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ABSTRACT

The next generation of computing systems are likely to rely on dis-
aggregated resources that can be dynamically reconfigured and cus-
tomized for researchers to support scientific and engineering work-
flows that require different cyberinfrastructure (CI) technologies.
These resources would include memory, accelerators, co-processors
among other technologies. This would represent a significant shift
in High Performance Computing (HPC) from the now typical model
of clusters that have these resources permanently connected to a
single server. While composing hardware frameworks with dis-
aggregated resources holds promise, we need to understand how
to situate workflows on these resources and evaluate the impact
of this approach on workflow performance against “traditional”
clusters. Toward developing this knowledge framework, we study
the applicability and performance of deep learning workloads on
GPU-enabled composable and traditional HPC computing plat-
forms. Results from tests performed using the Horovod framework
with TensorFlow and PyTorch models on these HPC environments
are presented here.
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1 INTRODUCTION

Advanced computing increasingly plays a determining role in guid-
ing innovation and discovery in research. Next generation proces-
sor and accelerator technologies are reshaping the way Science
and Engineering (S&E) disciplines are applying numerical simula-
tion techniques, and artificial intelligence and machine learning
(AI/ML) frameworks in discovery pathways. We are witnessing a
convergence of AI/ML and traditional high-performance computing
(HPC) workloads coming together in several positive ways. To-
day, we have arrived at a junction where traditional computing
approaches can combine with AI/ML frameworks to glean novel
insights from data [1]. We are seeing the emergence of Al sys-
tems that perform part of the software development process for
complex systems. The continuing demand for HPC platforms that
seamlessly support AI/ML workloads have required a computing,
analysis, and data-storage solution that simultaneously satisfies the
needs of Al IoT (internet of things), edge-processing, instrument,
and sensor data analytics, along with traditional HPC workloads.
Computational science, the “third pillar” of research and scientific
investigation, today drives theory and experimentation [2]. Indeed,
as we boldly step into the “Fourth Paradigm”, the Data-Intensive
Scientific Discovery, analytics and data offer unparalleled opportu-
nities for researchers to make path-breaking discoveries [3-6]. As
part of this, future computing systems are moving towards a model
of disaggregation and composition, where resources are dynami-
cally composed, instead of relying on traditional clusters [7, 8]. To
support this trend, technology companies such as Ligid [9] and Gi-
galO [10] have developed Matrix software and FabreX technology,
respectively, to enable the composability of data center resources.
There are different types of composability, which can include phys-
ical forms such as the National Science Foundation (NSF)-funded
Accelerating Computing for Emerging Sciences (ACES) [11] and
National Research Platform (NRP) [12] computing systems, as well
as software-defined forms such as NSF-funded Anvil system with
Kubernetes. However, despite the potential benefits of composable
computing systems, there is a lack of performance benchmarks to


https://doi.org/10.1145/3569951.3593601
https://doi.org/10.1145/3569951.3593601
https://doi.org/10.1145/3569951.3593601

PEARC °23, July 23-27, 2023, Portland, OR, USA

fully evaluate their performance. Benchmarking is crucial for eval-
uating and optimizing the performance of a computing system or
cyberinfrastructure [13]. It has been indicated that Composable Dis-
aggregated Infrastructure (CDI) can be designed without sacrificing
performance compared to traditional clusters [14].

The NSF-funded (Fostering Accelerated Sciences Transformation
Education and Research) FASTER composable computing cluster at
Texas A&M University provides a unique platform to evaluate the
performance of distributed deep learning workloads in such an envi-
ronment [15]. Here we visit different scenarios that researchers may
use to run artificial intelligence and machine learning frameworks
on GPUs. For this, we perform a variety of performance calcula-
tions on popular models and frameworks. Specifically, we analyze
the scaling behavior of ResNet50 [16] and BERT-Large [17] on
NVIDIA GPUs (A100 and T4) [18, 19] with Intel ice lake processors
in composable environments to that in traditional heterogeneous
CPU-GPU clusters with networking enabled using InfiniBand tech-
nologies.

