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Abstract—With the advancement of modern robotics, au-
tonomous agents are now capable of hosting sophisticated al-
gorithms, which enables them to make intelligent decisions. But
developing and testing such algorithms directly in real-world
systems is tedious and may result in the wastage of valuable
resources. Especially for heterogeneous multi-agent systems in
battlefield environments where communication is critical in deter-
mining the system’s behavior and usability. Due to the necessity
of simulators of separate paradigms (co-simulation) to simulate
such scenarios before deploying, synchronization between those
simulators is vital. Existing works aimed at resolving this issue
fall short of addressing diversity among deployed agents. In
this work, we propose SynchroSim, an integrated co-simulation
middleware to simulate a heterogeneous multi-robot system. Here
we propose a velocity difference-driven adjustable window size
approach with a view to reducing packet loss probability. It
takes into account the respective velocities of deployed agents to
calculate a suitable window size before transmitting data between
them. We consider our algorithm specific simulator agnostic but
for the sake of implementation results, we have used Gazebo
as a Physics simulator and NS-3 as a network simulator. Also,
we design our algorithm considering the Perception-Action loop
inside a closed communication channel, which is one of the
essential factors in a contested scenario with the requirement
of high fidelity in terms of data transmission. We validate
our approach empirically at both the simulation and system
level for both line-of-sight (LOS) and non-line-of-sight (NLOS)
scenarios. Our approach achieves a noticeable improvement in
terms of reducing packet loss probability (~11%), and average
packet delay (=10%) compared to the fixed window size-based
synchronization approach.

Index Terms—Heterogeneous multi-robot systems, NS-3,
Gazebo, Co-simulation, Synchronization algorithm.

I. INTRODUCTION

In the field of contemporary robotics, multi-agent systems
are set to play a vital part. Due to their ability of forming large
interconnected networks with coordination among agents make
them an integral part in a variety of robotic applications [1],
[2]. For example, Unmanned Aerial Vehicle (UAV) systems
are being increasingly used in a broad range of applications
requiring extensive communications, either to collaborate with
other UAVs [3] with each other or with Unmanned Ground
Vehicles (UGV) [4], [5]. Specifically in battlefield scenarios
where the presence of heterogeneous aerial and ground vehi-
cles coordinating with each other is going to be an essential
feature in the future. The mutual information transfer between

Unmanned Aircraft Systems (UAS), and ground robots can
help to make intelligent decisions in a critical time.

Synchronized communication between UAVs and UGVs can
aid in developing situation awareness in the battlefield among
each deployed device, and also help execute any specific
command through them. Executing such systems directly in
the actual environment may bring in harmful consequences
as they necessitates the extensive fine-tuning of algorithm
parameters [6]. As a result, it is required to simulate the system
beforehand using proper technologies in order to establish
a baseline of confidence. Being motivated by this scope,
research has been started on simulating such an environment
to estimate the probable nature of robots before going to actual
deployment. The main bottleneck in this endeavor lies in the
necessity of synchronizing two different simulators having
disparate operating principles [7], [8]. One of these is physics
simulators that account for replicating the interaction between
physical robots and their operating environment. On the other
hand, network simulators try to estimate the deployed agents’
communication performance over the network.

So, the primary goal should be to connect the two domains
by using existing open-source tools to record closed loop
simulation. This is because multi-agent systems are strenuous
to build; easy and coordinated communication across diverse
technologies can make this process somewhat less difficult.
Some of the existing works have already addressed those
challenges. For example, FlyNetSim [7], ROS-NetSim [6],
CORNET [4], CPS-Sim [9], RoboNetSim [10] are some of
such kinds of works implemented on AirSim [11], ARGoS
[12], Gazebo [13] as physics simulator and OMNeT++ [14],
NS-2 [15], NS-3 [16], Mininet [17] as network simulator.
As a whole, some of the major drawbacks existent is those
works are: i. compatible with either UAVs or UGVs, not
heterogeneous systems, ii. causes low co-simulation speed,
iii. gives rise to float-point arithmetic error, iv. difficult to
set up proper window size for diverse multi-agent setup, and
v. loses synchronization when the simulators relative speed
varies.

