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ABSTRACT

Future wireless networks need to support the increasing demands

for high data rates and improved coverage. One promising solution

is sectorization, where an infrastructure node (e.g., a base station) is

equipped with multiple sectors employing directional communica-

tion. Although the concept of sectorization is not new, it is critical

to fully understand the potential of sectorized networks, such as

the rate gain achieved when multiple sectors can be simultaneously

activated. In this paper, we focus on sectorized wireless networks,

where sectorized infrastructure nodes with beam-steering capa-

bilities form a multi-hop mesh network for data forwarding and

routing. We present a sectorized node model and characterize the

capacity region of these sectorized networks. We define the flow

extension ratio and the corresponding sectorization gain, which

quantitatively measure the performance gain introduced by node

sectorization as a function of the network flow. Our objective is to

find the optimal sectorization of each node that achieves the maxi-

mum flow extension ratio, and thus the sectorization gain. Towards

this goal, we formulate the corresponding optimization problem

and develop an efficient distributed algorithm that obtains the node

sectorization under a given network flow with an approximation

ratio of 2/3. Through extensive simulations, we evaluate the sec-

torization gain and the performance of the proposed algorithm in

various network scenarios with varying network flows. The simula-

tion results show that the approximate sectorization gain increases

sublinearly as a function of the number of sectors per node.
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1 INTRODUCTION

Future wireless networks and systems including 5G/6G need to

provide multi-Gbps data rates with guaranteed coverage, leverag-

ing massive antenna systems [22], the widely available spectrum at

millimeter-wave (mmWave) frequency [18], and network densifici-

ation [9]. In addition to deploying more cell cites, the sectorization

of each cell – dividing each cell into a number of non-overlapping

sectors – can significantly enhance the cell capacity and coverage

by improving the spatial reuse and reducing interference [1].

There are many applications of sectorized networks to wireless

access and backhaul networks, in both sub-6GHz and mmWave

frequency bands. For example, in a mmWave backhaul network

that can provide fiber-like data rates (e.g., the Terragraph 60GHz

solution [13]), each mmWave node is usually composed of a number

of sectors, each of which is equipped with a phased array with

beamforming capability [20]. In addition, integrated access and

backhaul (IAB) [16] in the mmWave band supporting flexible and

sectorized multi-hop backhauling started to be standarized since

3GPP Release 16. Recent efforts also focused on using increased

number of sectors per infrastructure node to provide better coverage

(e.g., SuperCell [7] supports 36 azimuth sectors per node). Therefore,

it is important to study the performance of sectorized networks,

especially when each node can simultaneously activate multiple

sectors for signal transmission and/or reception.

In this paper, we focus on the modeling, analysis, and optimiza-

tion of sectorized wireless networks, where sectorized nodes form

a multi-hop mesh network for data forwarding and routing. We

consider the scenario where a sectorized infrastructure node can

simultaneously activate many sectors supporting beam-steering

capability, and focus on optimizing the sectorization of each node

given the network conditions. We present the model of a sector-

ized wireless backhaul network consisting of (fixed) sectorized

infrastructure nodes, and describe the link interference model and

characterize the capacity region of these networks. For a sectorized

network, we introduce a latent structure of its connectivity graph,

called the auxiliary graph, which captures the underlying structural

property of the network as a function of the sectorization of each

node. We show that the capacity region of a sectorized network

can be described by the matching polytope of its auxiliary graph.

Then, we present the definitions of flow extension ratio and the

corresponding sectorization gain as a function of the network flow.

These two metrics quantitatively measure how much the network

flow can be extended in a sectorized wireless network, and thus

quantifies the performance of the network sectorization. We formu-

late an optimization problem with the objective to find the optimal

sectorization of the network that maximizes the flow extension

ratio (i.e., achieves the highest sectorization gain) under a given

network flow. Due to the analytical intractability of the problem,

https://doi.org/10.1145/3565287.3610272
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Figure 1: Sectorized infrastructure node model: (a) A sectorized node

𝑛 with 𝐾𝑛 = 4 sectors, {𝜎𝑘𝑛 }, the FoV of each sector, {𝜔𝑘𝑛 }, and the

sectoring axes, {𝜂𝑘𝑛 }. (b) Each node sector can perform TX or RX

beamforming with a range of 𝑅 and main lobe beamwidth of 𝜃 .

we develop a novel distributed algorithm, Sectorize-n, that ap-

proximates the optimal sectorization of each node in the network.

We also prove that Sectorize-n is a 2/3-approximation algorithm.

Finally, we numerically evaluate the performance of the pro-

posed algorithm through extensive simulations. We consider both

an example 7-node network and a large number of random net-

works with varying numbers of sectors per node, node density, and

network flows. The simulation results confirm our analysis and

show that the approximate sectorization gain increases sublinearly

with respect to the number of sectors per infrastructure node.

To summarize, the main contributions of this paper include:

(i) A general sectorized multi-hop wireless network model and a

comprehensive characterization of its capacity region based on

matching polytopes,

(ii) A distributed approximation algorithm that optimizes the sec-

torization of each node under a given network flow with per-

formance guarantee, and

(iii) Extensive simulations for performance evaluation of the pro-

posed sectorized network model and algorithm.

We also note that the developed sectorized network model and

analysis are very general, and can be applied to other networks that

share similar structures of the connectivity and auxiliary graphs.

2 RELATEDWORK

There has been extensive work on characterizing the capacity re-

gion of sub-6 GHz wireless networks where each node is equipped

with a single directional antenna (i.e., without sectorization), as

well as on developing medium access control (MAC), scheduling,

and routing algorithms for these directional networks [15, 24, 27].

Recently work also focused on mmWave networks where nodes

apply beamforming techniques for directional communication, and

considered multi-user MIMO and joint transmission [26], IAB [16],

joint scheduling and congestion control [8], and the corresponding

scheduling/routing and resource allocation problems in these net-

works. For networks with sectorization, recent work has considered

the design of routing protocols when only a single sector can be

activated at any time for each node (e.g., [19]).

Most relevant to our work are [2, 4, 10]. In particular, [4] focuses

on efficient message broadcasting in multi-hop sectorized wireless

networks, where each node has a pre-fixed sectorization. [10] con-

siders the multi-hop link scheduling problem in self-backhauled

mmWave cellular networks and applied deep reinforcement learn-

ing for minimizing the end-to-end delay. [2] considers the relay

optimization problem between macro and micro base stations in

n
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(b) 𝐻σ = (𝑉σ, 𝐸σ )
Figure 2: Graph representations of a sectorized network: (a) the

connectivity graph of the physical network,𝐺σ = (N, Lσ ) , and (b)

its corresponding auxiliary graph, 𝐻σ = (𝑉σ, 𝐸σ ) .

mmWave backhaul networks with at most two-hop path lengths. In

contrast, our work uniquely focuses on (i) characterizing the fun-

damental capacity of sectorized wireless networks when multiple

sectors can be simultaneously activated at each node, (ii) optimizing

the node sectorization in these networks under different network

flow conditions, and (iii) analyzing the network-level gain intro-

duced by optimizing the sectorization of each node, which has not

been considered in prior work. To the best of our knowledge, this

paper is the first thorough study of these topics.

3 MODEL AND PRELIMINARIES

3.1 Network Model

We consider a network consisting of 𝑁 sectorized infrastructure

nodes. We denote the set of nodes by N and index them by [𝑛] =
{1, 2, · · · , 𝑁 }. In particular, let σ𝑛 denote the sectorization of node

𝑛 ∈ N equipped with 𝐾𝑛 sectors. Let Γ𝑛 (𝐾𝑛) denote the set of

all possible sectorizations for node 𝑛 with a fixed number of 𝐾𝑛

sectors. As shown in Fig. 1(a), the 𝑘th sector of node 𝑛, denoted

by 𝜎𝑘𝑛 (𝑘 = 1, · · · , 𝐾𝑛), has a field of view (FoV) of 𝜔𝑘𝑛 , and the 𝐾𝑛
sectors of node 𝑛 combine to cover an FoV of the entire azimuth

plane, i.e.,

∑𝐾𝑛
𝑘=1

𝜔𝑘𝑛 = 360
◦
. For two adjacent sectors 𝑘 and (𝑘+1) of

node𝑛 (𝑘 = 1, · · · , 𝐾−1), we call their boundary a sectoring axis and
denote it by 𝜂𝑘𝑛 . We define the sectoring axis between sector 𝐾 and

sector 1 with 𝜂𝐾𝑛 . Let σ = (σ1, · · · ,σ𝑁 ) = [σ𝑛 : ∀𝑛 ∈ N] denote
the network sectorization, and K = (𝐾1, · · · , 𝐾𝑁 ) = [𝐾𝑛 : ∀𝑛 ∈ N]
be the vector of the number of sectors for all nodes. For a given

K ∈ Z𝑁+ , let Γ(K) be the set of all possible network sectorizations,

where node 𝑛 is equipped with 𝐾𝑛 sectors.

