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Summary

A general, rectangular kernel matrix may be defined as Kij = 𝜅(xi, yj) where

𝜅(x, y) is a kernel function and where X = {xi}
m
i=1

and Y = {yi}
n
i=1

are two sets

of points. In this paper, we seek a low-rank approximation to a kernel matrix

where the sets of points X and Y are large and are arbitrarily distributed, such as

away from each other, “intermingled”, identical, and so forth. Such rectangular

kernel matrices may arise, for example, in Gaussian process regression where X

corresponds to the training data and Y corresponds to the test data. In this case,

the points are often high-dimensional. Since the point sets are large, we must

exploit the fact that the matrix arises from a kernel function, and avoid forming

thematrix, and thus ruling out most algebraic techniques. In particular, we seek

methods that can scale linearly or nearly linearly with respect to the size of data

for a fixed approximation rank. The main idea in this paper is to geometrically

select appropriate subsets of points to construct a low rank approximation. An

analysis in this paper guides how this selection should be performed.
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1 INTRODUCTION

Given a function 𝜅(x, y) and two sets of points X = {xi}
m
i=1

and Y = {yi}
n
i=1
, them-by-nmatrix with entries

Kij = 𝜅(xi, yj), xi ∈ X , yj ∈ Y (1)

and denoted by KXY is called a kernel matrix and 𝜅(x, y) is called a kernel function. Kernel matrices associated with var-

ious kernel functions arise in diverse computations such as those involving integral equations,1-5 N-body simulations,6,7

Gaussian processes,8,9 and others.10-14

One frequently encounters the problem of finding a low-rank factorization, exactly or approximately, of a kernel

matrix. We first note that algebraic techniques such as the singular value decomposition and some pseudoskeleton15-18

and CUR decompositions19,20 do not take advantage of the fact that a matrix is a kernel matrix. We further note that

when the kernel function 𝜅(x, y) is smooth (but possibly singular at x = y) and the datasets X ,Y are well-separated, then

the corresponding kernel matrix KXY generally has low numerical rank and there exists a variety of efficient methods

for finding the low-rank approximation (e.g., degenerate approximations of the kernel function4,7,21-25 and proxy point

methods26,27).

Numer Linear Algebra Appl. 2023;e2519. wileyonlinelibrary.com/journal/nla © 2023 John Wiley & Sons, Ltd. 1 of 26
https://doi.org/10.1002/nla.2519



2 of 26 CAI et al.

In this paper, we seek a low-rank approximation to a kernel matrix where the sets of points X and Y are large and

are arbitrarily distributed, such as away from each other, “intermingled”, identical, and so forth. Since the point sets are

large, wemust exploit the fact that thematrix arises from a kernel function, and avoid forming thematrix, and thus ruling

out most algebraic techniques. In particular, we seek methods that can scale linearly or nearly linearly for a fixed rank.

Such kernel matrices arise, for example, in Gaussian process regression where X corresponds to the training data and Y

corresponds to the test data. In this case, the points are often high-dimensional, which also rules out the use of any existing

methods (e.g., degenerate approximations and proxy point methods) that are limited by the curse of dimensionality.

An existing method called adaptive cross approximation (ACA)28,29 is often suitable for our case. ACA scales linearly

with the number of points. ACA corresponds to a pivoted partial LU factorization and only needs to compute matrix

elements used in the partial factorization. However, ACA may fail in some circumstances since it does not perform full

pivoting.30,31 We will numerically compare our proposed method to ACA later in this paper.

The main idea in this paper is to geometrically select a subset of points S1 in X and/or a subset of points S2 in Y to

construct a low rank approximation. An analysis in this paper guides how this selection should be performed.

We analyze the use of these subsets of points to construct two forms of low-rank factorizations. The first is a two-sided

form:

KXY ≈ KXS2K
+
S1S2

KS1Y , S1 ⊆ X , S2 ⊆ Y , (2)

whereK+
S1S2

denotes the pseudoinverse ofKS1S2 . This form is aCURdecomposition, except thatwewill treatKXY as a kernel

matrix. Note that this form is similar to that of a Nyström factorization, except that a Nyström factorization32 expects the

kernel matrix to be symmetric, with Y = X , since eigenvalues of the kernel matrix are implicitly being approximated in

the Nyström factorization. The matrix KXY in (2) is rectangular in general.

The second form of low-rank factorization that we study is the one-sided form of the interpolative

decomposition:33

KXY ≈ UKY , U = P

[
I

G

]
, (3)

where  ⊆ X , P is a permutationmatrix, I is an identitymatrix andG is a general densematrix. This form can be computed

algebraically using the strong rank-revealing QR factorization34 with the property that the max-norm of G is bounded

by a prescribed constant larger than 1. However, this algebraic factorization requires the entire matrix KXY to be formed

explicitly.

Instead, it is common to algebraically compute the interpolative decomposition of the smaller matrix

KXS2 ≈ UKS2 , U = P

[
I

G

]
, (4)

where S2 ⊆ Y or S2 is an entirely different set of points altogether, and then use U and  computed in (4) for

the approximation (3). Examples of this approach can be found in References 26,30,31. In these approaches, the

choice of S2 is made analytically (e.g., Chebyshev points30,31 or proxy surface points26) or algebraically (e.g., ACA).30

In this paper, for the one-sided approximation (3), we will analyze a geometric choice of the subset S2. After

S2 is chosen, the subset  is selected by the algebraic interpolative decomposition via strong rank-revealing QR

factorization.

Low-rank methods based on subset selection are useful in improving the scalability of Gaussian process, often under

the name of “sparse Gaussian process”(cf. References 35-37), where “sparse” refers to the fact that the selected subsets,

for example, S1, S2 in (2), are much smaller than (thus sparsely distributed in) the original data sets. Thus one application

of the paper is the design of scalable Gaussian process.

This paper will show that the low-rank approximation error in the maximum norm depends on the quantities 𝛿X ,S1
and/or 𝛿Y ,S2 , where

𝛿Z,S ∶= max
x∈Z

dist(x, S)
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measures the closeness between Z and S. In order for 𝛿X ,S1 (or 𝛿Y ,S2) to be small, points in S1 (or S2) should be close to as

many points in X (or Y ) as possible. This implies that selecting sample points that are evenly distributed over the entire

dataset can yield better approximations than, for example, choosing clustered points in small regions that fail to capture

the geometry of the entire dataset. A similar geometric selection can be used in a version of skeletonized interpolation38

but has only been studied in the case of well-separated sets of points.

Several known methods can be used to select O(1) sample points that are evenly distributed over a dataset with a

complexity that scales linearlywith the size of the dataset. For example, farthest point sampling (FPS)39 constructs a subset

S of X by first initializing S with one point and then sequentially adding the point in X not in S that is farthest from the

current points in S. The complexity for selecting r samples from n points in Rd is O(dr2n). FPS produces highly evenly

distributed samples and is often used in mesh generation,40 computer graphics,41 and so forth, but primarily where the

data are at most three dimensional. It has not previously been used for the low-rank compression of matrices or applied to

high dimensional datasets. Computationally, for high dimensional datasets, FPS can be potentially slow in practice due to

its sequential nature. One can combine FPS with uniform random sampling for faster speed, for example, by generating

approximately 20% of samples using FPS and 80% using uniform random sampling. As will be shown in Section 4.2, the

resulting mixed method tends to yield an approximation that is less accurate than FPS and more accurate than random

sampling.

Another method for selecting evenly distributed sample points is the anchor net method.42 This method was proposed

for the efficient generation of landmark points for Nyström approximations such that the resulting approximation is

accurate and numerically stable. It leverages discrepancy theory to generate evenly-spaced samples and was shown in42

to achieve better accuracy and robustness than uniform random sampling and k-means clustering for low-rank approx-

imations. The anchor net method has the optimal complexity O(drn) for selecting r points from n points in Rd and is

efficient for a wide range of problems from low to high dimensions. However, the anchor net method has only been used

for approximating symmetric kernel matrices and its performance for approximating general rectangular kernel matrices

is as yet unknown.

Figure 1 shows the 100 samples obtained from FPS and the anchor net method for a highly irregular dataset in two

dimensions. Results for uniform random sampling is also shown,which does not generally produce a uniformdistribution

of points over the data.

In summary, we seek a linear or nearly linear complexity low-rank factorization approach for kernel matrices where

the points may be intermingled and the points may be high-dimensional. Some low-rank approximation techniques are

matrix-based (e.g., ACA) and don’t rely on knowing the specific kernel function or sets of points, except for assuming

that the kernel function is smooth and gives rise to a kernel matrix KXY that is low rank. Other techniques only need

knowledge of the kernel function and bounding boxes for the sets of points, and do not depend on the points themselves

when selecting the set S2 in (4), for example. The method we propose is based on the sets X and Y and is independent

of the kernel function. We thus call our method a data-driven method. By choosing S2 to be existing points rather than

a new set of points that sample possibly high-dimensional space, the data-driven method is not limited by the curse of

dimensionality.

