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ABSTRACT

Cyberinfrastructure (CI) systems employing composable ap-
proaches give researchers the capability to define resources best
suited to meet the needs of their computational workflows. Among
these approaches, composing disaggregated computing resources
over a software-defined network offers the promise of supporting
workloads requiring dynamic access to a large pool of accelerators
or memory. Much remains to be understood about the architecture-
induced constraints of this approach, and how it impacts scientific
and engineering applications software. Here, we study the per-
formance of the highly scalable open-source flow solver, PyFR,
in a GPU-based composable environment orchestrated using a
software-defined PCle Gen4 fabric. PyFR emphasizes communi-
cation between GPUs and helps understand how GPUs on disag-
gregated resources can be optimally configured for performance.
Strong-scaling and weak-scaling performance studies on composed
configurations are compared to a traditional CPU-GPU cluster with
InfiniBand interconnect. Factors affecting performance, and the
need for new benchmark suites for composable devices are dis-
cussed.
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1 INTRODUCTION

Traditional distributed architectures allocate a fixed set of comput-
ing resources such as CPUs, GPUs and memory, resulting in a rigid
configuration of resources for computing workflows. Composable
disaggregated infrastructure (CDI) is a powerful approach where
a pool of resources, such as compute, memory, accelerators and
networking can be allocated to meet the requirements of a research
workload. These allocated resources are commonly referred to as
“configurations” that can be composed in advance (cold composed)
or on-demand (dynamically composed). Such capabilities make
composability attractive for research applications that can scale
to several GPUs and thousands of cores on advanced cyberinfras-
tructure resources [1, 2]. Benchmarking the scalability of code on
high performance computing (HPC) systems offers opportunities
to test the usability of these systems, improve the code perfor-
mance and optimize workflows [3]. Since CDIs can be composed
into computing resources in different ways, i.e. the same number
of accelerators can be used in different ways, we take configura-
tions into consideration as we benchmark scalability of application
software.

To accurately understand the impact of configurations, it is im-
portant to find a workload that is scalable across CPUs and GPUs,
moves data to test the interconnects, and offers opportunities to con-
trast against traditional heterogeneous GPU-enabled HPC topolo-
gies connected over InfiniBand. PyFR, an open-source Python-based
Computational Fluid Dynamics (CFD) solver employs high-order
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Flux Reconstruction technique for solving fluid flow problems on
streaming architectures. It efficiently operates on high-performance
computing clusters by utilizing distributed memory parallelism
through the Message Passing Interface (MPI) and maximizing the
overlap of communication and computation. Scalability is achieved
by implementing persistent, point-to-point (P2P), non-blocking
MPI requests and organizing kernel calls in a manner that enables
rank-local computations while exchanging ghost states [4]. PyFR
effectively leverages low-latency inter-GPU communication and
is seen to be capable of strong-scaling on unstructured grids [5],
making it a suitable choice for benchmarking purposes.

A commonly used benchmarking test case is the Taylor—Green
Vortex (TGV) breakdown simulation, a scalable flow problem that is
typically used to test for the stability and accuracy of flow schemes
and models [7, 8]. The case is particularly significant for benchmark-
ing due to its ability to highlight turbulence scales and properties
in a simulation with simple grid and flow initial conditions [9].
With strong-scaling up to 18,000 NVIDIA K20X GPUs of Titan,
PyFR was among the finalists in the ACM Gordon Bell Prize for
High-Performance Computing [6], which highlights its exceptional
performance. The current study performs benchmarking studies by
strong-scaling and weak-scaling the TGV breakdown simulation
using PyFR on a CDI cluster and a traditionally designed distributed
cluster, and compares various configurations of NVIDIA A100 GPUs
on both the clusters.

2 METHOD

This study employs the PyFR 1.15.0 flow solver to simulate the TGV
breakdown case. All essential libraries, build instructions used to
set up PyFR, and relevant case files are made available [10]. Perfor-
mance of CFD simulations is heavily influenced by the hardware it
is executed on. The current work utilizes NVIDIA A100 GPUs with
40 GB internal memory. These GPUs can efficiently perform double
precision computations and have 40-80 GB of internal memory,
both of which are often required to perform large scale reliable and
accurate CFD simulations. As such, they make good candidates for
a scalability study.

The compressible form of Navier-Stokes Equations is solved
numerically at each degree of freedom at each time-step. Flow-field
variables are evaluated at every time-step by marching in physical
time as per the equation given below:

v
i V- f(v, Vo)

Here v is a vector of the five flow-field variables and f is the flux
of field variables. Flow simulation domain is a cube with dimensions
[0, 277]® with periodic boundary conditions along each of the three
coordinate axes (x, y, z). Simulation was performed at a Reynolds
number of Re = 1600 with initial conditions:
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where {P, u, v, p} are the five field variables. R, T and U are de-
termined such that Mach number is 0.1, and the reference length
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scale L = 1. The domain was discretized into regular hexahedral ele-
ments with (p + 1) = 64 degrees of freedom (DoF) in each element,
where p is the order of polynomial used for the case. Performance
of the simulation on the hardware is measured as the total number
of computations performed per unit wall-time. More specifically,
performance is calculated as

M
Performance = T

where M is the number of computations performed in 10000 time
steps and T is the wall-time (in seconds) taken for the simulation
to run the same number of time steps. Performance is calculated in
Giga Degrees of Freedom per second (GDoF/s).