With a view to developing a suitable ROS-compatible
synchronizing middleware for the aforementioned scenario,
we propose SynchroSim. It takes into account the number
of agents deployed within a certain cluster and can select
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the most suitable sliding window while sending data among
agents. For simulation experiments, we use two distinct open-
source simulation engines, Gazebo and NS-3. Gazebo uses the
computer’s system clock as the simulation time, while NS-3
presents the process as a distinct sequence of time events.
Additionally, we observe the performance of our algorithm
upon deploying on a cluster consisting of the real world UAVs
and UGVs. To the best of our knowledge, it is the first en-
deavor pointing out the impact of synchronization middleware
on a heterogeneous multi-agent system considering battlefield
as application scenario. The major contributions we claim here
are:

o Co-simulation of heterogeneous multi-agent systems i.e.,
UGYV (ground robots), UAV (drones), etc. and preserving
synchronization among them: We propose a simulator
independent co-simulation setting for multi-agent het-
erogeneous environment. Furthermore, we extend our
simulation work into real world robots to validate the
actual deployment performance.

o Improvising sliding window-based  synchronization
scheme for diverse multi-agent system : We offer an
application specific modification of sliding window based
synchronizing middleware. We name our approach as
SynchroSim which can vary the window size considering
the velocity difference of the agents for the sake of
synchronization among them with better communication
performance.

o Empirical evaluation considering different application
scenarios: We present our experiment, taking into ac-
count both line-of-sight (LOS) and non-line-of-sight
(NLOS) communication scenarios on the basis of prob-
ability of packet loss, and average packet delay. We
have employed Gazebo as Physics simulator and NS-3
as network simulator to report our experimental results.
Experimental results show that our approach works better
in comparison with the traditional fixed window based
method in ensuring fewer packet losses (on average 10%
improvement) even in challenging NLOS environment
with heterogeneous agents.

II. RELATED WORK

In this section, we will briefly outline the work that has
been done in relation to the various aspects of our system.

A. Simulation Tools

While a comprehensive assessment of currently utilized
simulators is beyond the scope of this paper, we highlight
a few recent noteworthy physics and network simulators that
are most relevant to our setting and have had a significant
influence on this study.

Aiming to bridge the gap between simulation and reality,
AirSim [11] is an open-source platform that is being developed
to assist in the development of autonomous vehicles. AirSim
provides high-fidelity physical and visual simulation that en-
ables the rapid generation of massive amounts of training data
for the development of machine learning models. It’s API
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design enables algorithms to be developed against a simulator
and then deployed unchanged on real vehicles. ANVEL [18],
[19] provides such a toolkit by integrating popular graphical
representation approaches, such as those used in video games,
with physically based sensor and UGV platform models. While
both AirSim and ANVEL have major simulation capabilities,
difficulty arises when creating large-scale complex visually
rich environments that are more realistic in their represen-
tation of the real world, and they have fallen behind various
advancements in rendering techniques made by platforms such
as Unreal engine or Unity [20]. We prefer to employ Gazebo
in our communication-realistic scenario because of its superior
realism. Gazebo [5] includes a modular design that enables
the usage of various physics engines, sensor models, and the
creation of 3D worlds to be implemented.

In the case of network simulators, OMNeT++ [14] is a
discrete event network simulation framework that is object-
oriented and modular in design. Additionally, parallel dis-
tributed simulation is supported by OMNeT++ and inter-
participant communications can be accomplished through a
variety of methods. A network emulation program, mininet
[17], allows users to create a realistic virtual network on
a single computer by running genuine kernel, switch and
application code on the network emulator. However, we choose
a state-of-the-art event based simulator NS-3 [17], in which the
scheduler typically performs the events in a sequential manner
without syncing with an external clock. The NS-3 simulator
includes representations of all of the network models that make
up a computer network including network nodes, network
devices, communication channels, communication protocols,
protocol headers, and network packets.

B. Synchronization Methods

At this point, we provide a summary of existing synchro-
nization methods.

CORNET [4] is a variable-stepped multi-robot system sim-
ulation framework that blends physics and network simulators.
CORNET ensures that only one event process can be running
at a time, and a global event scheduler maintains a list of all
the events from both simulators and schedules. CORNET has
the most significant downside is that it has the potential to
cause float-point arithmetic error. CORNET 2.0 [21] extended
the implementation of CORNET to make it applicable to any
robotic framework and the scalability to manage an increasing
number of robots has been demonstrated. FlyNetSim [7] main-
tains a time-stepped-schedule mechanism, however; simulated
network events must be buffered until the next sample time if
a network simulator runs faster than the physical simulation.
Using real-world UAVs and sensors in a simulated complicated
environment is possible with the support of emulation mode
in FlyNetSim where the network simulator allows a real UAV
to communicate with external or simulated resources.

