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ABSTRACT

The potential for infinite scaling, improved performance, and better
sharing of computing resources motivates researchers to adapt to
composable infrastructures. Measuring performance on these sys-
tems requires an assessment of how the composed configuration
itself affects performance which goes beyond traditional scaling ap-
proaches. We emphasize the subtle relationship between the nature
of the calculation and the configuration of the composable infras-
tructure. New application benchmarking strategies are explored to
inform the optimal configurations and best computing practices for
composable systems. Realistic molecular dynamics research work-
flows are employed as benchmarks for composed GPU systems
to develop a benchmarking strategy that yields recognizable and
informative results. We employ the practices on a realistic case for
a molecular dynamics research workflow on a composed GPU sys-
tem. We discuss the identification of computational bottlenecks and
establish a need for new benchmark performance suites that can
help researchers articulate optimum compositions for composable
infrastructure.
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1 INTRODUCTION

Emerging technologies are transforming the architecture of tra-
ditional high performance computing (HPC) systems. Whereas
the traditional model of HPC clusters comprise static distributions
of computing resources, many newer systems are migrating to-
wards dynamically composable infrastructure with disaggregated
resources that can be configured based on user requirements. In a
traditional compute cluster, simulations using a high GPU count
can only be achieved by utilizing multiple host nodes. Communi-
cation between nodes presents an additional potential bottleneck,
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which is eliminated by the composed node configuration. Hard-
ware accelerators such as GPUs enable massive parallelization of
structured computational work, but the fixed size of the accelerator
itself forces the researcher to distribute across multiple accelerators
to enable scaling up to solve the largest problems. This introduces
additional layers of complexity; considerations include: limitations
on problem size for a single accelerator, communication between
accelerators, and a strategy of breaking the problem down for dis-
tribution. Composable infrastructure offers researchers a unique
opportunity to choose the combination of node resources, including
the number of GPU accelerators per node, that best meets the needs
of their problem.

Scientific workflows span a complex performance landscape
making it hard for researchers to realize the optimal composed
configurations. In order to inform researchers how to best use
composable cluster resources, it is important to choose realistic
applications benchmarks that determine if a given configuration
is working well for a given research workflow. However, existing
benchmarks [6][7][8] characterize one hardware element of a sys-
tem and do not capture the important effects that arise when using
multiple accelerators in a reconfigurable cluster environment. In
particular, performance depends on both details of the composable
infrastructure and details of the computational workflow.

Previous and concurrent research that has been conducted on
novel infrastructures follows a similar strategy, using machine learn-
ing workflows [1][2][4] and mesh solvers [3] as example research
workflows.

2 METHODS

2.1 Molecular Dynamics with LAMMPS

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Sim-
ulator) is a classical molecular dynamics software suite that has
potentials for different many-body interactions. LAMMPS supports
multiple frameworks for scaling onto cluster resources, including
MPI, CUDA, and Kokkos and can orchestrate billions of atoms in
memory. This popular simulation software suite is used on all major
national computing platforms and therefore provides a benchmark
that is of use to researchers.

The simulations performed in this work used a reproducible
build of the LAMMPS physics engine published in the NVIDIA Con-
tainer Repository [5][7]. Three established LAMMPS benchmark
problems were chosen [8] to simulate individual atoms in different
systems that explore the scaling of bonding and non-bonding force
calculations. First, the Lennard-Jones (LJ) system is an unordered
liquid of atoms interacting at short range. The short-range pair-wise
interaction implies that minimal communication is needed. Next,
the Embedded Atom Model (EAM) system is a lattice of metal atoms
interacting with both neighbors and the long-range electric field.
The long-range interaction requires additional operations and some
communication between distant regions. Finally, the Rhodopsin
system is a large protein molecule embedded within a lipid bilayer
and surrounded by water and common ions. The bonding forces in-
volve 3 or more atoms, greatly increasing the number of operations
and need for communication.
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Table 1: Replication factors and corresponding approximate
atom count.

1x 2x 4x 8x 16x 32x

32k 64k 128k 256k 512k 1M

64x 128x 256x 1024x 2048x 4096x
2M 4M 8M 33M 66M 131M

Table 2: Single A100 GPU Scaling Study for three LAMMPS
systems to determine the optimal number of atoms to ef-
fectively utilize a single GPU. The best performance found
among replication factors for each system is highlighted red,
reported in million atom-timesteps/s.

4x  8x 16x 32x 64x 128x 256x 1024x

LJ 411 487 526 543 523 520 527
EAM 125 155 172 181 190 189 188
Rh. 76 86 9.0 72 6.6 6.3 6.3 6.3

2.2 Single-GPU Performance

Benchmarks were performed on NVIDIA A100 GPUs with 40GB
of internal memory on the Grace and FASTER clusters hosted by
Texas A&M High Performance Research Computing.

Data were collected over 3 independent runs. Each simulation
was performed for 10,000 steps with a time step duration specific
to each problem. Each run has 10,000 time steps in order to average
out the warming up effects, which occur before time step 100. The
measure of performance for a LAMMPS benchmark is given in units
atom-timesteps/s, or alternatively, million atom-timesteps/s.

Each atomic system is described in terms of a unit cell of 32,000
atoms. Scaling the problem to larger system sizes is important
because a realistic workflow puts a heavy load on the resources. In
order to scale the problem up, the unit cells are replicated in 3D
to fill a larger volume with even more atoms as shown in Figure
1. This strategy is needed to produce a benchmark that will reveal
the correct computational bottlenecks. The replication factors are
varied from 1 to 4096 as shown in Table 1.