Each sector of an infrastructure node is equipped with a half-

duplex phased array antenna to perform transmit (TX) or receive

(RX) beamforming. We adapt the sectored antenna model [3] to

approximate the TX/RX beam pattern that can be formed by each

sector, where 𝑅 is the TX/RX range and 𝜃 is the beamwidth of the

main lobe, as depicted in Fig. 1(b). We assume that the beamwidth 𝜃

is smaller than the sector’s FoV, and the TX/RX beam can be steered

to be pointed in different directions within each sector.

We use a directed graph𝐺σ = (N ,L) to denote the connectivity

graph of the network under sectorization σ ∈ Γ(K), whereN (with

|N | = 𝑁 ) is the set of nodes and L (with |L| = 𝐿) is the set of

directed links. A directed link ℓ from node 𝑛 to node 𝑛′, denoted
by ℓ = (𝑛, 𝑛′), exists if the distance between the two nodes is less

than the sum of their communication range, i.e., |x(𝑛) − x(𝑛′) | ≤
2𝑅, where x(𝑥) denotes the node’s location vector (e.g., using the

Cartesian coordinate system) and | · | denotes the 𝐿2-norm. Without
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Figure 3: (a) A feasible link ℓ = (𝜎𝑘𝑛 , 𝜎𝑘
′
𝑛′ ) , (b) A secondary interfering

TX sector 𝜎
𝑘3
𝑛3

to RX sector 𝜎
𝑘2
𝑛2

, (c) The secondary TX interference in

(b) can be avoided by steering node 3’s TX beam in 𝜎
𝑘3
𝑛3

, so that both

links (𝜎𝑘1𝑛1 , 𝜎
𝑘2
𝑛2
) and (𝜎𝑘3𝑛3 , 𝜎

𝑘4
𝑛4
) can be simultaneously activated.

loss of generality, we use 𝐺 (without the superscript σ) to denote

the connectivity graph of an unsectorized network.

We also present an equivalent representation of each directed

link in 𝐺σ
based on the node sectors. In particular, each ℓ ∈ L can

also be represented by ℓ = (𝜎𝑘𝑛 , 𝜎𝑘
′
𝑛′ ), where the 𝑘

th
sector of node

𝑛 (i.e., 𝜎𝑘𝑛 ) is the TX sector, and the 𝑘′th sector of node 𝑛′ (i.e., 𝜎𝑘
′
𝑛′ )

is the RX sector. For a link in the form of (𝜎𝑘𝑛 , 𝜎𝑘
′
𝑛′ ) to be a feasible

link, it needs to satisfy the following two conditions
1
(see Fig. 3(a)):

• (C1) The distance between the two nodes is less than the sum of

their communication range, i.e., |x(𝑛) − x(𝑛′) | ≤ 2𝑅; and

• (C2) Node 𝑛 lies in the FoV 𝜔𝑘
′
𝑛′ of node 𝑛

′
, and node 𝑛′ lies in

the FoV 𝜔𝑘𝑛 of node 𝑛.

Since both the TX and RX beams can be steeredwithin𝜔𝑘𝑛 of node

𝑛 and 𝜔𝑘
′
𝑛′ of node 𝑛

′
, respectively, the above two conditions are

sufficient for establishing ℓ = (𝜎𝑘𝑛 , 𝜎𝑘
′
𝑛′ ). Moreover, if (𝜎𝑘𝑛 , 𝜎𝑘

′
𝑛′ ) is a

directional link, (𝜎𝑘 ′
𝑛′ , 𝜎

𝑘
𝑛 ) is also a directional link due to symmetry.

Therefore, the set of feasible directed edges in 𝐺σ
is given by:

L =
{
(𝑛, 𝑛′) : ∀𝑛, 𝑛′ ∈ N , 𝑛 ≠ 𝑛′, s.t. (C1) is satisfied

}
, or

Lσ =
{
(𝜎𝑘𝑛 , 𝜎𝑘

′
𝑛′ ) : ∀𝑛, 𝑛

′ ∈ N , 𝑛 ≠ 𝑛′, 𝑘 ∈ [𝐾𝑛], 𝑘′ ∈ [𝐾𝑛′ ],
s.t. (C1) and (C2) are satisfied

}
.

AlthoughL andLσ
are identical with respect to𝐺σ

, for clarity, we

useLσ
with superscript σ to indicate the directed links represented

by node sectors. Moreover, let L+𝑛 ,L−𝑛 ⊆ Lσ
denote the set of

(directed) outgoing and incoming links with end point of node 𝑛.

Remark. Note that one of the main differences between the sector-

ized and traditional unsectorized networks is that each node 𝑛 ∈ N
can have multiple links being activated at the same time, at most

one per sector. As a result, a number of links in Lσ
can share the

same end point (node) in N while being activated simultaneously.

We use the terms “node” and “link” in reference to the connectivity

graph, 𝐺σ
, while reserving the terms “vertex” and “edge” for the

auxiliary graph of 𝐺σ
, which will be presented in §4.

3.2 Interference Model

The link interference model is essential for determining the set of

directional links that can be activated simultaneously, or the feasible

schedules. Our link interference model is based on the protocol

model [11] adapted to the considered sectorized networks.

1
A similar interference model was presented in [25], where beamforming can reduce

the interference in mmWave networks. Our framework can also be generalized to

other types of networks using their corresponding connectivity graphs.
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th

calculated for 1,000 random networks with

𝑁 ∈ {20, 40, 60} and a communication range of 2𝑅 = 0.1.

Definition 3.1 (Primary Interference Constraints in Sec-

torized Networks). The transmission on a feasible link (𝜎𝑘𝑛 , 𝜎𝑘
′
𝑛′ ) ∈

Lσ
from the 𝑘 th sector of node 𝑛 to the 𝑘′th sector of node 𝑛′ is suc-

cessful if it does not overlap with any other feasible directional link

(𝜎𝑘𝑛 , 𝜎
𝑗
𝑚) or (𝜎

𝑗
𝑚, 𝜎

𝑘 ′
𝑛′ ) that share a TX or RX sector in common with

(𝜎𝑘𝑛 , 𝜎𝑘
′
𝑛′ ). Essentially, at any time, at most one outgoing or incoming

link is allowed in each node sector 𝜎𝑘𝑛 ,∀𝑛 ∈ N , 𝑘 ∈ [𝐾𝑛].

Definition 3.2 (Secondary Interference Constraints in

Sectorized Networks). Consider two feasible directional links

ℓ12 = (𝜎𝑘1𝑛1 , 𝜎
𝑘2
𝑛2 ) and ℓ34 = (𝜎𝑘3𝑛3 , 𝜎

𝑘4
𝑛4 ) between four distinct nodes

𝑛𝑖 (𝑖 = 1, 2, 3, 4) with fixed beamforming directions in each TX/RX

sector. If the directional link ℓ32 = (𝜎𝑘3𝑛3 , 𝜎
𝑘2
𝑛2 ) is also a feasible link

and the TX beam in 𝜎
𝑘3
𝑛3 , which is intended to communicate with the

RX beam in 𝜎
𝑘4
𝑛4 , overlaps with the RX beam in 𝜎

𝑘2
𝑛2 , then 𝜎

𝑘3
𝑛3 is a

secondary interfering TX sector to the RX sector 𝜎
𝑘2
𝑛2 (see Fig. 3(b)).

In this paper, we consider only primary interference constraints

in sectorized networks, which is a realistic assumption because

of two main reasons. First, note that secondary interference con-

straints can be avoided using the beam steering capacity of an

infrastructure node. For the example depicted in Fig. 3(b), the in-

terference from TX sector 𝜎
𝑘3
𝑛3 to RX sector 𝜎

𝑘2
𝑛2 can be avoided by

steering the TX beam of node 3 in 𝜎
𝑘3
𝑛3 , so that both links (𝜎𝑘1𝑛1 , 𝜎

𝑘2
𝑛2 )

and (𝜎𝑘3𝑛3 , 𝜎
𝑘4
𝑛4 ) can be activated simultaneously, as shown in Fig. 3(c).

Second, it is intuitive that for sufficiently small values of 𝜃 , the net-

work becomes highly directional with “pencil” beams. Essentially,

there exists a threshold, 𝜃
th
, below which the secondary interfer-

ence constraints can be completely eliminated regardless of the

TX/RX beamforming directions at each node. For each node 𝑛, let

𝜃min

𝑛 denote the minimum angle between adjacent links with 𝑛

being an endpoint. Then, we have 𝜃
th

= min𝑛∈N{𝜃min

𝑛 }. In the ex-

ample network shown in Fig. 6 (see §7.1 for the setup), 𝜃
th

= 15.8◦,
which can be achieved by state-of-the-art phased arrays [20]. Fig. 4

illustrates the cumulative distribution function (CDF) of 𝜃
th

cal-

culated over 1,000 random networks (see §7.2 for the setup) with

𝑁 ∈ {20, 40, 60} nodes deployed in a unit square area and when

a communication range of 2𝑅 = 0.1. The median value for 𝜃
th

is 107.0◦/6.7◦/2◦ for 𝑁 = 20/40/60, respectively. This illustrates
that in certain scenarios, it is reasonable to remove the secondary

interference constraint under realistic node density and beamwidth.

