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ABSTRACT

Future wireless networks need to support the increasing demands
for high data rates and improved coverage. One promising solution
is sectorization, where an infrastructure node (e.g., a base station) is
equipped with multiple sectors employing directional communica-
tion. Although the concept of sectorization is not new, it is critical
to fully understand the potential of sectorized networks, such as
the rate gain achieved when multiple sectors can be simultaneously
activated. In this paper, we focus on sectorized wireless networks,
where sectorized infrastructure nodes with beam-steering capa-
bilities form a multi-hop mesh network for data forwarding and
routing. We present a sectorized node model and characterize the
capacity region of these sectorized networks. We define the flow
extension ratio and the corresponding sectorization gain, which
quantitatively measure the performance gain introduced by node
sectorization as a function of the network flow. Our objective is to
find the optimal sectorization of each node that achieves the maxi-
mum flow extension ratio, and thus the sectorization gain. Towards
this goal, we formulate the corresponding optimization problem
and develop an efficient distributed algorithm that obtains the node
sectorization under a given network flow with an approximation
ratio of 2/3. Through extensive simulations, we evaluate the sec-
torization gain and the performance of the proposed algorithm in
various network scenarios with varying network flows. The simula-
tion results show that the approximate sectorization gain increases
sublinearly as a function of the number of sectors per node.
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1 INTRODUCTION

Future wireless networks and systems including 5G/6G need to
provide multi-Gbps data rates with guaranteed coverage, leverag-
ing massive antenna systems [22], the widely available spectrum at
millimeter-wave (mmWave) frequency [18], and network densifici-
ation [9]. In addition to deploying more cell cites, the sectorization
of each cell - dividing each cell into a number of non-overlapping
sectors — can significantly enhance the cell capacity and coverage
by improving the spatial reuse and reducing interference [1].

There are many applications of sectorized networks to wireless
access and backhaul networks, in both sub-6 GHz and mmWave
frequency bands. For example, in a mmWave backhaul network
that can provide fiber-like data rates (e.g., the Terragraph 60 GHz
solution [13]), each mmWave node is usually composed of a number
of sectors, each of which is equipped with a phased array with
beamforming capability [20]. In addition, integrated access and
backhaul (IAB) [16] in the mmWave band supporting flexible and
sectorized multi-hop backhauling started to be standarized since
3GPP Release 16. Recent efforts also focused on using increased
number of sectors per infrastructure node to provide better coverage
(e.g., SuperCell [7] supports 36 azimuth sectors per node). Therefore,
it is important to study the performance of sectorized networks,
especially when each node can simultaneously activate multiple
sectors for signal transmission and/or reception.

In this paper, we focus on the modeling, analysis, and optimiza-
tion of sectorized wireless networks, where sectorized nodes form
a multi-hop mesh network for data forwarding and routing. We
consider the scenario where a sectorized infrastructure node can
simultaneously activate many sectors supporting beam-steering
capability, and focus on optimizing the sectorization of each node
given the network conditions. We present the model of a sector-
ized wireless backhaul network consisting of (fixed) sectorized
infrastructure nodes, and describe the link interference model and
characterize the capacity region of these networks. For a sectorized
network, we introduce a latent structure of its connectivity graph,
called the auxiliary graph, which captures the underlying structural
property of the network as a function of the sectorization of each
node. We show that the capacity region of a sectorized network
can be described by the matching polytope of its auxiliary graph.

Then, we present the definitions of flow extension ratio and the
corresponding sectorization gain as a function of the network flow.
These two metrics quantitatively measure how much the network
flow can be extended in a sectorized wireless network, and thus
quantifies the performance of the network sectorization. We formu-
late an optimization problem with the objective to find the optimal
sectorization of the network that maximizes the flow extension
ratio (i.e., achieves the highest sectorization gain) under a given
network flow. Due to the analytical intractability of the problem,
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Figure 1: Sectorized infrastructure node model: (a) A sectorized node
n with K,, = 4 sectors, {U,’f}, the FoV of each sector, {w,’j}, and the
sectoring axes, {U’,i}. (b) Each node sector can perform TX or RX
beamforming with a range of R and main lobe beamwidth of 6.

we develop a novel distributed algorithm, SECTORIZE-n, that ap-

proximates the optimal sectorization of each node in the network.

We also prove that SECTORIZE-n is a 2/3-approximation algorithm.

Finally, we numerically evaluate the performance of the pro-
posed algorithm through extensive simulations. We consider both
an example 7-node network and a large number of random net-
works with varying numbers of sectors per node, node density, and
network flows. The simulation results confirm our analysis and
show that the approximate sectorization gain increases sublinearly
with respect to the number of sectors per infrastructure node.

To summarize, the main contributions of this paper include:

(i) A general sectorized multi-hop wireless network model and a
comprehensive characterization of its capacity region based on
matching polytopes,

(it) A distributed approximation algorithm that optimizes the sec-
torization of each node under a given network flow with per-
formance guarantee, and

(iii) Extensive simulations for performance evaluation of the pro-
posed sectorized network model and algorithm.

We also note that the developed sectorized network model and

analysis are very general, and can be applied to other networks that

share similar structures of the connectivity and auxiliary graphs.

2 RELATED WORK

There has been extensive work on characterizing the capacity re-
gion of sub-6 GHz wireless networks where each node is equipped
with a single directional antenna (i.e., without sectorization), as
well as on developing medium access control (MAC), scheduling,
and routing algorithms for these directional networks [15, 24, 27].
Recently work also focused on mmWave networks where nodes
apply beamforming techniques for directional communication, and
considered multi-user MIMO and joint transmission [26], IAB [16],
joint scheduling and congestion control [8], and the corresponding
scheduling/routing and resource allocation problems in these net-
works. For networks with sectorization, recent work has considered
the design of routing protocols when only a single sector can be
activated at any time for each node (e.g., [19]).

Most relevant to our work are [2, 4, 10]. In particular, [4] focuses
on efficient message broadcasting in multi-hop sectorized wireless
networks, where each node has a pre-fixed sectorization. [10] con-
siders the multi-hop link scheduling problem in self-backhauled
mmWave cellular networks and applied deep reinforcement learn-
ing for minimizing the end-to-end delay. [2] considers the relay
optimization problem between macro and micro base stations in
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@G = (N, L) ) HO = (V°,E°)
Figure 2: Graph representations of a sectorized network: (a) the
connectivity graph of the physical network, G° = (N, £L°), and (b)

its corresponding auxiliary graph, H® = (V°,E?).

mmWave backhaul networks with at most two-hop path lengths. In
contrast, our work uniquely focuses on (i) characterizing the fun-
damental capacity of sectorized wireless networks when multiple
sectors can be simultaneously activated at each node, (ii) optimizing
the node sectorization in these networks under different network
flow conditions, and (iii) analyzing the network-level gain intro-
duced by optimizing the sectorization of each node, which has not
been considered in prior work. To the best of our knowledge, this
paper is the first thorough study of these topics.

3 MODEL AND PRELIMINARIES
3.1 Network Model

We consider a network consisting of N sectorized infrastructure
nodes. We denote the set of nodes by N and index them by [n] =
{1,2,---,N}.In particular, let 0, denote the sectorization of node
n € N equipped with K sectors. Let I;;(K;) denote the set of
all possible sectorizations for node n with a fixed number of K,
sectors. As shown in Fig. 1(a), the k™ sector of node n, denoted
by ok (k = 1,---,Kp), has a field of view (FoV) of wk, and the K,
sectors of node n combine to cover an FoV of the entire azimuth
plane, i.e., Zlk(;l a)ﬁ = 360°. For two adjacent sectors k and (k+1) of
noden(k =1,---,K—1), we call their boundary a sectoring axis and
denote it by r7,’§. We define the sectoring axis between sector K and
sector 1 with pX. Let 0 = (01,---,0n) = [0n : Vn € N] denote
the network sectorization, and K = (K3, - ,Ky) = [Ky, : Vn € N
be the vector of the number of sectors for all nodes. For a given
K e Zfr\], let T (K) be the set of all possible network sectorizations,
where node n is equipped with K}, sectors.

