by successfully recovering the bits in both 7; and F3 in
block 7 + 1.

B. Scheme Analysis

We now provide an analysis of the coding scheme in
Section VII-A. The analysis is based on the KL diver-
gence which upper bounds the total variation in (32) by
Pinsker’s inequality. We start the analysis with a set of
sequential lemmas. In particular, Lemma 5 is useful to show
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Algorithm 1 Encoding Algorithm at Node X for Strong
Coordination
Input: XY, uniformly distributed local randomness bits
M, , of size k|Fg|, common randomness bits reused over k
blocks J = (J;, Jo) of sizes |fguf4| and | F~|, respectively,
and uniformly distributed common randomness bits for each
block J;.x, each of size k|Fy U F;|, shared with Node Y.
Output: EN
1. for i = nkdo
2. & in Flg. 7 constructs U3’ bit-by-bit as follows:
if : =1 then
. gg[fl Uﬁd — J;
5 Ug[fz Uﬁﬂ — jl
else
o Let £, Fs, be sets of the size (|Fm| x |F3])/(1F1| +
|F2l) for m € {1,2}.
o (ORI(FN\Fs) UF FD) —
(UN [(fz \ 5[-32) U f4] ‘7:32) — Jl

o U [Fs) = O [Fs\ Fs,) 0 F5)
. U2=' Fa,] — Ug_l[}% \ Fa,| @ Fs,
end

» Given X N successively draw the remaining compo-
nents of UN according to P SIUTIXN defined by

}'j 31N— QUglUJI jevg.,
Uz, 51Uz, " X; QUZ,HU; 1N jeF3UFs.
(38)
3. (FiN — ﬁé\:Gn
4. &; in Fig. 7 constructs ﬁﬂ' bit-by-bit as follows:
o UN[Fe] — My,

o UN[Fr] — T
« Given X and CY, successively draw the remain-
ing components of U N according to P

|UJ teNx N
defined by
QUIHU{_I _j' = V:‘i,
D ) A . :
Py, switonxy =\ Quywiton 5€ 70

Qu, ;ui-tenx~ J€TFs.
(39)
s A;N — mﬁiGn
. Transmit AN
7. end for

=)}

in Lemma 6 that the strong coordination scheme based
on channel resolvability holds for each block individually
regardless of the randomness recycling. Note that, in the
current Section VII and the associated Appendices B and C,
we refrain from using the N-fold product notation of joint, and
conditional distribution, e.g., respectively, Qx~ny~ = Q%Y
and QU,{V XN = Q{};l x to unify the notation across conditional
distributions.
Lemma 5: For block i € [k], we have

D(Qancyxn||[Pywenxn) < 2Ny
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Algorithm 2 Decoding Algorithm at Node Y for Strong
Coordination

Input: BY, uniformly distributed common randomness J;
of sizes |F, U Fy4| reused over k blocks, “fresh” uniformly
distributed common randomness .J;. each of size k| FyUF;|
for all k£ blocks and shared with Node X.

Output: Y,

1. For block i = k,...,1 do

2. Ds in Fig. 7 constructs fff bit-by-bit as follows:

o (OF[(Fi\Fs) UFa, FY) — &
. (Ug[(fz \ .7:32) Uf4],.7:32) — J; ~
« Given B}Y successively draw the components of Uj)

according to Py;, ;i1 g defined by

p Qu, o3t TEVE
Us; jjug‘ BN QUz \UI1BN je ]—'32U.'F31 UFs.
(40)
3. if 7 = k then
o Ué:r[}%] e B§+1
else
o OF[Fa\ Fa,l — OF, [Fa,] @ FEHD
e OFFs\ Fal = O [F] @ Fs,

4. Let
o O [F,] — 7D
. Ug [f32] £ f32
54 6,?“ — ffg G,
6. Channel simulation: given C'tN and B;V, successively
draw the components of T according to

1/ J € WyiBC;

- = C
Qr,iri-18VcN J € Vype-

Fo mgnyer™ { S

5. i—N — ’_ﬁ;NGn
6. end for

Proof: We have

D(QANCNXNH}BAéVC;"X?') = D(QU{”U?’XN”ﬁU{“TUQ‘!'X.N)
= ]EQXN [D(QUNUMXNHPUNUMXN)]

