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Abstract—In conventional physical layer security schemes no
leakage of private information to adversary nodes is tolerated,
and no assumption on the encryption of information is consid-
ered. This is a limiting assumption in physical layer security,
which compromises the efficiency of such schemes. This paper
introduces an approach in which a prior knowledge of encryption
can be used to improve the security performance of cooperative
jamming in Gaussian wiretap channels as an example of physical
layer security approached. The proposed approach, however, is
not limited to the considered scenario of cooperative jamming
and can be applied to other scenarios. We consider a system
composed of a transmitter, a receiver, and eavesdropper and
several jamming nodes that work independently, and formulate
an optimization problem to maximize the secrecy rate with the
knowledge of encryption and attempt to solve it by driving
the rate-equivocation region to constrain and determine the
feasibility of the solution. We then exploit a linear approximation
to solve the resulted nonconvex optimization problem to maximize
the secure transmission rate. Our numerical results show that
prior knowledge of encryption can be exploited to allocate the
available power to the jamming nodes to significantly increase
the secure transmission rate.

Index terms— Physical layer security; encryption; Gaussian
wiretap channel; rate-equivocation region; secrecy capacity; co-
operative jamming.

I. INTRODUCTION

Physical layer (PHY) security has emerged as a strategy
that guarantees an information-theoretic secrecy, regardless of
eavesdropper’s computational power. The main objective of
PHY security is to exploit channel randomness to ensure that
an eavesdropper cannot successfully decode the confidential
message, while at the same time, guaranteeing a reliable
transmission between the source and the legitimate destination.
In other words, the goal is to obtain the secrecy capacity
which refers to the maximum transmission rate that is both
reliable and secure. One approach to improve the performance
of PHY security is to utilize additional cooperative jamming
nodes. Cooperative jamming makes use of additional nodes
as aides in order to achieve higher transmission rates, while
ensuring perfect secrecy. Assuming plain-text transmission, the
jamming nodes cooperatively work to perform relaying [1],
jamming [2], [3] or both in a hybrid fashion [4].

On the other hand, conventional cryptography schemes are
made to be robust against attackers with full access to error-
free ciphertext [5]-[7]. However, in practice, erroneous recep-
tion is inevitable. Toward a practical cryptographic design, the
authors in [8]-[10] introduce the concept of noisy ciphertext
and show its effectiveness from an application layer perspec-
tive. In [11], we introduce a general framework to study the
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joint impact of PHY security and encryption. Particularly, we
show that, having a prior knowledge of encryption, one can
deliberately allow leakage to the eavesdropper to be able to
securely transmit at a rate beyond the conventional secrecy
capacity.

In this paper, we apply the framework that we have first
introduced in [11] to a Gaussian wiretap channel with mul-
tiple independent jammers. First, we drive a general rate-
equivocation region. We then use the approach to maximize
the secure transmission rate. Our numerical results show a
significant improvement in the secure transmission rate when
encryption is taken into account. The rest of the paper has been
organized as follows. In Section II, we introduce the system
model for a Gaussian wiretap channel with multiple jamming
nodes. In Section III, we briefly summarize and formulate the
secrecy rate maximization in conventional PHY security. In
Section IV, we introduce and characterize the rate-equivocation
region as well as the encryption-aware secrecy capacity. In
Section V, we formulate and solve the optimization problem to
maximize the encryption-aware secrecy rate for the considered
wiretap channel with multiple independent jammers. Section
VI presents some insightful numerical results and discussions,
and Section VII concludes the paper.