Each sector of an infrastructure node is equipped with a half-
duplex phased array antenna to perform transmit (TX) or receive
(RX) beamforming. We adapt the sectored antenna model [3] to
approximate the TX/RX beam pattern that can be formed by each
sector, where R is the TX/RX range and 6 is the beamwidth of the
main lobe, as depicted in Fig. 1(b). We assume that the beamwidth 6
is smaller than the sector’s FoV, and the TX/RX beam can be steered
to be pointed in different directions within each sector.

We use a directed graph G® = (N, £) to denote the connectivity
graph of the network under sectorization o € T'(K), where N (with
IN| = N) is the set of nodes and £ (with |£| = L) is the set of
directed links. A directed link ¢ from node n to node n’, denoted
by ¢ = (n,n’), exists if the distance between the two nodes is less
than the sum of their communication range, i.e., |x(n) — x(n’)| <
2R, where x(x) denotes the node’s location vector (e.g., using the
Cartesian coordinate system) and | - | denotes the Ly-norm. Without



Optimizing Sectorized Wireless Networks: Model, Analysis, and Algorithm

@
(a) (b)
Figure 3: (a) A feasible link ¢ = (a,]f , 0']:,’ ), (b) A secondary interfering

TX sector O',I:g to RX sector 0,1:5, (c) The secondary TX interference in
(b) can be avoided by steering node 3’s TX beam in 0',]2, so that both
links (J,’E, J,]Z) and (0',1:2, O’,’:j) can be simultaneously activated.
loss of generality, we use G (without the superscript o) to denote
the connectivity graph of an unsectorized network.

We also present an equivalent representation of each directed
link in G€ based on the node sectors. In particular, each £ € £ can
also be represented by ¢ = (o¥, 05,’), where the kP
n (i.e., oX) is the TX sector, and the k"™ sector of node n’ (i.e., O"I:,’)
is the RX sector. For a link in the form of (a],f, 05,/) to be a feasible
link, it needs to satisfy the following two conditions! (see Fig. 3(a)):
e (C1) The distance between the two nodes is less than the sum of

their communication range, i.e., |x(n) — x(n’)| < 2R; and
e (C2) Node n lies in the FoV a)f;: of node n’, and node n’ lies in

the FoV (uﬁ of node n.

Since both the TX and RX beams can be steered within »X of node
n and wﬁ,’ of node n’, respectively, the above two conditions are

sector of node

sufficient for establishing ¢ = (0',I§, O's,,). Moreover, if (al,j, 0'],:,, )isa
directional link, (05: , a,]f ) is also a directional link due to symmetry.
Therefore, the set of feasible directed edges in G° is given by:

L= {(n, n'):¥n,n' € Nyn#n', st.(Cl)is satisﬁed}, or
Lo ={(ck,65) :vnn e Non # 'k € [Ku] K € [Kn'],
s.t. (C1) and (C2) are satisﬁed}.

Although £ and L are identical with respect to G, for clarity, we
use £ © with superscript ¢ to indicate the directed links represented
by node sectors. Moreover, let L;, L;; € L° denote the set of
(directed) outgoing and incoming links with end point of node n.
Remark. Note that one of the main differences between the sector-
ized and traditional unsectorized networks is that each noden € N
can have multiple links being activated at the same time, at most
one per sector. As a result, a number of links in £° can share the
same end point (node) in A while being activated simultaneously.
We use the terms “node” and “link” in reference to the connectivity
graph, G°, while reserving the terms “vertex” and “edge” for the
auxiliary graph of G°, which will be presented in §4.

3.2 Interference Model

The link interference model is essential for determining the set of
directional links that can be activated simultaneously, or the feasible
schedules. Our link interference model is based on the protocol
model [11] adapted to the considered sectorized networks.

1A similar interference model was presented in [25], where beamforming can reduce
the interference in mmWave networks. Our framework can also be generalized to
other types of networks using their corresponding connectivity graphs.

MobiHoc *23, October 23-26, 2023, Washington, DC, USA

2R=0.1
1.0
5
)
Sos
o — N =20
O N =40
N = 60
00 a5 90 135 180
B¢

Figure 4: The CDF of 6y, calculated for 1,000 random networks with
N € {20,40,60} and a communication range of 2R = 0.1.

DEFINITION 3.1 (PRIMARY INTERFERENCE CONSTRAINTS IN SEC-
,
TORIZED NETWORKS). The transmission on a feasible link (cr,’i, "rlf’) €

L from the k' sector of node n to the k'™ sector of node n’ is suc-
cessful if it does not overlap with any other feasible directional link
(o,’i, o) or (o, Jr]f:) that share a TX or RX sector in common with
(0'5, crr]::). Essentially, at any time, at most one outgoing or incoming
link is allowed in each node sector U,Ij, Vn e N,k € [K,].

DEFINITION 3.2 (SECONDARY INTERFERENCE CONSTRAINTS IN
SECTORIZED NETWORKS). Consider two feasible directional links
tp = (a,lf},a%) and t34 = (o,lfz,a,]f:) between four distinct nodes
ni (i = 1,2,3,4) with fixed beamforming directions in each TX/RX

sector. If the directional link f35 = (U,I,fg, o,lfg) is also a feasible link

and the TX beam in 0'1,2, which is intended to communicate with the

RX beam in a,]fi, overlaps with the RX beam in 0',%, then a,lfg isa

secondary interfering TX sector to the RX sector 0'55 (see Fig. 3(b)).

In this paper, we consider only primary interference constraints
in sectorized networks, which is a realistic assumption because
of two main reasons. First, note that secondary interference con-
straints can be avoided using the beam steering capacity of an
infrastructure node. For the example depicted in Fig. 3(b), the in-

terference from TX sector 0',]2 to RX sector O',IZ can be avoided by

steering the TX beam of node 3 in o,]fg, so that both links (cr,’f}, U,Ifg

and (a,]fz, a,lij) can be activated simultaneously, as shown in Fig. 3(c).
Second, it is intuitive that for sufficiently small values of 6, the net-
work becomes highly directional with “pencil” beams. Essentially,
there exists a threshold, 0y,, below which the secondary interfer-
ence constraints can be completely eliminated regardless of the
TX/RX beamforming directions at each node. For each node n, let
OMn denote the minimum angle between adjacent links with n
being an endpoint. Then, we have 0y, = min,¢ N{@,Ti“}. In the ex-
ample network shown in Fig. 6 (see §7.1 for the setup), Oy, = 15.8°,
which can be achieved by state-of-the-art phased arrays [20]. Fig. 4
illustrates the cumulative distribution function (CDF) of 6y, cal-
culated over 1,000 random networks (see §7.2 for the setup) with
N € {20,40,60} nodes deployed in a unit square area and when
a communication range of 2R = 0.1. The median value for 6y,
is 107.0°/6.7°/2° for N = 20/40/60, respectively. This illustrates
that in certain scenarios, it is reasonable to remove the secondary
interference constraint under realistic node density and beamwidth.