On the other hand, CPS-Sim [9] operates on the basis
of a global event-driven system where the server is forced
to reproduce the exact same time-steps. Global scheduler-
processed events resolve the issue inherent in the time-stepped
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method, albeit at the expense of overall co-simulation speed.
ROS-NetSim [6] is a sliding window based technique that
keep track of and record network events during the course
of the window period, and then enable the network simulator
to step up to and through the end of the window, but it is
difficult to configure the appropriate window size for multi-
agent systems. In this consideration, we devised the sliding
window method for our heterogeneous multi-agent system.
Additionally, we have added a comparison table. (Tab. I) for
different synchronization mechanisms to get a better idea about
their capabilities and limitations.

In summary, UAV and UGV components are being simu-
lated with 3D visualization using Gazebo, while the network
infrastructure is being provided by NS-3 and middleware is
being developed for the creation of an inter-simulation data-
path with time and position synchronization at both ends using
our co-Simulation of robotic networks.

III. OVERVIEW

In modern battlefield scenarios, where intelligent and dif-
ferent sensor-equipped robots are envisioned to co-exist with
soldiers. Those robots can collect data with the integrated
sensors and can take essential decisions on their further
step through analyzing the collected data. This can aid in
increasing situational awareness if the derived information can
be exchanged with other deployed agents and with the base
stations also. Such a scenario is illustrated in fig 1. Here, the
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Fig. 1: A sample multi-master communication framework.

total deployed agents are divided into several clusters. Each
cluster has a cluster head. The cluster heads can communicate
with the agents within the cluster and also among themselves.
Furthermore, all of them can report to a central base station.
Now, before going to the deployment with actual robots of
such systems, it is imperative to simulate such scenarios to get
an idea about the probable behavior after deployment. For this
reason, a combination of a Physics simulator and a Network
simulator is needed to emulate such a communication scenario
in an acceptable manner. But synchronization problem arises
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when these two kinds of simulators are asked to collab-
orate. As a solution to this, a synchronization middleware
can be used to bridge that gap. A working flowchart of
such systems is shown in fig 2. This system takes input
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Fig. 2: A probable solution to the synchronization issue
between heterogeneous simulators.

from the Physics simulator, the middleware then aligns those
data with a networking event. The Network simulator then
measures the communication performance and those results
can be displayed on the physics simulator interface if needed.
Moreover, at the time of actual deployment, it is possible
to run the ROS nodes of synchronization middleware on the
integrated computing devices of the robots.

IV. METHODOLOGY

In this section, we will walk you through the details of our
proposed algorithm and its working procedure on the selected
application.

A. SynchroSim working Procedure

As described in the earlier sections, our work focuses
mainly on the synchronization aspect of heterogeneous multi-
agent setup. Our proposed algorithm is based upon the sliding
window-based synchronization approach proposed in [6]. The
pivotal design parameter while working with a multi-agent
system is the choice of window size. Fixed window size at all
points will not applicable in such a scenario as different agents
may work better with different radio frequencies and also there
can be disparities in terms of hardware specifications. Syn-
chroSim takes into account the total number of agents present
for a specific scenario and starts with a manually initiated
value for window size. In the event of the data transfer, it
selects the respective publisher and subscriber for that event.
After that, it rigorously checks the velocity difference of the
participating agents to calculate a suitable window size for a
specific communication event. This approach becomes more
evident when it comes to the transmission scenario between
a ground and an aerial vehicle. To maintain the transmitted
information level at a satisfactory point, we chose to utilize
packet loss probability value, one of the most important
parameters to monitor while sending valuable information, in
the operating moment of SynchroSim. The following equation
is employed to inherently calculate packet loss probability and
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TABLE I: Overview of existing synchronization methods.

Middleware Synchronization Method

Principle

Drawback

Compatibility

Ros-NetSim [6] | Sliding Window

Capture and track network events
over the window period and allow
the network simulator to step up to
the end of the window.

Difficult to set up proper window
size for multi-agent systems.

ROS1, UAV & UGV

A global event scheduler maintains
the list of all the events from both

the simulators and schedules

CORNET [4] Variable-stepped . P . Float-point arithmetic error ROS1 & UAV
according to their timestamps
allowing only one event process
to run at a time.
If the network simulator runs
Commen sampling period io be faster than the physics simulator,
FlyNetSim [7] Time-stepped with scheduler i the network events must be buffered | ROS1 & UAV

used by both simulators.

in a cache and wait to be processed
until the next sampling time.