Our proposedmethod relies on the geometric selection of the subsets S1 ⊆ X and/or S2 ⊆ Y . We address the following

questions: (1) how does the data selection affect the low-rank approximation error? (2) given two subsets with equal

numbers of points, how can one tell which one leads to amore accurate low-rank approximation? (3) how can one perform

the desired data selection efficiently?
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(a) Pony dataset
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(b) Uniform random sampling
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(c) Farthest point sampling
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(d) Anchor net method

F IGURE 1 Different geometric selection schemes for the Pony dataset.
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The rest of the paper is organized as follows. Section 2 proposes the data-driven approach for efficiently computing the

two-sided factorization (2). Section 3 similarly considers the one-sided factorization (3). We will show that the one-sided

factorization is more stable than the two-sided factorization. The two-sided factorization, however, is slightly cheaper

to compute than the one-sided factorization. The results of numerical experiments are presented in Section 4, and a

conclusion given in Section 5. Unless otherwise stated, all norms used in this paper are the 2-norm, denoted by || ⋅ ||. The
Euclidean distance between x, y ∈ Rd is denoted by |x − y|.

2 TWO-SIDED LOW-RANK KERNEL MATRIX APPROXIMATION

This section analyzes the data-driven geometric approach for the two-sided low-rank approximation (2).

2.1 Algorithm

The two-sided factorization (2) can be computed immediately once the subsets S1 ⊆ X and S2 ⊆ Y are determined.

The subsets can be computed in linear time with suitable geometric selection schemes. The full algorithm is given in

Algorithm 1. Depending on the specific geometric selection scheme, the total complexity of Algorithm 1 is O(dr(m + n))

for uniform random sampling and the anchor net method, or O(dr2(m + n)) for farthest point sampling, where r =

max(r1, r2) denotes the maximum sample size. The choice of subsets has a strong impact on the low-rank approximation

accuracy, robustness of the algorithm, as well as numerical stability, and thus the subset has to be chosen judiciously. The-

oretical guidance on geometric selection is provided in Section 2.2 via analyzing the approximation error of the two-sided

factorization. Experiments in Section 4.2 show that different geometric selections can yield dramatically different results

for approximating the kernel matrix, with FPS and the anchor net method yielding the best results, which is consistent

with our analysis.

Algorithm 1. Data-driven two-sided compression of KXY with two sets of points X ,Y

Input: Datasets X = {x1,… , xm}, Y = {y1,… , yn} ⊂ Rd, kernel function 𝜅, numbers of sample points r1, r2 for X ,Y ,

respectively

Output: Approximation KXY ≈ KXS2K
+
S1S2

KS1Y with card(S1) = r1, card(S2) = r2

Apply a linear complexity geometric selection algorithm to X and Y to generate r1 and r2 samples S1 ⊆ X and S2 ⊆ Y ,

respectively

Return KXS2 ,KS1S2 ,KS1Y

2.2 Error analysis for two-sided approximation

The goal of this section is to derive an error estimate of the two-sided approximation that is able to provide a straightfor-

ward geometric understanding of how the subsets S1, S2 affect the approximation accuracy. This analysis is independent of

how the subsets S1, S2 are selected inAlgorithm1. To prepare for the derivation of the geometric estimates, in Section 2.2.1,

we derive error bounds involving only submatrices of KXY . The geometric estimates are presented in Section 2.2.2.

2.2.1 Algebraic preparation

In order to estimate for the approximation error of (2) for arbitrary subsets S1 ⊆ X and S2 ⊆ Y , we first review one lemma

from [ 42, Lemma 3.1], which is stated below.

Lemma 1. Assume A is an m-by-n matrix, 𝛼, 𝛼̂ are m-by-1 vectors and 𝛽, 𝛽 are n-by-1 vectors. Define 𝜖1(u) ∶=

||𝛼̂ − 𝛼|| and 𝜖2 ∶= ||𝛽 − 𝛽||. Then

|𝛼̂TA𝛽 − 𝛼TA𝛽| ≤ ||𝛼TA|| ⋅ 𝜖2 + ||A𝛽|| ⋅ 𝜖1(u) + ||A|| ⋅ 𝜖1(u)𝜖2. (5)
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In the next theorem, we derive the estimate for the entrywise approximation error of (2) at an arbitrary pair of points

(x, y). This can be viewed as an error estimate for the “algebraic” separable approximation to the kernel function 𝜅(x, y).

Theorem 1. Consider finite sets X ,Y ⊂ Rd and a kernel function 𝜅(x, y) defined on X × Y . For any non-empty

subsets S1 ⊆ X and S2 ⊆ Y , the entrywise error of the approximation in (2) satisfies

|𝜅(x, y) − KxS2K
+
S1S2

KS1y| ≤ min
u∈S1
v∈S2

(
|𝜅(x, y) − 𝜅(u, v)| + 𝜖1(u) + 𝜖2(v) + ||K+

S1S2
||𝜖1(u)𝜖2(v)

)
, (6)

where 𝜖1(u) = ||KxS2 − KuS2 || and 𝜖2(v) = ||KS1y − KS1v||.

Proof. Since KS1S2K
+
S1S2

KS1S2 = KS1S2 , we have ∀u ∈ S1, v ∈ S2

𝜅(u, v) = KuS2K
+
S1S2

KS1v. (7)

For any x ∈ X , y ∈ Y , u ∈ S1, v ∈ S2, define the column vectors

𝛼 ∶= KT
uS2

, 𝛼̂ ∶= KT
xS2

, 𝛽 ∶= KS1v, 𝛽 ∶= KS1y.

Then it is easy to see that 𝜖1(u) = ||𝛼̂ − 𝛼|| and 𝜖2(v) = ||𝛽 − 𝛽||. With (7), we obtain

𝜅(x, y) − KxS2K
+
S1S2

KS1y = 𝜅(x, y) − 𝛼̂
TK+

S1S2
𝛽 = (𝜅(x, y) − 𝜅(u, v)) +

(
𝛼TK+

S1S2
𝛽 − 𝛼̂

TK+
S1S2

𝛽

)
, (8)

for any u ∈ S1, v ∈ S2. According to Lemma 1, we get

|||𝛼̂
TK+

S1S2
𝛽 − 𝛼TK+

S1S2
𝛽
||| ≤

‖‖‖𝛼
TK+

S1S2

‖‖‖𝜖2(v) +
‖‖‖K

+
S1S2

𝛽
‖‖‖𝜖1(u) +

‖‖‖K
+
S1S2

‖‖‖𝜖1(u)𝜖2(v)
≤ 𝜖2(v) + 𝜖1(u) +

‖‖‖K
+
S1S2

‖‖‖𝜖1(u)𝜖2(v). (9)

The last inequality in (9) follows from the fact that 𝛼TK+
S1S2

= KuS2K
+
S1S2

is a row in KS1S2K
+
S1S2

and K+
S1S2

𝛽 =

K+
S1S2

KS1v is a column in K
+
S1S2

KS1S2 , and meanwhile

‖‖‖KS1S2K
+
S1S2

‖‖‖ =
‖‖‖K

+
S1S2

KS1S2
‖‖‖ = 1.

We see from (8) to (9) that

|||𝜅(x, y) − 𝛼̂
TK+

S1S2
𝛽
||| ≤

|||𝜅(x, y) − 𝜅(u, v)
||| + 𝜖1(u) + 𝜖2(v) +

‖‖‖K
+
S1S2

‖‖‖𝜖1(u)𝜖2(v), ∀u ∈ S1, v ∈ S2. (10)

Minimizing the upper bound in (10) over all u ∈ S1, v ∈ S2 yields (6), which completes the proof. ▪

The entrywise estimate in Theorem 1 immediately leads to a matrix max norm estimate, which is proved in the next

theorem.

Theorem 2. Consider finite sets X ,Y ⊂ Rd and kernel function 𝜅(x, y) defined on X × Y . For any non-empty

subsets S1 ⊆ X and S2 ⊆ Y , denote by  = X × Y ,  = S1 × S2. Then the approximation in (2) satisfies the

following estimate

‖‖‖KXY − KXS2K
+
S1S2

KS1Y
‖‖‖max ≤ max

x∈X

y∈Y

min
u∈S1
v∈S2

(
|𝜅(x, y) − 𝜅(u, v)| + 𝜖1(u) + 𝜖2(v) +

‖‖‖K
+
S1S2

‖‖‖𝜖1(u)𝜖2(v)
)
, (11)

where 𝜖1(u) =
‖‖‖KxS2 − KuS2

‖‖‖ and 𝜖2(v) =
‖‖‖KS1y − KS1v

‖‖‖.

Proof. Taking maximum of both sides of (6) over x ∈ X , y ∈ Y yields (11). ▪
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Assuming 𝜅 is Lipschitz continuous, Theorems 1 and 2 imply that the bounds will be small if for any point x ∈ X there

is a point u ∈ S1 nearby and for any point y ∈ Y there is a point v ∈ S2 nearby. As a result, Theorems 1 and 2 indicate that

S1 and S2 should be evenly distributed inside X and Y in order to achieve a small approximation error. This can be more

easily identified when the special case S1 = X or S2 = Y is considered.