3.3 Traffic Model, Schedule, and Queues

We assume that time is slotted and packets arrive at each node
according to some stochastic process. For convenience, we classify
all packets passing through the network to belong to a particular
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commodity, c € N, which represents the destination node of each
packet. Let A,(f) (t) < Amax < +o0 be the number of commodity-c
packets entering the network at node n and destined for node ¢
in slot t. The packet arrival process Aff) (¢) is assumed to have
a well-defined long-term rate of oc,(f) =limr 400 % Z{:l A,(lc) (1).
Let & = [ocﬁ,c)] be the N X N multi-commodity arrival rate matrix.
All the (directional) links have a capacity of one packet per
time slot. A schedule in any time slot ¢ is represented by a vector
X(t) = [Xp(1)] € {0, 1}X, in which X;(¢) = 1iflink ¢ is scheduled to
transmit a packet in time slot ¢t and X, (¢) = 0 otherwise. We denote
the set of feasible schedules in G° by Xgo . In addition, let y,@ (t) =
1if link ¢ serves a commodity-c packet in time ¢ (determined by the
scheduling and routing algorithm), and y;C) (t) = 0 otherwise. We
define Q,(f) (t) as the number of commodity-c packets at node n in
time slot ¢, or the queue backlog. Choosing a schedule X(t) € Xgo
and let [x]* = max{0, x}, the queue dynamics are described by:

047 (1) = [0 (t = 1) = Bpe o Xe(t) - 1 (0]
+ Tee gy Xe(®) - 1 (1) + A (1), v,
We use Q(t) = [Q,(lc)(t) : n,c € N] to denote the queue vector.

3.4 Capacity Region & Throughput Optimality
A dynamic scheduling and routing algorithm will determine the
schedule X(t) in each time t. Let f[,(C) denote the long-term rate at
which commodity-c packets are served by link ¢, or the commodity-
¢ flow on link ¢. We define f = [f; : £ € L] as the network flow
vector, where fp = Y.c p f[(c) is the total flow served by link ?.

The capacity region of the considered sectorized network G,
denoted by A(G?), is defined as the set of all arrival rate matrices,
«, for which there exists a multi-commodity network flow vector,
f, satisfying the flow conservation equations given by:

Cpe = Y f(c)— fof(C)’ Vne Nandn #c, (1)

te L} ¢ te L
S one= % £ VeeN, @
neN te Ly
£l >0 Vee Lo ceN, 3)
fi= 3 f9 <1, vee Lo (4)
ceN

In particular, (1)-(3) define a feasible routing for commodity-c pack-
ets, and (4) indicates that the total flow on each edge should not
exceed its (unit) capacity. Therefore, for G° = (N, L), an arrival
rate matrix o is in the capacity region A(G?) if there exists a feasi-
ble multi-commodity flow vector supporting o« with respect to the
network defined by G°. As a result, we have

A(G®) = { o : 3f € Co(Xgo) s.t. (1)—(4) are satisfied }, (5)
where Co(-) is the convex hull operator.

A scheduling and routing algorithm is called throughput-optimal
if it can keep the network queues stable for all arrival rate ma-
trices & € int(A(G?)), where int(A(G?)) denotes the interior of
A(G®). A well-known throughput-optimal algorithm is the dy-
namic backpressure routing algorithm [23], which works as fol-
lows. For each link ¢ = (n,m) € L%, we define its backpres-

sure in time slot t as Dy(t) = maxceN{Q,(f)(t) - Q,(nc)(t)}. Let
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D(t) = [De(¢) : V¢ € L°]. In every time slot t, the backpressure
algorithm selects XBP (1) as follows:

XBP(t) € arg maxye X, o {DT(t)-X}, 6)
together with the commodity to be served on each link ¢. Given
o € int(A(G?)), the backpressure algorithm returns a feasible
network flow f that supports o in G°. In the rest of the paper,
although the target optimization problems may admit multiple
optimal solutions, without loss of generality and for notational
brevity, we treat them as singletons.

4 THE AUXILIARY GRAPH AND MATCHINGS

In this section, we introduce the auxiliary graph for a sectorized
network, followed by an overview of matching polytopes and the
definition of equivalent sectorizations. All of these serve as the
foundations for the results presented in the remaining of this paper.

4.1 The Auxiliary Graph, H°

To allow for analytical tractability and support the analysis, we
introduce the auxiliary graph, H® = (V°,E°) of the considered
sectorized network, under a given sectorization rule, o € T'(K).
In particular, H® is generated based on the connectivity graph
G® = (N, L) as follows:

e Fach node n € V is duplicated K, times into a set of vertices,

{ny,---,ng,} € V9, one for each node sector 0',15, k € [Ky,].

e Each directed link ¢ = (U,’i, olr:,/) € L9 between the TX sector aﬁ

and RX sector U’{f,, is “inherited" as a directed edge e from vertex

ng to vertex n/, in VO.
Itis easy to see that |V°| = X, ,e y Kn and |E| = | L] = L, and as we
show in the rest of the paper, H® can largely facilitate the analysis
and optimization in sectorized networks. An illustrative example
is shown in Fig. 2, where each node in G° has an equal number
of 4 sectors based on the Cartesian coordinate system. Specifically,
node n in G is duplicated 4 times to become n; (i = 1,2,3,4) in
HY, while the 5 feasible links in £ are “inherited" from G° to
H°, whose end points are the duplicated vertices representing the
corresponding TX/RX sectors.

4.2 Feasible Schedules in G° as Matchings in H®

For an unsectorized network G (i.e., 0 = @) with K;; = 1,Vn, its
auxiliary graph H = (V, E) is identical to the connectivity graph
G = (N, L). Therefore, we use G and H interchangeably when
referring to an unsectorized network. Each feasible schedule X €
XG is a matching — a set of links among which no two links share
a common node - in G (and thus in H).

However, in a sectorized network G° = (N, L°), a feasible
schedule in G° may not be a matching in G, since up to K, links
can share a common node n. However, it is easy to see that under the
primary interference constraints and with the use of the auxiliary
graph, any feasible schedule in G corresponds to a matching in H°.
Let M € {0, 1}% denote a matching vector in H®, in which every
element (edge) is ordered according to the position of the element
(link) that it corresponds to in X. Let Mo be the set of matchings
in HO. To rigorously connect a feasible schedule X € Xgo in G°
to a matching M € Mpo in H°, we need to take a deeper look into
the sets £° and E°: they not only have the same cardinality of L,
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but are also in fact two isomorphic sets. In particular, due to the
way HY is constructed, there exists an isomorphism O : E° — L°©
such that for e = (n, n;c,) €E®and ¢ = (ol,i,ar’:,/) € L9 0(e) =¢.

4.3 Background on Matching Polytopes
The matching polytope of a (general) graph G = (V, E), denoted by

Pg, is a convex polytope whose corners correspond to the match-

ings in G, and can be described using Edmonds’ matching polytope

theorem [5]. Specifically, a vector x = [x. : e € E] € RIEI belongs

to P if and only if it satisfies the following conditions [5, 14]:
(P) (i) xe =0, Ve€eE, and Zeeg(n) xe <1, YoeV,

(i)  Xeerw)Xe < LIU]/2], YU € V with [U] odd, (7)
where §(v) is the set of edges incident to v, and E(U) is the set of
edges in the subgraph induced by U C G. Note that in general, it is
challenging to compute g, since (ii) of (7) includes an exponential
number of constraints since all sets of vertices U € V with an odd
cardinality need to be enumerated through. The fractional matching
polytope of G, denoted by Qg, is given by

(Q x>0, Veck and Yecsn)xe <1, Vo€ V. 8)
For a general graph G, P C Qg since (ii) in (P) is excluded in (Q).
For a bipartite graph Gy;?, its matching polytope and fractional
matching polytope are equivalent, i.e., Pg,, = Qg,, [21].
Recall that for an unsectorized network G, its auxiliary graph
H = G and its matching polytope is the convex hull of the set of
matchings, i.e., Py = Co(Mpy). Therefore, its capacity region A(G)
is determined by Pp, since Xg = Mpy. For a sectorized network
G, since a feasible schedule in G®, X € Xgo, corresponds to a
matching in the auxiliary graph H®, M € Mpo (see §4.2), we show
in §5 that its capacity region, A(G®), can be determined by the
matching polytope of H®, Py (Lemma 5.1).