CPS-Sim [9] Global event driven

The server is forced to reproduce
the exact same time-steps.

Global scheduler processed events
overcomes the problem that occurs
in time-stepped method but limits

the overall co-simulation speed.

Not ROS based

report within a synchronization window:
Packet loss probability,
i

sb
% Npb

Wlp=1-— (1

Here, };Nsb is the number of data packets delivered to the
subscriber and L pb 1s the number of data packets transmitted
from the publisher. More technical details on the process can
be found in Algorithm 1.

Algorithm 1 Multi-agent synchronization algorithm with ad-
justable window

Require: Total number of agents D, window size w, number
of data packets N, velocity of agents V'
Ensure: Synchronization between simulators and calculate
packet loss probability Lp
1: Initialize: Publisher P and subscriber S agents where
P, S € D, begin time = 0, window size w
2: Start simulation: Transmit data packet of selected topic
from publisher
: Update with begin time t = 0
: if running event found then
Window adjustment: Get the velocity of Publisher
V}, and Subscriber Vi in meters/sec
6: Calculate the adjusted window,

wa = w + (V, — V&) /1000

A ]

2

7: Synchronism Period: Wait until begin time = t
8: Report Lp: Calculate packet loss probability for the
synchronized event
9: Report finished window: Send Update with end time
=t
Timestamp update: Update t = t + w, and request
for next window
11: end if
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B. Updating Physics and Network Simulator

At the beginning of the simulation, the Physics simulator
determines two key pieces of information about the agents
used for a specific communication round: the distance between
the agents through positional coordinates and velocity. The
network simulator stores information on which communication
scheme to use (we have chosen a TCP/IP-based approach
over UDP for reliability issues), the number of packets,
packet length, and the IPs of both publisher and subscriber
agents. Then the Physics simulator and network simulator are
advanced with one initially fixed window size w. Upon the
advancement, the Physics simulator passes the distance and
velocity information to the network simulator, and the network
simulator calculates the packet loss probability. If the loss
value is within a certain threshold, the result is sent to display.
Otherwise, this information is reported back to the Synchrosim
module and the initial window size is adjusted according to the
algorithm 1. This process continues until a satisfactory result
is achieved for this specific round, and then the initialization
process starts over with a new set of agents.

C. Publisher-Subscriber Architecture

SynchroSim utilizes a publisher subscriber-based architec-
ture to accomplice the data transmission task. We have con-
sidered image as our data type. A cluster was set up with a
combination of a drone and two ground bots. Heterogeneity
was maintained while choosing the ground bots and master-
based ROS [22] communication was implemented. In the case
of communication through the master, all the agents were set
to run within a certain area. The flowchart for this master-
based setup is illustrated in fig 3. The drone was chosen as the
master node and it contained the IPs of all the UGVs. Image
data were streaming from all the UGVs. We have utilized the
Rosbag concept to record the published messages and select
any specific frame to transmit. Rosbag stores the information
it is programmed to save with every timestamp. The images
information can be extracted from that inventory. When an
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event was initiated, the selected image frame was sent to the
master node. The master node then published the relevant ROS
topic and any agent subscribed to that specific topic can be
eligible to receive that image data. After the completion of
this transmission process, the packet loss probability for that
event was monitored.

Select
client
Image data through
streaming IP to
l send data
a Data l
Client 1 recording Master Node Publish
using = camera_topic
Rosbag
l l Subscribe Data
——  specific —> Received
Select any topic Message
specific Cli
ient 2
frame to
transmit

Fig. 3: Data transmission flowchart through the master node.

D. Setting up clusters and communication schemes

In the wireless communication domain, a cluster of robots
is a popular setting to measure the inter-agents data transmis-
sion performance. In application scenarios involving contested
environments such as modern battlefields where the flow of
information among heterogeneous multi-robot systems is cru-
cial to increase situational awareness. Among different types
of cluster setup, the master-based system is being investigated
intensively in recent ROS-based research. A sample master-
based multi-agent cluster is illustrated in fig 4. In this work,
we will also utilize this scheme.

