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ABSTRACT
Intelligence processing units (IPUs) are specifically designed accel-
erators that are dedicated to support artificial intelligence (AI) and
machine learning (ML) workflows. Here, we report on the perfor-
mance characteristics and code-porting experiences on Graphcore
IPUs offered on the new National Science Foundation (NSF)-funded
Accelerating Computing for Emerging Sciences (ACES) testbed.
Our benchmarks compared performance of AI/ML frameworks on
ACES IPUS to similar runs on the Graphcloud environment, a com-
mercial IPU cloud service offered by Graphcore. We also ported
two PyTorch neural network models from Graphics Processing
Units (GPUs) to IPUs to ensure the efficacy of the software envi-
ronment. The ported models include the TransCycleGAN model
that is used in reconstructing high-resolution images from low-
resolution images, and the Hierarchical Autoencoder that is for
large-scale high-resolution scientific data compression in climate
models. These models were successfully ported on mulitple IPUs
using utilities in the Graphcore Poplar software development kit.
Increasing the number of IPUs resulted in a considerable enhance-
ment in the model’s throughput.
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1 INTRODUCTION
Purpose-built accelerators for AI/ML applications offer opportu-
nities to reduce the time taken for inference and training. The
NSF ACES cyberinfrastructure (CI) testbed at Texas A&M Univer-
sity will offer various types of computing technologies that are
designed to support specific research workflows. accelerators in-
cluding co-processors, vector engines, GPUs and IPUs [1]. These
technologies will be offered over a software-defined composable
network, in anticipation of research workflows that can mix and
match CI technologies of choice. In a previous work [2], we have
shown the respective strengths of GPUs and IPUs in supporting
AI/ML frameworks. In that work we leveraged GPUs at several
campus and national cyberinfrastructure sites, and IPUs from the
Graphcloud service. We also offered a description of how IPU bene-
fits from an architecture that supports specific AI/ML applications
[2]. Briefly, in an IPU, the Arithmetic Logic Units (ALUs) are divided
into smaller units called tiles. Each IPU has 1472 tiles. The tiles act
independently of one another, having their own local memory and
enough compute power to prepare their own instructions. Tiles
communicate with each other directly over high-bandwidth chan-
nels, even across different IPUs. The IPUs incorporates a large
amount of in-processor memory composed of SRAM, which exists
in the form of smaller independent distributed memory units. Addi-
tionally, the IPU is equipped with a set of DRAM chips (streaming
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memory) that can transfer to the in-processor memory. This mem-
ory architecture enables rapid data communication within the IPU,
allowing it to hold larger data compared to other processors [3].
IPU achieves massive parallelism with multiple instruction, mul-
tiple data (MIMD) technique, which is ideal for machine learning
workloads such as image super-resolution and data compression
models. To facilitate transitioning code to the IPUs, Graphcore
offers a software development kit (SDK), named Poplar. Among
others, the Poplar SDK includes performance tuning utilities, sup-
port for notebooks and application support for PyTorch models via
the PopTorch utilities. By coupling the hardware environment to
an extensive software applications and development suite, these
IPUs are positioned to support scientific AI/ML applications that
process large datasets. As part of deploying the ACES testbed, we
discuss our results from testing the performance of IPUs at Texas
A&M using standard AI/ML benchmarks. These IPUs are available
for researchers via the NSF ACCESS program [28]. Here, we also
present the results from porting two scientific AI/ML models used
in data compression and image super resolution workflows from
GPUs to IPUs.

1.1 TransCycleGAN Network Architecture
Image super-resolution (SR) is a challenging task that aims to recon-
struct high-resolution (HR) images from low-resolution (LR) inputs
while preserving clean content. However state-of-the-art SR meth-
ods face two major challenges: the lack of paired training data for
most real-world images, and the difficulty in capturing long-range
pixel dependencies using unpaired image restoration models based
on convolution. Inspired by the image-to-image translation appli-
cation of Cycle-Consistent Adversarial Network (CycleGAN [10]),
and the capability of the Transformer to capture long-range pixel de-
pendencies between image patches by leveraging the self-attention
mechanism, TransCycleGAN was developed to address the above
issues and tackle real-world image super-resolution, particularly for
scenarios involving multiple degradations. It leverages pseudo- su-
pervision based on unpaired learning samples to super-resolve real-
world images. Specifically, TransCycleGAN builds upon CycleGAN
architecture and incorporates an efficient, light-weight degradation-
removal Transformer module to enhance the image quality. The
TransCycleGAN network consists of an unpaired blur/noise correc-
tion network integrated with a degradation–removal Transformer
in the Low-resolution domain and a pseudo-paired SR network for
reconstructing High-resolution from a low resolution image. These
networks perform two mappings: a) unpaired LR↔ clean LR trans-
lation for denoising and deblurring the LR image, and b) paired clean
LR→HR mapping for Image SR. The degradation-removal Genera-
tor is based on a multiscale, light-weight Transformer module that
uses a 3-level encoder-decoder architecture based on Restormer
[9]. Our TransCycleGAN model was trained on the Wider Face LR
dataset [8] (with images of size 16x16 pixels) and CelebA HR dataset
[5] (with images of size 64x64 pixels) in an unaligned manner.