Strong-scaling tests were performed on a single NVIDIA A100
GPU with the TGV simulation on PyFR. Mesh size was increased
from 183 to 1923 DoF while maintaining the simulation’s config-
uration. This increased the workload on the GPU as described in
Figure 1. GPU performance is consistent above a mesh size of 483
DoF at around 2.66+0.12 GDoF/s. Thus, all multi-GPU scaling tests
were performed with a minimum load of at least 48> DoF on each
GPU.

2.1 Scaling across multiple GPUs

Scaling simulations were performed on the FASTER [11] and Grace
[12] clusters as described in Table 1. FASTER is a 184 node Intel
Ice Lake (Xeon 8352Y) composable cluster on which NVIDIA A100
GPUs are composed onto single nodes using the Liqid PCIe Gen4
software-defined Fabric. Grace is a 940-node heterogeneous cluster
with Intel Cascade Lake (Xeon 6248R) processors and a variety of
NVIDIA GPUs. On Grace, 2 NVIDIA A100 GPUs were available
on each node. Both Grace and FASTER use the NVIDIA (Mellanox)
HDR100 interconnects to connect servers and the Lustre parallel
file system. System administrators manually composed the GPUs
on to the FASTER nodes as per the needs of the authors. The Liqid
Command Center was used for composing the GPUs to the nodes. A
GPU enabled version of the HPL LINPACK test from NVIDIA’s HPC
benchmark container from NGC [13] was run as a sanity check for
the composed GPUs. P2P communication between NVIDIA GPUs
was leveraged with the CUDA-aware MPI extension available in
MPI 4.1.4, thereby bypassing the need for intermediate host buffers.
Unless explicitly mentioned, CUDA-aware MPI was enabled for
all simulations. Cubic meshes of required sizes for each of the
scaling tests were generated [14] and partitioning of the mesh was
outsourced to METIS software [15] to assign computation load to
multiple GPUs. Preliminary tests showed that the standard error
in mean wall-time per physical time-unit was well below 1% for
all simulations and negligibly small differences were found with
consecutive runs of the same simulation.

2.2 Strong-scaling

Strong-scaling tests were performed on FASTER-IN and Grace-8N
configurations. Three meshes were created as given in Table 1. The
mesh for each simulation was divided into partitions that equaled
the number of GPUs used.

Strong-scaling test results for each of the three meshes are given
in Figure 2. In absence of overheads in inter-GPU communication,
strong-scaling of simulations would give a proportional relationship
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Figure 1: Strong-scaling performance tests on a single GPU. The yellow-marked bars and blue-marked bars correspond to
sub-optimal and optimal performance on the A100 GPU with varying computational loads.

Table 1: A comparison between three configurations used for benchmarking, with the naming convention: [Cluster]-[no. of
nodes]N. All configurations consisted of 16 NVIDIA A100 GPUs with 40 GB internal memory.

Configuration Nodes  GPUs connected to node Node-GPU connection Inter-node connection
FASTER-IN 1 16 Liqid PCIe Gen4 fabric None (only one node)
FASTER-4N 4 4 Liqid PCIe Gen4 fabric InfiniBand

Grace-8N 8 2 Direct connection via PCle slots InfiniBand

Table 2: Six sets of meshes created and partitioned to perform all scaling simulations.

Scaling test Mesh set Number of meshes in set Partitions performed on each mesh Computation load
M1 1 9 128% DoF
Strong-scaling M2 1 9 256> DoF
M3 1 8 5123 DoF

G1 9 1 ~ 128° DoF/GPU

Weak-scaling G2 9 1 ~ 256 DoF/GPU

G3 9 1 ~ 3843 DoF/GPU

“The 512° DoF mesh fit across multiple GPUs but not within a single GPU due to its 40 GB memory limitation.
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Figure 2: Strong-scaling tests performed on FASTER-1IN and Grace-8N on up to 16 NVIDIA A100 GPUs. Figure 2(a): M1 mesh set,
Figure 2(b): M2 mesh set, Figure 2(c): M3 mesh set.

between performance and number of GPUs used. When strong- strong-scaling and 80% efficiency strong-scaling, which were plot-
scaling simulations an 80% strong-scale performance efficiency ted in Figure 2 for reference.

in simulations is usually considered an acceptable trade-off [16].

Single-GPU performance was extrapolated to determine the ideal
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Figure 3(b)
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Figure 3: Weak-scaling tests performed on multiple configurations on up to 16 GPUs. CaM: CUDA-aware MPL. Figure 3(a): Tests
on G3 mesh set on FASTER-1N, FASTER-4N and Grace-8N with CUDA-aware MPI enabled. Performance of FASTER-1N was
verified by switching to a different node. Figure 3(b): G1, G2 and G3 mesh sets on FASTER-1N with CUDA-aware MPI enabled

and disabled.