3.3 Traffic Model, Schedule, and Queues

We assume that time is slotted and packets arrive at each node

according to some stochastic process. For convenience, we classify

all packets passing through the network to belong to a particular
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commodity, 𝑐 ∈ N , which represents the destination node of each

packet. Let 𝐴
(𝑐 )
𝑛 (𝑡) ≤ 𝐴max < +∞ be the number of commodity-𝑐

packets entering the network at node 𝑛 and destined for node 𝑐

in slot 𝑡 . The packet arrival process 𝐴
(𝑐 )
𝑛 (𝑡) is assumed to have

a well-defined long-term rate of α
(𝑐 )
𝑛 = lim𝑇→+∞

1

𝑇

∑𝑇
𝑡=1𝐴

(𝑐 )
𝑛 (𝑡).

Let α = [α(𝑐 )𝑛 ] be the 𝑁 × 𝑁 multi-commodity arrival rate matrix.

All the (directional) links have a capacity of one packet per

time slot. A schedule in any time slot 𝑡 is represented by a vector

X(𝑡) = [𝑋ℓ (𝑡)] ∈ {0, 1}𝐿 , in which𝑋ℓ (𝑡) = 1 if link ℓ is scheduled to

transmit a packet in time slot 𝑡 and 𝑋ℓ (𝑡) = 0 otherwise. We denote

the set of feasible schedules in𝐺σ
byX𝐺σ . In addition, let 𝜇

(𝑐 )
ℓ
(𝑡) =

1 if link ℓ serves a commodity-𝑐 packet in time 𝑡 (determined by the

scheduling and routing algorithm), and 𝜇
(𝑐 )
ℓ
(𝑡) = 0 otherwise. We

define 𝑄
(𝑐 )
𝑛 (𝑡) as the number of commodity-𝑐 packets at node 𝑛 in

time slot 𝑡 , or the queue backlog. Choosing a schedule X(𝑡) ∈ X𝐺σ

and let [𝑥]+ = max{0, 𝑥}, the queue dynamics are described by:

𝑄
(𝑐 )
𝑛 (𝑡) =

[
𝑄
(𝑐 )
𝑛 (𝑡 − 1) −

∑
ℓ∈L+𝑛 𝑋ℓ (𝑡) · 𝜇

(𝑐 )
ℓ
(𝑡)

]+
+∑ℓ∈L−𝑛 𝑋ℓ (𝑡) · 𝜇 (𝑐 )ℓ (𝑡) +𝐴(𝑐 )𝑛 (𝑡),∀𝑡 .

We use Q(𝑡) = [𝑄 (𝑐 )𝑛 (𝑡) : 𝑛, 𝑐 ∈ N] to denote the queue vector.

3.4 Capacity Region & Throughput Optimality

A dynamic scheduling and routing algorithm will determine the

schedule X(𝑡) in each time 𝑡 . Let 𝑓
(𝑐 )
ℓ

denote the long-term rate at

which commodity-𝑐 packets are served by link ℓ , or the commodity-

𝑐 flow on link ℓ . We define f = [𝑓ℓ : ℓ ∈ Lσ] as the network flow
vector, where 𝑓ℓ =

∑
𝑐∈N 𝑓

(𝑐 )
ℓ

is the total flow served by link ℓ .

The capacity region of the considered sectorized network 𝐺σ
,

denoted by Λ(𝐺σ), is defined as the set of all arrival rate matrices,

α, for which there exists a multi-commodity network flow vector,

f , satisfying the flow conservation equations given by:

α𝑛𝑐 =
∑

ℓ∈L+𝑐
𝑓
(𝑐 )
ℓ
− ∑
ℓ∈L−𝑐

𝑓
(𝑐 )
ℓ

, ∀𝑛 ∈ N and 𝑛 ≠ 𝑐, (1)∑
𝑛∈N

α𝑛𝑐 =
∑

ℓ∈L−𝑐
𝑓
(𝑐 )
ℓ

, ∀𝑐 ∈ N , (2)

𝑓
(𝑐 )
ℓ
≥ 0, ∀ℓ ∈ Lσ, 𝑐 ∈ N , (3)

𝑓ℓ =
∑
𝑐∈N

𝑓
(𝑐 )
ℓ
≤ 1, ∀ℓ ∈ Lσ . (4)

In particular, (1)–(3) define a feasible routing for commodity-𝑐 pack-

ets, and (4) indicates that the total flow on each edge should not

exceed its (unit) capacity. Therefore, for 𝐺σ = (N ,Lσ), an arrival

rate matrix α is in the capacity region Λ(𝐺σ) if there exists a feasi-
ble multi-commodity flow vector supporting α with respect to the

network defined by 𝐺σ
. As a result, we have

Λ(𝐺σ) =
{
α : ∃f ∈ Co(X𝐺σ ) s.t. (1)–(4) are satisfied

}
, (5)

where Co(·) is the convex hull operator.
A scheduling and routing algorithm is called throughput-optimal

if it can keep the network queues stable for all arrival rate ma-

trices α ∈ int(Λ(𝐺σ)), where int(Λ(𝐺σ)) denotes the interior of
Λ(𝐺σ). A well-known throughput-optimal algorithm is the dy-

namic backpressure routing algorithm [23], which works as fol-

lows. For each link ℓ = (𝑛,𝑚) ∈ Lσ
, we define its backpres-

sure in time slot 𝑡 as 𝐷ℓ (𝑡) = max𝑐∈N{𝑄 (𝑐 )𝑛 (𝑡) − 𝑄
(𝑐 )
𝑚 (𝑡)}. Let

D(𝑡) = [𝐷ℓ (𝑡) : ∀ℓ ∈ Lσ]. In every time slot 𝑡 , the backpressure

algorithm selects XBP (𝑡) as follows:
XBP (𝑡) ∈ argmaxX∈X𝐺σ {D⊤ (𝑡) · X}, (6)

together with the commodity to be served on each link ℓ . Given

α ∈ int(Λ(𝐺σ)), the backpressure algorithm returns a feasible

network flow f that supports α in 𝐺σ
. In the rest of the paper,

although the target optimization problems may admit multiple

optimal solutions, without loss of generality and for notational

brevity, we treat them as singletons.

4 THE AUXILIARY GRAPH AND MATCHINGS

In this section, we introduce the auxiliary graph for a sectorized

network, followed by an overview of matching polytopes and the

definition of equivalent sectorizations. All of these serve as the

foundations for the results presented in the remaining of this paper.

4.1 The Auxiliary Graph, 𝐻σ

To allow for analytical tractability and support the analysis, we

introduce the auxiliary graph, 𝐻σ = (𝑉σ, 𝐸σ) of the considered
sectorized network, under a given sectorization rule, σ ∈ Γ(K).
In particular, 𝐻σ

is generated based on the connectivity graph

𝐺σ = (N ,Lσ) as follows:
• Each node 𝑛 ∈ 𝑉 is duplicated 𝐾𝑛 times into a set of vertices,

{𝑛1, · · · , 𝑛𝐾𝑛 } ∈ 𝑉σ
, one for each node sector 𝜎𝑘𝑛 , 𝑘 ∈ [𝐾𝑛].

• Each directed link ℓ = (𝜎𝑘𝑛 , 𝜎𝑘
′
𝑛′ ) ∈ L

σ
between the TX sector 𝜎𝑘𝑛

and RX sector 𝜎𝑘
′
𝑛′ is “inherited" as a directed edge 𝑒 from vertex

𝑛𝑘 to vertex 𝑛′
𝑘 ′

in 𝑉σ
.

It is easy to see that |𝑉σ | = ∑
𝑛∈N 𝐾𝑛 and |𝐸σ | = |L| = 𝐿, and as we

show in the rest of the paper, 𝐻σ
can largely facilitate the analysis

and optimization in sectorized networks. An illustrative example

is shown in Fig. 2, where each node in 𝐺σ
has an equal number

of 4 sectors based on the Cartesian coordinate system. Specifically,

node 𝑛 in 𝐺σ
is duplicated 4 times to become 𝑛𝑖 (𝑖 = 1, 2, 3, 4) in

𝐻σ
, while the 5 feasible links in Lσ

are “inherited" from 𝐺σ
to

𝐻σ
, whose end points are the duplicated vertices representing the

corresponding TX/RX sectors.