II. SYSTEM MODEL

Fig. 1 depicts a cooperative jamming system with a trans-
mitter Alice, a receiver Bob, an eavesdropper Eve, and a
group of M jammers, Jy, Jo, -, Jas. It is assumed that all
the nodes are equipped with single antenna. Alice desires
to transmit private message to the legitimate destination Bob
without any leakage of information to the eavesdropper. The
jammers help the source by deliberately introducing noise
to confuse Eve’s observation. The transmitter sends a zero
mean complex Gaussian codeword x5 ~ CN(0, ps), where
ps is Alice’s power budget. The group of jammers broadcasts
x ~ CN(0,Q), where 0 is the mean vector and Q is the co-
variance matrix of x; each jammer sends a zero mean complex
Gaussian noise signal ;; whose power is p; = |z; |2. ho and gg
denote the complex gains of the source-destination and source-
eavesdropper, respectively. We also have the column vectors
h = [h,ha, - hag]” and g = [g1,92,- ,gu]" . where
h; denotes the complex channel gain between the jammer J;
and the destination, while g; represents the complex channel
gain between the jammer .J; and the eavesdropper. Thus, the
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Figure 1. A wiretap channel model with multiple jammers
received signals at Bob and Eve can be written, respectively,
as

M
i=1
M

Z = goxs+ Y giti + np, 2)

i=1
where np and ng are independent identically distributed
(i.i.d) additive white Gaussian noise (AWGN) samples with
variances 0% and 0%, respectively. We shall assume that
2 _ 2
og=o0p =1

III. SECRECY CAPACITY FOR MULTIPLE JAMMERS
SCHEME
The achievable secrecy rate can be written as
R, =[Ry,— R]"
= [logy(1 +vp) —logy(1 + )], 3)

where R, is the main channel rate and R, is the eavesdropper
channel rate, and

h'Qh +1
2
Ps 9ol
= L0l 5
YE 9fQg + 1 (5)

are the signal to interference plus noise ratios at Bob and
Eve, respectively, where { denotes the Hermitian transpose.
For a fixed transmission power, the main channel capacity
and the secrecy capacity are to be obtained via maximizations
over Q. On the one hand, the main channel capacity Rp is
achieved by the covariance matrix Q(Z), which can be readily
found by eliminating interference caused by the jammers at the
legitimate destination; i.e, Q%) € {Q : h'TQh =0, Q -
0}. On the other hand, the secrecy capacity Rg is achieved
by Q') which, under joint power constraint, can be obtained
by solving

Rg :max(igmize Rs(Q)

tr(Q) S PTa

where Pr is the total available jamming power. In order to
solve (6), one should first develop the condition(s) under which
a nonzero secrecy rate is achievable (i.e., R > 0). In order to
solve (6), the first step is to maximize the interference caused

(6)

subject to

by the jammers at Eve, while at the legitimate receiver, the
interference is fixed to a scalar ¢ > 0; that is

max(iQmize 7'Qg

subject to hTQh =t, (7

tI'(Q) < PT-

Assuming Q(*) is the solution to (7), the secrecy capacity
problem becomes

ps|h0‘2

t+1

Ps‘g()lz
g'Qg+1

1+
1+

. ®)

Rg¢ = maximize log,
i

which can be solved numerically by a one-dimensional search
over t. The two problems (6) and (7) are then to be solved
iteratively to obtain the optimal covariance matrix Q') and
the corresponding optimal jammers induced interference ¢*
hTQ)h. 1t is worth mentioning that ¢* # 0 which means
Q¥ ¢ {Q: hiQr =0, Q- 0}. In other words, it is not
possible to achieve both main channel and secrecy capacity
using the same covariance matrix.

IV. RATE-EQUIVOCATION REGION DERIVATION AND
ENCRYPTION-AWARE SECRECY CAPACITY

In this section, before delving into the effect of encryption,
we first characterize the rate-equivocation region of the con-
sidered multi-jammer system.