= ]EQXN [D(QUN|XNQUN|UNXN”PUN |XNPU{V|ng‘JV)]

(&)
= Eqw [D(Qupx~|1Poyxn)

+D(Quruy x~ ”PU{“HUQ;'X,N }]

N
(@)

= Quz 1yN [D(Quz jlud— 1xN|| Uz, ,|Ufi—lxlﬂ)]
j=1

N

Z]EQU: 1y NxN [D(Q[h Ui~ 1UNXN” U, 51U IUNXN)]
j=1

(d) 7
= Z ]EQUg—lxn [D(QUg,le-zi_lXNHPUZ

if_ilU:Jzi‘-_IX;v):I
JE&F3UFs
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"’ZEQ ' 1UNXN[ (QU1,|U3 IUNXNHPUl S0l 1UNXN)}
j¢Fs

(e)
= Z EQU%“XN [D(QUZ 1l IX”“ Uz, 51U3; 1XN)]
JEVEUVC|x

Py 5

QUf_lU;rXN [
JEVSUVa1cxUVaWac

i—1
U )

= >, (H(Uz?lefI'_l)—H(Uz,thg—lxN))
JEVE

+ Y (1 HUwIU X))

D(QULj!Uf_IUéVXN”P

i€Vex

+ Y (H@U{™) - HU, Ui U) X))
Jjevs

+ Y (1-H@O U UrxY))
J€Vaicx

+ > (BT UY) - H(UL, U3 UR X))
JeVs,oWVs

(@) " 44
=2, (H(UzJIU% ) — H(U,|U3 1XN))
JEVE
+ Y (1-HO,1U87' X))
i€Vex
& (H(Ul,jIUf_l)—H(U1,3-|Uf"10NXN))
jeve
+ Y (1-HO,UicMx™))
JE€Vacx
ST (e o)
jEVf”C\Vfi

h)
< (Vel+ Veix | + Vaixel + [V cl)dn < 2Néw,

where

(a) holds by invertibility of G;

(b) -(c) follows from the chain rule of the KL diver-
gence [31];

(d) results from the definitions of the conditional distributions

in (38), and (39);

follows from the definitions of the index sets as shown

in Figs. 8 and 9; _ _

results from the encoding of U{Y and UJ" bit-by-bit at £;

and &, respectively, with uniformly distributed random-

ness bits and message bits. These bits are generated by

applying successive cancellation encoding using previous

bits and side information with conditional distributions

defined in (38) and (39);

holds by the one-to-one relation between U and CV;

follows from the sets defined in (35) and (36), for

on 227N and <1

(e)
()

(9)
(h)

m
Lemma 6: For block i € [k], we have
D(PX‘.NY‘.N [|@x~y~)

<D(Py N

where 5}\}’ LS O(‘/_T‘_N JN), on22V and g < 1
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Proof: Consider the argument shown at the bottom of the
page. In this argument:
(a) -(b) results from the Markov chain
XN_ANCON_BN@EN_yN.
(¢) follows from [19, Lemma 16] where
6 2 _Nlog(iy sopay)V2In2y/2Néy,

F

.4 X
Ex acBCy — mmzfyfafc,b,é(QXACchL

(d) follows from the chain rule of KL divergence [31];
(e) holds by Lemma 5 and [19, Lemma 14] where

31(3) é —N lOg(P-XAC)V 2]_'EI_2\/ 2N5N-,
HxAC = mj-n;fafc (QXAC);

(f) follows from the chain rule of KL divergence [31];
(g) holds by [19, Lemma 14], where

A = g
KacBe = mma,c,b,é(QACBC')7

3 By o
Ky pe — My pe (QYBC)?

(h) holds by bounding the terms

D(QBN§N|ANC{”PB‘N§‘!"|A?'C‘N ): and
D(QleBNaN”PY‘_NIBiNa‘N), as follows:
— First, we show that

D(QBNGN[ANCNHPBNEMANC_N} < Néy by the
following argument: =~~~

D(QBNE‘MANCN ”PB‘!"E:”';“M{.\‘C‘N)
(a) =
= D(@p~a¥Qen pn||@BN av Pon pn)