4.2 Feasible Schedules in 𝐺σ
as Matchings in 𝐻σ

For an unsectorized network 𝐺 (i.e., σ = ∅) with 𝐾𝑛 = 1,∀𝑛, its
auxiliary graph 𝐻 = (𝑉 , 𝐸) is identical to the connectivity graph

𝐺 = (N ,L). Therefore, we use 𝐺 and 𝐻 interchangeably when

referring to an unsectorized network. Each feasible schedule X ∈
X𝐺 is a matching – a set of links among which no two links share

a common node – in 𝐺 (and thus in 𝐻 ).

However, in a sectorized network 𝐺σ = (N ,Lσ), a feasible

schedule in 𝐺σ
may not be a matching in 𝐺σ

, since up to 𝐾𝑛 links

can share a common node𝑛. However, it is easy to see that under the

primary interference constraints and with the use of the auxiliary

graph, any feasible schedule in𝐺σ
corresponds to amatching in𝐻σ

.

Let M ∈ {0, 1}𝐿 denote a matching vector in 𝐻σ
, in which every

element (edge) is ordered according to the position of the element

(link) that it corresponds to in X. LetM𝐻σ be the set of matchings

in 𝐻σ
. To rigorously connect a feasible schedule X ∈ X𝐺σ in 𝐺σ

to a matchingM ∈ M𝐻σ in𝐻σ
, we need to take a deeper look into

the sets Lσ
and 𝐸σ: they not only have the same cardinality of 𝐿,
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but are also in fact two isomorphic sets. In particular, due to the

way 𝐻σ
is constructed, there exists an isomorphism O : 𝐸σ → Lσ

such that for 𝑒 = (𝑛𝑘 , 𝑛′𝑘 ′ ) ∈ 𝐸
σ
and ℓ = (𝜎𝑘𝑛 , 𝜎𝑘

′
𝑛′ ) ∈ L

σ
, O(𝑒) = ℓ .

4.3 Background on Matching Polytopes

The matching polytope of a (general) graph 𝐺 = (𝑉 , 𝐸), denoted by

P𝐺 , is a convex polytope whose corners correspond to the match-

ings in𝐺 , and can be described using Edmonds’ matching polytope

theorem [5]. Specifically, a vector x = [𝑥𝑒 : 𝑒 ∈ 𝐸] ∈ R |𝐸 | belongs
to P𝐺 if and only if it satisfies the following conditions [5, 14]:

(P) (𝑖) 𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸, and ∑
𝑒∈𝛿 (𝑛) 𝑥𝑒 ≤ 1, ∀𝑣 ∈ 𝑉 ,

(𝑖𝑖) ∑
𝑒∈𝐸 (𝑈 ) 𝑥𝑒 ≤ ⌊|𝑈 |/2⌋, ∀𝑈 ⊆ 𝑉 with |𝑈 | odd, (7)

where 𝛿 (𝑣) is the set of edges incident to 𝑣 , and 𝐸 (𝑈 ) is the set of
edges in the subgraph induced by𝑈 ⊆ 𝐺 . Note that in general, it is

challenging to compute P𝐺 , since (ii) of (7) includes an exponential

number of constraints since all sets of vertices 𝑈 ⊆ 𝑉 with an odd

cardinality need to be enumerated through. The fractional matching

polytope of 𝐺 , denoted by Q𝐺 , is given by

(Q) 𝑥𝑒 ≥ 0, ∀𝑒 ∈ 𝐸, and ∑
𝑒∈𝛿 (𝑛) 𝑥𝑒 ≤ 1, ∀𝑣 ∈ 𝑉 . (8)

For a general graph𝐺 , P𝐺 ⊆ Q𝐺 since (ii) in (P) is excluded in (Q).

For a bipartite graph 𝐺𝑏𝑖
2
, its matching polytope and fractional

matching polytope are equivalent, i.e., P𝐺𝑏𝑖 = Q𝐺𝑏𝑖 [21].
Recall that for an unsectorized network 𝐺 , its auxiliary graph

𝐻 ≡ 𝐺 and its matching polytope is the convex hull of the set of

matchings, i.e., P𝐻 = Co(M𝐻 ). Therefore, its capacity regionΛ(𝐺)
is determined by P𝐻 , since X𝐺 =M𝐻 . For a sectorized network

𝐺σ
, since a feasible schedule in 𝐺σ

, X ∈ X𝐺σ , corresponds to a

matching in the auxiliary graph𝐻σ
,M ∈ M𝐻σ (see §4.2), we show

in §5 that its capacity region, Λ(𝐺σ), can be determined by the

matching polytope of 𝐻σ
, P𝐻σ (Lemma 5.1).

4.4 Equivalent Sectorizations

Since our objective is to obtain the optimal sectorization for each

node in the network, it is important to understand the structural

property of a sectorization, σ. In particular, for a node 𝑛 ∈ N with

𝐾𝑛 number of sectors, there is only a finite number of distinct sector-

izations in Γ𝑛 (𝐾𝑛), due to the equivalent classes of sectorizations.

Consider a node 𝑛 ∈ N and two of its undirected adjacent in-

cident links ℓ1 = (𝑛,𝑢) and ℓ2 = (𝑛, 𝑣) for some 𝑢, 𝑣 incident to

𝑛. To define the undirected links from the set L, we assume, for

example, that the undirected link ℓ1 includes the two directed links

(𝑛,𝑢) ∈ L+𝑛 and (𝑢, 𝑛) ∈ L−𝑛 . Note that, under the primary inter-

ference constraints, it does not make a difference where exactly a

sectorization axis is put between ℓ1 and ℓ2 of node 𝑛. Instead, what

matters is whether a sectorization axis will be placed between them

or not. If two sectorizations σ1 ∈ Γ𝑛 (𝐾𝑛) and σ2 ∈ Γ𝑛 (𝐾𝑛) differ
only on the exact position of a sectorization axis while both sector-

ization have a sectoring axis placed between ℓ1 and ℓ2, it holds that

𝐻σ1 ≡ 𝐻σ2
, and thusM𝐻σ

1 =M𝐻σ
2 . Therefore, the set Γ𝑛 (𝐾𝑛)

consists of a finite number of equivalent sectorizations.

Fig. 5 depicts an example of three equivalent sectorizations for

node𝑛, where both links ℓ1 = (𝑛,𝑢) and ℓ2 = (𝑛, 𝑣) are placedwithin
the same sector. Note that this notion of equivalent sectorizations

2
A bipartite graph is a graph whose vertices can be divided into two disjoint and

independent sets𝑈1 and𝑈2 such that every edge connects a vertex in𝑈1 to one in𝑈2 .

n

u v

n

u v

n

u v

Figure 5: Three equivalent sectorizations for a node 𝑛 ∈ N.

makes the optimization over the set Γ(K), for every fixed K ∈ Z𝑁+ ,
more approachable. Motivated by the comparison of sectorizations

of Fig. 5, when rotating a sectorization axis of node 𝑛, an infinite

number of equivalent sectorizations can be generated until the

axis meets the next incident link. Therefore, up to an equivalence

relation, the sectorization of a network, σ ∈ Γ(K) is determined by

whether a sectoring axis will be placed (instead of where exactly it

will be placed) between adjacent undirected links of each node.

For node 𝑛, since a sectoring axis cannot be placed between the

outgoing and incoming links corresponding to the same neighbor-

ing node of 𝑛, we consider undirected links regarding node 𝑛’s

sectorization, σ𝑛 . In the rest of the paper, let 𝛿 (𝑛) denote the set
of the undirected incident links of 𝑛, i.e., 𝛿 (𝑛) = {ℓ1, · · · , ℓ|𝛿 (𝑛) | },
ordered in a way such that geometrically neighboring (consecutive)

undirected links are next to each other. Note that ℓ|𝛿 (𝑤 ) | and ℓ1 are
also adjacent links due to the cyclic nature of σ𝑛 . Using this nota-

tion, the sectorization of node 𝑛, σ𝑛 ∈ Γ𝑛 (𝐾𝑛), essentially partitions
𝛿 (𝑛) into 𝐾𝑛 non-overlapping subsets of links. We can also denote

σ𝑛 by placing the symbol “|" between two adjacent links where a

sectoring axis is placed (e.g., 𝛿𝑛 = {|(𝑛,𝑢), (𝑛, 𝑣)} in Fig. 5).

5 SECTORIZATION GAIN BASED ON

NETWORK FLOW EXTENSION RATIO

In this section, we characterize the capacity region of sectorized

networks and present the definitions of flow extension ratio and the

corresponding sectorization gain. We consider a general sectorized

network𝐺σ
under sectorization σ ∈ Γ(K) with given K ∈ Z𝑁+ , and

its auxiliary graph 𝐻σ
. Let P𝐻σ be the matching polytope of 𝐻σ

.

We first present the following lemma that relates the convex hull

of all feasible schedules in 𝐺σ
to P𝐻σ (for detailed proof see [17]).