A. Rate-Equivocation Region Characterization

For a spgciﬁc covariance matrix, we define a subregion
denoted as R 7 (Q) within which the rate-equivocation pair
(R, R.) is achievable as

0 < R< Ry(Q)
(Rv Re) :0< R < RS(Q)
R. <R

RVTC(Q) = 9)

Altogether, the convex rate-equivocation region can be ex-
pressed as

Qe{Q:(Q)<Pr, Q>0}
Identifying  special ~boundary points is the first
step in characterizing the rate-equivocation region.
For a 4-node system, these points are (R,R.) =
{(0,0), (Rs, Rs), ( %}a Rs), (BB, RIS)a (RB,0)}, where
R is the maximum transmission rate that R, = Rg is
achievable; ie., Ry = Ry(Q'¥), and R is the maximum
achievable equivocation rate for R = Rp, and it can be
achieved by
2
1+ PS‘hOI
Ry = maximize log, 7}”(%'21
Q 1+ pslgo‘
97Qg+1 (11)
subject to  h'Qh = 0,
tl‘(Q) < Pr.
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The solution to (11) can analytically be found by the covari-

ance matrix Q* = '¢, where
¢ = plhl*g — uh'gh, (12)
and g is given by
P
H= 4 2 - 21T A2 13)
[RI*lgll* = lIR[I*[R'g]

The solution to (11) can result in a nonzero or a zero RY. As
a consequence, two different typical rate-equivocation regions
are depicted in Fig .2.

B. Encryption-Aware Secrecy Capacity

The above results on the secrecy capacity Rg still hold
true with encryption under the extreme assumption that Eve
can completely recover the entire ciphertext without error.
However, with error-prone ciphertexts, it is more difficult
for Eve to intercept the ciphertext. We define the encryption
strength A\ parameter to establish a connection between PHY
security and encryption. The interested reader is referred to
[11]. To ensure secrecy with the added parameter, we relate
the equivocation to transmission rate by the following bound

R. _ 1

<> .

R — A
The rate maximization problem at the physical layer can now
be modified by taking into account an additional constraint
imposed by the encryption; i.e., R < AR.. This new security
condition applied at the physical layer can therefore lead to a
larger secrecy region. The new encryption-aware secrecy rate
is the solution to the following optimization problem

R SWTC
") o).

(14)

Rs 2 sup {R: (R, (15)
R

The encryption-aware rate, denoted as Rg, must be within
the rate-equivocation region R"7¢ . In order to obtain Rg,
we proceed by defining two thresholds on encryption strength
as A\r1 = Rlz/Rgs and Apy = Rp/RY. Clearly, for Fig.
2.b, since R’S = 0, we have Apy = oo. The line segments
R = Ap1R. and R = Ao R, divide the region in Fig. 2.a
into three subregions, while for Fig. 2.b, the rate-equivocation
region is divided into two subregions by the line R = A7 R..
Obviously, for the subregion 1 < A < Apq, the encryption-
aware secrecy can readily be found as Rs = ARg, and for
the subregion A\ > Aro, we can securely transmit at the main
channel capacity (i.e., Rg = Rp). On the other hand, for the
subregion A\p; < A < Apa, to evaluate Rg, we need to solve
the following optimization problem

Rs = max(iQmize Ry(Q)
subject to  tr(Q) < Pr, (16)

Ry(Q) = AR(Q).

In summary, letting Q®) be the solution to (16), the
encryption-aware rate can be obtained as

ARg 1<A< A
Rs = AR, (QW) Ari <A< Arz. (17)
RB A Z )\T2

Now, we focus our attention on solving the problem (16). It is
easy to check that, by simple manipulations and letting K; =
ps |hol? and K1 = py|gol°, the matrix Q™) can equivalently
be obtained as a solution to

miniénize h'Qh
subject to  tr(Q) < Pr, (18)
hiQh = o — L
(1 + Hfffing) —1
where £ = ﬁ

V. MULTIPLE JAMMERS WITH INDEPENDENT
TRANSMISSION

In this section, we shall consider a special case of (18) under
the assumption that the jammers send completely independent
signals. As we shall demonstrate shortly, the obtained results
shed new light on the optimal power allocation at the jammers,
which will be beneficial in generalizing the results to the
general optimization problem in (18).