Corollary 1. Let X ,Y ⊂ Rd be finite sets and 𝜅(x, y) be defined on X × Y . For any non-empty subsets S1 ⊆ X

and S2 ⊆ Y , the following estimates hold

‖‖‖KXY − Q|
XS2
KXY

‖‖‖max ≤ max
x∈X

y∈Y

min
v∈S2

(|𝜅(x, y) − 𝜅(x, v)| + ||KXy − KXv||) ,
‖‖‖KXY − KXYQ

−
S1Y

‖‖‖max ≤ max
x∈X

y∈Y

min
u∈S1

(|𝜅(x, y) − 𝜅(u, y)| + ||KxY − KuY ||) , (12)

where Q|
XS2

∶= KXS2K
+
XS2
, Q−

S1Y
∶= K+

S1Y
KS1Y .

Proof. We only show the first inequality in (12) and the second one can be proved in a similar fashion. Note

that the first inequality in (12) is a special case of (11) with S1 = X . In this case, in the upper bound of (11),

the minimum over u ∈ X is no greater than the value achieved by choosing u = x. Hence we see that if S1 = X

and u = x, then 𝜖1 = ||KxS2 − KxS2 || = 0 and (11) becomes

‖‖‖KXY − Q|
XS2
KXY

‖‖‖max ≤ max
x∈X

y∈Y

min
v∈S2

(
|𝜅(x, y) − 𝜅(x, v)| + ‖‖‖KXy − KXv

‖‖‖
)
,

which is the first inequality in (11). ▪

Assuming 𝜅 is Lipschitz continuous, Corollary 1 further reveals the interconnection between the approximation accu-

racy and the geometry of sample points. Algebraically, ||KXY − Q|
XS2
KXY ||max and ||KXY − KXYQ

−
S1Y

||max measure how well

KXS2 and KS1Y capture the column and row spaces of KXY , respectively. Geometrically, the bound on the right-hand side

of (12) will be small if S1 and S2 are able to capture the global geometry of X and Y , respectively.

2.2.2 Geometric estimates

In the following, we reveal the geometric implication of the error bounds in Theorem2 andCorollary 1with the help of the

so-called discrete Lipschitz constant as defined below. It is used to derive new error bounds that give amore straightforward

interpretation of how the sets of landmark points S1 and S2 affect the accuracy of the approximationKXY ≈ KXS1K
+
S1S2

KS1Y .

Definition 1 (Discrete Lipschitz constant). Let 𝜅(x, y) be a function defined on X × Y . Denote = Z1 × Z2,

 = S1 × S2,W1 ×W2 as three non-empty subsets of X × Y . The discrete Lipschitz constants of 𝜅 associated

with these three subsets are defined by

L(,) ∶= min{C ∶ |𝜅(x, y) − 𝜅(u, v)|2 ≤ C2(|x − u|2 + |y − v|2) ∀(x, y) ∈ , (u, v) ∈ },

L(Z2, S2)W1
∶= min{C ∶ |𝜅(x, y) − 𝜅(x, v)|2 ≤ C2|y − v|2 ∀x ∈ W1, y ∈ Z2, v ∈ S2},

L(Z1, S1)W2
∶= min{C ∶ |𝜅(x, y) − 𝜅(u, y)|2 ≤ C2|x − u|2 ∀y ∈ W2, x ∈ Z1,u ∈ S1}. (13)

Since X ,Y are finite sets, each minimum in (13) exists. Note that in general L(,) is not the Lipschitz constant of 𝜅

since we do not assume 𝜅 to be Lipschitz continuous or even defined outside X × Y . If 𝜅(x, y) is Lipschitz continuous in

a region containing X × Y with Lipschitz constant L, then it is easy to see that L(,) ≤ L, as stated in Proposition 1.

Proposition 1. Let 𝜅(x, y) be a Lipschitz continuous function on a domain D1 × D2 with Lipschitz constant L.

For any discrete subset X × Y ⊂ D1 × D2, the discrete Lipschitz constants defined in (13) are all smaller than or

equal to L.

The discrete Lipschitz constants are introduced to make the result derived in this section applicable to general kernel

functions with as few constraints as possible. In many applications, the kernel functions are actually not only Lipschitz

continuous but also smooth in the domain of interest. Hence it is sufficient to use the Lipschitz constant. For example, in

 1
0

9
9

1
5

0
6

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/n

la.2
5

1
9

 b
y

 E
m

o
ry

 U
n

iv
ersitaet W

o
o

d
ru

ff L
ib

r, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
8

/0
9

/2
0

2
3

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



CAI et al. 7 of 26

machine learning and statistics, the Gaussian kernel exp
(
−

|x−y|2
𝜎2

)
is smooth; radial basis functions like

√
1 + |x − y|2 and

(1 + |x − y|2)−1∕2 are smooth; in potential theory, kernels like 1

|x−y| are smooth inD1 × D2 with well-separated domainsD1

and D2, which is a key assumption in the fast multipole method4,7,23 and hierarchical matrices in general.11,28,43,44

Using the discrete Lipschitz constant, we can show in the following that the low-rank approximation error bound

depends on the geometric quantity

𝛿Z,S ∶= max
x∈Z

dist(x, S) S ⊆ Z. (14)

The quantity 𝛿Z,Smeasures the closeness between Z and S. The smaller 𝛿Z,S is, the “closer” S is to Z. In fact, if 𝛿Z,S is small,

then for any x ∈ Z, there exists a point in S that is close to x.

We can now derive an error bound for (2) in terms of the geometric quantities 𝛿X ,S1 , 𝛿Y ,S2 for subsets S1 ⊆ X , S2 ⊆ Y ,

respectively. The result is stated in Theorem 3.

Theorem 3. Let X ,Y ⊂ Rd be finite sets and 𝜅(x, y) be a function defined on X × Y . For any non-empty subsets

S1 ⊆ X and S2 ⊆ Y , define  = X × Y ,  = S1 × S2. Then the following estimate holds

‖‖‖KXY − KXS2K
+
S1S2

KS1Y
‖‖‖max ≤ C1𝛿X ,S1 + C2𝛿Y ,S2 + C3𝛿X ,S1𝛿Y ,S2 ,

where

C1 = L( ,) +
√
r2L(X , S1)S2 ,

C2 = L( ,) +
√
r1L(Y , S2)S1 ,

C3 =
‖‖‖K

+
S1S2

‖‖‖
√
r1r2L(X , S1)S2L(Y , S2)S1 , (15)

with ri = card(Si). Furthermore, if 𝜅(x, y) is Lipschitz continuous over D1 × D2 containing X × Y with Lipschitz

constant L, then

‖‖‖KXY − KXS2K
+
S1S2

KS1Y
‖‖‖max ≤ (1 +

√
r2)L𝛿X ,S1 + (1 +

√
r1)L𝛿Y ,S2 +

‖‖‖K
+
S1S2

‖‖‖
√
r1r2L

2𝛿X ,S1𝛿Y ,S2 .

Proof. The result can be proved using Theorem 2 and the definition in (13). First we estimate the terms in the

upper bound in Theorem 2. The definition of Lipschitz constants in (13) implies that

|𝜅(x, y) − 𝜅(u, v)| ≤ L( ,)
(|x − u|2 + |y − v|2)1∕2 ≤ L( ,) (|x − u| + |y − v|) ,

𝜖1(u) =
‖‖‖KxS2 − KuS2

‖‖‖ ≤

(∑
v∈S2

L(X , S1)
2
S2
|x − u|2

)1∕2

≤
√
r2L(X , S1)S2 |x − u|,

𝜖2(v) =
‖‖‖KS1y − KS1v

‖‖‖ ≤

(∑
u∈S1

L(Y , S2)
2
S1
|y − v|2

)1∕2

≤
√
r1L(Y , S2)S1 |y − v|. (16)

Define C1,C2,C3 as in (15). The estimates in (16), which separate (x,u) and (y, v) into different terms, allow

us to organize the upper bound in (11) in terms of |x − u| and |y − v| and deduce that

max
x∈X

y∈Y

min
u∈S1
v∈S2

(
|𝜅(x, y) − 𝜅(u, v)| + 𝜖1(u) + 𝜖2(v) +

‖‖‖K
+
S1S2

‖‖‖𝜖1(u)𝜖2(v)
)

≤ max
x∈X

y∈Y

min
u∈S1
v∈S2

(C1|x − u| + C2|y − v| + C3|x − u||y − v|)

= max
x∈X

y∈Y

(C1dist(x, S1) + C2dist(y, S2) + C3dist(x, S1)dist(y, S2))

= C1max
x∈X

dist(x, S1) + C2max
y∈Y

dist(y, S2) + C3max
x∈X

dist(x, S1)max
y∈Y

dist(y, S2)

= C1𝛿X ,S1 + C2𝛿Y ,S2 + C3𝛿X ,S1𝛿Y ,S2 .
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This, together Theorem 2, completes the proof of the first inequality. The special case where 𝜅(x, y) is Lipschitz

continuous follows immediately from the first inequality and Proposition 1. ▪

The estimate in Theorem 3 implies that in order to obtain a good approximation, S1, S2 should be chosen such that

𝛿X ,S1 , 𝛿Y ,S2 are small. Geometrically, according to the definition of 𝛿 in (14), this means that S1 and S2 should repre-

sent the geometry of X and Y as much as possible. In the context of integral equations, a recent analytical study45 also

discussed the relationship between the approximation error of adaptive cross approximation (ACA) and the selected

subsets measured by the geometric concept of fill distance (cf. Reference 46), which reflects how well the subset spans

the computational domain. Both fill distance and 𝛿 in (14) provide similar geometric interpretations of the quality

of the selected subsets, where the fill distance in [ 46, sect. 1.3]: d(Ω,X) = supy∈Ω infx∈X |y − x| is defined for contin-
uous regions Ω while 𝛿 focuses on finite sets of points. As a result, 𝛿 is always computable but fill distance is not

in general.