4.4 Equivalent Sectorizations

Since our objective is to obtain the optimal sectorization for each
node in the network, it is important to understand the structural
property of a sectorization, 0. In particular, for a node n € N with
K, number of sectors, there is only a finite number of distinct sector-
izations in T}, (Kp), due to the equivalent classes of sectorizations.

Consider a node n € N and two of its undirected adjacent in-
cident links #; = (n,u) and £, = (n,v) for some u,v incident to
n. To define the undirected links from the set £, we assume, for
example, that the undirected link #; includes the two directed links
(n,u) € L} and (u,n) € £, . Note that, under the primary inter-
ference constraints, it does not make a difference where exactly a
sectorization axis is put between ¢; and £ of node n. Instead, what
matters is whether a sectorization axis will be placed between them
or not. If two sectorizations 01 € I,(Ky) and o2 € I},(K,) differ
only on the exact position of a sectorization axis while both sector-
ization have a sectoring axis placed between ¢; and #, it holds that
H°! = H?, and thus Mpgoe, = Mpgo,. Therefore, the set I}, (Ky)
consists of a finite number of equivalent sectorizations.

Fig. 5 depicts an example of three equivalent sectorizations for
node n, where both links #; = (n,u) and £, = (n, v) are placed within
the same sector. Note that this notion of equivalent sectorizations

2A bipartite graph is a graph whose vertices can be divided into two disjoint and
independent sets Uy and U, such that every edge connects a vertex in Uj to one in Us.
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Figure 5: Three equivalent sectorizations for a node n € N.

makes the optimization over the set I'(K), for every fixed K € Zﬂrv ,
more approachable. Motivated by the comparison of sectorizations
of Fig. 5, when rotating a sectorization axis of node n, an infinite
number of equivalent sectorizations can be generated until the
axis meets the next incident link. Therefore, up to an equivalence
relation, the sectorization of a network, o € I'(K) is determined by
whether a sectoring axis will be placed (instead of where exactly it
will be placed) between adjacent undirected links of each node.
For node n, since a sectoring axis cannot be placed between the
outgoing and incoming links corresponding to the same neighbor-
ing node of n, we consider undirected links regarding node n’s
sectorization, 0y,. In the rest of the paper, let 5(n) denote the set
of the undirected incident links of n, i.e., §(n) = {f1,- - ,{’|5(n)|},
ordered in a way such that geometrically neighboring (consecutive)
undirected links are next to each other. Note that £5(,,)| and ¢; are
also adjacent links due to the cyclic nature of o,,. Using this nota-
tion, the sectorization of node n, o, € I;;(Ky), essentially partitions
d(n) into K, non-overlapping subsets of links. We can also denote
0y by placing the symbol “|" between two adjacent links where a
sectoring axis is placed (e.g., 6, = {|(n, u), (n,0)} in Fig. 5).

5 SECTORIZATION GAIN BASED ON
NETWORK FLOW EXTENSION RATIO

In this section, we characterize the capacity region of sectorized
networks and present the definitions of flow extension ratio and the
corresponding sectorization gain. We consider a general sectorized
network G under sectorization o € I'(K) with given K € Z+N , and
its auxiliary graph H®. Let Ppo be the matching polytope of HC.

We first present the following lemma that relates the convex hull
of all feasible schedules in G® to Ppo (for detailed proof see [17]).

LEMMA 5.1. For a sectorized network G° and its auxiliary graph
HO, let Xgo be the set of feasible schedules in G® and Mo be the
set of matchings in HY. Under the primary interference constraints,
it holds that Xgo = Mgo and Co(Xgo) = Co(Mpygo) = Pyo.

Based on Lemma 5.1, the backpressure algorithm that obtains
maximum weight schedule (MWS) XBP (t) in G (see §3.4), which
in general is NP-hard, is equivalent to finding the corresponding
maximum weight matching (MWM) in H®, with the backpressure
D(t) being the weights on the edges, i.e.,

XBP(¢) = D(t)-X} = DT (¢) - M}.
(1) =arg max {D7(r) X} =arg max {D7(1)-M}

From Edmond’s theory [6, 21], the MWM of H® can be obtained
via a polynomial-time algorithm with complexity of O(|V°|? - |E]).

Intuitively, it is expected that G® under sectorization o (with
H° = (V°,E®)) has a capacity region that is at least the same as
the unsectorized network G (with H = (V,E)), i.e., any network
flow f that can be maintained in the unsectorized network G can
always be maintained in G°. This is by the following theorem,
whose proof can be found in [17].
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THEOREM 5.2. PG =Py € Pho, VK € Zﬂrv andVo € T(K).

Based on (5) and Lemma 5.1, the capacity region of a sectorized
network G can be characterized by the matching polytope of its
auxiliary graph, Pgo. With a given (unknown) « € int(A(G?))
and a sectorization o, the dynamic backpressure algorithm will
converge to and return a network flow vector f € Pro. We define
the flow extension ratio, denoted by A°(f), which quantitatively
measures how much the network flowf can be extended in its direction
until it intersects the boundary of Pro.

DEFINITION 5.3 (FLow EXTENSION RATIO). For a sectorized net-
work G® and network flow f € Pyo, the flow extension ratio, A° (f),
is the maximum scalar such that A° (f) - f € Pyo still holds.

Let {°(f) == minycyo U] odd (L/zjf) (see (7). With alittle

ZeeE(U) e
abuse of notation, for node n, network flow f, and an undirected

edge e € 5(n) with directed components e; € £} ande_ € £, we
let fo = fe, + fe_. The flow extension ratio, A° (f), can be obtained
by the following optimization problem:

AC(f) == max A, st:A-f € Pyo
A€ER*

@ . . 1 o

i Ulg‘lfr%j Zee6(v) fe, ¢ (f)} ©)

Similarly, we define the flow extension ratio for the corresponding

unsectorized network G, denoted by A?(f) := maxjecp+ A, s.t.:A-

f € Pg. Note that A? (f) depends solely on the topology of G and is

independent of the sectorization 0. Next, we define the approximate
flow extension ratio with respect to the polytope Qo .

DEFINITION 5.4 (APPROXIMATE FLOW EXTENSION RATIO). For a
sectorized network G® and a network flowf € Pro, the approximate
flow extension ratio, u° (f), is the maximum scalar such that n° (f) -
f € Qgo still holds.

The following optimization problem determines n° (f):

wo(f) := max p, st:pu-f € Qyo
HeR*

@ min ! = ! ,  (10)
veV e Zeeé(v) fe  maxyeyo Zeeé(v) Je

We also define the approximate flow extension ratio for the unsec-
torized network G, denoted by u? (f) := maxjeg+ A, s.t: A-f € Qg.

To quantitatively evaluate the performance of a sectorization o,
we present the following definition of sectorization gains.

DEFINITION 5.5 (SECTORIZATION GAINS). The (explicit) sectoriza-

o
tion gain of o with a network flow f is defined as gg(f) = ;\\@—((ff))
(with respect to Pgo ). The approximate sectorization gain of ¢ with

a network flow f is defined as g{\ (f) := E’LZ((B) (with respect to Qpyo ).

The following lemma states the relationships between A (f) and
O (f), and between g7 (f) and g (f), whose proof is in [17].