Lemma 5.1. For a sectorized network 𝐺σ
and its auxiliary graph

𝐻σ
, let X𝐺σ be the set of feasible schedules in 𝐺σ

andM𝐻σ be the

set of matchings in 𝐻σ
. Under the primary interference constraints,

it holds that X𝐺σ =M𝐻σ and Co(X𝐺σ ) = Co(M𝐻σ ) = P𝐻σ .

Based on Lemma 5.1, the backpressure algorithm that obtains

maximum weight schedule (MWS) XBP (𝑡) in 𝐺σ
(see §3.4), which

in general is NP-hard, is equivalent to finding the corresponding

maximum weight matching (MWM) in 𝐻σ
, with the backpressure

D(𝑡) being the weights on the edges, i.e.,

XBP (𝑡) := arg max

X∈X𝐺σ

{
D⊤ (𝑡) · X

}
= arg max

M∈M𝐻σ

{
D⊤ (𝑡) ·M

}
.

From Edmond’s theory [6, 21], the MWM of 𝐻σ
can be obtained

via a polynomial-time algorithm with complexity of 𝑂 ( |𝑉𝜎 |2 · |𝐸 |).
Intuitively, it is expected that 𝐺σ

under sectorization σ (with

𝐻σ = (𝑉σ, 𝐸σ)) has a capacity region that is at least the same as

the unsectorized network 𝐺 (with 𝐻 = (𝑉 , 𝐸)), i.e., any network

flow f that can be maintained in the unsectorized network𝐺 can

always be maintained in 𝐺σ
. This is by the following theorem,

whose proof can be found in [17].
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Theorem 5.2. P𝐺 = P𝐻 ⊆ P𝐻σ , ∀K ∈ Z𝑁+ and ∀σ ∈ Γ(K).

Based on (5) and Lemma 5.1, the capacity region of a sectorized

network 𝐺σ
can be characterized by the matching polytope of its

auxiliary graph, P𝐻σ . With a given (unknown) α ∈ int(Λ(𝐺σ))
and a sectorization σ, the dynamic backpressure algorithm will

converge to and return a network flow vector f ∈ P𝐻σ . We define

the flow extension ratio, denoted by λσ (f), which quantitatively

measures howmuch the network flow f can be extended in its direction
until it intersects the boundary of P𝐻σ .

Definition 5.3 (Flow Extension Ratio). For a sectorized net-

work𝐺σ
and network flow f ∈ P𝐻σ , the flow extension ratio, λσ (f),

is the maximum scalar such that λσ (f) · f ∈ P𝐻σ still holds.

Let 𝜁σ (f) := min𝑈 ⊆𝑉σ, |𝑈 | odd
(
⌊ |𝑈 |/2⌋∑
𝑒∈𝐸 (𝑈 ) 𝑓𝑒

)
(see (7)).With a little

abuse of notation, for node 𝑛, network flow f , and an undirected

edge 𝑒 ∈ 𝛿 (𝑛) with directed components 𝑒+ ∈ L+𝑛 and 𝑒− ∈ L−𝑛 , we
let 𝑓𝑒 = 𝑓𝑒+ + 𝑓𝑒− . The flow extension ratio, λσ (f), can be obtained

by the following optimization problem:

λσ (f) := max

λ∈R+
λ, s.t.: λ · f ∈ P𝐻σ

(7)

= min

{
min

𝑣∈𝑉σ

1∑
𝑒∈𝛿 (𝑣) 𝑓𝑒

, 𝜁σ (f)
}
. (9)

Similarly, we define the flow extension ratio for the corresponding

unsectorized network 𝐺 , denoted by λ∅ (f) := maxλ∈R+ λ, s.t.: λ ·
f ∈ P𝐺 . Note that λ∅ (f) depends solely on the topology of𝐺 and is

independent of the sectorization σ. Next, we define the approximate

flow extension ratio with respect to the polytope Q𝐻σ .

Definition 5.4 (Approximate Flow Extension Ratio). For a

sectorized network𝐺σ
and a network flow f ∈ P𝐻σ , the approximate

flow extension ratio, µσ (f), is the maximum scalar such that µσ (f) ·
f ∈ Q𝐻σ still holds.

The following optimization problem determines µσ (f):
µσ (f) := max

µ∈R+
µ, s.t.: µ · f ∈ Q𝐻σ

(8)

= min

𝑣∈𝑉σ

1∑
𝑒∈𝛿 (𝑣) 𝑓𝑒

=
1

max𝑣∈𝑉σ
∑
𝑒∈𝛿 (𝑣) 𝑓𝑒

, (10)

We also define the approximate flow extension ratio for the unsec-

torized network𝐺 , denoted by µ∅ (f) := maxλ∈R+ λ, s.t.: λ·f ∈ Q𝐺 .
To quantitatively evaluate the performance of a sectorization σ,

we present the following definition of sectorization gains.

Definition 5.5 (Sectorization Gains). The (explicit) sectoriza-

tion gain of σ with a network flow f is defined as 𝑔σ
λ
(f) := λσ (f )

λ∅ (f )
(with respect to P𝐻σ ). The approximate sectorization gain of σ with

a network flow f is defined as 𝑔σµ (f) :=
µσ (f )
µ∅ (f ) (with respect to Q𝐻σ ).

The following lemma states the relationships between λσ (f) and
µσ (f), and between 𝑔σ

λ
(f) and 𝑔σµ (f), whose proof is in [17].

Lemma 5.3. For any sectorization σ and network flow f , it holds
that: (i)

2

3
· µσ (f) ≤ λσ (f) ≤ µσ (f), (ii) 1

µσ (f ) ≥
1

λσ (f ) −
max𝑒∈𝐸σ 𝑓𝑒 , and (iii)

2

3
· 𝑔σµ (f) ≤ 𝑔σλ (f) ≤

3

2
· 𝑔σµ (f).

6 OPTIMIZATION AND A DISTRIBUTED

APPROXIMATION ALGORITHM

Given a vector K ∈ Z𝑁+ , our objective is to find the sectorization

σ ∈ Γ(K) that maximizes the flow extension ratio, λσ (f), under a
network flow, f . This optimization problem, (Opt), is given by:

(Opt) σ★(f) := arg max

σ∈Γ (K)
λσ (f)

(9)

= arg max

σ∈Γ (K)

{
min

{
min

𝑣∈𝑉σ

1∑
𝑒∈𝛿 (𝑛) 𝑓𝑒

, 𝜁σ (f)
}}
. (11)

Note that we are optimizing towards the boundary of the matching

polytope, P𝐻σ , over the set of sectorizations, Γ(K), for a given

network flow, f . This is because in general, there does not exist

a single sectorization σ ∈ Γ(K) that can achieve close-to-optimal

performance of λσ (f) for every network flow f ∈ R |𝐸 | .

6.1 Key Insight and Intuition

In general, (Opt) is analytically intractable due to its combinatorial

nature and the fact that 𝜁σ (f) needs exponentially many calcu-

lations even for a fixed sectorization σ. Instead, we consider an

alternative optimization problem:

(Opt-Approx) σ̃(f) := arg max

σ∈Γ (K)
µσ (f)

(10)

= arg max

σ∈Γ (K)

{
min

𝑣∈𝑉σ

1∑
𝑒∈𝛿 (𝑣) 𝑓𝑒

}
. (12)

Although (Opt-Approx) excludes the constraint 𝜁σ (f) in (Opt),

solving it by a brute-force algorithm is still analytically intractable

due to the coupling between the (possibly different) sectorization

of all nodes. For example, if each of the 𝑁 nodes has a number of 𝐾

possible sectorizations, a total number of 𝑁𝐾 sectorizations need

to be evaluated in order to solve (Opt-Approx).

Our key insight behind developing a distributed approximation

algorithm (described in §6.2) is that (Opt-Approx) can be decom-

posed into 𝑁 individual optimization problems, (Opt-Approx-𝑛),

for each node 𝑛 ∈ N . With a little abuse of notation, let f𝑛 = (𝑓𝑒 :
𝑒 ∈ 𝛿 (𝑛)) be the “local" flows on the undirected edges incident to

node 𝑛. This decomposed optimization problem is given by:

(Opt-Approx-𝑛) ν𝑛 (f𝑛) := arg min

σ𝑛∈Γ𝑛 (𝐾𝑛 )
max

𝑣∈{𝑛σ𝑛
1
,· · · ,𝑛σ𝑛

𝐾𝑛
}

∑
𝑒∈𝛿 (𝑣)

𝑓𝑒 .

(13)

(Opt-Approx-𝑛) determines the sectorization of node 𝑛, ν𝑛 (f𝑛),
based on its local flows, f𝑛 , and is independent of the other nodes.