The error estimates derived in this section apply to any subsets S1 ⊂ X , S2 ⊂ Y , regardless of the algorithm

used to generate S1, S2. Thus when S1, S2 are poorly chosen (i.e. corresponding to poor low-rank approximation),

we expect the bounds to reflect the fact that the matrix approximation error is large. This motivates the use of

the estimates as indicators to distinguish “good” subsets and “bad” subsets, which will be investigated next in

Section 2.3.

Remark. The estimate in Theorem3 (aswell as the one in Theorem6) is derived to offer guidance to the fast and general

algorithm based on subset selection, and it is not necessarily “tight”. Since the goal is to design an algorithm with linear

(or nearly linear) complexity in time and space for computing accurate low-rank kernel matrix approximations by subset

selection, it is desirable to obtain a straightforward characterization of “good” subsets via analyzing the approximation

error, in order to inspire the algorithm design. The geometric quantity 𝛿 serves the purpose. In fact, forO(1) subsets S1, S2,

the quantities 𝛿X ,S1 , 𝛿Y ,S2 are not only easy to compute (with linear complexity in the size of X , Y ), but also consistent with

the practical result when distinguishing “good” and “bad” choices of subsets for low-rank approximation as illustrated in

the following section. Hence we see that the geometric quantity 𝛿 from the theoretical result in Theorem 3 (or Theorem 6)

leads to error indicators for subset selection.

2.3 Subset quality indicators

The error bounds in Theorems 2 and 3 are fully computable and can be used to relate the choice of subset to the low-rank

approximation error. Error bounds of this kind often arise in a posteriori error estimates for the numerical solution of

partial differential equations using adaptive mesh refinement (AMR). In AMR, an error indicator, usually a computable

term in the a posteriori error estimate, is used to indicate the quality of the numerical solution and determine whether

further refinement is needed without knowing the exact solution (cf. References 47-53). Inspired by this philosophy, in

low-rank compression methods based on geometric selection, we can use the error estimates to construct subset quality

indicators for inferring the quality of the selected subsets. For any choice of subset S1 × S2 ⊆ X × Y , we consider the

following five subset quality indicators:

indicator 1 = max
x∈X

y∈Y

min
u∈S1
v∈S2

|𝜅(x, y) − 𝜅(u, v)|, indicator 2 = max
x∈X

min
u∈S1

||KxS2 − KuS2 ||,

indicator 3 = 𝛿X ,S1 , indicator 4 = 𝛿Y ,S2 , indicator 5 =
‖‖‖K

+
S1S2

‖‖‖. (17)

The first two indicators are related to the upper bound derived in Theorem 2, while the last three indicators are from the

estimate in Theorem 3. The costs for computing the indicators are not the same. In fact, assume KXY ism-by-n and there

are O(1) points in S1 and S2. The computational complexities for the five indicators in (17) are: O(mn), O(m), O(m), O(n),

O(1), respectively. Hence in practice, it is more convenient to use the latter four indicators.

Given different choices of subsets, we present numerical experiments below to demonstrate how to use the subset

quality indicators to predict which choice is more likely to yield a better approximation without computing the exact

matrix approximation error. The results also underscore the impact of the geometry of the selected subset on the low-rank

approximation accuracy. We perform two experiments, one with a rectangular kernel matrix associated with two sets of

points and the other with a symmetric positive definite kernel matrix associated with one set of points.
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Experiment 1. We consider the approximationKXY ≈ KXS2K
+
S1S2

KS1Y . The kernel function is chosen as 𝜅(x, y) =

log |x − y| and the rectangular kernel matrix KXY is associated with X , Y (illustrated in Figure 2a), where X

contains 50 points and Y contains 100 points. We considers two choices for S1 × S2 ⊂ X × Y . Choice 1 gener-

ates points S1, S2 via random sampling from X , Y . Choice 2 chooses evenly distributes points to form S1, S2
using FPS. These subsets are shown in Figure 2c,d. To determine which choice yields the better approxima-

tion, we take the ratio of the respective indicators and compare it to the ratio of the exactmatrix approximation

errors from the two choices. Namely, we compute

ratio-indicator k =
indicator k of Choice 2

indicator k of Choice 1
, ratio-error =

matrix error of Choice 2

matrix error of Choice 1
,

where thematrix approximation error ismeasured inmax norm. If the ratio-indicator is larger than 1, then the

prediction is that Choice 1 is better. Otherwise, the prediction is that Choice 2 is better. We then compare the

indicator ratios to the ground truth: the ratio of matrix approximation errors between Choice 2 and Choice 1.
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F IGURE 2 Experiment 1: Predicting the better choice of subsets S1, S2 using subset indicators in (17).
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If the indicator ratio is consistentwith the error ratio, that is, both larger than 1 or both smaller than 1, then the

prediction based on the indicator is correct. The result is shown in Figure 2b. It is easily seen that, for different

approximation ranks, the indicator ratios and the error ratio always stay below the horizontal line y = 1.Hence

the indicators correctly predict the fact that Choice 2 of subsets yields a better low-rank approximation than

Choice 1. Furthermore, note that unlike Choice 1, the points inChoice 2 are evenly distributed over the dataset

and thus are expected to yield a better approximation according to the theoretical results in Section 2.2. ▪

Experiment 2. We consider the Gaussian kernel 𝜅(x, y) = exp(−|x − y|2∕0.09) and the symmetric approxima-
tion KXX ≈ KXSK

+
SS
KSX , where the dataset X contains 100 points as shown in Figure 3a. We follow the same

choices of subset as in Experiment 1, that is, Choice 1 selects random samples while Choice 2 selects evenly

distributed points. These two choices of subset S are shown in Figure 3c,d. We compute the same indicators

as in (17), where in this case Y = X and S2 = S1 = S. The result is shown in Figure 2b. We see that when

the approximation rank is larger than 5, all indicator ratios and the error ratio stay below the horizontal line

y = 1 simultaneously. This implies that Choice 2 yields a better approximation and the indicators give the
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F IGURE 3 Experiment 2: Predicting the better choice of subset S using subset indicators in (17).
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correct prediction. Again, we see that evenly distributed points yield a better approximation, as discussed in

Section 2.2. ▪

3 ONE-SIDED LOW-RANK KERNEL MATRIX APPROXIMATION

This section analyzes the data-driven geometric approach for the one-sided low-rank approximation (3). Compared to the

two-sided case, the algorithm in the one-sided case only samples points from one set of points and applies an algebraic

factorization to postprocess the selected submatrix.Numerical experiments in Section 4 show that the one-sided algorithm

is slightly more accurate.

The key algebraic technique we use is the strong rank-reveal QR factorization (SRRQR34). The original setting in

Reference 34 considers “tall” matrices and direct application of the result yields pessimistic computational complexity in

the current setting where “short” matrices are of interest. To resolve this issue, we discuss the new setting and derive a

nearly optimal complexity estimate in Section 3.1. We present the algorithm for the one-sided low-rank approximation

in Section 3.2 and provide the error analysis in Section 3.3. The special case of a symmetric kernel matrix KXX with a

symmetric kernel 𝜅(x, y) = 𝜅(y, x) is discussed in Section 3.4.

3.1 Strong rank-revealing QR for “short” matrices

The classical result on SRRQR is cited in Proposition 2. Algorithms for computing SRRQR are proposed in Reference 34

and we use [34, alg. 4] in our approach to postprocess the r × n matrix KT
XS2
, where S2 ⊆ Y is the selected subset with r

points. We point out that the original result on SRRQR (cited in Proposition 2) only considers “tall” matrices of sizem × n

withm ≥ n and the complexity contains a term of O(n3). Such a complexity will be too pessimistic for the “short” matrix

KT
XS2

of size r × n with r ≪ n in general. To obtain a complexity estimate that is nearly optimal in n, we present in this

section a rigorous analysis of SRRQR for “short”matrices. The result in Proposition 3 shows that the complexity of SRRQR

is in betweenO(r2n) andO(r2n logs n) for r × nmatrices with rank r. That is, the complexity is linear or nearly linear in n.

Proposition 2 (Strong Rank-revealing QR Factorization34). Let M be an m × n matrix with m ≥ n.