— D(Q6N|BN||}56"4‘V|B§V)

(b) =
© D@pwyan 1P 153)

2133

N
(c) = T
:ZlEqvé‘laN [D(QUZ.:'IUg_lBN”PUZ.-‘:'IUgleiv)_
J:

(d) = ]
- ZEQUJ'—‘BN [D(QUz,leéi_lBN||PU2;,1|U3;13?J
jevg  ° g

3k Z EQU;{‘IBN [D(QU2,1|U§_13N||PUzi ,leg.-_IB?)
j€HciBUVe x &
2> (B 24U - HU,4U4 7 BY))
JEVE

+ Y (1-H@U,U37BY))

J€HcBUV e x

()
< Vélén + [Heg U Veix |dn < Nén,

where
(a) results from the Markov chain C — A — B — '
and the fact that Pgn v = QpnNjan;
(b) holds by the one-to-one relation between UJ¥ and
N
(c) follows from the chain rule of KL divergence [31];
(d) -(e) results from the definitions of the conditional
distributions in (40);
(f) follows from the sets defined in (35).
— Next, we show that D(QYN|BN6N“15Y,.N|B;V6'§“) <
Néy with the following derivation:

D(QYNIBNE:N “p}"MB;"@;V)

N

(a) p

— E :EQTJ'—IB‘NégN [D(QT}ITJ"—IBN@””PleT"_leéiv)}
j=1

D(PX?'APFC?'B?'@?'YSN IQ@x~ svenpNanyN)

= D(PY‘.N|X§A§VCFB§VE§VPX§A§VC‘NB§VE?;“ @y~ x~avcnpyenQ@x v gnonpren)

(a) -
" D(PY‘.N|B;\‘6';‘“‘PX§VA§VC§B;‘V6§V @y~ pxenQ@x~ancnpren)

- D(PY‘.N|B;V5‘!“‘PB;V6;V|X‘NA§V0§PX§VA§VC‘N ||QYNiBNéNQBN§N|XNANcNQXNANCN)

(B)

= D(PyipyexPoyerianey Pxy ayer|lQynipnen @prenjanon@xnancn)

(e) ( ~ ~ — 3 D
2)
< o + DBy wipnen Ponemavon Py aror Py m sy Peyonian oy @xvanoy)

+D(Py v gyvenPavenjanenQ@xnaven||Qy v pvenQ@pnenjanon@xnaney)

(d)

= 63 + D(Pxx aven [IQxv ancn) + D(Pyx gyen Panenianon||Qy v pvenQpnen avon)

(e) 3 = =
e 55\?) + 55\?) + D(PY‘.N |IBNEN PB{"Q.” |ANCN 1@y~ |BNCN Qpven [ANCN)

0 <2 , 22 = =
- 65\{) st 5§v) & D(PY‘MBgVE"N“QYNIBN&'N) +D(PB§V6‘N|A§VC‘N IQp~ngn avew)

(9) - =
= 55\?) + 5}3) — Nlog(py gg) Vv QhQ\/D(QYMBN&N||PY‘.N|B§V6'§V)
— Nlog(k scpe)V QhQ\/D(QBNC'NlANcN Hpsj‘fég‘fmg‘fcg“)

) s
< 6@ + 6@ — Nlog(uy gs)V2In2y/Noy — Nlog(p 4 -55)V2In2y/Noy
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(&)
i€Vy|BC

Q 3 (log|y| - H(TT1BYCY))
i€Vy|BC

(@

< [Vy|BcloNn

< Nén,

where
(a) follows from the chain rule of KL divergence [31];
(b) - (c) results from the definitions of the conditional
distribution in (41);
(d) follows from the set defined in (37).
|
Now, Lemmas 7 and 8 provide the independence between
two consecutive blocks and the independence between all
blocks, respectively, based on the results of Lemma 6.
Lemma 7: For block i € [2, k], we have

7 7 B 3
D(Px‘_hlmyﬁ 1:ij1”PXi{1Y£1j1 PXEVYiN) S {sg\'r)

where 6 £ O(¢Y/N56y), 6x 227V° and 8 < 1.
The proof of Lemma 7 can be found in Appendix B.
Lemma 8: We have

k
D( Py I T] Prvw) < (k= 1))
i=1

where 61(?) is defined in Lemma 3.