To bolster the claim of a working synchronizing middleware

Fig. 4: A cluster consisting multi-agent heterogeneous systems
(left), and Visual demonstration of LOS and NLOS commu-
nication (right).

it is imperative the set up detailed experimentation with two
of the most used communication scheme: line-of-sight (LOS),
non-line-of-sight (NLOS). To define those two schemes, when
there is no obstruction in between the receiver and sender
agents, the data transmission rate becomes higher and this
scenario is known as LOS communication. It is the most
desirable situation for wireless signal transmission. The NLOS
scheme is the opposite of LOS communication and it is the
most common one in the real-world environment. The signal
transmission can be hindered by both natural and man-made
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objects. So, a better design of the data transmission scheme is
necessary to avoid the loss of valuable information. A simple
visual representation of LOS an NLOS system can be found in
fig 4. For our experimentation, we have simulated both UGV
and UAV with artificial environment settings containing both
types of communication scenarios.

V. SIMULATION SETUP

To validate the working capability of SynchroSim, we have
arranged simulation scenarios for both LOS/NLOS channels.
The environments are launched on Gazebo; the Physics simu-
lator in our case. The dimension of the chosen environment is
100x 100 meters as shown in fig 5. Where each of the grids
signifies 20x20 meters. The environment is designed to host
both LOS/NLOS scenarios and for NLOS abstraction, the en-
vironment is populated with trees mostly. The choice of robotic
agents is done in a heterogeneous fashion; contains both UGV
and UAV. Iris drone with integrated camera as UAV, and two
Husky robots are selected as UGV. One of the Husky robots
is considered the master node. We have used the MAVROS
package to establish the connection between the Gazebo and
the Iris drone, which runs on the MAVLink autopilot setup
and an integrated PX4 flight stack to maneuver the drone.
For the Husky simulation, we modified Clearpathrobotics’
official GitHub implementation process according to our use
case. For wireless communication medium, we have used
IEEE 802.11 (Wi-Fi) interface. The agents are set to stream
datapoints through TCP/IP link and the master node has the
IP address of each of the deployed agents. The integrated
camera of those agents is used as the primary sensor and
the streaming image frames are resized into 32x32 before
treating them as camera topic of the ROS system. To measure
the communication performance, we have chosen one of the
state-of-the-art network simulators, NS-3 which is compatible
with the selected wireless stack. To integrate both Gazebo
and NS-3, SynchroSim is deployed as synchronizing middle-
ware. The choice of window size in SynchroSim is dependent
upon the respective velocity of the agents. To execute this
scenario, the velocity of the agents are varied accordingly.
The initial window size is set to 1mS and is adjusted with
Algorithm 1. For the LOS scenario, the agents are deployed
in an environment without obstruction as shown in fig 5.
The UGVs and the UAV are simulated with varying speeds
and the communication performance is measured with the
LOS abstraction is satisfied. The performance matrices are
the average delay and percentage of packet loss as stated in
section IV. The results are reported with the change in distance
between the agents. Also, two different communication sce-
narios are considered which we define as UGV to UGV and
UAV to UGV communication. The distance values reported
while reporting the experimental results are derived from the
positional coordinates of the agents. The whole simulation area
is segmented into symmetrical blocks and the synchronization
operation is operated when the agents move to some certain
points of the environment.
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Fig. 5: Simulation environment design in Gazebo for (a) LOS, and (b) NLOS communication. The whole environment is

100m x 100m, and each grid stands for 20mx20m.
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Fig. 6: Result comparison between fixed window and adjustable window based approaches on both (a) LOS, and (b) NLOS
communication scheme using average delay (s) and packet loss probability (%) matrices considering a UGV to UGV
communication scenario. The fixed window size chosen here is 1ms and the average delay is reported on a batch of 10
packets. Blue lines stand for the average delay values and orange lines are for percentage of packet loss. In both cases the

dotted lines signify the results of our proposed method.

In the case of NLOS abstraction, the agents are set to run
within an object-populated environment. The signal strength
is hypothesized to be hampered under this circumstance. The
same reporting paradigm and communication scenarios are
used for this case also.

During UGV to UGV communication where the relative
velocity difference is lower, the agents are noticed to sustain
the data quantity during transmission for about 40m as shown
in fig 6. The average delay (average value of delays during
10 image frame transmission) is also below 0.1s in this
case. The velocity information of two selected agents for
a communication incident is extracted through subscribing
to /gazebo_states/twist topic. The baseline fixed window-
based approach and the proposed adjustable window method
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are working at par for LOS communication up to this point.
But fixed window-based approach begins to lose valuable
information drastically after this point subsequently giving rise
to delay. A slight adjustment in the sliding window value
(0.1ms in this case) is seen to contribute to almost 20%
improvement in retrieving information for LOS and at least
10% for NLOS condition when the agents are the furthest
distance apart in this simulation (100m). Also, the transmission
is becoming faster by a similar percentage compared to the
baseline.