The SRRQR of M yields M = Q

[
Ak Bk

Ck

]
Π, where Q is m ×m orthogonal, Π is a permutation matrix,

Ak is a well-conditioned k × k upper triangular matrix with the ith (1 ≤ i ≤ k) singular value 𝜎i(Ak) ≥

𝜎i(M)∕
√
1 + s2k(n − k), Ck satisfies 𝜎i(Ck) ≤ 𝜎k+j(M)

√
1 + s2k(n − k) with 1 ≤ j ≤ n − k, ||A−1

k
Bk||max ≤ s.Here

s > 1 is a user-specified constant. The complexity for SRRQR is O(mn2 + n3 logs n).

We are interested in applying SRRQR to “short” r × nmatrices as described below and the complexity in Proposition 2

does not reflect the efficiency in the new setting, whereM is r × n with rank r.

Algorithm [34, alg. 4] for computing the SRRQR in Proposition 3:

1. Compute R = [Ar,Br] ∶= (M) and define Π = I, where  denotes the QR factorization;

2. while ||A−1
r Br||max > s do

3. Find i, j such that |(A−1
r Br)i,j| > s;

4. Compute R = [Ar,Br] ∶= (RΠi,j+r) and Π ∶= Π Πi,j+k, where Πi,j+k denotes the permutation that interchanges the

ith and j + k th columns;

5. endwhile

We analyze SRRQR for “short” matrices and prove the nearly optimal complexity of the algorithm above. The result

is summarized in Proposition 3. A straightforward corollary of Proposition 3 gives a stable interpolative decomposition

for “tall” matrices (Corollary 2) that will be used in the one-sided low-rank approximation in Algorithm 2.

Proposition 3 (SRRQR for “short” matrices). Let M be an r × n matrix with rank r (thus r ≤ n). The SRRQR

of M yields M = Q
[
Ar Br

]
Π, where Q,P,Π,Ar,Br are as in Proposition 2, with ||A−1

r Br||max ≤ s. Here s > 1 is

a user-specified constant. The complexity for computing such a factorization is O(niterr2n),where niter denotes the

number of while loops in Line 2 of the SRRQR algorithm above, and niter is between O(1) and O(logs n). That

is, the complexity of SRRQR is between O(r2n) and O(r2n logs n).
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Proof. The QR factorization in Line 1: [Ar,Br] ∶= (M) for has complexity O(r2n). The number of while

loops niter is at most O(logs n) according to the estimate in [34, sect. 4.4]. In fact, the O(logs n) estimate is

calculated for the two nested while loops in [34, alg. 5] in which niter corresponds to the inner while loop. As

a result, the complexity of niter must not exceed O(logs n). In the while loop, computing each ||A−1
r Br||max

requires O(r2n) complexity, since Ar is triangular and Br is r × (n − r).

Next we analyze the complexity for each QR factorization to R̃ ∶= RΠi,j+r in the while loop. Without loss

of generality,we assume i = 1. This is because in this case, R̃ = RΠ1,j+r has the following sparsity pattern (blank

entries denote zeros) and QR will be applied to the whole matrix, which results in the highest complexity.

If i > 1, then the first i − 1 columns already form an upper triangular matrix and QR is applied to the

non-triangular submatrix in the lower right part of R̃ whose size is strictly smaller than r-by-n.

R̃ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ … ∗ ∗ … … …

∗ ∗ … ⋮ ∗ … … …

∗ ⋱ ⋮ ∗ … … …

∗ ∗ ∗ … … …

∗ ∗ … … …

⎤⎥⎥⎥⎥⎥⎥⎥⎦

To compute the QR factorization of R̃ efficiently, we apply Householder reflection or Givens rotation to sub-

matrices of row size two in a bottom-up fashion, which will reduce the matrix into an upper Hessenberg form.

Thenwe apply Householder reflection or Givens rotation to the upper Hessenberg form in a top-down fashion

to obtain an upper triangular matrix, which completes the QR factorization.

In the bottom-up reduction, we first apply Householder reflection or Givens rotation to the last two rows

of R̃ to zero out the entry in the bottom left corner (see (18)), i.e., entry (r, 1) in R̃. Note that this will introduce

a nonzero entry at (r, r − 1), denoted by ‘•’ in (18).

[
∗ ∗ ∗ … … …

∗ ∗ … … …

]
→

[
∗ ∗ ∗ … … …

• ∗ … … …

]
(18)

Applying the same process recursively to the two-row submatrices (rows k − 1, k) with k = r − 1, r −

2, … , 3, we obtain an upper Hessenberg form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ … ∗ ∗ … … …

∗ ∗ … ⋮ ∗ … … …

• ⋱ ⋮ ∗ … … …

⋱ ∗ ∗ … … …

• ∗ … … …

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(19)

The total complexity of this bottom-up procedure is

O ((n − r + 3) + (n − r + 4) + · · · + (n − r + r)) = O(rn),

where the number in each inner parenthesis denotes the number of nonzero columns in each two-rowmatrix.

Then we reduce the upper Hessenberg form in (19) into an upper triangular matrix by applying House-

holder reflection or Givens rotation sequentially (in a top-down fashion) to the two-row submatrix (rows

k, k + 1) with k = 1, 2, … , r − 1, in order to zero out the subdiagonal entries. Similar to the bottom-up

procedure, it is easy to see that the total complexity of the top-down procedure is also O(rn).

Therefore, we see that the each execution in the while loop is donimated by the cost of computing

||A−1
r Br||max, with O(r2n) complexity. The total complexity of the entire algorithm is then

O(r2n + niterr
2n) = O(niterr

2n).
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Given the fact that niter is between O(1) and O(logs n), the complexity of SRRQR is between O(r2n) and

O(r2n logs n). ▪

Corollary 2. Let M be an n × r matrix with rank r. Then M can be factorized via SRRQR as M = P

[
I
G

]
M1,

where P is a permutation matrix, I is an identity matrix,M1 is the matrix that consists of the first r rows of PTM,

and ||G||max ≤ s. Here s > 1 is a user-specified constant. The computational complexity is at most O(r2n logs n).

Proof. Applying SRRQR to the r × nmatrixMT yields

MT = Q
[
Ar Br

]
Π, (20)

where Q,Π,Ar,Br are matrices in Proposition 3. In particular, ||A−1
r Br||max ≤ s. Meanwhile, the complexity is

at most O(r2n logs n) according to Proposition 3.

SinceΠ is a permutation matrix,QAr is a submatrix ofMT containing the first r columns ofMTΠT . Define

MT
1 = QAr. We see thatM1 contains the first r rows of ΠM. We can then rewrite (20) as

MT = QAr

[
I A−1

r Br

]
Π = MT

1

[
I A−1

r Br

]
Π.

Transposing both sides yields the desired factorizationwithP ∶= ΠT ,G ∶= A−1
r Br, ||G||max ≤ s. The complexity

is at most O(r2n logs n) thanks to Proposition 3. ▪

Remark 1. Note that in the original SRRQR,34 the permutation is performed for the smaller dimension, that is,

n columns for a “tall”m × nmatrixwithm ≥ n. In Proposition 3 andCorollary 2, the permutation is performed

over the larger dimension. This calls for the new complexity analysis in the proof of Proposition 3 different

from the original estimate in Reference 34.

3.2 Algorithm

The one-sided approximation method consists of two stages. In the first stage, a subset S2 ⊆ Y is selected using a linear

complexity geometric selection scheme (Section 1). In the second stage, we compute the interpolative decomposition

in (3) via applying SRRQR34 to guarantee the maximum norm of the column basis matrix is bounded by a prescribed

number s > 1. More precisely, we apply SRRQR to the “short” matrix KT
XS2

and then transpose the output to obtain KXS2 =

P

[
I
G

]
K1S2 , with 1 ⊆ X , P a permutation matrix and ||G||max ≤ s. See Corollary 2 for a more detailed discussion.

The full one-sided compression algorithm is summarized in Algorithm 2. Notice that in Step 2 of Algorithm 2, SRRQR

is only used to obtain a stable factorization of KXS2 and thus no approximation error is introduced.

Algorithm 2. Data-driven one-sided compression of KXY with two sets of points X ,Y

Input: Datasets X = {x1,… , xm}, Y = {y1,… , yn} ⊂ Rd, kernel function 𝜅, number of sample points r for Y

Output: Low-rank approximation KXY ≈ UK1Y in (3)

Apply a linear complexity geometric selection algorithm to Y to generate r sample points S2 ⊆ Y

Apply SRRQR-based ID to them-by-r kernel matrix KXS2 : KXS2 = P

[
I
G

]
K1S2 , where I is an identity matrix, 1 ⊆ X , P

is a permutation matrix that maps the row indices of I to the indices for 1 in X , and ‖G‖max ≤ 2.

Define U = P

[
I
G

]
.

Return U,K1Y

Compared to purely algebraic methods such as LU, QR, rank-revealing QR, and SVD decompositions, Algorithm 2

does not access the full kernel matrix and scales linearly or nearly linearly with respect to the data size. Compared to the
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proxy pointmethods,26,27 hybrid cross approximation,30 Algorithm2 does not require the evaluation of the kernel function

outside the given dataset (where the function may not necessarily be defined) and is able to scale to high dimensions. In

terms of numerical stability, Algorithm 2 leverages the robustness of algebraic methods to obtain a stable factorization

compared to the two-sided approximation. As we shall see in Section 4, despite being more stable and more general, the

error-time trade-off of the proposed method can be noticeably better than that of existing methods.