The following lemma shows that the sectorization obtained by solv-

ing the 𝑁 decomposed problems, (Opt-Approx-𝑛), is equivalent to

that obtained by solving (Opt-Approx), whose proof is in [17].

Lemma 6.4. For a given network flow f , the sectorization ν(f),
which consists of the solutions of (Opt-Approx-𝑛) for all nodes 𝑛 ∈ N ,

is equivalent to the solution σ̃(f) to (Opt-Approx), i.e.,
σ̃(f) = ν(f) = (ν1 (f1), · · · ,ν𝑁 (f𝑁 )) and µν (f) = µσ̃ (f) . (14)

Although (Opt-Approx-𝑛) is a distributed optimization prob-

lem for each node 𝑛, to solve it using a brute-force method still

remains high complexity. Consider the sectorization of node 𝑛

with |𝛿 (𝑛) | incident edges into 𝐾𝑛 sectors (|𝛿 (𝑛) | ≤ (𝑁 − 1)). To
solve (Opt-Approx-𝑛) in a brute-force way, a total number of
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Algorithm 1 Sectorize-n for node 𝑛.

Input: 𝐾𝑛 , 𝛿 (𝑛) , f𝑛 , and 𝜖
1: 𝑇min ← max𝑒∈𝛿 (𝑛) 𝑓𝑒 ,𝑇max ←

∑
𝑒∈𝛿 (𝑛) 𝑓𝑒 ,𝑇temp ← 0

2: 𝑇 crit

𝑛 ← 0, decision← No
3: while (𝑇max − 𝑇min ) > 𝜖 do
4: 𝑇temp ← (𝑇min +𝑇max )/2
5: (decision,π0 ) ← ExistSectorization-n(𝑇temp ) (Algorithm 2)

6: if decision = Yes then
7: 𝑇max ← 𝑇temp

8: else

9: 𝑇min ← 𝑇temp

10: end if

11: end while

12: 𝑇 crit

𝑛 ← 𝑇max

13: (decision,π𝑛 (f𝑛 ) ) ← ExistSectorization-n(𝑇 crit

𝑛 )
14: return The sectorization for node 𝑛, π𝑛 (f𝑛 )

( |𝛿 (𝑛) |
𝐾𝑛

)
= 𝑂

(𝑁
𝐾𝑛

)
= 𝑂 (𝑁𝐾𝑛 ) possible sectorizations need to be enu-

merated. Next, we present a polynomial-time distributed algorithm

that solves (Opt-Approx-𝑛) with a complexity independent of 𝐾𝑛 .

6.2 A Distributed Approximation Algorithm

We now present a distributed approximation algorithm, Sectorize-

n, that efficiently solves (Opt) with guaranteed performance. In

essence, Sectorize-n solves (Opt-Approx-𝑛) for each individual

node 𝑛 ∈ N . Algorithm 1 presents the pseudocode for Sectorize-n,

which includes two main components:

(1) A decision problem, ExistSectorization-n(𝑇 ), that deter-
mines the existence of a sectorization for node 𝑛 (with 𝐾𝑛 , 𝛿 (𝑛),
and f𝑛) under a given threshold value, 𝑇 ∈ R+, given by

ExistSectorization-n(𝑇 ) =
(Yes,ν0), if ∃ν0 ∈ Γ𝑛 (𝐾𝑛) : max

𝑣∈{𝑛ν0

1
,· · · ,𝑛ν0

𝐾𝑛
}

∑
𝑒∈𝛿 (𝑣)

𝑓𝑒 ≤ 𝑇,

(No,∅), if ∀ν0 ∈ Γ𝑛 (𝐾𝑛) : max

𝑣∈{𝑛ν0

1
,· · · ,𝑛ν0

𝐾𝑛
}

∑
𝑒∈𝛿 (𝑣)

𝑓𝑒 > 𝑇 .
(15)

ExistSectorization-n(𝑇 ) can be solved as follows. Consider the

set of edges incident to node 𝑛, 𝛿 (𝑛) = (𝑒′
1
, · · · , 𝑒′|𝛿 (𝑛) | ). Without

loss of generality, we assume that the first sectoring axis of node𝑛 is

placed between its first and last sectors, i.e., ( |𝑒′
1
, · · · , 𝑒′|𝛿 (𝑛) | ). The

second sectoring axis will be placed between the 𝑘th and (𝑘 + 1)th
incident edges if

∑𝑘
𝑖=1 𝑓𝑒′𝑖

≤ 𝑇 and

∑𝑘+1
𝑖=1 𝑓𝑒′𝑖

> 𝑇 .

Then, the process is repeated for the remaining edges 𝛿 (𝑛) \
{𝑒1, · · · , 𝑒𝑘 } to find the third sectoring axis, so on and so forth until

all edges in 𝛿 (𝑛) are enumerated for the threshold, 𝑇 .

(2) A binary search process that finds the critical threshold,𝑇 crit

𝑛 ,

based on which the optimized sectorization for node 𝑛, denoted by

π𝑛 , is determined by ExistSectorization-n(𝑇 crit

𝑛 ).
The following theorem states our main results regarding the

correctness of Sectorize-n and its guaranteed performances as a

distributed approximation algorithm.

Theorem 6.5. For a given network flow f , it holds that:
(i) [Correctness] The sectorization of node 𝑛 returned by Sectorize-

n, π𝑛 (f𝑛), is equivalent to ν𝑛 (f𝑛) in (Opt-Approx-𝑛), i.e.,
π𝑛 (f𝑛) = ν𝑛 (f𝑛), ∀𝑛 ∈ N , (16)

Algorithm 2 ExistSectorization-n(𝑇 ) for node 𝑛.
Input: 𝐾𝑛 , 𝛿 (𝑛) , f𝑛 , and𝑇
1: for 𝑒 ∈ 𝛿 (𝑛) do
2: Reset node 𝑛’s sectorization π𝑛 ← ∅
3: Put a sectorizing axis in π𝑛 right after 𝑒 (clockwise)

4: sectors_needed← 1, total_weight← 0

5: 𝑒′ ← the edge next to 𝑒 in 𝛿 (𝑛) (clockwise)
6: while 𝑒′ ≠ 𝑒 do
7: if 𝑓𝑒′ > 𝑇 then return (NO,∅)
8: else

9: total_weight← total_weight + 𝑓𝑒′
10: if total_weight > 𝑇 then

11: sectors_needed← sectors_needed + 1
12: Put a sectorizing axis in π𝑛 before 𝑒′ (counter-clockwise)
13: total_weight← 𝑓𝑒′

14: end if

15: 𝑒′ ← the edge next to 𝑒 in 𝛿 (𝑛) (clockwise)
16: end if

17: end while

18: if sectors_needed ≤ 𝐾𝑛 then

19: return (Yes,π𝑛 )
20: end if

21: end for

22: return (No,∅)

(ii) [Approximation Ratio] The distributed Sectorize-n algorithm

is a 2/3-approximation algorithm, i.e.,

2

3
≤ λπ (f )

λσ★ (f ) ≤ 1, (17)

where λσ
★ (f) is flow extension ratio achieved by the optimal

sectorization as the solution to (Opt).

Proof. First, we prove (i). We show that the decision returned by

ExistSectorization-n(𝑇 ) has a monotonic property with respect

to 𝑇 , i.e., there exists a critical threshold, 𝑇 crit

𝑛 ∈ R+, such that

ExistSectorization-n(𝑇 ) =
{
(No,∅), ∀𝑇 ∈ [0,𝑇 crit

𝑛 ),
(Yes, ·), ∀𝑇 ∈ [𝑇 crit

𝑛 , +∞).
(18)

It is easy to see that ExistSectorization-n(𝑇 ) outputs No for𝑇 = 0

and Yes for a sufficiently large 𝑇 with a non-zero flow f . Let 𝑇 crit

𝑛

be the smallest𝑇 such that ∃π𝑛 ∈ Γ𝑛 (𝐾𝑛) with which the output of

(15) is (Yes,π𝑛). As a result, we have ExistSectorization-n(𝑇 ) =
(No,∅), ∀𝑇 ∈ [0,𝑇 crit

𝑛 ). In addition, π𝑛 and 𝑇 crit

𝑛 satisfy

max

𝑣∈{𝑛π𝑛
1
,· · · ,𝑛π𝑛

𝐾𝑛
}

∑
𝑒∈𝛿 (𝑣)

𝑓𝑒 ≤ 𝑇, ∀𝑇 ∈ [𝑇 crit

𝑛 , +∞) .