1.2 Hierarchical Autoencoder Architecture for
Climate Modeling

Another aspect of computing that will impact data availability is
data compression. There are two types of data compression: lossless

and lossy. Lossless compression allows for exact reconstructions
of the original data, while lossy compression techniques offer a
much better compression ratio within an acceptable reconstruction
error. A deep learning technique for lossy compression, AutoEn-
coder is widely used to learn a representation of data in lower
dimensions and reconstruct it from that representation. [16-18].
Our AutoEncoder model consists of an encoder (E), a quantizer
(Q), and a decoder (D) as shown in Figure 1. The encoder learns
the data representation and reduces the data dimension to output
latent representation. Following the work by Razavi et al. on Vector
Quantized Variational Autoencoder (VQ-VAE) [20], our encoder is
quantized to produce integer quantized values, which are further
compressed by a lossless algorithm, e.g. Huffman coding [15]. In
this paper, we present our work to port a neural network model to
IPUs. The model is based on the Hierarchical AutoEncoder (HAE)
architecture proposed by Kim et al. [19]. The HAE architecture is
an extension of the standard autoencoder with multiple layers of
encoding and decoding. The input data is passed through two or
more encoding layers, each of which produces a compressed repre-
sentation of the input. The output of one encoding layer is the input
to the next, creating a hierarchy of representations. Compared to
a standard Autoencoder, the HAE allows the model to learn more
complex patterns and dependencies in the data and construct a
more compact and informative representation of the input. We
have fully tested our model using SDRBench [11, 12], a publicly
available benchmark dataset that is commonly employed in the
scientific community [21]. SDRBench offers an array of simulation
data covering a wide variety of domains – from atomic and molec-
ular electronic structures to meteorological and cosmological data.
We also tried our model on large-scale high-resolution climate mod-
eling data sets generated by the High-Resolution Community Earth
System Model (CESM) Version 1.3 [13, 14]. Our model currently
achieves a compression ratio of ∼200 with reconstruction error
negligible for scientific analysis.

2 METHODS
2.1 Test Environment
Graphcore IPUs were deployed as part of the ACES testbed at the
West Campus Data Center at Texas A&M University. These include
the previous generation of 16 Colossus GC200 IPUs, and the current
generation of 16 Bow IPUs that are situated on a dual AMD Rome
CPU server on a 100 GbE RoCE fabric. The IPUs are one of several
accelerators that are orchestrated using the Slurm Scheduler on the
ACES testbed. To check the performance of the IPUs on the ACES
computing system, we use the Graphcore GitHub repo [6], which
provides different deep learningmodels for benchmarking purposes.
In this study, we choose the popular andwell-established deep learn-
ingmodel - ResNet50 in PyTorch deep learning framework using the
Colossus GC200 Graphcore IPUs. The Graphcore github repository
contains various application examples that have been optimized to
run for both training and inference on the Ubuntu 20.04 operating
system [6]. This was followed by porting the TransCyleGAN Net-
work model for super resolution and the Hierarchical Autoencoder
Architecture for Climate Modeling. These models used the PyTorch
framework and were initially trained on GPUs. They were ported
to run on IPUs using the Poplar Software Development Kit (SDK)
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Figure 1: The architecture of Hierarchical Autoencoder. The input of the neural network is the original scientific data, and the
output is the reconstructed data. In the ideal case, the input and output data are identical. The compression ratio achieved
by the neural network is calculated by dividing the size of the input data (represented with orange blocks) by the size of the
compressed latent space (represented by red blocks).