A. Secrecy Problem Modification

With the independent jamming assumption, we consider
the individual jammer powers p = [p1, pa, - - - ,pM]T instead
of the covariance matrix. We define a; = |h;|? and B;
lgi|?, Vi =1{0,1,2,3,---, M}, to represent the power gain
corresponding to each complex channel gain. Then, we can
write

I PsCo

VB = (19)
o Z?; pic; +1

’Yé _ psﬁO (20)

—M 5
Zizl pvﬁz +1

where 75 and ~% are the signal to interference plus noise
ratios at the destination and eavesdropper, respectively. The
superscript I refers to independent jamming. The correspond-
ing secrecy capacity RL can be obtained by solving

RL = max‘iomize RL(p)

M (2D
subject to Z pi < Pr,
i=1
where RI(p) is the secrecy rate and is obtained by
7L = (R}~ L)'
I I\t
= [logo(1+75) —log, (1+7p)] ", 22

When Encryption awareness is taken into consideration,
we can utilize the rate-equivocation region to obtain the
encryption-aware secrecy capacity Ré. However, for the spe-
cial subregion, A\p; < A < Apg, we seek the optimal power
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Rate-Equivocation Region for R's =0
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Figure 2. Typical rate-equivocation regions for multi-jammer scenario when (a) Rg # 0 and (b) Rig =0 [11].

allocation p(>‘) that achieves Ré. The problem in (18) can be
modified such that we can find p) by solving

M
minimize E iy
P i=1

M
subject to Y p; < Pr, (23)
i=1
M Kl
ZP?‘,O%' = € -1
. K2
= (1+ mfins)

Notably, (23) is an M — dimensional optimization problem
with a linear objective function, one linear inequality con-
straint, and another nonlinear equality constraint. This problem
can be approximated as a linear programming (LP) problem by
simply approximating the nonlinear equality constraint with a
linear function, as we shall see next.

B. Linear Approximation and Duality

Here, we aim to modify the optimization problem in (23) by
approximating the nonlinear equality constraint with a linear
one. First, let t; = Zf\il picy; and to = Z£1 piBi; thus, we
can write the equality constraint as

Ky

13
K
(1 + 1+1252) -1
The curve in (24) is best approximated with the line t; =
mty + ¢, where m > 0 is the slope and ¢ < 0 is the #;

intercept value. Given the approximation, (23) can be written
as

t1 = ~ 1. (24)

minimize t;

P
M
subject to Z pi < Pp, (25)
i=1
tl = mt2 + c.

We now have a linear programming problem with two con-
straints, whose two-dimensional dual problem can be formu-
lated as

maximize — Pruv; — cuvg

subject to vy + (o; —mBi)ve > —a;  1=1,2,3,--- M,
141 2 07
(26)

where v7and v, are the dual variables. The M +1 lines, 1 = 0
and 11 + (o; — mB)vy = —q; for all @ € 1,2,3,--- | M,
define a superset of the lines that determine the boundary of
this region. Generally, for linear programing, strong duality is
achieved; hence

minimum ¢; = maximum — Ppyy —crvg >0, 27

and also complementary slackness conditions are satisfied; we
have

M

vi (Z pi - PT> =0 (28)
=1

p; (Vi + (@ = mB)vs + a;) = 0, (29)

The first condition in (28) implies that if v # 0, then the
power constraint in the primal problem should be achieved
with equality. Whereas the condition in (29) implies that, at
most, only two jammers can have nonzero power. Since (26) is
a linear programming, the optimal solution (v;, v} ) lies on the
boundary of the feasible region. Therefore, we next develop
an approach to identify the set of candidate jammer(s) that are
involved in defining the boundary of the feasible region.