1.1 Traditional vs. Composable High
Performance Computing Server Layout

In a traditional HPC layout, resources such as CPU, memory, de-
vices, and storage are dedicated to the nodes in a static manner.
Traditional HPC layouts are static, as they rely on fixed, dedicated
resources that are difficult to reconfigure, which can lead to over-
provisioning of resources and a lack of flexibility to adapt to dif-
ferent workloads. Traditional HPC layouts are observed on NSF-
funded clusters such as NSF Expanse [20], Anvil [21] and Delta [22]
machines. Figure 1 illustrates the difference between traditional
and composable HPC (High-Performance Computing) approaches
to hardware usage in advanced research computing. In a compos-
able HPC layout, nodes can be composed with the needed resources
(accelerators, memory, storage) to meet the expectations of the
workloads. The composable HPC layout offers some advantages
over traditional HPC layouts. Computing resources can be dynam-
ically provisioned and reallocated from a common resource pool,
allowing data centers to optimize their resources and adapt to vari-
ous types of workloads more easily. For scalability, composable HPC
can be scaled up or down to meet the demands of different work-
loads as well. How these advantages help real scientific workflows
employ such dynamically composing disaggregated infrastructure
(CDI) needs to be evaluated.

Grace [23] and FASTER are two supercomputing clusters hosted
at Texas A&M High Performance Research Computing (HPRC).
The Grace supercomputing cluster is a traditional HPC platform
at Texas A&M HPRC that is similar to a number of NSF-funded
clusters allocated via ACCESS. It is a 925-node (44,656 total cores)
Linux cluster with Intel Cascade Lake processors and NVIDIA GPU
nodes (A100, RTX6000, and T4). In the Grace cluster, there are
GPU nodes with either two A100s, two RTX6000, or 4 T4 GPUs
per node with either 1 or 2 GPUs attached per Intel Cascade Lake
Xeon socket via PCle 3.0 x16. The FASTER supercomputing cluster
is a composable HPC platform with 180-nodes featuring Intel Ice
Lake processors, Mellanox HDR100 InfiniBand, and NVIDIA A100,
A10, A30, A40 and T4 GPUs. Each node is equipped with CPUs
(64 cores), 256 GB RAM, and 3.8 TB NVMe local storage. The Liqid
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PClIe Gen4-based Matrix software and fabric technology is used to
manage composability on the FASTER cluster. The fabric technology
provides a shared, centralized resource pool that enables resources
to be dynamically allocated and reallocated as needed, allowing
administrators to provision, manage, and allocate resources to meet
changing workload demands.

On a traditional cluster, each GPU is connected to a server socket
by a single uninterrupted PCle connection. In the Liqid fabric, GPUs
are connected by a route involving multiple PCle connections, and
some of those connections are shared. i.e., if the nodes want to
communicate with two different GPUs, the routes might overlap on
one of the PCIe connections, which may cause a bottleneck. Within
a server rack on FASTER, GPUs are physically housed in enclosures
separate from the rack mount servers. The GPU enclosures and
servers are interconnected by 2-3 PCle 4.0 switches. Within each
switch, there are three chips with six PCle 4.0 x16 connections
per chip, where each connection supports 64 GB/s bidirectional
bandwidth. Two connections are used to interconnect the three
chips within a switch in an “east/west” fashion. The other four
connections are available for external connectivity to host nodes,
GPUs, and other switches. The net result of this is a web-like topol-
ogy wherein all of the devices in the rack are connected, but some
more distant devices are connected through longer routes passing
through multiple PCle connections. Different numbers of GPUs
on a single node impact code performance on CDIs, introducing a
new variable to scaling studies. With it being possible to compose
nodes with different number of GPUs, it is possible to leverage both
PCle and InfiniBand lanes of connections between nodes. One can
now achieve the total number of accelerators (GPUs) for a task
using different combinations of composed nodes. As a result, on
CDI clusters like FASTER, we not only need to perform common
weak and strong scaling studies to understand how a code scales
on GPUs, but also have to visit the configuration of the nodes.

1.2 Distributed Deep Learning Framework -
Horovod

Horovod is a popular framework-agnostic distributed deep learn-
ing training framework for TensorFlow, PyTorch, Apache MXNet,
among others [24]. It has user-friendly utilities and requires mini-
mal code changes. These advantages make it a flexible choice for
researchers who want to use their existing codebase. It is designed
to facilitate distributed deep learning. Horovod supports model par-
allelism and data parallelism, letting researchers train large deep
learning models on multiple GPUs. In this study, we run Tensor-
Flow and PyTorch ResNet50 models in the Horovod framework.
In addition to Horovod, there are also other frameworks for dis-
tributed deep learning training such as TensorFlow Distributed,
PyTorch Distributed, Apache MXNet, etc. While Horovod shares
many similarities with those frameworks for distributed deep learn-
ing training, it benefits from using “ring-allreduce” to efficiently
synchronize gradient updates across multiple workers. This allows
it to scale up to hundreds or even thousands of workers without
sacrificing performance.
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Figure 1: Traditional and Composable HPC layout