Table 1: Comparing the quality of images produced by superresolution using different models on the Set14x4 dataset. Higher
PSNR and SSIM values indicate higher quality images. The TranCycleGAN model was implemented on NVIDIA A100 GPUs.

Method PSNR SSIM

SRGAN [24] 26.02 0.7397
EDSR [25] 28.80 0.7876
RCAN [26] 28.87 0.7889
HAT-L [27] 29.47 0.8015
TranCycleGAN 29.78 0.8103

3.2.0 with Poptorch 3.2.0. These represent the current generations
of Poplar and Poptorch at the time of writing this manuscript.

2.2 Converting PyTorch models to Poptorch for
Graphcore IPUs

Details about converting PyTorch models to poptorch have been
described in detail on our training modules available at [22, 23]. To
convert a PyTorch model to IPU code, we first need to import the
Poptorch module, which is a PyTorch extension in the Poplar SDK.
Next, we create a data loader using the poptorch.DataLoader class
for efficient data batching with respect to the PopTorch framework.
We then construct themodel and include the loss computation in the
forward function. Fourth, we utilize the poptorch.Options for compi-
lation and execution on IPU. Finally, we train and evaluate themodel
with the poptorch.trainingModel and poptorch.inferenceModel
wrappers, respectively. The Steps are shown in Fig 2.

For the TransCycleGAN model, we first migrated the TransCy-
cleGAN model from CPUs to GPUs to ensure that the code worked
on accelerators. Here we find that it outperforms other super reso-
lution methods in terms of PSNR (Peak Signal-to-Noise Ratio) and
SSIM (Structural Similarity Index), two metrics used to evaluate the
quality of images produced by super resolution techniques. These
values were compared to other established SR methods using the
commonly used Set14x4 dataset of low resolution images.

The TransCycleGANmodel was ported from GPUs to IPUs using
the Poplar SDK as shown in Figure 2. While porting the code for
Hierarchical Autoencoder to IP, we encountered a few issues re-
lated to coding styles permissible in Pytorch for GPU training, but
incompatible with poptorch for IPUs. The common neural network
model architecture patterns worked seamlessly after porting, but
we needed to pay closer attention to some aspects of the model
architecture to make it compatible with poptorch. For example,
the vector quantizer module has a custom architecture and the
backpropagation was a bit different compared to a general module.
When we ran the model on IPUs, we got a Runtime Error of a leaf
Variable that requires grad is being used in an in-place operation.
The resolution we used was to do an explicit copy of data of the
nn.Parameter instead of just calling a copy of nn.Parameter. More
details can be found in the project GitHub [4]. Fixing some errors
required a deeper understanding of the poptorch framework, and
required assistance from scientists at Graphcore. Porting the in-
ference part of the code was relatively straightforward compared
to the training. In the following sections, we discuss the tuning
required to achieve the performance on the hardware in the results
sections.
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Figure 2: Steps taken to convert TransCycleGAN built on PyTorch from GPUs to poptorch on Graphcore IPUs.

Figure 3: The image throughput of PyTorch ResNet 50 model
increases with batch size. Smaller batch sizes (less than 4)
had a greater increase in image throughput with batch size
compared to larger batch sizes (greater than 8).

3 RESULTS
3.1 Performance of IPUs on ACES for PyTorch

ResNet50
To ensure that the Graphcore IPUs and their software environment
were deployed appropriately we performed a scaling study on the
popular ResNet 50 model. IPU architecture has limitations on batch
sizes and needs tuning of some poptorch options like gradient ac-
cumulation and device iterations to speed up the training. With
gradient accumulation, the gradients computed across multiple
batches are accumulated before updating weights and this helps in
speeding up the training. As part of this, we also noted the impact
of characteristics such as batch size, precision on throughput. Batch
size is an important hyperparameter that affects the image through-
put and time to train. We first examined the effect of varying batch
size on the image throughput of the PyTorch ResNet50 model on
the ACES IPUs. The model is trained using image data from the
ImageNet 2012 machine learning challenge [7]. In the study, the
precision of the model is half precision and every experiment runs
for two epochs. The throughput is from the second epoch. Our

Figure 4: The image throughput with the number of epochs
over 8 IPUs. The first epoch has lower performance due to
graph compilation. The performance stabilizes after the sec-
ond epoch.

results indicate that image throughput increases as batch size in-
creases, with batch size having a lesser effect as it becomes greater
than 8. (Figure 3).