2.3 Weak-scaling

Weak-scaling tests were conducted on three different sets of meshes
G1, G2 and G3 described in Table 2. Meshes were created and
partitioned such that computation load per GPU remains uniform
in each mesh set. Simulations were performed on two composed
configurations on FASTER: FASTER-IN and FASTER-4N. A study
was performed on Grace (Grace-8N) to establish benchmark. To
further verify the performance of FASTER-1N configuration, weak-
scaling simulations for G3 mesh set were performed on a different
node. Additionally, the impact of enabling CUDA-aware MPI was
also investigated by running with FASTER-1IN configuration with
CUDA-aware MPI enabled and disabled.

3 RESULTS AND DISCUSSION

Strong-scaling and weak-scaling tests were conducted and com-
pared on multiple configurations on FASTER and Grace. Strong-
scaling tests run on 1-2 GPUs on FASTER-IN and Grace-8N
achieved 98.4% efficiency, with the relative performance difference
between the clusters below 0.5%. Tests using 4-12 GPUs on FASTER-
1N were seen to consistently perform better than Grace-8N, with
the largest relative performance difference of about 1029% observed
for M1 mesh strong-scaling simulations at 12 GPUs. Also, with
increasing mesh size, the relative performance improvement of
FASTER-1N over Grace-8N decreased. Most simulations performed
on 12-16 GPUs found the performance of both FASTER-1N and
Grace-8N configurations starting to fluctuate with increasing GPU
count. Simulations performed on FASTER-1N with more than 12
GPUs and particularly in the case of those performed on the M3
mesh saw a sharp drop in performance by up to ~70% relative to
the Grace-8N configuration.

Weak-scaling tests performed on three configurations further
exposed the performance drop in large mesh simulations. The tests
performed on G3 set of meshes on FASTER-1IN were performed
on two different nodes to find a trend of abrupt decrease in per-
formance for the simulations weak-scaled to 10, 14 and 16 GPUs.

No such drop in performance was observed for FASTER-4N and
Grace-8N configurations, suggesting that the source of the perfor-
mance in FASTER-IN may be due to its high GPU-to-node ratio.
The weak-scaling test results obtained on FASTER-IN revealed that,
although most tests favored enabling CUDA-aware MPI, those that
employed more than 8 GPUs on a single node did not consistently
exhibit this advantage over different numbers of GPUs. This finding
was unexpected, as enabling P2P communication between GPUs
was anticipated to yield better performance compared to transfer-
ring memory between GPUs using an intermediate buffer in the
node memory. A GPU benchmarking test code was run [17], and
the test results revealed bidirectional bandwidth between different
GPUs was 30.5+7.3 GB/s with P2P communication enabled and
14.2+0.6 GB/s with P2P communication disabled [8]. Given the su-
perior bandwidth between GPUs with P2P communication enabled,
implementing CUDA-aware MPI in PyFR was expected to leverage
this P2P communication between GPUs, ultimately leading to a
more efficient simulation process. Thus, there was an unexpected
lack in performance benefits when CUDA-aware MPI was enabled
in some simulations using more than 12 GPUs composed on to one
node.

Finally, the benchmarking tests were compared with other bench-
marking tests performed on FASTER. The Hovorod Tensorflow
Resnet50 model showed good linear scaling behaviour on the
FASTER composable up to 20 GPUs connected to a node [19].
In tests performed with a molecular dynamics software suite,
LAAMPS, showed an unsteady performance for larger than 8
NVIDIA A100 GPUs connected to a node for one of the three strong-
scaling tests [18]. In comparison with these other benchmarking
tests, our tests with PyFR showed variance in performance that
were not picked up by traditional benchmarking suites like HPL,
suggesting that while traditional infrastructure can effectively sup-
port the functionalities required for efficient execution of the flow
solver, composable infrastructure sometimes has issues doing so
for larger than 8 GPUs connected to a node. We hypothesize that
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PyFR’s persistent, point-to-point (P2P), non-blocking MPI commu-
nication between multiple GPUs may not be fully actualized within
a composable infrastructure context. As part of our future work,
we aim to explore the specific aspects of PyFR contributing to this
performance drop in composable infrastructure. Upon understand-
ing these factors, we can develop tailored benchmarking suites to
address the efficacy of this feature in the cluster.

4 CONCLUSION

In this study, we performed strong-scaling and weak-scaling tests
on composable disaggregated infrastructure with TGV breakdown
simulations on PyFR, benchmarking the performance of nodes com-
posed with 16 NVIDIA A100 GPUs. Our findings suggest that while
performance of PyFR on composable infrastructure aligned with
that of traditional infrastructure when running with fewer than
8 GPUs, spurious performance drops occurred when scaling sim-
ulations to large number of GPUs, particularly when PyFR was
configured with CUDA-aware MPI enabled. Furthermore, standard
benchmarking tests failed to uncover these issues, highlighting the
need for new benchmarks tailored for composable infrastructure.
Our future work will focus on understanding the specific PyFR
features contributing to this performance drop, with the goal of
developing specialized benchmarking suites for this novel infras-
tructure type.
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