LEMMA 5.3. For any sectorization o and network flow f, it holds
Ly 2 .. 1 1
that: (i) 3 ne(f) < A°(f) < uo(f), (ii) o > A° (D)

maxeepo fo, and (iii) % - g5 (£) < g9 (£) < 3 - g (D).
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6 OPTIMIZATION AND A DISTRIBUTED
APPROXIMATION ALGORITHM

Given a vector K € Zi\] , our objective is to find the sectorization
0 € I'(K) that maximizes the flow extension ratio, A° (f), under a
network flow, f. This optimization problem, (Opt), is given by:
* ey . o
(Opt) 0™ (f) := arg Ur;ﬂa()f() A ()
© i m— L o }}

e T { i { veve Yeesn) fe ¢ @y a1
Note that we are optimizing towards the boundary of the matching
polytope, Pro, over the set of sectorizations, I'(K), for a given
network flow, f. This is because in general, there does not exist
a single sectorization o € I'(K) that can achieve close-to-optimal
performance of A% (f) for every network flow f € RIE.

6.1 Key Insight and Intuition

In general, (Opt) is analytically intractable due to its combinatorial
nature and the fact that {°(f) needs exponentially many calcu-
lations even for a fixed sectorization o. Instead, we consider an
alternative optimization problem:

(Opt-Approx) G(f) := arg max p°(f)
o€l (K)

(0 arg ma { min —} (12)
= X .
gUGF(K) veVe Zeeﬁ(u)fe
Although (Opt-Approx) excludes the constraint {° (f) in (Opt),
solving it by a brute-force algorithm is still analytically intractable
due to the coupling between the (possibly different) sectorization

of all nodes. For example, if each of the N nodes has a number of K

possible sectorizations, a total number of NX sectorizations need
to be evaluated in order to solve (Opt-Approx).

Our key insight behind developing a distributed approximation
algorithm (described in §6.2) is that (Opt-Approx) can be decom-
posed into N individual optimization problems, (Opt-Approx-n),
for each node n € N. With a little abuse of notation, let f, = (f2 :
e € 8(n)) be the “local” flows on the undirected edges incident to
node n. This decomposed optimization problem is given by:

(Opt-Approx-n) v,(f,) :=arg min max -
0n€ln(Kp) ve{nlm, - ,n;;‘ } e€d(v)

(13)
(Opt-Approx-n) determines the sectorization of node n, v, (f,),
based on its local flows, f,,, and is independent of the other nodes.
The following lemma shows that the sectorization obtained by solv-
ing the N decomposed problems, (Opt-Approx-n), is equivalent to
that obtained by solving (Opt-Approx), whose proof is in [17].

LEMMA 6.4. For a given network flow £, the sectorization v(f),
which consists of the solutions of (Opt-Approx-n) for all nodesn € N,
is equivalent to the solution 6(f) to (Opt-Approx), i.e.,

F(f) =v(f) = (Vi(fr), -+, VN (En) and pY () = u®(f).  (19)

Although (Opt-Approx-n) is a distributed optimization prob-
lem for each node n, to solve it using a brute-force method still
remains high complexity. Consider the sectorization of node n
with |§(n)| incident edges into K, sectors (|6(n)| < (N —1)). To
solve (Opt-Approx-n) in a brute-force way, a total number of
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Algorithm 1 SEcTORIZE-n for node n.

Algorithm 2 Ex1sTSEcTORIZATION-n(T) for node n.

Input: K,, §(n), f,, and €
1: Tmin < maXees(n) fes Tax < Zee&(n) fe) Ttemp «—0
: TS« 0, decision « No
: while (Tnax — Thin) > € do
Ttemp  (Tinin + Tmax) /2
(decision, 7my) < EXISTSECTORIZATION-N(Tiemp) (Algorithm 2)
if decision = Yes then
Tmax < Ttemp
else
Tmin — Ttemp
10: end if
11: end while
12 TS e Thax
13: (decision, 7, (f,)) « EXISTSECTORIZATION-n(T,?it)
14: return The sectorization for node n, 71, (f,)

(|6I(<n)|) = o(IJ(\i) = O(NKn) possible sectorizations need to be enu-
merated. Next, we present a polynomial-time distributed algorithm
that solves (Opt-Approx-n) with a complexity independent of Kj,.

6.2 A Distributed Approximation Algorithm

We now present a distributed approximation algorithm, SECTORIZE-
n, that efficiently solves (Opt) with guaranteed performance. In
essence, SECTORIZE-n solves (Opt-Approx-n) for each individual
node n € N. Algorithm 1 presents the pseudocode for SECTORIZE-n,
which includes two main components:

(1) A decision problem, ExistSEcTOR1ZATION-n(T), that deter-
mines the existence of a sectorization for node n (with K, 6(n),
and fj;) under a given threshold value, T € R4, given by

ExISTSECTORIZATION-n(T) =

(Yes,vyg), if3vy e I(Ky): max > fe<T,
ve{n) 0} e€d(v) (15)
(No, @), if Vvg € T,(Kp) : max > fe>T.

ve{n,0, ,n;és} ecd(v)
Ex1sTSECTORIZATION-n(T) can be solved as follows. Consider the
set of edges incident to node n, 5(n) = (e],--- ’e|,5(n)|)' Without
loss of generality, we assume that the first sectoring axis of node n is
placed between its first and last sectors, i.e., (|e{, S ’e|’5(n) | ). The

second sectoring axis will be placed between the kM and (k + nHth
incident edges if 15, for < Tand 354! fir > T.

Then, the process is repeated for the remaining edges d(n) \
{e1,- -, er} to find the third sectoring axis, so on and so forth until
all edges in §(n) are enumerated for the threshold, T.

(2) A binary search process that finds the critical threshold, T,frit,
based on which the optimized sectorization for node n, denoted by
7Ty, is determined by EXISTSECTORIZATION-n(TSMY).

The following theorem states our main results regarding the
correctness of SECTORIZE-n and its guaranteed performances as a
distributed approximation algorithm.

THEOREM 6.5. For a given network flow £, it holds that:
(i) [Correctness] The sectorization of node n returned by SECTORIZE-
n, 1, (f), is equivalent to v, (f,) in (Opt-Approx-n), i.e.,
1 (f,) = vu(f), Yn e N, (16)

Input: K,,, 5(n), f,,and T
1: fore € §(n) do
2: Reset node n’s sectorization 71, «— @
3 Put a sectorizing axis in 71, right after e (clockwise)
4 sectors_needed < 1, total_weight « 0
5: e’ « the edge next to e in §(n) (clockwise)
6 while e’ # e do
7 if for > T then return (NO, @)
8
9.

else
total_weight « total_weight + fo

10: if total_weight > T then
11: sectors_needed « sectors_needed + 1
12: Put a sectorizing axis in 71,, before e’ (counter-clockwise)
13: total_weight « fr
14: end if
15: e’ « the edge next to e in §(n) (clockwise)
16: end if
17: end while
18: if sectors_needed < K,, then
19: return (Yes, 71;,)
20: end if
21: end for

22: return (No, @)

(ii) [Approximation Ratio] The distributed SECTORIZE-n algorithm
is a 2/3-approximation algorithm, i.e.,
2 o AT
< <
S<xem <b (17)
where A% (f) is flow extension ratio achieved by the optimal
sectorization as the solution to (Opt).