The performance of the PyTorch ResNet50 model changes with
the number of epochs. As such we identify the appropriate number
of epochs at which to report performance by identifying the number
of epochs at which the image throughput stabilizes. As shown in
Figure 4, we find that the PyTorch ResNet50 model on 8 IPUs with
a batch size of 16 using half precision stabilizes after 2 epochs. The
image throughput of the first epoch is lower than other epochs,
which is due to the inclusion of graph compilation in this epoch
and also observed in previous study [2]. Therefore, we report the
throughput on the following experiments over 2 epochs.

We next investigate the effect of precision on throughput on the
PyTorch ResNet50 model. Precision, i.e., the level of floating-point
representation affects computations and memory operations and is
an important configuration option that affects image throughput
and possibly the model’s accuracy. These calculations were per-
formed on 1 IPU and 8 IPUs with a batch size of 2, using both half
precision (16 bits) and full precision (32 bits). A small batch size
(i.e., 2) was selected because a larger batch size caused an “out of
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Table 2: Training performance of IPUs on the TransCycleGAN

Accelerator Count Images/sec

IPU 1 438
IPU 16 6552

Figure 5: Impact of precision on the image throughput of
PyTorch ResNet 50 model for 1 and 8 IPUs. Batch size was set
at 2., and a similar performance drop (∼44%) was observed in
switching from half to full precision, for both 1 and 8 IPUs.

Figure 6: The image throughput increases almost linearly
with the number of IPUs on the NSF ACES cluster (blue line)
and the Graphcloud service (red line). To ensure maximum
throughput, these calculations were performed using a batch
size of 16 with half precision.

memory error” for full precision experiments. Our results indicate
that there is a decrease in image throughput when switching from
half precision to full precision. For 1 IPU, the throughput decreased
by approximately 43.4%, and for 8 IPUs, the throughput decreased
by approximately 44.8% as shown in Figure 5.

With a view towards ensuring maximum throughput, we next
analyzed the scalability of the PyTorch ResNet50 model with 16
bits (i.e., half precision) and the batch size is set as 16 on the NSF
ACES IPUs. Image throughput calculated from 1 to 8 IPUs finds
almost linear behavior (Fig 6). Scalability calculations performed on
the Graphcloud service [6], showed similar characteristics, helping

validate the IPU set up and software environment for the ACES
cluster.

In addition to exploring the trade-offs between batch size, and
precision on the ResNet50 model, we explore the performance of
the TransCycleGAN - Image super resolution model on IPUs. We
find that the code scales appropriately to 16 IPUs and offers new
opportunities for low energy consumption computing (Table 2).

In a similar effort, we also trained the Hierarchical AutoEncoder-
basedmodel with simulation data of Earth’s sea surface temperature
on IPUs and GPU platforms (Table 3). The data set consists of the
∼100GB 2D sea surface temperature data with a size of 3600x1800
grid points each. The code was trained under different configu-
rations of batch size, gradient accumulation, and deviceIterations
parameters, and it scaled well from 1 to 16 IPUs with almost a 10x
speedup. In a head-to-head comparison we note that the model
gets comparable performance on a single NVIDIA A100 GPU com-
pared to a single IPU. Our study shows valuable insights into the
development and deployment of efficient data compression models
on IPU, paving the way for the development of more efficient and
optimized applications in the future.

4 CONCLUSIONS
This study is a part of a concerted effort to study the scaling and
performance characteristics of accelerators on the ACES system
by the SWEETER CyberTeam [29–31]. In our study, we show that
the PyTorch ResNet50 model has an almost linear scaling behavior
on the IPUs on the ACES system, ensuring that researchers will
experience the same performance characteristics as on the Graph-
cloud cloud service. Similar performance changes are observed for
different precision studies, regardless of the number of IPUs being
used. Our study evaluated the performance of IPUs on the Tran-
sCycleGAN model and found that increasing the number of IPUs
significantly improved the model’s throughput. The Hierarchical
Autoencoder model was found to scale well on IPUs, motivating us
to explore and optimize themodel’s performance on other hardware
platforms available on ACES. IPU gave a comparable performance
and the code scaled seamlessly with the number of IPUs used. In the
future, we anticipate studying the scaling and performance of other
research applications on to IPUs and other accelerator technologies
on the ACES testbed.
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Table 3: Performance of the Hierarchical Autoencoder on IPUs.

Accelerator Stage Count Images/sec

IPU Training 1 1.69
IPU Training 16 16.58
IPU Inference 1 2.0
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