2 METHODS

2.1 Benchmarking Models

ResNet50 and BERT-Large are two well-established models that can
be trained on large datasets. They have been widely used for various
research applications in the fields of computer vision and natural
language processing (NLP). They can be used as base models for
transfer learning, where the pre-trained models are fine-tuned on
a smaller labeled dataset specific to a research task. ResNet50 is a
convolutional neural network that can be trained on the ImageNet
dataset, which contains over 14 million images and 1000 classes. It
is known for its ability to perform image classification tasks, and
its deep architecture with 50 layers. BERT (Bidirectional Encoder
Representations from Transformers) is a transformer-based neu-
ral network that can be trained on a large corpus of text data. It
is designed to perform a wide range of natural language process-
ing (NLP) tasks that include answering questions and sentiment-
analysis. The transformer layer is the fundamental building block
of the BERT architecture, which allows the model to process and
understand the relationships between words in a sentence. BERT
has two main versions: BERT-Base and BERT-Large. BERT-Base
has 12 transformer layers, while BERT-Large has 24 transformer
layers. There are other variants of BERT such as ALBERT (a Lite
BERT) [25], DistilBERT (Distillation BERT) [26], and Tiny BERT
[27]. These variants have fewer hyperparameters and are more
suited for systems with lesser compute capabilities. The additional
layers in BERT-Large make it a more powerful and capable model,
but also require more computational resources and training time.
Training BERT models is computationally intensive and is typi-
cally done on GPUs. While training these models with PyTorch
Distributed Data Parallel (DDP), each GPU processes a different
subset of the training data and computes the gradients with respect
to its subset of the weights. These gradients are then communi-
cated to a "master” GPU that aggregates the gradients and updates
the weights. Training these models pushes the limits of a GPU’s
performance, making them useful as aides to benchmarking the
capabilities of different GPUs. For our experiments, we have used
the BERT-Large model. The TensorFlow ResNet50 model, PyTorch

ResNet50 model, and PyTorch BERT-Large model code can be found
in [28], [29], [30], respectively.

2.2 Benchmarking Environments Setup

The benchmarking environment for the Horovod TensorFlow
ResNet50 model was prepared using Horovod - v0.22.1, Tensor-
Flow - v2.6.0, CUDA - v11.3.1, GCC - v10.3.0, and OpenMPI -v4.1.1.
on the FASTER and Grace clusters. The testing environment for
Horovod PyTorch ResNet50 model was prepared using Horovod
- v0.22.0, PyTorch - v1.8.1, GCC - v10.2.0, CUDA - v11.1.1, and
OpenMPI - v4.0.5 on the FASTER and Grace clusters as well. The
testing environment for PyTorch BERT-Large model on the nodes
was set up using the Singularity container runtime engine. The
nvidia/PyTorch 21.10-py3 container image was obtained from the
NVIDIA container registry [31].

3 RESULTS
3.1 Horovod TensorFlow and PyTorch ResNet50
Model

To evaluate the performance of deep learning workloads on com-
posable and traditional HPC cyberinfrastructures, we ran Horovod
TensorFlow ResNet50 model on FASTER and Grace supercomputing
clusters. The heterogeneous CPU-GPU Grace cluster has 2 GPUs
(NVIDIA A100 GPUs 40GB) on each node, and nodes are connected
using infiniband. Nodes on the FASTER cluster were composed with
e A100 GPUs. The HPL Linpack test using Nvidia’s HPC bench-
mark container on NGC [32] for GPU computation was executed
to ensure that the node was composed correctly.

Here, we examine the performance in the single-node and multi-
node settings on FASTER and compare it to Grace. As shown in
Figure 2, the scaling performance of Horovod TensorFlow ResNet50
on the composable Faster cluster (cyan markers) is close to that
of the Grace cluster (yellow diamond markers) for 2 GPUs on a
single node. We next test several configurations of GPUs on nodes,
gradually increasing the number of GPUs on each composed node.
In general, the image throughputs of 1-node, 2-nodes, and 4-node
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Figure 2: Horovod TensorFlow ResNet50 scaling on the FASTER and Grace supercomputing clusters
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Figure 3: Impact of number of nodes composed with A100 GPUs on the image throughput.

jobs have similar scaling behaviors, all increasing almost linearly
with the number of GPUs for up to 20 GPUs on a single node.