Before benchmarking multiple GPUs, we establish an expectation
of performance by finding the performance of a single GPU. In this
section, scaling tests and observations are conducted to ensure
that the GPU is optimally utilized by providing a large chunk of
computational work to the GPU. This approach ensures that the
GPU can perform work independently for some time, reducing the
fraction of time spent in communication with the node. For the
case of LAMMPS, this translates to having a large number of atoms;
The results shown in Table 2 point to a minimum optimal load on
a single GPU of 64x32000 atoms of L], 128x32000 atoms of EAM, or
16x32000 atoms of Rhodopsin.

2.3 Multi-GPU Performance

The Grace cluster is a traditional cluster in which each node is
connected to a fixed number of accelerators. The FASTER cluster is
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Figure 1: Visualization of Rhodopsin in lipid bilayer. (a) Sin-
gle system. (b) System replicated in a 4x4x4 array, total repli-
cation factor 64. Note: this replicated system is not physically
meaningful; it is merely an artificial workload for bench-
marking.

a composable cluster that uses a software-defined PCle-Gen4 Liqid
fabric; within a server rack to compose nodes in configurations that
extend beyond 16 accelerators per node [2].

In the Grace cluster, two A100 GPUs are connected directly to a
node’s PCle-Gen4 slots. In the Liqid fabric of the FASTER cluster,
multiple nodes and A100 GPUs are connected by longer PCle cables
to PCle switches. Multiple PCle switches are connected within
a rack to form a web-like topology. Traditional benchmarks that
measure connectivity between pairs of devices, such as NVIDIA
Peer-to-Peer Bandwidth/Latency Test, are not aware of the topology,
and report throughput and latency to be similar in both clusters.

Comparison of multi-node workflows on traditional and com-
posed nodes, shown in Figure 3, provides evidence that the com-
posed configuration reduces communication overhead and compu-
tation time by showing that concentrating multiple GPUs onto a
single composed node improves performance. Given a fixed num-
ber of GPUs, those GPUs could be composed into nodes of varying
size, either all on one node or across multiple nodes that are used
together corresponding to a traditional system configuration. Al-
though the traditional infrastructure and the composable infrastruc-
ture are comparable for multi-GPU workflows, a communication
bottleneck occurs when using multiple nodes, which is eliminated
by using a single composed node. Figure 2 visualizes how LAMMPS
performs the division of work among eight GPUs for these types
of workflows.

2.4 Description of Scaling Tests

In order to test the composable GPU infrastructure of the FASTER
system, problems are distributed across multiple GPUs on composed
nodes. Scaling tests are performed using each of three systems,
replicated to various sizes, based on the expectation of proportional
scaling relative to a single A100 GPU.

3 RESULTS AND DISCUSSIONS

3.1 Strong Scaling Across Multiple GPUs

Strong-scaling is the ability of a parallel computing system to effi-
ciently solve a larger problem by increasing the number of process-
ing units. Results are shown in Figure 4. All of these systems scale
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Figure 2: The partitioning for L] system on 8 GPUs. LAMMPS
created eight rectangular partitions, colored red to blue, ar-
ranged in two stacks of four. Each partition gets assigned
to a different GPU. Communication between neighboring
partitions could be a mechanism for the topology of the in-
frastructure to come into play.

positively, but not proportionally. Some loss is associated with in-
creasing GPU count. This is because the transition from one GPU to
two or more GPUs introduces a communication delay mechanism
that prevents perfect scaling relative to one GPU. The maximum
performance achieved at high GPU count is around 80% of ideal for
L], 70% of ideal for EAM, and 60% of ideal for Rhodopsin. The small-
est system sizes scale noticeably worse than the larger system sizes.
In addition, an unusual non-monotonic zig-zag pattern appears in
the scaling for the Rhodopsin case at high GPU count. This pattern
was not found to be correlated with the identity of the host node.

3.2 Weak Scaling Across Multiple GPUs

Weak-scaling refers to the ability of a parallel computing system
to efficiently solve a larger problem by increasing the number of
processing units and the size of the problem proportionally, while
keeping the workload per GPU constant. Results are shown in Fig-
ure 5. All of these systems scale negatively, which shows that an
increasing number of GPUs has an increasing communication over-
head. The smallest system sizes of L] and EAM are well below the
others, which indicates that as expected, a minimum ratio of atoms
per GPU is required to expect good performance. This reduces the
relative fraction of the cost due to communication between the node
and the GPUs. However, in the L] and EAM cases, the minimum
number of atoms per GPU at high GPU count is higher than the
optimal result for the single-GPU case in Table 2; a multi-GPU run
benefits from a greater number of atoms per GPU than a single
GPU run.

4 CONCLUSIONS AND FUTURE WORK

The performance profile of molecular dynamics benchmarks for
GPUs reveals an unexplained communication bottleneck in a com-
posed Liqid fabric system. Investigating the relationship between
the composable infrastructure’s topology and the communication
bottleneck will reveal more about the benefits and limitations of the
composable infrastructure, and provide a guidance for researchers
as to how to best use cluster resources. We conjecture that the
unusual non-monotonic effect seen for Rhodopsin in Figure 4 is
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related to the complex topology of the Liqid fabric. Additional work
is needed to understand the precise mechanism at play; specifically,
we will use NVIDIA throughput measurement tools to check the
connection bandwidth between different nodes and GPUs within a
fabric as the communication load on the fabric varies.

Measuring performance on composed architectures in general
requires new benchmarking strategies because effects such as those
described in this work are not captured by standard benchmarking
tools which focus on individual hardware elements. New perfor-
mance benchmarking strategies based on our findings will be used
to inform the optimal configurations and best computing practices
for composable systems.
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