C. Solution Algorithm by Characterizing a Pool of Candidate
Jammers

Here, we develop the necessary and sufficient conditions
that each candidate jammer should satisfy. In addition, we
optimally solve the problem (23) for the simplified network.
We start by removing redundancy from the feasible region.
Since v; and Pr are non-negative and ¢ < 0, from (27),
we get vy > 0; therefore, the optimal solution is to be
found in the first quadrant of the dual 2D plane. Moreover,
on the feasible region boundary, inequality constraints are
satisfied with equality (i.e. 11 + (o; — mfB;)va = —q;), and
since both v; and v, are non-negative, the slope of these
linear constraints s; = (m/3; — a;) must be positive. For the
channel between a jammer .J; and the eavesdropper, we define
the encryption-augmented power gain Bz = mp;. Thus, all
selected jammers should satisfy B; > «;. Furthermore, the
constraint line, for each jammer J;, intersects with vy = 0 at
the point (") = o/ (BZ —a;). However, the line segment from
vy = 0 to v = min(%)) mandates the lower boundary of
the feasible region. Therefore, we sort the jammers satisfying
(Bi > ;) in ascending manner based on Jg(i), which is
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an equivalent ordering based on Z*. The jammer with the
minimum % is the first contributor to the feasible region. The
remaining candidates will be determined based on the slope
s;. In order to see that, for each .J; whose (Bi > «;), we define
the region ¥, as

Uy = {(v1,12) 11 + (i —mBi)va > —ay}

1% .
={(v1,12) 112 < ;1 + "} (30)
The whole feasible region €2 can then be given by
M
Q=¥ (31)
i=1

where M is the number of jammers that satisfy (B > ;). For
any two consecutive jammers in the 5" ordering if ¥; C
U;pq (e U, P41 = U, ), the latter jammer (J;41) is
redundant in obtaining the whole region €.

Proposition 1: For a set of 15(")-ordered jammers and a Jj,
candidate jammer, if s, > s; (for k and j € {1,2,3,--- , M},
and £ < j), then ¥, C ¥;. (ie., the jammer J; is not a
candidate).

Proof: Let (v1,12) € Py; then, we have

v
vo < — + ).
Sk
Indeed, s;, > s;, and since the jammers are in an ascending
order, ﬁg(k) <1 (4). Therefore, we have

(32)

vy < 2 4 m® < By ), (33)
Sk Sj
which means that (v1,v5) € ¥}, and hence, ¥, C ¥;. [ |

In summary, the following steps summarize our algorithm
in identifying the pool of the candidate jammers:

(a) In the first step, we discard the jammers that do not satisfy
(Bi > «;). If all the jammers are to be discarded, they all
should be silenced.

(b) We order the remaining jammers in ascending manner
based on % and pick the first one to be our dominant
candidate.

(c) The rest of the candidates are picked such that the slopes
s; be as well in ascending order.

D. Optimal Power Allocation for the Simplified Network

Although the pool of candidate jammers can contain any
number of M jammers where 0 < M < M, only two
of which, at most, can actually transmit as outlined by the
condition in (29). As a result, we adopt the following approach
by deeming that either one or two jammers are needed to
maximize the encryption-aware secrecy rate. Essentially, we
modify the optimization problem (23) with M =1 or M = 2.

In the single jammer scenario (M = 1), we allocate power
to the jammer with the smallest g—, the problem (23) becomes

minimize pa
P
subject to p < Prp,
) K, (34)
pa = x 3 - 13
(14 2;) -1

We drop the index 7 for simplicity since only one jammer is
selected. However, it is obvious that the optimal power p* can
be found directly by solving the nonlinear equation depicted by
the equality constraint. On the other hand, for the two jammer
scenario (M = 2), as the condition in (28) suggests, the total
available power Pr is consumed. Therefor, we can formulate
the problem as

minimize

P1,P2
subject to  p; + p2 = Pr,

P11 + patro

Ky
pra + paog = 3 - L
K
1+ 1+9151%H7252) -1
(35)

Here, the indices 1 and 2, respectively, refer to ¢ and 7 + 1.
Note that the optimal powers (p7], p3) in this case can also be
readily found by solving the system of equations depicted by
the two equality constraints.