We next evaluate the communication overhead introduced by
spreading the workload on FASTER across more composed nodes
while maintaining the same total number of GPUs. Figure 3 shows
that as the number of composed nodes increases the total image
throughput of the used GPUs decreases. This is because more com-
munication overhead occurs among the nodes as the number of
nodes involved in a job increases. Figure 3(a) shows the results from
experiments conducted with 1 node containing 4 A100s, 2 nodes
each with 2 A100s, and 4 nodes each with 1 A100. An average value
calculated from five iterations of each experiment is presented along
with the associated error bars and standard deviation. Similarly,
Figure 3(b) shows the values obtained from experiments performed
with 1 node containing 8 A100s, 2 nodes each with 4 A100s, and
4 nodes each with 2 A100s. We observed a similar trend, with the
image throughput reducing as the GPUs were distributed across a
greater number of composed nodes.

To establish that these characteristics were not unique to the
A100 GPUs, we performed a similar experiment using the on
FASTER nodes composed with T4 GPUs. Figure 4(a) shows the
results from experiments were conducted with 1 node containing 4
T4s, 2 nodes each with 2 T4s, and 4 nodes each with 1 T4 and Figure

4(b) shows that experiments were conducted with 1 node contain-
ing 8 T4s, 2 nodes each with 4 T4s, and 4 nodes each with 2 T4s.
Unlike the case with A100 GPUs that found decreasing through-
put with the increasing number of nodes, here we find that the
performance remains consistent across different distributions of
GPUs over changing number of composed nodes. This is likely be-
cause T4 GPUs have less computing power, and a longer computing
overhead compared to A100 GPUs. It is possible that these factors
play a larger role than the effect of the communication on the T4
composed nodes on FASTER.

Building on these findings, we next established the effect of
distributing GPUs on a single composed node vs. multiple composed
nodes for cases with 4 and 8 GPUs on a single composed node.
We performed the same calculation, and the results are shown in
Figure 5. To establish a baseline for this comparison, we used the
throughput for a node with 4 A100 GPUs and 8 A100 GPUs and
rated it at 100%. By now distributing these GPUs from 1 composed
node to 2 composed nodes and 4 composed nodes, we find that the
performance of jobs requiring 4 A100 GPUs decreases by 8.1% when
the GPUs are composed on two nodes, and by 13.3% when the 4
A100 GPUs are composed on four nodes. Similarly, the performance
of jobs requiring 8 A100 GPUs also decreases as we distribute them
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Figure 5: Performance drop due to inter-node communication.

over a larger number of composed nodes. In this case, we see an
even larger performance drop.

In light of our findings from the presented Horovod TensorFlow
ResNet50 model runs, one might expect that its best to compose
nodes with the largest possible number of GPUs. Not only would
such an approach seemingly guarantee better performance, but
it would also reduce the amount of time system administrators
spend configuring the machine. We are, however, cognizant that
not all computing tasks need every GPU on a composed node.
It is possible for a task to use only 1 GPU on a composed node
that has 16 GPUs. To establish how these tasks would fare, we
next compared the performance of using part or all the GPUs on
a composed node on FASTER using the Horovod TensorFlow and
PyTorch ResNet50 models. Four nodes on the FASTER cluster were
composed with 4, 8, 12 and 16 A100 GPUs respectively. The results
from performing these calculations using a sub-part of the total
GPUs on each composed node allowed us to establish an estimate of
performance expectations. Each subplot of Figure 6 represents job
profiles where a selected number of A100 GPUs were used on these
composed nodes. For example, Figure 6(a) shows the throughput of
jobs performed on 1 A100 GPU on each of these composed nodes.
As shown in Figures 6(a) and 6(b), the performance of FASTER is
close to that of Grace. In Grace, GPUs are directly dedicated to the

compute nodes while in FASTER the GPUs need to be composed to
the nodes through shared PCle connections which could cause a
bottleneck.

The Coefficient of Variation (CV) was calculated for each case
(subplot) and represents the proportion of the standard deviation to
the mean and illustrates the level of variation in relation to the mean
of the image throughput. The mathematical formula for coefficient
variation is as follows.

CV =

=19Q

Where o is the standard deviation of the throughputs in each
case and p is the mean of the throughputs. The CV values, as ob-
served in the subplots, are all below 0.7% for Horovod TensorFlow
ResNet50 model experiments, which demonstrates that the perfor-
mance variations are minimal when the same number of GPUs are
utilized on nodes with different configurations. The CV values for
Horovod PyTorch ResNet50 model experiments were higher com-
pared to the Horovod TensorFlow ResNet50 model experiments,
indicating greater performance variation. However, the CV values
of all the cases were all below 2.7%, which is also small.
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3.2 Fine-tuning of a Pre-trained PyTorch
BERT-Large Language Model

Batch size (BS) and varying the precision of the model is known
to impact performance as well. To understand how these factor
impacts runs on CDIs, we fine-tuned a pre-trained PyTorch BERT-
Large language model on the SQUAD dataset. Here, we calculated

the training throughput on runs with increasing batch sizes {4, 8,
and 16} for an increasing number of A100 GPUs composed to a
single node with TF32 precision.