In addition to the factorizationK ≈ UK1Y , a similar one-sided factorizationK ≈ KX2V
∗ can be computed by applying

Algorithm 2 to K∗
XY
. That is, we first select a subset from X and then apply ID to obtain a subset 2 ⊆ Y . Both options first

apply geometric selection to X or Y to obtain a small submatrix and then apply algebraic factorization to it. They differ

in which data set the geometric selection is applied to, that is, X or Y . If one set contains significantly more points than

the other one (for example, m ≫ n), for efficiency, it is better to perform geometric selection on the larger set to reduce

its size to O(1), so that the following algebraic factorization, which is more expensive than geometric selection, is applied

to a submatrix with a smaller dimension n-by-O(1) instead ofm-by-O(1).

3.3 Complexity and error analysis

In this section, we analyze the complexity and the approximation error of Algorithm 2. First, we show that Algorithm 2

scales as O(r2(m + n)) for obtaining a rank-r approximation to anm × n kernel matrix.

Theorem 4. Given X = {xi}
m
i=1
, Y = {yi}

n
i=1

in Rd and kernel function 𝜅, the complexity of Algorithm 2 to

compute a rank-r approximation KXY ≈ UK1Y is O(dr
2(m + n)).

Proof. Compressing a set of n points into r points with any scheme in Section 1 has a complexity at most

O(dr2n). The cost of applying ID on a m-by-r matrix KXS2 is O(r
2m). Therefore, the overall complexity of

Algorithm 2 is O(dr2(m + n)). ▪

Next we analyze the approximation error for KXY ≈ UK1Y computed by Algorithm 2. We will see that, different from

the two-sided factorization, the error bound forKXY ≈ UK1Y does not involve the normof the pseudoinverse of thematrix.

Theorem 5. Let X and Y be finite sets in Rd and 𝜅(x, y) be defined on X × Y . For any non-empty subset S ⊆ Y ,

let KXS be decomposed by SRRQR-based ID as KXS = UKS = P

[
I
G

]
KS with ||G||max ≤ 2. Then

||KXY − UKY ||max ≤ max
x∈X

y∈Y

min
v∈S

(|𝜅(x, y) − 𝜅(x, v)| + ||KXy − KXv||)

+ 2rmax
x∈

y∈Y

min
v∈S

(|𝜅(x, y) − 𝜅(x, v)| + ||KXy − KXv||) , (21)

where r = card().

Proof. We decompose KXY as

KXY = KXSK
+
XS
KXY + E1 with E1 = KXY − KXSK

+
XS
KXY

= P

[
I

G

]
KSK

+
XS
KXY + E1

= P

[
I

G

]
(KY + E2) + E1 with E2 = KSK

+
XS
KXY − KY

= P

[
I

G

]
KY + P

[
I

G

]
E2 + E1. (22)

According to Corollary 1,

||E1||max ≤ max
x∈X

y∈Y

min
v∈S

(|𝜅(x, y) − 𝜅(x, v)| + ||KXy − KXv||) . (23)
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Similarly, for E2, we have

||E2||max ≤ max
x∈

y∈Y

min
v∈S

(|𝜅(x, y) − 𝜅(x, v)| + ||KXy − KXv||) . (24)

Since ||G||max ≤ 2 and the row size of E2 is equal to r = card(), it follows that

||GE2||max ≤ 2r||E2||max.

Together with (24), (23), and (22), we deduce the inequality in (21). ▪

The estimate in Theorem 5 relates the approximation error to the subset S. We remark that in the estimate, r is fixed

and S is viewed as a variable since we aim to study how the choice of S affects the low-rank approximation accuracy. This

is different from estimates that study how error decays with r. We show a more geometric characterization of the error

bound of Theorem 5 in the following theorem. This theorem implies that the approximation error depends on the ability

of S to capture Y , which is similar to the two-sided approximation case described in Theorem 3.

Theorem 6. Let X ,Y , 𝜅, S, be given in Theorem 5 and let KXY ≈ UKY be the approximation in Theorem 5.

Then

||KXY − UKY ||max ≤ L(X × Y ,X × S)𝛿Y ,S + (1 + 2r)
√
mL(Y , S)X𝛿Y ,S

+ 2rL( × Y , × S)𝛿Y ,S, (25)

where m = card(X), r = card(). Furthermore, if 𝜅(x, y) is Lipschitz continuous over D1 × D2 containing X × Y

with Lipschitz constant L, then

||KXY − UKY ||max ≤ L𝛿Y ,S + (1 + 2r)
√
mL𝛿Y ,S + 2rL𝛿Y ,S.

Proof. The proof is analogous to that of Theorem 3. According to (16), we deduce that

max
x∈X

y∈Y

min
v∈S

(|𝜅(x, y) − 𝜅(x, v)| + ||KXy − KXv||) ≤ max
x∈X

y∈Y

min
v∈S

(
L(X × Y ,X × S)|y − v| +√

mL(Y , S)X |y − v|
)

= max
x∈X

y∈Y

(
L(X × Y ,X × S)dist(y, S) +

√
mL(Y , S)Xdist(y, S)

)

= L(X × Y ,X × S)𝛿Y ,S +
√
mL(Y , S)X𝛿Y ,S.

Similarly, it can be deduced that

max
x∈

y∈Y

min
v∈S

(|𝜅(x, y) − 𝜅(x, v)| + ||KXy − KXv||) ≤ L( × Y , × S)𝛿Y ,S +
√
mL(Y , S)X𝛿Y ,S.

Inserting the above two inequalities into (21) completes the proof of (25). The special case of 𝜅(x, y) being

Lipschitz follows immediately from (25) and Proposition 1. ▪

From Theorem 6, it is easy to see that smaller 𝛿Y ,S contributes to better approximation and the approximation error

is zero if S = Y . Also, we see that the smoother the kernel function is (small Lipschitz constant), the more accurate the

low-rank approximation will be. This is consistent with the fact that smooth kernel functions yield kernel matrices with

rapidly decaying singular values.

Compared to the error estimates in Theorems 2 and 3 for the two-sided factorization, the estimates for the one-sided

factorization in Theorems 5 and 6 appear to be better since they do not contain the norm of any matrix, for example, the

possibly large factor ||K+
S1S2

|| in Theorems 2 and 3. This factor disappears when only one geometric selection is performed
(for either rows or columns), as shown in Corollary 1 and Theorem 5.
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3.4 The symmetric case

In this section, we consider a variant of the approximation (3) when the kernel matrix KXX = [𝜅(x, y)]x,y∈X is associated

with one set of points X and a symmetric kernel 𝜅(x, y). This type of kernel matrix arises frequently as covariance or

correlationmatrices in statistics andmachine learning. In order to preserve the symmetry ofKXX , we compute a symmetric

factorization of the form

KXX ≈ UKU
T with  ⊆ X (26)

whose structure-preserving properties are shown in the next proposition. This is the symmetric version of the

“double-sided ID”.54

Proposition 4. If KXX is symmetric, then the low-rank approximation UKUT in (26) is also symmetric. If

KXX is assumed to be positive semi-definite, then UKUT is also positive semi-definite.

Proof. Since  ⊆ X , K is a principal submatrix of KXX . If KXX is symmetric, K is also symmetric, which

implies that UKUT is symmetric.

If KXX is positive semi-definite, then K is also positive semi-definite since it is a principal submatrix of

KXX . As a result, UKUT is symmetric positive semi-definite. ▪

The symmetric factorization in (26) is a straightforward extension of the one-sided factorization and the algorithm is

summarized in Algorithm 3.

Algorithm 3. Data-driven compression of KXX with one set of points X

Input: Dataset X = {x1,… , xn} ⊂ Rd, kernel function 𝜅, number of sample points r

Output: Low-rank approximation KXX ≈ UKUT

Apply a linear complexity geometric selection algorithm to X to generate r sample points S

Apply SRRQR-based ID to the n-by-r kernel matrix KXS:

KXS = [𝜅(x, y)] x∈X
y∈S

= P

[
I
G

]
KS, (27)

where  ⊆ X , P is a permutation matrix that maps the row indices in I to the indices for  in X , and ‖G‖max ≤ 2

Define U = P

[
I
G

]

Return U,K

4 NUMERICAL EXPERIMENTS

In this section, we illustrate the data-driven geometric approach using both low- and high-dimensional data. All

experiments were conducted in MATLAB R2021a on a MacBook Pro with Apple M1 chip and 8 GB of RAM.