VI. NUMERICAL RESULTS

In this section, with numerical simulations using MATLAB
software, we study the effect of encryption awareness on
secure transmission rate with the aid of multiple jammers. In
particular, we use ten jamming nodes with power gains to Bob
and Eve as a = {0.06,0.3,0.7,1.3,2.1,3,4.2,5.52,7,8.7}
and 8 = {0.6,1.8,3.4,5.4,7.9,10.7,13.9,17.6,21.6, 26}, re-
spectively. We first show the case with 1.5 and
Bo = 1, where secrecy is achievable without the help of
the jammers, that is K; > K,, with a total (normalized)
jamming power budget of 10dB and a source power of 15d5.
Fig. 3 shows the encryption-aware secrecy rate with and
without jammers for different encryption strengths, A. For
small values of encryption strength, we clearly see that the
presence of jammers achieves higher secrecy rate, whereas for
relatively large A, even without utilizing the jamming nodes,
the secrecy rate saturates at the reliable transmission bound
Rp. Further, for the same case where K1 > K>, Fig. 4 shows
the conventional and encryption-aware secure transmission
rate for different jamming power budgets, source power of
15dB, and A = 3. Here, we see that the encryption-aware
transmission rate always supersedes the conventional secrecy
rate. However, we notice that for Pr > 10dB, more jamming
power budget would not result in higher encryption-aware rate,
which means that the best jammer is selected and hence the
highest possible secure transmission rate is achieved.

On the other hand, for the case with g = 1 and [y
1.5, where jamming is essential to achieve positive secrecy,
ie., K1 < Ko, Fig. 5 shows the encryption-aware secrecy
rate with and without jammers for different A values with ten
jammers, total jamming power budget of 10dB, and a source
power of 15dB. As shown, in this case, the knowledge of the
encryption would not be helpful if the jamming nodes are not
used. Finally, for this case, Fig. 6 shows a similar behavior
as Fig. 4, while the achievable rate is lower and the required
jamming power budget to achieve saturation is slightly higher
than those of the previous case.
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Figure 3. Encryption-aware secrecy rate versus encryption strength (M = 10
and K1 > Kb2)

3.5

w

g
8}

N
T
L

Secure Transmission Rate (bpcu)
o

-

—e— Encryption-aware Secrecy Rate
05 | —4—Conventional Secrecy Rate
"o 5 10
Jammer Power (dB)

15

Figure 4.
10, K1

Encryption-aware secrecy rate versus jamming power budget (M =
> Ko and \ = 3)

—e— Encryption-aware Secrecy Rate with Jammers
—6— Encryption-aware Secrecy Rate without Jammers

w
2
T

Secure Transmission Rate (bpcu)
N N
N o N o w

o
2
T
I

° —O——0- ° °
\g 4 —o0—% 4

8
Encryption Strength ()
Figure 5. Encryption-aware secrecy rate versus encryption strength (M = 10
and K1 < K2)

VII. CONCLUSION

We proposed an encryption-aware PHY security approach
for a Gaussian wiretap channel with multiple jammers. We
first characterized the rate-equivocation region for different
scenarios, and for an independent jamming case, we derived an
approach to optimally allocate the power under an additional
encryption-awareness constraint. We showed that, at most,
only two jammers are needed to achieve optimal encryption-
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Figure 6. Encryption-aware secrecy rate for different jamming power budgets
(M =10, K1 < K2 and A = 3)

aware secrecy rate. We also introduced an ordering mechanism
by which we were able to accurately determine the candidate
jammers. Our numerical results showed that the knowledge
of encryption can significantly improve the transmission rate
compared to the case that the encryption is ignored.
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