Proor. First, we prove (i). We show that the decision returned by
Ex1STSECTORIZATION-n(T) has a monotonic property with respect
to T, i.e., there exists a critical threshold, T,f“t € Ry, such that

(No, @), VT e [0, T,

(Yes,-), VT e [T +c0).
Itis easy to see that EX1STSECTORIZATION-n(T) outputs Nofor T = 0
and Yes for a sufficiently large T with a non-zero flow f. Let TS
be the smallest T such that 3m, € I},(K,) with which the output of

(15) is (Yes, 7tn). As a result, we have EX1sTSECTORIZATION-1(T) =
(No, @), VT € [0, T,f“t). In addition, 71, and Tﬁ“t satisfy

max Y fo <T, VT € [T +00).

oe{n]", g} eed(v)

(18)

EXISTSECTORIZATION-n(T) = {

Therefore, for a network flow f;, incident to node n, we can set

T = min { max > fe}, (19)
" onel(Kn) Loe(nf", - ng") ees(o)
and the sectorization of node n corresponding to TS is equivalent
to v, in (Opt-Approx-n), i.e.,
(13)

fe} B vat). (20

n,(f) =arg  min { max
0n€ln(Kn) Loe{n’", ,n;: } e€d(v)
Due to the monotonicity of (18), the critical value TSt can be found
via a binary search within the interval [maX,es(n) fes Xees(n) fel
with a sufficiently small €, which is a parameter that controls the
trade-offs between accuracy and convergence of Algorithm 1. Then,
7ty (f) can be obtained via EXISTSECTORIZATION-n( TS,



MobiHoc ’23, October 23-26, 2023, Washington, DC, USA

Next, we prove (ii). For a network flow f, consider the sectoriza-
tions 0* (f) and G(f) as the solution to (Opt) and (Opt-Approx),
respectively. It is easy to see from their definitions that A”*(f) <

AT (F) = }\}‘G*((ff)) < 1. From (11)-(12) and Lemma 5.3, we have

A% (£) < uo (f) < uO(f) and 2
which further implies that
2N (f) < .4 (f) < AT(f). (22)
In addition, since 7t(f) = v(f) = o(f) (see Theorem 6.5 (i) and
Lemma 6.4), we can conclude that

2 4o 5 n ) o2
£-A9(F) SA(F) =AT(f) = M*(f) >z, (23)

and Theorem 6.5 (ii) follows directly. o

uS(f) <AT(f),  (21)

REMARK 6.1 (COMPLEXITY OF SECTORIZE-N). Recall from the proof
of Theorem 6.5 that T € [max,es(n) fes 2iees(n) fel. Let © =
(Xees(n) fe—maXees(n) fe) /€, the binary search process of SECTORIZE-
n will terminate in O(log, ©) iterations, and each iteration has a
complexity of O(|6(n)|?) (see Algorithm 2). Therefore, the complexity
of SEcToRIZE- is O(|8(n)|? - log, ©®) = O(N?. log, ©).

REMARK 6.2. Based on Lemma 5.3, we can obtain another lower
bound of the approximation ratio of SECTORIZE-n given by:

AT (f) 1 R
AT (f) 2 LA™ (£)-maxoego fo := LB (f).
(24)

1
2 T () maxecpo fo

This bound is useful since, from the definition of AT* (f), i.e., the
extension ratio of f for it “hit" the boundary of #; o+, the values of

A" () and maxeego fe can not be large simultaneously. Although
A% (f) is analytically intractable, since A% (f) < u%" (f) < p’(f),
we can derive another lower bound of the approximation ratio,
LB™(f), which depends on pu”(f). Note that LB (f) is tractable
since max.cgo fo is independent of the sectorization and p™(f)
can be explicitly computed (10). In other words,

max {2, LB (f)} < ;‘:*((ff)) <1 (25)
In §7.2, we show that for small values of K, LB™(f) is indeed a
much tighter bound than 2/3 in (17).

Discussions. The distributed SECTORIZE-n algorithm approximates
the optimal sectorization, 0* (f), which maximizes the flow exten-
sion ratio, A% (f), under given f and K € ZY. Clearly, the choice of
a sectorization should be based on a network flow, f as the polytope
Pro can be augmented in different flow directions depending on
0. Some discussions about the proposed optimization framework:
o Dynamic Sectorization based on Backpressure. With an (unknown
and/or time-varying) arrival rate matrix & € int(A(G?)) and a
given sectorization o € I'(K), the dynamic backpressure algo-
rithm will converge to and return a network flow f € Pgro. Using
the proposed framework, one can find the sectorization that ap-
proximates the best sectorization with respect to f. The rationale
behind this is that the sectorized network will be able to main-
tain arrival rates proportionally higher than . Moreover, when
A (f) is analytically tractable, it can provide information about
how much f can be extended until it intersects with the boundary
of the matching polytope Py, . Therefore, the proposed frame-
work can enable dynamic sectorization of the network to adapt

P. Promponas, T. Chen, and L. Tassiulas
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Figure 6: An example 7-node network: the connectivity graph with
the network flow f labeled on each edge. The green lines indicate the
node sectorization, 7t(f), obtained via SEcTORIZE-n with K, = 2,Vn
with a sectorization gain of 1.83. The red dashed lines indicate a “mis-
configured” sectorization of node 1 in the bottleneck phenomenon.
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to every network flow f obtained by the backpressure algorithm,
including in scenarios with time-varying arrival rates, «.

o Known Arrival Rates. In the case with single-hop traffic, the capac-
ity region of a network G is given by A(G%) = Co(Xg<) (see
(5)). With a known arrival rate matrix &, SECTORIZE-n augments
the capacity region with respect to the required «. Similarly, in
the case of multi-hop traffic, with a known «, one can first obtain
a feasible multi-commodity network flow f that supports &, and
then augment the polytope P according to this f.

o Varying the Number of Sectors. With proper (minor) modifications,
SECTORIZE-n can also return the minimum number of sectors K,
for every node n such that a given network flow, f, can be main-
tained by the network, i.e., f € SDHa . This is due to the distributed
nature the proposed optimization framework, (Opt-Approx-n).
Compared to previous work (e.g., [12]) whose objective is to
obtain the minimum rate required for a network to support a
flow vector f, our proposed framework also provides a method to
support f via efficient sectorization based on available resources.

7 EVALUATION

We now evaluate the sectorization gain and the performance of

the distributed approximation algorithm via simulations. We focus

on: (i) an example 7-node network, and (ii) random networks with

varying number of nodes, number of sectors per node, and network

flows. For each network and a given network flow, f, we consider:

o 7, (fy): the sectorization of node n returned by the distributed
approximation algorithm, SECTORIZE-n (Algorithm 1 in §6.2), and
7(f) = (1, (f,) : Vn € N) is the sectorization of all nodes.

o W (f) and u?(f): the approximate flow extension ratios for the
sectorized and unsectorized networks, respectively (§5).

. gﬁ(f): the approximate sectorization gain achieved by 7t(f) (§5).

7.1 An Example 7-node Network

We consider a 7-node network, whose connectivity graph is shown
in Fig. 6, with a network flow f labeled on each edge and 0y, = 15.8°
(see §3.2). For tractability and illustration purposes, we set K, =
2,Vn, and the green lines in Fig. 6 indicate the sectorization 7t(f)
returned by SEcTORIZE-n. For this relatively small network, we can
explicitly compute the flow extension ratios for both the sectorized
network, A7 (f) = u™(f) = 4.06, and the unsectorized network,
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Figure 7: The approximate sectorization gain, g{{ (f), as a function of the number of sectors per node, K, in random networks: (a) varying number
of nodes N € {20, 40, 60, 80, 100} in networks with 2R = 0.2 and Uniform flows, (b) varying communication range 2R € {0.1,0.2,0.3,0.4,0.5} with
Uniform flows and N = 60, and (c) varying network flows (Non-uniform, Uniform, Very Uniform) in networks with N = 60 and 2R = 0.2.