Therefore, for a network flow f𝑛 incident to node 𝑛, we can set

𝑇 crit

𝑛 = min

σ𝑛∈Γ𝑛 (𝐾𝑛 )

{
max

𝑣∈{𝑛σ𝑛
1
,· · · ,𝑛σ𝑛

𝐾𝑛
}

∑
𝑒∈𝛿 (𝑣)

𝑓𝑒

}
, (19)

and the sectorization of node 𝑛 corresponding to𝑇 crit

𝑛 is equivalent

to ν𝑛 in (Opt-Approx-𝑛), i.e.,

π𝑛 (f) = arg min

σ𝑛∈Γ𝑛 (𝐾𝑛 )

{
max

𝑣∈{𝑛σ𝑛
1
,· · · ,𝑛σ𝑛

𝐾𝑛
}

∑
𝑒∈𝛿 (𝑣)

𝑓𝑒

}
(13)

= ν𝑛 (f𝑛) . (20)

Due to the monotonicity of (18), the critical value𝑇 crit

𝑛 can be found

via a binary search within the interval [max𝑒∈𝛿 (𝑛) 𝑓𝑒 ,
∑
𝑒∈𝛿 (𝑛) 𝑓𝑒 ]

with a sufficiently small 𝜖 , which is a parameter that controls the

trade-offs between accuracy and convergence of Algorithm 1. Then,

π𝑛 (f𝑛) can be obtained via ExistSectorization-n(𝑇 crit

𝑛 ).
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Next, we prove (ii). For a network flow f , consider the sectoriza-
tions σ★(f) and σ̃(f) as the solution to (Opt) and (Opt-Approx),

respectively. It is easy to see from their definitions that λπ (f) ≤
λσ

★ (f) ⇒ λπ (f )
λσ★ (f ) ≤ 1. From (11)–(12) and Lemma 5.3, we have

λσ
★ (f) ≤ µσ

★ (f) ≤ µσ̃ (f) and 2

3
· µσ̃ (f) ≤ λσ̃ (f), (21)

which further implies that

2

3
· λσ★ (f) ≤ 2

3
· µσ̃ (f) ≤ λσ̃ (f) . (22)

In addition, since π(f) = ν(f) = σ̃(f) (see Theorem 6.5 (i) and

Lemma 6.4), we can conclude that

2

3
· λσ★ (f) ≤ λσ̃ (f) = λπ (f) ⇒ λπ (f )

λσ★ (f ) ≥
2

3
, (23)

and Theorem 6.5 (ii) follows directly. □

Remark 6.1 (Complexity of Sectorize-n). Recall from the proof

of Theorem 6.5 that 𝑇 crit

𝑛 ∈ [max𝑒∈𝛿 (𝑛) 𝑓𝑒 ,
∑
𝑒∈𝛿 (𝑛) 𝑓𝑒 ]. Let Θ :=

(∑𝑒∈𝛿 (𝑛) 𝑓𝑒−max𝑒∈𝛿 (𝑛) 𝑓𝑒 )/𝜖 , the binary search process of Sectorize-
n will terminate in 𝑂 (log

2
Θ) iterations, and each iteration has a

complexity of𝑂 ( |𝛿 (𝑛) |2) (see Algorithm 2). Therefore, the complexity

of Sectorize-n is 𝑂 ( |𝛿 (𝑛) |2 · log
2
Θ) = 𝑂 (𝑁 2 · log

2
Θ).

Remark 6.2. Based on Lemma 5.3, we can obtain another lower

bound of the approximation ratio of Sectorize-n given by:

λπ (f )
λσ★ (f ) ≥

1

1+λσ★ (f ) ·max𝑒∈𝐸σ 𝑓𝑒
≥ 1

1+µπ (f ) ·max𝑒∈𝐸σ 𝑓𝑒
:= 𝐿𝐵π (f) .

(24)

This bound is useful since, from the definition of λσ
★ (f), i.e., the

extension ratio of f for it “hit" the boundary of P
𝐻σ★ , the values of

λσ
★ (f) andmax𝑒∈𝐸σ 𝑓𝑒 can not be large simultaneously. Although

λσ
★ (f) is analytically intractable, since λσ★ (f) ≤ µσ

★ (f) ≤ µπ (f),
we can derive another lower bound of the approximation ratio,

𝐿𝐵π (f), which depends on µπ (f). Note that 𝐿𝐵π (f) is tractable
since max𝑒∈𝐸σ 𝑓𝑒 is independent of the sectorization and µπ (f)
can be explicitly computed (10). In other words,

max

{
2

3
, 𝐿𝐵π (f)

}
≤ λπ (f )

λσ★ (f ) ≤ 1. (25)

In §7.2, we show that for small values of 𝐾𝑛 , 𝐿𝐵
π (f) is indeed a

much tighter bound than 2/3 in (17).

Discussions. The distributed Sectorize-n algorithm approximates

the optimal sectorization, σ★(f), which maximizes the flow exten-

sion ratio, λσ (f), under given f and K ∈ Z𝑁+ . Clearly, the choice of
a sectorization should be based on a network flow, f as the polytope
P𝐻σ can be augmented in different flow directions depending on

σ. Some discussions about the proposed optimization framework:

• Dynamic Sectorization based on Backpressure. With an (unknown

and/or time-varying) arrival rate matrix α ∈ int(Λ(𝐺σ)) and a

given sectorization σ ∈ Γ(K), the dynamic backpressure algo-

rithmwill converge to and return a network flow f ∈ P𝐻σ . Using

the proposed framework, one can find the sectorization that ap-

proximates the best sectorization with respect to f . The rationale
behind this is that the sectorized network will be able to main-

tain arrival rates proportionally higher than α. Moreover, when

λσ̃ (f) is analytically tractable, it can provide information about

howmuch f can be extended until it intersects with the boundary
of the matching polytope P𝐻 σ̃ . Therefore, the proposed frame-

work can enable dynamic sectorization of the network to adapt

Figure 6: An example 7-node network: the connectivity graph with

the network flow f labeled on each edge. The green lines indicate the

node sectorization, π(f ) , obtained via Sectorize-n with 𝐾𝑛 = 2, ∀𝑛
with a sectorization gain of 1.83. The red dashed lines indicate a “mis-

configured” sectorization of node 1 in the bottleneck phenomenon.

to every network flow f obtained by the backpressure algorithm,

including in scenarios with time-varying arrival rates, α.

• Known Arrival Rates. In the case with single-hop traffic, the capac-

ity region of a network 𝐺σ
is given by Λ(𝐺σ) = Co(X𝐺σ ) (see

(5)). With a known arrival rate matrix α, Sectorize-n augments

the capacity region with respect to the required α. Similarly, in

the case of multi-hop traffic, with a knownα, one can first obtain

a feasible multi-commodity network flow f that supports α, and
then augment the polytope P𝐻σ according to this f .

• Varying the Number of Sectors. With proper (minor) modifications,

Sectorize-n can also return the minimum number of sectors 𝐾𝑛
for every node 𝑛 such that a given network flow, f , can be main-

tained by the network, i.e., f ∈ P𝐻 σ̃ . This is due to the distributed

nature the proposed optimization framework, (Opt-Approx-𝑛).

Compared to previous work (e.g., [12]) whose objective is to

obtain the minimum rate required for a network to support a

flow vector f , our proposed framework also provides a method to

support f via efficient sectorization based on available resources.

7 EVALUATION

We now evaluate the sectorization gain and the performance of

the distributed approximation algorithm via simulations. We focus

on: (i) an example 7-node network, and (ii) random networks with

varying number of nodes, number of sectors per node, and network

flows. For each network and a given network flow, f , we consider:
• π𝑛 (f𝑛): the sectorization of node 𝑛 returned by the distributed

approximation algorithm, Sectorize-n (Algorithm 1 in §6.2), and

π(f) = (π𝑛 (f𝑛) : ∀𝑛 ∈ N) is the sectorization of all nodes.

• µπ (f) and µ∅ (f): the approximate flow extension ratios for the

sectorized and unsectorized networks, respectively (§5).

• 𝑔πµ (f): the approximate sectorization gain achieved by π(f) (§5).

7.1 An Example 7-node Network

We consider a 7-node network, whose connectivity graph is shown

in Fig. 6, with a network flow f labeled on each edge and 𝜃
th

= 15.8◦

(see §3.2). For tractability and illustration purposes, we set 𝐾𝑛 =

2,∀𝑛, and the green lines in Fig. 6 indicate the sectorization π(f)
returned by Sectorize-n. For this relatively small network, we can

explicitly compute the flow extension ratios for both the sectorized

network, λπ (f) = µπ (f) = 4.06, and the unsectorized network,
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Figure 7: The approximate sectorization gain, 𝑔πµ (f ) , as a function of the number of sectors per node,𝐾 , in random networks: (a) varying number

of nodes 𝑁 ∈ {20, 40, 60, 80, 100} in networks with 2𝑅 = 0.2 and Uniform flows, (b) varying communication range 2𝑅 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} with

Uniform flows and 𝑁 = 60, and (c) varying network flows (Non-uniform, Uniform, Very Uniform) in networks with 𝑁 = 60 and 2𝑅 = 0.2.