The proof of Lemma 8 can be found in Appendix C.

Finally, by the results of Lemma 8 we can show in Lemma 9
that the target distribution Q) x vy ~ is approximated asymptot-
ically over all blocks jointly.

Lemma 9: We have

B, 4
D(Px{\:'kylfz\kaQxlszyl:kN) S 6§v—)

where &%) 2 O(K3/2N23/35)/%), 65 227N° and 8 < 1.
Proof: We reuse the proof of [19, Lemma 5] with substi-
tutions gy1:v — Qxny N, ﬁy‘_m\r — Py‘_NX‘_N. |

C. Proof of Theorem 4

We can now proceed to show that the polar coding scheme
described in Algorithms 1, 2 achieves the region stated in
Theorem 1 and satisfies (32).

Proof: The common randomness rate R, is given as

[J1| + | J1:x _ Veixy | +EVeix \ Vexy|

kN Nk
_ Veixyl g [Vex \ Vexyl
EN N
N—oo H(C;LXY) —|—I(Y;C|X)
£ 1Y C)X). 42)
The communication rate R, is given as
k| Fs UFs| _ k[Ve\Vox| _ [Ve \ Voix|
kN N Nk N N
=2 I(X;0), 43)
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& Z EQq—j—lgg\'cg\f [D(QleTj_lsNaﬂ||PTJ_1TJ._IB§YC,§V)] whereas R, can be written as

Vaiexy| + ElFs| _ Vajexy| + klVajc \ Vajex|

EN kN
_ WVajexy| | Vajc \ Vajox|
o kN N
S Y w
2 AR (44)

The rates of local randomness p; and ps, respectively, are
given as

_ KFe|  WVajex \ Vajexvyl
PL=%N ~ N

o L VIeE), (45)
kV —00
_ | YIBC| N H(Y|BC). (46)

kEN
Finally we see that conditions (19a)-(19g) are satisfied by

(42)-(46). Hence, given R,, R,, R, satisfying Theorem 1,
based on Lemma 9 and Pinsker’s inequality [29] we have
E[||Pxx vy — Qxrenyran||rv]

<E[/2D(Pyp v [Qxrenyian) |

= \/Q]E[]U’(4’.5)({\__ficyllj-;c [|@Qxc 1N yr:ken )] i

As a result, from (47) there exists an N € N for which the
polar code-induced pmf between the pair of actions satisfies
the strong coordination condition in (32). [ |

(47)

VIII. SUMMARY AND CONCLUDING REMARKS

In this paper, we have investigated a fundamental ques-
tion regarding communication-based coordination: Is separate
coordination and channel coding optimal in the context of
point-to-point strong coordination? In particular, we consid-
ered a two-node strong coordination setup with a DMC as the
communication link. To that extent, we presented achievability
and infeasibility results for this setting and constructed a
general joint coordination-channel encoding scheme based on
random codes. We also provided a capacity result for a special
case of the noisy strong coordination setup where the discrete
memoryless communication channel is a deterministic chan-
nel. The proof technique underlying our joint coding scheme
is based on channel resolvability, a technique which is widely
used in analyzing strong coordination problems. In addition,
we presented a benchmark scheme based on separate coordina-
tion and channel encoding and utilized randomness extraction
to improve its performance. In this scheme, randomness is
extracted from the channel at the decoder. In addition, by lever-
aging our random coding results, we presented an example for
coordinating a doubly binary symmetric source over a binary
symmetric communication channel in which the proposed joint
scheme outperforms a separation-based scheme in terms of
achievable communication rate. As a result, we conclude that
a separation-based scheme, even if it exploits randomness
extraction from the communication channel, is sub-optimal for
this problem. Finally, we have also proposed a constructive
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coding scheme based on polar codes for the noisy two-node
network that can achieve all the rates that the joint scheme can,
where achievability is guaranteed asymptotically. Although
this work yields some insight in coordination over noisy
communication links, a tighter converse bound to establish
the optimality of the presented joint encoding scheme is still
open.