While experimenting with UGV to UAV, severe perfor-
mance degradation is seen for NLOS communication, illus-
trated in fig 7. To be specific, almost all the data are lost when
the distance is 100m between the agents for the fixed width
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Fig. 7: Result comparison between fixed window and adjustable window based approaches on both (a) LOS, and (b)
NLOS communication scheme using average delay (s) and packet loss probability (%) matrices considering a UGV to UAV
communication scenario. Same measurement paradigm and legend conventions as fig 6 are used for this figure also.

method. This scenario also affects the proposed adjustable
window approach (0.3ms increase) which leaves a point of
improvement. Apart from this specific point, the adjusted
window showcases significant improvement for both LOS and
NLOS communication. Noticeably, the packet loss probability
is reduced by almost 30% when we consider a LOS scenario
and the agents are furthest apart.

VI. SYSTEM IMPLEMENTATION

In this section, we describe the devices used for our

hardware-level implementation, procedure details, and perfor-
mance evaluation.
With a view to validating the application compatibility of our
proposed algorithm on actual systems, we have conducted a
system-level implementation and evaluation. We have chosen
ROS-compatible Duckiebots to act as our deployed agents. A
brief description of the configuration of such robots are given
below:

Duckiebot:

The Duckiebot is an autonomous platform developed for
research purposes and convenient for studying complex real-
world problems. The bot used in our work has sensors like a
front-facing camera, programmable LED, IMU; camera inputs
are used for our implementation. The camera used in this
specific Duckiebot version is a SMP, 1080p camera with a
wide view range of 160 degrees. We have assembled the
robot from scratch to make sure it is equipped with all the
necessary components we need to operate the experiment. A
fully assembled Duckiebot is illustrated in fig 8. Its onboard
processor of it is Nvidia Jetson Nano (2GB). Docker containers
are built to run the ROS nodes and all the necessary scripts
are written on Python.

As stated in the earlier sections, we have implemented a
master-based multi-agent communication scheme. This imple-
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mentation operation is carried out as a corroboration attempt
of the simulation results obtained and described in section
V. An Ubuntu desktop was set up as the master node and
two Duckiebots were clients. The master node will have the
TCP of each agent and can receive or send information to any
cluster agents based on the requirement. This implementation
is carried out through a Publisher-Subscriber approach based
on ROS Melodic. The experimentation is done in a laboratory
environment. The experimental setup along with the sample
camera outputs (primary sensor) of the two Duckiebots are
illustrated in fig 8. The Duckiebots are set to roam around
in an approximately 2m x 2m area and some sample objects
are placed within it. The robots are continuously capturing
image frames and as soon as an object is detected by one
bot, it will send the corresponding frame to the master node.
The master node will then send this information to the other
bot. A visualizer is designed to check the completion of
data transmission and also the communication performance
packet delay and packet loss probability. The synchronization
algorithm was deployed on the docker container to run on
behind when it is needed to display the forwarded data from
the clients and also the performance metric values. The data
used for transmission is a gray scale image which is resized in
32x%32 before sending. Under the aforementioned laboratory
setup, SynchroSim works seamlessly in a confined small scale
setting, ensuring negligible delay and no packet loss for both
LOS and NLOS abstraction. This successful demonstration
makes us hopeful to achieve satisfactory performance with our
ongoing deployment endeavor in wild contested environment.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented SynchroSim, a middle-
ware for co-simulation of heterogeneous multi-robot systems.
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(b)

SynchroSim can adjust the size of the window based on the
speed differences between the agents in order to provide better
synchronization and communication. Even in the challenging
non-line-of-sight (NLOS) environments with heterogeneous
agents, experimental data show that our solution outperforms
the standard fixed window based strategy in terms of en-
suring fewer packet losses (on average 10% improvement).
Furthermore, we have also arranged a small scale cluster
in a laboratory environment with real world UGVs to get
an idea of the applicability of our proposed synchronizing
approach when it comes to real terrain. In this work, we
have demonstrated our synchronizing method on master-based
communication system. However, one interesting extension
can be implementing a masterless communication to ensure
more data security; one of the fundamental requirements of
battlefield scenarios. We plan to explore the facility offered
by ROS2 on top of our current system with the help of ROS
bridge to make the robots enable to use the Data Distribution
Service (DDS).
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