4.1 Data on a manifold in three dimensions

For data in low dimensional ambient space, for example, d = 3, there exist several effective methods for compressing

kernel matrices. However, their efficiency may decrease when the separation between the sets X and Y decreases and

when the data lies on a manifold rather than be distributed relatively uniformly in the ambient space. To illustrate the

advantages of the geometric approach in these cases, we use a sequence of three datasets as illustrated in Figure 4. In each

dataset, X and Y each contain 1400 points, with 400 on each small cube and 600 on the hemisphere in Figure 4. From
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F IGURE 4 Sequence of three datasets in three dimensions. From Datasets 1 to 3, Y is a vertical shift of X by 2.7, 2, and 0.5,

respectively. The minimum distance between points in X and points in Y from Dataset 1 to 3 is 1, 0.43, 0.12, respectively.
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(a) Dataset 1
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F IGURE 5 Accuracy comparison of different methods for constructing low-rank factorizations on the kernel matrices defined by

Datasets 1, 2, and 3 shown in Figure 4 and the kernel function 𝜅(x, y) = 1∕|x − y|.

Dataset 1 to 3, Y is a vertical shift of X by 2.7, 2, and 0.5, respectively. The minimum distance between points in X and

points in Y from Datasets 1 to 3 is 1, 0.43, 0.12, respectively. The smallest bounding boxes for X and Y are well-separated

in Dataset 1, adjacent in Dataset 2, and overlapping in Dataset 3. With these data, kernel matrices were constructed using

the kernel function 𝜅(x, y) = 1∕|x − y|.
Test 1. Robustness with respect to data geometries. For above the settings, we compare the approximation error

of the data-driven geometric approach with that of an algebraic method, ACA,29 and proxy point method (‘proxy’).27 For

the data-driven method (‘DD’), we construct a one-sided factorization (Algorithm 2) using farthest point sampling with

sample size at most 2r for a rank-r approximation. Namely, 2r points are chosen for S2 and SRRQR is applied to KXS2 .

For the proxy point method, the sample size is 2000 for ΩX (the smallest bounding box containing X) and 10000 for

ΩY , independent of the approximation rank. Figure 5 shows, for the various methods, the relative matrix approximation

error as a function of the rank of the approximation. The relative error is defined as ||K − K̃||∕||K||, where K̃ denotes the

low-rank approximation to K and || ⋅ || denotes the 2-norm. The optimal relative approximation error as computed by the
SVD is also shown.

We observe that all methods are effective for Dataset 1, with the data-driven method–DD–being the most efficient

and most closely tracking the SVD approximation error. We remark that the large number of random samples in the

bounding box is not effectively used in proxy point method when the data is unstructured. Hence it is computationally

more expensive than DD and ACA in this experiment.

For Dataset 2, we are at the boundary at which hybrid methods are effective, that is, those methods that assume a

separation of the bounding boxes for X and Y . However, DD and ACA still closely track the SVD approximation error.
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For Dataset 3, the points in X and Y are actually “intermingled” (overlapping bounding boxes). ACA might not

effectively sample X and Y in this dataset, especially since the dataset contains disjoint clusters (points on a half-shell

and points in small cubes). However, DD continues to closely track the SVD approximation error.

4.2 Data in high-dimensional ambient space

The data-driven geometric approach can be efficient for data in high-dimensional ambient space, whereas many other

existing low-rank compressionmethods have cost that is exponentially dependent on the dimensionality of ambient space.

To demonstrate the data-driven approach for high-dimensional data, we use two datasets from the UCImachine learning

repository:* Covertype (n = 581,012, d = 54) and Gas Sensor Array Drift (n = 13,910, d = 128). Each dataset is standard-

ized to have mean zero and variance along each dimension equal to one. Instead of using the entire datasets, we choose X

and Y to be two subsets of random samples, selected without replacement, with 8000 points for X and 10,000 points for Y .

For both datasets, the kernel matrix KXY is a 8000-by-10,000 matrix associated with the Gaussian kernel 𝜅(x, y) =

exp(−|x − y|2∕𝜎2). Since the bandwidth parameter 𝜎 controls the smoothness of the kernel, we consider 𝜎 from among

three values, denoted as 𝜎1, 𝜎2, 𝜎3 and chosen to be 100%, 50%, 25% of the radius of X , respectively.

Test 2.Different geometric selection schemes.We first examine the effect of different geometric selection schemes

(see Section 1) used to construct the two-sided low-rank factorization (2). It has been observed in Reference 42 that the

approximation error can be extremely large if the subset is not chosen properly. In this case, to dealwith the pseudoinverse,

a stable implementation proposed in Reference 55 was used in Reference 42:

KXY ≈ (KXS2R
+
𝜖 )(Q

TKS1Y ), (28)

where KS1S2 = QR is the QR factorization of KS1S2 and R𝜖 is derived from R by truncating singular values smaller than 𝜖

in the SVD. It is also noted in Reference 42 that the above stabilization is not needed if the subset is well-chosen, that

is, spread evenly over the data. For a detailed numerical study on the effect of stabilization, we refer to [42, sect. 5.2].

To make a fair comparison of different selection schemes, the stabilization in (28) is used in this experiment. Namely, in

Algorithm 1, KS1S2 is replaced with its truncated QR factors: Q and R+
𝜖 .

For these experiments, we use the Gas Sensor dataset with a Gaussian kernel with 𝜎 = 𝜎1 ≈ 307.52.

Figure 6 shows the low-rank approximation error (relative error as in Figure 5) versus approximation rank when

different geometric selection schemes are used. We compare the following schemes: anchor net (‘ANC’), farthest point

sampling (‘FPS’), uniform random sampling (‘Unif’), as well as mixtures of uniform random sampling and FPS (some

points are generated by FPS, the rest by random sampling). In the mixed scheme, random sampling is used to reduce the

cost of FPS and we use the experiment to observe the effect of augmenting FPS samples with random samples. In these
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F IGURE 6 Accuracy comparison of different geometric selection schemes for constructing two-sided data-driven low-rank

factorizations on the kernel matrix defined by the Gas Sensor dataset (d = 128) and a Gaussian kernel with the bandwidth 𝜎1 ≈ 307.5.
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cases, the mixtures are denoted ‘mixed1’, ‘mixed2’, ‘mixed3’, for 5%, 10%, 50% FPS samples with the remainder of the

samples selected by uniform random sampling. We observe that ANC and FPS perform similarly. These methods have a

clear advantage over pure random sampling, suggesting that the data has structure to be exploited that is hidden from

pure random sampling. However, random sampling can reduce the cost of a pure FPS method. The accuracy of ANC and

FPS is attributed to the use of evenly spaced points. The generation of evenly distributed points is studied in discrepancy

theory for the unit cube (cf. References 56,57) and recently extended to general geometries using deep neural networks

(cf. References 58,59). We also note that the approximation error for ‘DD2-Unif’ does not improve after approxima-

tion rank about 50, creating the “flat” portion in the plot. In fact, this is due to the stabilization (28) that prevents the

approximation error from “blowing up”.

Test 3. One-sided versus two-sided low-rank factorization. With the same dataset and kernel as immediately

above, we compared the approximation error for one-sided and two-sided low-rank factorization. Figure 7 shows these

results. The one- and two-sided cases are denoted as ‘DD1’ and ‘DD2’, respectively, and each is tested with ‘Unif’, ‘ANC’,

and ‘FPS’ geometric selection.

We observe that one-sided factorization is generally more accurate. This is consistent with the theoretical results in

Theorems 2 and 5, where the two-sided approximation error estimate contains the norm of a pseudoinverse matrix while

the one-sided approximation estimate doesn’t contain any matrix norm.

We notice again the stagnating accuracy for ‘DD2-Unif’ when the approximation rank is larger than 50. On the con-

trary, “DD1-Unif” gives effective error reduction as the approximation rank increases. The difference reveals the fact that

the two-sided factorization is not as numerically stable as the one-sided factorization. It should be noted, however, that

the one-sided factorization is more expensive to compute than the two-sided factorization. The one-sided factorization

uses geometric selection on onlyX or only Y rather than bothX and Y and applies algebraic compression to amuch larger

intermediate matrix than the two-sided factorization.

Test 4. ComparisonwithACAand robustnesswith respective tokernel parameters.There exist a few low-rank

compression algorithms that are both efficient in the high-dimensional case and able to handle intermingled data. One

notable method is the ACAmethod,29 which does not require access to the full kernel matrix, has linear complexity, and

produces a one-sided factorization. We thus now compare the data-driven geometric approach with ACA. Specifically,

we use the data-driven approach to compute a one-sided low-rank factorization with ANC and FPS geometric selection

schemes, corresponding to “DD-ANC” and “DD-FPS” in Figures 8–10.

Figures 8 and 9 show the approximation errors for the Covertype and Gas Sensor datasets, respectively, each with

three values of bandwidth 𝜎 for the Gaussian kernel. For the Covertype dataset, the data-driven methods yield much

better accuracy than ACA for all choices of 𝜎. The accuracy of ACA stagnates as the approximation rank is increased,

suggesting that clusters in the dataset have preventedACA from selecting rows and columns that help represent the kernel

matrix.
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F IGURE 7 Accuracy comparison of one-sided (dashed lines) versus two-sided (solid lines) data-driven factorizations on the kernel

matrix defined by the Gas Sensor dataset (d = 128) and a Gaussian kernel with the bandwidth 𝜎1 ≈ 307.5.
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F IGURE 8 Accuracy comparison of one-sided data-driven factorizations (DD-ANC and DD-FPS) with ACA on kernel matrices

defined by the Covertype dataset (d =54) and Gaussian kernel with three different bandwidths 𝜎.
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F IGURE 9 Accuracy comparison of one-sided data-driven factorizations (DD-ANC and DD-FPS) with ACA on the kernel matrices

defined by the Gas Sensor dataset (d =128) and the Gaussian kernel with three different bandwidths 𝜎.