APPENDIX A
PROOF OF LEMMA 3

The proof of Lemma 3 leverages the results from
Section IV-A2. The bound on I[Pxn 7—Q%Ps||rv is obtained
in a similar manner as in the proof of Lemma 1. Note that here
we also drop the subscripts from the pmfs for simplicity, e.g.,
Py ac(x"|Afy, Cj5) will be denoted by P(z"|A7, Cj),
and Q% (z™) will be denoted by Q(z™) in the following.

Proof of Lemma 3: Consider the argument shown at the
bottom of the page. In this argument: ¢’ > 0, € — 0 as
n — 00.

2135

(a) follows from the law of iterated expectations. Note
that we have used (ajj,cj;) to denote the codewords
corresponding to the indices (7,7, k) and (aﬁj,k,,ctﬁj,)
to denote the codewords corresponding to the indices
(#, 5", k'), respectively;

(b) follows from Jensen’s inequality [31];

(c) follows from dividing the inner summation over the
indices (¢',k’) into three subsets based on the indices
(4, j, k) from the outer summation;

(d) results from taking the conditional expectation within the
subsets in (c);

(e) follows from

- (5, F) =
codewords represented by the indices A7
responding to =";

— when (K’ # k) and (7,7)
(2"R= — 1) indices in the sum;

- (¢,7',K') # (i,3,k): the number of the indices is
at most 2"(R=+Re) Moreover, P(z") is less than ¢

(¢,7,k): there is only one pair of

1k Ciy cor-

(¢,7) there are

P(z"|A"

PEAS s ng,))
2nRQ(z")P(5)

EcID(Pxn s [1Q% Py)] = Ec Z_(Zk: gk ”))“’8(2;
g i, A
e (- A
O35 e | (C g P,
™ 1,5,k
S Sk, (W)*%(wa@
" ik £
oy ¥ nR (>

" a’ljk’cng 1,5,k i’fk’:
(i’.'j":k’)z(ifj?k)
P(z"|A,,,CE

2n(Ra+Re)Q(z™)

I
i’ K"
(i',5")=(1,9),(k"#k)

(d) P(I a't k2 Ci ) P(In1‘1: k2 Gi )
PP LM

:‘gklczg i,5.k

n n
A‘-:j: k! C‘-:j: [

(7 .4")=(1.9).(K' #k)

() ( nl ijk? —ij
< Z Z P(I a‘_,',k, U)log (W‘Tw + (2
" a:‘;& c:;

2 %

P(z™| AL ks CE3 N | am
-fyc.ﬁjf[l"g(i%; gn(Ra+ch)Q(Inj) )A”‘

P(z"|AZ,,..,CE.,
]En’kfcﬂ [ ( |Aljk J)

Agcn|+

(2")

2—nH(X |AC)(1—e€)

C‘"]]

)|

P(:;:"}A;Ej, & C,?}j,)
2"(Ru+R=)Q(In)

2“(Rﬂ+Rc)Q(I“) Aukc ]

P(z™|A% 5, C

S )

f f kl 2“(RB+RC)Q(IH)
(@, J’ k’)#(h:.',k)
P(z"|c}; P
Z 2n(Ra+Rc)Q(IR) Z Qﬂ(Ra+Rc)Q(Iﬂ)
iK' iK'

(&' 3" KA (i,5:k)
@)
2“(Ra+R=)Q(Iﬂ)

2—nH(X|C)(1—e)

= (:",a",c“)e'f‘“ (PXAC)

= b3

n n mn
Plzaase ) o (Qn(Ra+RD)2—nH(X)(1+e) t nRg—mEOGTS T 1)]

+P((z",a",c") ¢ T (Pxac)) log(2uy" + 1)

In(Rc+Ra)

P(z",a",c")log (

L (z™,a™,cm)eT™*(Pxac)

on(R.)

onU(XAC)+E(E)  gn(I(XiC)+6(e))
+ +1

+ (21X 4| [Cle "< #x4) log(2u™ + 1)
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close to Q(z™) as a consequence of Lemma 1 and
[47, Lemma 16].

(f) results from splitting the outer summation: The first
summation contains typical sequences and is bounded
by using the probabilities of the typical set. The second
summation contains the tuple of sequences when the
action sequence z™ and codewords c",a™, represented
here by the indices (i,7,k), are not e-jointly typical
(ie., (z",a",c") ¢ T"(Pxac)). This sum is upper
bounded following [6] with px = min(Px).