A2 (f) = u?(f) = 2.22. Therefore, the approximate sectorization
gain g; (f) is equal to the explicit sectorization gain, i.e., gj; (f) =
gy (f) = 1.83, which is close to K, = 2.

Note that optimizing the sectorization of each node under a given
f is critical, since the misplacement of the sectoring axes of even a
single node can largely affect the achievable sectorization gain. We
call this effect the bottleneck phenomenon in sectorized networks,
as illustrated by the following example. Considered the optimized
sectorization 7t(f) shown by the green lines in Fig. 6. If only the
sectorization of node 1 is “misconfigured” to be the red dashed lines,
the sectorization gain is decreased from 1.83 to 1.22. This is also
intuitive since with this misconfiguration, all three edges incident
to node 1 with the highest flows are served by the same sector.

Since nodes 1, 3, and 6 in Fig. 6 have a maximum node degree of
4, we also obtain a sectorization 7t(f) by running SECTORIZE-n with
Ky, = 4. As expected, in the optimized sectorization for nodes 1, 3,
and 6, one sectoring axis is put between every pair of adjacent edges.
With this 7t(f), we can also explicitly compute the flow extension
ratios for the sectorized network A7 (f) = u”™(f) = 7.47. With
A2(f) = u?(f) = 2.22, the sectorization gain is gu(f) = g;\I(f) =
3.36. This example 7-node network demonstrates the performance
and flexibility of SEcTORIZE-n for optimizing the deployment and
configuration of sectorized networks based on the network flows.

7.2 Random Networks

We now consider networks with randomly generated connectivity
graphs, G. In particular, for each generated random geometric graph,
N nodes are placed uniformly at random in a unit square area, and
two nodes are joined by an edge if the distance between them is less
than 2R. We are interested in the effects of the following parameters
of a random network on the sectorization gain:

o Number of Nodes, N: We consider random networks with dif-
ferent sizes of N € {20, 40, 60, 80, 100}, and the network density
increases with larger values of N.

e Number of Sectors Per Node, K;,: We assume all nodes have
an equal number of sectors, K, = K, Vn, with K € {2,3,...,15}.

o Communication Range, 2R: With a given number nodes, N, the
connectivity of the network can be tuned by the communication
range between two nodes, 2R. We consider 2R € {0.1,0.2,...,0.5}.

o Uniformity of Network Flows, ¢: For a network flow f, we
define its uniformity by ¢ := max, fe/mine fe, i.e., f is more
uniform if its ¢ is closer to 1. For a given value of ¢, random
network flows f can be generated as follows. First, each element
of f’ = (f/) is independently drawn from a uniform distribution
between [1,#]. Then, f is set to be f’ after normalization, i.e.,

f = f’/|f|. We consider Non-uniform, Uniform, and Very Uniform

network flows with ¢ = 1000, 10, and 1.1, respectively.
For random networks with a large number of nodes, we only con-
sider g{i (f) since it is computationally expensive to obtain g;\t(f),
which is the true sectorization gain achieved by 7(f). However,
from Lemma 5.3, g7} (f) provides good upper and lower bounds on
g;\I(f). The performance evaluation of each combination of these
parameters is based on 1,000 instances of the random networks and
their corresponding 7t(f) obtained by SECTORIZE-n.

Varying Number of Nodes, N. Fig. 7(a) plots the approximate
sectorization gain, gﬁ(f), as a function of the number of sectors
per node, K, in a network with 2R = 0.2 and uniform flows (¢ =
10), with varying number of nodes, N. It can be observed that
gﬁ(f) increases sublinearly with respect to K, and it approaches
the identity line of gﬁ(f) =K as N increases, which is as expected.
Note that with a practical value of K (e.g., K < 6), these networks
can achieve gﬁ (f) that is almost equal to the number of sectors per
node, K. In addition, as the value of K increases, gﬁ(f) deviates
from K, which reveals a tradeoff point between the achievable
sectorization gain (g; (f)) and complexity of network deployments
(N and K). In fact, for given parameters N, 2R, and ¢, i.e., for a
given density of the network, there exists a number of sectors that
saturates the gain gﬁ(f ). This can be explained by the fact that after
a sufficiently large number of sectors, the auxiliary graph of the
network breaks down to isolated pairs of nodes.

Varying Communication Range, 2R. Fig. 7(b) plots the approx-
imate sectorization gain, g{{(f), as a function of the number of
sectors per node, K, with N = 60, Uniform flows, ¢ = 10, and
varying communication ranges, 2R. It can be observed that g; ()
increases sublinearly with respect to K. As expected, with the same
number of nodes, N = 60, gﬁ (f) is closer to K as the range increases.
In fact, there is a relationship between the parameters N and 2R:
they both increase the number of neighbors for every node. The
improved sectorization gains stem from the fact that since each
node has a larger number of neighboring nodes (and thus links),
a larger value of K and the optimized sectorization can support a
larger number of concurrent flows.

Varying Uniformity of Network Flows, ¢. Fig. 7(c) plots g{; (f)
as a function of the number of sectors per node, K, in a network
with N = 60, 2R = 0.2, and varying network flow uniformity (Non-
uniform, Uniform, and Very Uniform). Overall, similar trends can be
observed as those in Figs. 7(a) and 7(b). In general, more uniform
network flows lead to improved values of gﬁ (f), since non-uniform
flows would have some larger flow components than the uniform
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Figure 8: The lower bound of approximation ratio of SECTORIZE-n,
LB™(f) in (24), as a function of the number of sectors per node, K,
with N = 60: (left) varying network flows in a network with 2R = 0.2,
and (right) varying communication ranges with Uniform flows.
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Figure 9: The cumulative distribution function (CDF) of g[{ (f) with
N =60 and Uniform network flows.

ones, which on average increases the value of 1°(f) (see (10)). In
addition, recall the bottleneck phenomenon described in §7.1, it is
more beneficial to divide the flows of a node more equally across
its sectors to achieve an improved sectorization gain.

Evaluation of the Lower Bound, LB7(f). Using simulations,
we also evaluate the lower bound of the approximation ratio of
SecToRIZE-n, LB (f) in (24), which depends on p° (f) and f. Fig. 8
plots the value of LB (f) as a function of K with varying uniformity
of the network flows and node densities. It can be observed that
for small values of K, LB™(f) is much higher than lower bound of
2/3 provided by Theorem 6.5. In particular, the difference between
the bounds increases dramatically and the approximation becomes
closer to the optimal for a small number of sectors. This is because
in such networks, the maximum flow is expected to be small and
hence LB™(f) can be improved when ug(f) remains the same.
CDF of the Approximate Sectorization Gain, g;(f). Finally,
we evaluate the relationship between gﬁ(f) and the number of
sectors, K. Fig. 9 plots the CDF of g[i (f) with N = 60 and Uniform
network flows with varying communication ranges. It can be seen
that for networks with 2R = 0.3, gﬁ(f) has a median value of
3.7/6.5 for K = 4/8, respectively. This demonstrates the (sublinear)
gain introduced by node sectorization, and this gain approaches the
number of sectors per node, K, as the underlying is more connected.

8 CONCLUSION

In this paper, we considered wireless networks employing sector-
ized infrastructure nodes that form a multi-hop mesh network for
data forwarding and routing. We presented a general sectorized
node model and characterized the capacity region of these sector-
ized networks. We defined the flow extension ratio and sectorization
gain of these networks, which quantitatively measure the perfor-
mance gain introduced by node sectorization as a function of the
network flow. We developed an efficient distributed algorithm that
obtains the node sectorization with an approximation ratio of 2/3.
We evaluated the proposed algorithm and the achieved sectorization
gain in various network scenarios via extensive simulations.