λ∅ (f) = µ∅ (f) = 2.22. Therefore, the approximate sectorization

gain 𝑔πµ (f) is equal to the explicit sectorization gain, i.e., 𝑔πµ (f) =
𝑔π
λ
(f) = 1.83, which is close to 𝐾𝑛 = 2.

Note that optimizing the sectorization of each node under a given

f is critical, since the misplacement of the sectoring axes of even a

single node can largely affect the achievable sectorization gain. We

call this effect the bottleneck phenomenon in sectorized networks,

as illustrated by the following example. Considered the optimized

sectorization π(f) shown by the green lines in Fig. 6. If only the

sectorization of node 1 is “misconfigured" to be the red dashed lines,

the sectorization gain is decreased from 1.83 to 1.22. This is also

intuitive since with this misconfiguration, all three edges incident

to node 1 with the highest flows are served by the same sector.

Since nodes 1, 3, and 6 in Fig. 6 have a maximum node degree of

4, we also obtain a sectorization π(f) by running Sectorize-n with

𝐾𝑛 = 4. As expected, in the optimized sectorization for nodes 1, 3,

and 6, one sectoring axis is put between every pair of adjacent edges.

With this π(f), we can also explicitly compute the flow extension

ratios for the sectorized network λπ (f) = µπ (f) = 7.47. With

λ∅ (f) = µ∅ (f) = 2.22, the sectorization gain is 𝑔πµ (f) = 𝑔πλ (f) =
3.36. This example 7-node network demonstrates the performance

and flexibility of Sectorize-n for optimizing the deployment and

configuration of sectorized networks based on the network flows.

7.2 Random Networks

We now consider networks with randomly generated connectivity

graphs,𝐺 . In particular, for each generated random geometric graph,

𝑁 nodes are placed uniformly at random in a unit square area, and

two nodes are joined by an edge if the distance between them is less

than 2𝑅. We are interested in the effects of the following parameters

of a random network on the sectorization gain:

• Number of Nodes, 𝑁 : We consider random networks with dif-

ferent sizes of 𝑁 ∈ {20, 40, 60, 80, 100}, and the network density

increases with larger values of 𝑁 .

• Number of Sectors Per Node, 𝐾𝑛 : We assume all nodes have

an equal number of sectors, 𝐾𝑛 = 𝐾,∀𝑛, with 𝐾 ∈ {2, 3, . . . , 15}.
• CommunicationRange, 2𝑅: With a given number nodes,𝑁 , the

connectivity of the network can be tuned by the communication

range between two nodes, 2𝑅.We consider 2𝑅 ∈ {0.1, 0.2, . . . , 0.5}.
• Uniformity of Network Flows, 𝜙 : For a network flow f , we
define its uniformity by 𝜙 := max𝑒 𝑓𝑒/min𝑒 𝑓𝑒 , i.e., f is more

uniform if its 𝜙 is closer to 1. For a given value of 𝜙 , random

network flows f can be generated as follows. First, each element

of f ′ = (𝑓 ′𝑒 ) is independently drawn from a uniform distribution

between [1, 𝜙]. Then, f is set to be f ′ after normalization, i.e.,

f = f ′/|f |. We consider Non-uniform, Uniform, and Very Uniform

network flows with 𝜙 = 1000, 10, and 1.1, respectively.

For random networks with a large number of nodes, we only con-

sider 𝑔πµ (f) since it is computationally expensive to obtain 𝑔π
λ
(f),

which is the true sectorization gain achieved by π(f). However,
from Lemma 5.3, 𝑔πµ (f) provides good upper and lower bounds on

𝑔π
λ
(f). The performance evaluation of each combination of these

parameters is based on 1,000 instances of the random networks and

their corresponding π(f) obtained by Sectorize-n.

Varying Number of Nodes, 𝑁 . Fig. 7(a) plots the approximate

sectorization gain, 𝑔πµ (f), as a function of the number of sectors

per node, 𝐾 , in a network with 2𝑅 = 0.2 and uniform flows (𝜙 =

10), with varying number of nodes, 𝑁 . It can be observed that

𝑔πµ (f) increases sublinearly with respect to 𝐾 , and it approaches

the identity line of 𝑔πµ (f) = 𝐾 as 𝑁 increases, which is as expected.

Note that with a practical value of 𝐾 (e.g., 𝐾 ≤ 6), these networks

can achieve 𝑔πµ (f) that is almost equal to the number of sectors per

node, 𝐾 . In addition, as the value of 𝐾 increases, 𝑔πµ (f) deviates
from 𝐾 , which reveals a tradeoff point between the achievable

sectorization gain (𝑔πµ (f)) and complexity of network deployments

(𝑁 and 𝐾). In fact, for given parameters 𝑁 , 2𝑅, and 𝜙 , i.e., for a

given density of the network, there exists a number of sectors that

saturates the gain 𝑔πµ (f). This can be explained by the fact that after

a sufficiently large number of sectors, the auxiliary graph of the

network breaks down to isolated pairs of nodes.

Varying Communication Range, 2𝑅. Fig. 7(b) plots the approx-

imate sectorization gain, 𝑔πµ (f), as a function of the number of

sectors per node, 𝐾 , with 𝑁 = 60, Uniform flows, 𝜙 = 10, and

varying communication ranges, 2𝑅. It can be observed that 𝑔πµ (f)
increases sublinearly with respect to 𝐾 . As expected, with the same

number of nodes,𝑁 = 60,𝑔πµ (f) is closer to𝐾 as the range increases.

In fact, there is a relationship between the parameters 𝑁 and 2𝑅:

they both increase the number of neighbors for every node. The

improved sectorization gains stem from the fact that since each

node has a larger number of neighboring nodes (and thus links),

a larger value of 𝐾 and the optimized sectorization can support a

larger number of concurrent flows.

Varying Uniformity of Network Flows, 𝜙 . Fig. 7(c) plots 𝑔πµ (f)
as a function of the number of sectors per node, 𝐾 , in a network

with 𝑁 = 60, 2𝑅 = 0.2, and varying network flow uniformity (Non-

uniform, Uniform, and Very Uniform). Overall, similar trends can be

observed as those in Figs. 7(a) and 7(b). In general, more uniform

network flows lead to improved values of 𝑔πµ (f), since non-uniform
flows would have some larger flow components than the uniform
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Figure 8: The lower bound of approximation ratio of Sectorize-n,
𝐿𝐵π (f ) in (24), as a function of the number of sectors per node, 𝐾 ,

with 𝑁 = 60: (left) varying network flows in a network with 2𝑅 = 0.2,

and (right) varying communication ranges with Uniform flows.
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Figure 9: The cumulative distribution function (CDF) of 𝑔πµ (f ) with

𝑁 = 60 and Uniform network flows.

ones, which on average increases the value of µσ (f) (see (10)). In
addition, recall the bottleneck phenomenon described in §7.1, it is

more beneficial to divide the flows of a node more equally across

its sectors to achieve an improved sectorization gain.

Evaluation of the Lower Bound, 𝐿𝐵π (f). Using simulations,

we also evaluate the lower bound of the approximation ratio of

Sectorize-n, 𝐿𝐵π (f) in (24), which depends on µσ̃ (f) and f . Fig. 8
plots the value of 𝐿𝐵π (f) as a function of𝐾 with varying uniformity

of the network flows and node densities. It can be observed that

for small values of 𝐾 , 𝐿𝐵π (f) is much higher than lower bound of

2/3 provided by Theorem 6.5. In particular, the difference between

the bounds increases dramatically and the approximation becomes

closer to the optimal for a small number of sectors. This is because

in such networks, the maximum flow is expected to be small and

hence 𝐿𝐵π (f) can be improved when µσ̃ (f) remains the same.

CDF of the Approximate Sectorization Gain, 𝑔πµ (f). Finally,
we evaluate the relationship between 𝑔πµ (f) and the number of

sectors, 𝐾 . Fig. 9 plots the CDF of 𝑔πµ (f) with 𝑁 = 60 and Uniform

network flows with varying communication ranges. It can be seen

that for networks with 2𝑅 = 0.3, 𝑔πµ (f) has a median value of

3.7/6.5 for 𝐾 = 4/8, respectively. This demonstrates the (sublinear)

gain introduced by node sectorization, and this gain approaches the

number of sectors per node,𝐾 , as the underlying is more connected.

8 CONCLUSION

In this paper, we considered wireless networks employing sector-

ized infrastructure nodes that form a multi-hop mesh network for

data forwarding and routing. We presented a general sectorized

node model and characterized the capacity region of these sector-

ized networks.We defined the flow extension ratio and sectorization

gain of these networks, which quantitatively measure the perfor-

mance gain introduced by node sectorization as a function of the

network flow. We developed an efficient distributed algorithm that

obtains the node sectorization with an approximation ratio of 2/3.

We evaluated the proposed algorithm and the achieved sectorization

gain in various network scenarios via extensive simulations.
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