(g) follows from the Chernoff bound on the probability that
a sequence is not strongly typical [32].

(h) consequently, the contribution of typical sequences can
be asymptotically made small if

R.+R.>I(X;AC), R.>I(X;C).

The second term converges to zero exponentially fast
with n [32], and following Pinsker’s inequality [29] we have

Ec[||Pxns — Q% Pillav] < Ec [\/2D(PXHJ11Q;pJ) ]

< /2B [D(Pxns1Q% P)] < V2P
| |

APPENDIX B
PROOF OF LEMMA 7

We reuse the proof of [19, Lemma 3] with subsmtitu-
tions gi:v — Qen, gyin — Qxnyn, ﬁU1N — PCN
pleHPnyN and R1 « J;. This results in the Markov

chain Xz_lY_ — XM replacing the chain in [19,
Lemma 3].
Proof of Lemma 7:

H(U Voxy |1 XNYN) — H(U Vo] X YY)
= H(Uy Vexy I XNYN) — HU, [Vexy1 XN Y.Y)
—H(XNY™N) + HX]YN)

(a) o

S ]D(PUN[VC|xy]XNYNI|QU fvc|xy]XNY'v}
+(N? log(1X]YljC|)V2In2

X\/D(pUﬁ[VCJXY]X;NY.-N||QU:‘»V[VC|xyIX”YN))

+D(QXNYN||}5X?’3@N)
+N?1og(|X]|¥))V2I 2, /D(Pyry ) |Qxny

(2 D(ﬁug“_’x;")@” | |QU;"XNYN)
+N*log(|X|[VIC)V2In 2, /D(Pyy xny x| Quy xnyw)
+D(QXNYN||}5X;"3@N)
+N?log(|X|[¥))V2In2y/D(Pyryx)|Qx vy

(c)
< 6 + N3 log(1X||Y[C))V2In2y/ 8
—Nlog(pxy)V 21112\/][1’(}3)(;‘“&.” |Qx~y~)
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+N?log(|X]|¥)V2In2y/D(Px vy Q)
< 60 + N3log(lX||Y|[C])V2In24/6P

—Nlog(pxy)V2In2y/6 +N2log(|X||V])V2In21/6
<
=0 »

where

(a) follows from [19, Lemma 17];

(b) follows from the chain rule of KL divergence [31];
(c) follows from Lemma 6 and [19, Lemma 14].
Hence, for block 7 € [2, k], we have

D(Px~ y~_ 5|[Pxx y~ 7 Pxnyn)

=I(X Nli;Nljl;XNi}N)

XNV 0+ I(XD YN XD )
= I(XNY"; 1)

— I(XN?N' UN [VC[XY])

= H(UN Veixy]) — HUS VexvIIXNYY)

D Ve log(icl) — HUP VopyIXVYY) 4 6

< Vexyl— ) H(Uz ;| XNYNUI1) + 69

JjEVeixy
(3
< Vexyl = Voxy (1 - 6n) + 6§
2(3
= |[Veixy 0w "‘55\;)
< Néy +89 <69,

where (a) follows from (48), and (b) follows from the defini-
tion of the high entropy sets (35). [ ]

APPENDIX C
PROOF OF LEMMA 8
We reuse Ehe proof of [19, Lemma 4] with substitutions
Pyun — Pynyn, and R; < J;. This will result in
fhe MK chain XN VN .. J XN N Ny
replacing the chain in [19, Lemma 4].
Proof of Lemma 8:

D(Pxﬁkyﬁa:” f[px‘!‘fy‘_h')

(@) o
ZI(XN ;Xﬁi—lylﬁ—l)
i=2
k
<D I XY Y )
i=2

Lol

=N XYY V.5
i=2
+H(XNYY XY YN XYY R)

®
ZD(PX_“Y‘N J1”PXN N J1PXNYN)

i= 2

Z 6(3)

16,
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where

(a) follows from [19, Lemma 15]. _

(b) holds by the Markov chain XY, YN ,— 1 XN YN —
X

(e) follows from Lemma 7.

]
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