P. Promponas, T. Chen, and L. Tassiulas

ACKNOWLEDGEMENTS

This work was supported in part by NSF grants CNS-2128530, CNS-
2128638, CNS-2146838, CNS-2211944, AST-2232458, and by ARO
MURI grant W911NF2110325.

REFERENCES

[1] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. 2016. Next generation 5G
wireless networks: A comprehensive survey. IEEE Commun. Surveys Tuts. (2016).
Edgar Arribas, Antonio Fernandez Anta, Dariusz R Kowalski, Vincenzo Mancuso,
Miguel A Mosteiro, Joerg Widmer, and Prudence WH Wong. 2019. Optimizing
mmWave wireless backhaul scheduling. IEEE Trans. Mobile Comput. 19, 10 (2019).

[3] Tianyang Bai and Robert W Heath. 2014. Coverage and rate analysis for
millimeter-wave cellular networks. IEEE Trans. Wireless Commun. 14, 2 (2014).

[4] Fei Dai and Jie Wu. 2006. Efficient broadcasting in ad hoc wireless networks
using directional antennas. IEEE Trans. Parallel Distrib. Syst. 17, 4 (2006).

[5] Jack Edmonds. 1965. Maximum matching and a polyhedron with 0, 1-vertices. 7.
Research of the National Bureau of Standards B 69, 125-130 (1965), 55-56.

[6] Jack Edmonds. 1965. Paths, trees, and flowers. Canadian J. Mathematics (1965).

[7] Facebook. 2020.  SuperCell: Reaching new heights for wider connectiv-
ity https://engineering.fb.com/2020/12/03/connectivity/supercell-reaching-new-
heights-for-wider-connectivity.

[8] Juan Garcia-Rois, Felipe Gomez-Cuba, et al. 2015. On the analysis of scheduling
in dynamic duplex multihop mmWave cellular systems. IEEE Trans. Wireless
Commun. 14, 11 (2015), 6028-6042.

[9] Marco Giordani, Michele Polese, et al. 2020. Toward 6G networks: Use cases and
technologies. IEEE Commun. Mag. 58, 3 (2020).

[10] Manan Gupta, Anil Rao, Eugene Visotsky, Amitava Ghosh, and Jeffrey G An-

drews. 2020. Learning link schedules in self-backhauled millimeter-wave cellular

networks. IEEE Trans. Wireless Commun. 19, 12 (2020), 8024-8038.

Piyush Gupta and Panganmala R Kumar. 2000. The capacity of wireless networks.

IEEE Trans. Inf. Theory 46, 2 (2000), 388—-404.

Bruce Hajek and Galen Sasaki. 1988. Link scheduling in polynomial time. IEEE

Trans. Inf. Theory 34, 5 (1988), 910-917.

[13] IEEE Spectrum. 2019. Facebook’s 60-GHz Terragraph Technology.
https://spectrum.ieee.org/facebooks-60ghz- terragraph-technology-moves-
from-trials-to- commercial-gear#toggle- gdpr.

[14] Jeff Kahn. 1996. Asymptotics of the chromatic index for multigraphs. Journal of

Combinatorial Theory, Series B 68, 2 (1996), 233-254.

Thanasis Korakis, Gentian Jakllari, and Leandros Tassiulas. 2003. A MAC protocol

for full exploitation of directional antennas in ad-hoc wireless networks. In Proc.

ACM MobiHoc’03.

Michele Polese, Marco Giordani, Tommaso Zugno, Arnab Roy, Sanjay Goyal,

Douglas Castor, and Michele Zorzi. 2020. Integrated access and backhaul in 5G

mmWave networks: Potential and challenges. IEEE Commun. Mag. 58, 3 (2020).

Panagiotis Promponas, Tingjun Chen, and Leandros Tassiulas. 2023. Op-

timizing Sectorized Wireless Networks: Model, Analysis, and Algorithm.

arXiv:2308.10970 [cs.NI]

Theodore S Rappaport, Shu Sun, et al. 2013. Millimeter wave mobile communica-

tions for 5G cellular: It will work! IEEE Access 1 (2013), 335-349.

Siuli Roy, Dola Saha, Somprakash Bandyopadhyay, Tetsuro Ueda, and Shinsuke

Tanaka. 2003. A network-aware MAC and routing protocol for effective load

balancing in ad hoc wireless networks with directional antenna. In Proceedings of

the 4th ACM international symposium on Mobile ad hoc networking & computing.

Bodhisatwa Sadhu, Yahya Tousi, et al. 2017. A 28-GHz 32-element TRX phased-

array IC with concurrent dual-polarized operation and orthogonal phase and

gain control for 5G communications. IEEE J. Solid-State Circuits 52 (2017).

Alexander Schrijver et al. 2003. Combinatorial optimization: Polyhedra and effi-

ciency. Vol. 24. Springer.

Clayton Shepard, Hang Yu, Narendra Anand, Erran Li, Thomas Marzetta, Richard

Yang, and Lin Zhong. 2012. Argos: Practical many-antenna base stations. In Proc.

ACM MobiCom’12.

[23] Leandros Tassiulas and Anthony Ephremides. 1990. Stability properties of con-

strained queueing systems and scheduling policies for maximum throughput in

multihop radio networks. In Proc. IEEE CDC’90.

Zuoming Yu, Jin Teng, Xiaole Bai, Dong Xuan, and Weijia Jia. 2014. Connected

coverage in wireless networks with directional antennas. ACM Trans. Sens. Netw.

10, 3 (2014).

Dingwen Yuan, Hsuan-Yin Lin, Jorg Widmer, and Matthias Hollick. 2020. Optimal

and approximation algorithms for joint routing and scheduling in millimeter-

wave cellular networks. IEEE/ACM Trans, Netw. 28, 5 (2020), 2188-2202.

Ding Zhang, Mihir Garude, and Parth H Pathak. 2018. mmChoir: Exploiting joint

transmissions for reliable 60 GHz mmWave WLANS. In Proc. ACM MobiHoc’18.

Guanglin Zhang, Youyun Xu, Xinbing Wang, and Mohsen Guizani. 2010. Capacity

of hybrid wireless networks with directional antenna and delay constraint. IEEE

Trans. Commun. 58, 7 (2010).

[2

—
o

=
&N

oy
)

=
&

=
=

oy
&,

=
)

[20

[21

[22

S
=)

[25

[26

[27


https://engineering.fb.com/2020/12/03/connectivity/supercell-reaching-new-heights-for-wider-connectivity
https://engineering.fb.com/2020/12/03/connectivity/supercell-reaching-new-heights-for-wider-connectivity
https://spectrum.ieee.org/facebooks-60ghz-terragraph-technology-moves-from-trials-to-commercial-gear#toggle-gdpr
https://spectrum.ieee.org/facebooks-60ghz-terragraph-technology-moves-from-trials-to-commercial-gear#toggle-gdpr
https://arxiv.org/abs/2308.10970

	Abstract
	1 Introduction
	2 Related Work
	3 Model and Preliminaries
	3.1 Network Model
	3.2 Interference Model
	3.3 Traffic Model, Schedule, and Queues
	3.4 Capacity Region & Throughput Optimality

	4 The Auxiliary Graph and Matchings
	4.1 The Auxiliary Graph, H
	4.2 Feasible Schedules in G as Matchings in H
	4.3 Background on Matching Polytopes
	4.4 Equivalent Sectorizations

	5 Sectorization Gain based on Network Flow Extension Ratio
	6 Optimization and A Distributed Approximation Algorithm
	6.1 Key Insight and Intuition
	6.2 A Distributed Approximation Algorithm

	7 Evaluation
	7.1 An Example 7-node Network
	7.2 Random Networks

	8 Conclusion
	References