3.2.1 Batch Scaling. Our benchmark experiment results were ob-
tained from an average of five iterations and are presented in Figure
7. For example, BS-16 indicates a batch size of 16 is used.
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Figure 8: Training Throughput Comparison for FP16 and TF32 precisions on (a) a single A100 GPU and (b) 12 A100 GPUs.

Figure 7(a) demonstrates that the training sequence throughput
increases almost linearly as the number of GPUs increases up to
16, with this performance increase being consistent across all batch
sizes. BERT-Large, which has 340M parameters, requires significant
compute and memory for pre-training and fine-tuning tasks. When
utilizing multi-GPU distributed training for fine-tuning, BERT-
Large utilizes PyTorch DataParallel and DistributedDataParallel
training to distribute data across multiple GPUs and work on train-
ing sequences concurrently. Figure 7(b) depicts the speed-up for
training throughput during BERT-Large fine-tuning. It shows that
larger batch sizes lead to higher speed-ups for throughput, as more
text sequences can be processed simultaneously, allowing for better
hardware utilization. The A100 nodes used in our experiments have
40GB memory and can accommodate more data in their memory.
Larger batch sizes result in more efficient GPU utilization in this
case. Moreover, in this study, we found that there was a slight de-
crease in the performance when we ran the model on 14 GPUs as
compared to running it on 12 GPUs using a batch size of 8 and
a batch size of 4. On 16 GPUs, we again recorded an increase in
the throughput performance. It is likely that the PCIe connections
shared with the GPU could be a bottleneck in communications
among other likely scenarios.

3.2.2  Precision Study. Noting that GPUs can perform calculations
at different precision levels, we next performed a BERT-Large fine-
tuning experiment using FP16 and TF32 precisions. We also com-
pared the training throughput on a single A100 GPU and 12 A100
GPUs on a node composed with 12 A100 GPUs.

The results from these runs are shown in Figure 8. We find that
the training throughput increases with batch size for both FP16
and TF32 precisions. In addition, FP16 precision exhibits higher
training throughput than TF32 precision for the same batch size
on a single GPU as well as for 12 GPUs. The speedup for FP16
over TF32 for batch size {4,8,16} is 2.27, 2.09 and 1.9 respectively
on a single GPU and 1.75, 1.78 and 1.79 respectively for multi-GPU
(12 GPUs). This is due to the fact that FP16 precision uses 16 bits
of memory, which is half of the 32 bits used by TF32 precision,
resulting in less memory bandwidth required to transfer FP16 data
during training. Additionally, half precision arithmetic operations
require fewer clock cycles to perform the same operation compared
to full precision, resulting in faster operations and ultimately, faster
training throughput. For batch size 32, we only have data points for

FP16 precision as data does not fit in the memory for TF32 precision
at this batch size.

4 CONCLUSIONS

The performance analysis for AI/ML workloads on the FASTER
composable computing cluster and Grace traditional computing
cluster show that the composable HPC layout, such as the FASTER
cluster, can offer more flexibility by dynamically provisioning and
reallocating resources. This could help meet the needs of diverse
workloads that are common in HPC settings. We note that compos-
ing GPU-enabled nodes impacts scalability, though performance is
similar to that observed in the common CPU-GPU HPC layout. The
TensorFlow ResNet50 model in the Horovod distributed framework
showed good scaling characteristics in both single-node and multi-
node settings on the FASTER composable cluster. The PyTorch
BERT-Large model too exhibited good scaling behavior in single-
node multi-GPU settings on the FASTER composable cluster. The
image throughput increased with the increasing number of GPUs
and had similar scaling behaviors in the single-node and multi-
node settings. The effect on performance by distributing the same
number of GPUs across a greater number of composable nodes, and
different node configurations was quantified. The performance
variations are minimal when the same number of GPUs are utilized
on nodes with different configurations, i.e., composed of different
numbers of GPUs. In an environment running similar workloads,
system administrators could choose specific composed configu-
rations of CDIs without researchers losing out on performance.
We, however, note that the performance characteristics of different
types of GPUs - A100 and T4 differed when running similar work-
loads. The balance between communication overhead, computing
speed and memory space should be considered while choosing the
appropriate GPUs.
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