For the Gas Sensor dataset, all methods behave similarly for a large bandwidth 𝜎1. For a smaller bandwidth 𝜎3, ACA

displays stagnation in accuracy for approximation rank greater than 100. The smaller bandwidthmakes the Gaussian ker-

nel less smooth, and accentuates the effect of clusters in the data. These issues in ACA have been explored previously.30,31

In general, these issues reflect the challenge in approximating kernel matrices associated with high ambient dimensions

but possibly lower dimensional structures within these dimensions.

Figure 10 shows timings for computing the low-rank approximations. Although our timings are limited to MAT-

LAB execution, the results indicate that a geometric approach using a fast geometric selection scheme (e.g., ANC)

can be faster than ACA for the same approximation error. The results also suggest that ANC is significantly faster

than FPS.

Test 5. Comparison of algebraically generated subsets and geometrically generated subsets. ACA28,29 per-

forms a column-pivoted partial LU decomposition where the pivots are chosen algebraically based on the residual of each

rank-1 approximation in the sequential process. The resulting triangular factorization (LU) is mathematically equivalent

to KXS2K
−1
S1S2

KS1Y where KS1S2 is a square matrix and the subsets (corresponding to the pivots) S1, S2 are generated by ACA

(cf. [ 28, Lemma 3]). Hence we can use ACA to generate subsets for Algorithms 1 and 2. Now, given the proposed geo-

metric approach and the algebraic approach via ACA for generating subsets, a natural question is which approach yields

better performance in practice. In this experiment, we investigate the quality of subsets by comparing the followingmeth-

ods: (1) ACA; (2) one-sided factorization in Algorithm 2 with subset S2 generated by ACA (‘DD1-ACA’); (3) one-sided

factorization with subset generated by anchor net (‘DD1-ANC’). We use the Gas Sensor dataset (d = 128) and consider

both symmetric positive definite (SPD) matrix and rectangular matrix. The SPDmatrix is the Gaussian kernel matrix KXX
with X containing 8000 random samples from the Gas Sensor dataset. For the rectangular matrix KXY , we choose X and
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F IGURE 10 Time comparison of one-sided data-driven factorizations (DD-ANC and DD-FPS) with ACA on the kernel matrices

defined by the Gas Sensor dataset (d =128) and the Gaussian kernel with three different bandwidths 𝜎. CPU timings (in seconds) are the

average of 10 runs.
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F IGURE 11 Accuracy comparison of ACA, one-sided factorizations with ACA-generated subsets (‘DD1-ACA’) and anchor

net-generated subsets (‘DD1-ANC’) on the Gaussian kernel matrices with Gas Sensor dataset (d = 128).

Y to contain 8000 and 10,000 samples, respectively, as in Test 4. The bandwidth paragraph is chosen as 𝜎 = 𝜎3 ≈ 61.50.

The result is shown in Figure 11.

It is clearly seen from Figure 11 that, for this problem, ACA and ‘DD1-ACA’ yield almost the same performance,

indicating that the subset generated by ACA (or, algebraically, pivots) does not yield an accurate low-rank approximation

regardless of whether the underlying matrix is SPD. The geometric method with anchor net, on the other hand, generates

better subsets with more accurate low-rank approximations. Considering the time efficiency demonstrated in Figure 10,

we see that the geometric approach gives overall better performance in terms of accuracy, speed, and robustness.

To provide a straightforward illustration of the subset selected by ACA, we performed an experiment in two dimen-

sions (X ⊂ R2) for the Gaussian kernel 𝜅(x, y) = exp(−|x − y|2∕0.25). The dataset X contains 400 points splitted into three

clusters (left to right) with 100, 200, and 100 points respectively. Thus the kernel matrix KXX is a 400-by-400 SPD matrix.

The dataset X is shown as blue points in Figure 12b,c. We compare the points generated by ACA and AnchorNet and

show the corresponding low-rank approximation error measured by relative error in matrix 2-norm. The result is shown

in Figure 12. We see from Figure 12a that when the rank is smaller than 30, ACA entirely fails to improve the approxi-

mation accuracy despite the rank increase. To understand this from a geometric point of view, we show the scatter plots

in (b) and (c) for the case when the rank equals 25. It is clearly seen that the points selected by ACA are “locked” in the

first two clusters in X with no point selected in the third cluster. This results in the stagnation of accuracy. Algebraically,

this “locking” phenomenon is analogous to performing Gaussian elimination only on the first two diagonal blocks of a

 1
0

9
9

1
5

0
6

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/n

la.2
5

1
9

 b
y

 E
m

o
ry

 U
n

iv
ersitaet W

o
o

d
ru

ff L
ib

r, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
8

/0
9

/2
0

2
3

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



22 of 26 CAI et al.

0 10 20 30 40 50

rank

10
-2

10
-1

10
0

m
a

tr
ix

 a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r
error vs rank

ACA

AnchorNet

(a) Error-rank plot for approximating

0.5 1 1.5 2 2.5 3 3.5

-1

-0.5

0

0.5

1

1.5

2
Dataset

ACA selection

(b) and 25 points selected by ACA (er-

ror=0.48)

0.5 1 1.5 2 2.5 3 3.5

-1

-0.5

0

0.5

1

1.5

2
Dataset

AnchorNet selection

(c) and 25 points selected by AnchorNet

(error=0.07)

F IGURE 12 Comparison of ACA-based selection and AnchorNet-based selection.
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F IGURE 13 Linear scaling tests of the data-driven factorization method on the kernel matrices defined by the synthetic data X ,Y

sampled from the uniform distribution over [0, 1]d and [2, 3]d, respectively, and the kernel function log |x − y|. Left: peak memory use. Right:
CPU time (average of 10 runs).

matrix that is composed of three diagonal blocks of similar rank structure. On the contrary, AnchorNet generates points

from all three clusters in a more balanced fashion and achieves consistently better accuracy than ACA according to

Figure 12a.

4.3 Complexity test

In this section, we perform experiments to investigate the complexity of the proposed data-driven methods with respect

to the size of the data.

Test 6. Linear complexity with respect to data size. We consider approximating an n-by-n kernel matrix KXY
with increasing matrix size n and dimension d. We consider dimensions d = 3, 10, 50,100 and generate synthetic data

X ,Y in Rd. X and Y are randomly sampled from the uniform distribution over [0, 1]d and [2, 3]d, respectively. The kernel

function is chosen as log |x − y|. We use the one-sided factorization in Algorithm 2 based on farthest point sampling.

In Figure 13, we report the peak memory use and timing for our method as n increases. The CPU time is computed

as an average over ten repeated runs. For all cases in Figure 13, the relative low-rank approximation error is around

2 × 10−4.

It is easily seen from Figure 13 that, for each dimension d, the peak memory and timing both increase approximately

linearly as a function of n, that is, the number of points in X or Y .
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4.4 Kernel test

To show that the proposed data-driven approach can be applied to various kinds of kernel functions defined in high

dimensions, we consider six different kernel functions in Table 1 and a dataset in 561 dimensions. The kernel 𝜅5(x, y) in

Table 1 is non-symmetric.We demonstrate the generality and accuracy of the data-driven approach by comparing to ACA.

Test 7. Approximating various types of kernel functions. We use a high dimensional dataset from the UCI

Machine Learning Repository: Smartphone Dataset for Human Activity Recognition in Ambient Assisted Living†. The

training data contains n = 4252 instances with d = 561 attributes. We choose X to be the standardized data, and define

Y =
2R√
d
+ X , where R = max

x∈X
dist(x, 0). By construction, X and Y do not overlap and kernel functions in Table 1 are all

well-defined over X × Y .

The kernel functions 𝜅1(x, y), … , 𝜅6(x, y) in the experiment are given in Table 1.

In Table 2, we report the relative approximation error ||K − UV ||∕||K||with respect to the approximation rank r, which
is equal to the number of columns ofU. Three methods are compared: ACA, the data-driven compression in Algorithm 2

with farthest point sampling (“DD-FPS”) or anchor net method (“DD-ANC”).

We see from Table 2 that DD-ANC achieves the best result for all kernels and ranks tested. For the same approxi-

mation rank r, the accuracy of DD-ANC is noticeably higher than that of DD-FPS and ACA. DD-FPS outperforms ACA

TABLE 1 Kernels used for experiment in Table 2.

𝜿1(x, y) 𝜿2(x, y) 𝜿3(x, y) 𝜿4(x, y) 𝜿5(x, y) 𝜿6(x, y)

|x − y| log |x − y|
(
1 +

|||
x−y

R

|||
2)−1

exp
(
−

1

1−c|x−y|2
) x1

|x − y| x ⋅ y + (x ⋅ y)2 + (x ⋅ y)3

Note: In 𝜅4, the constant c =
0.8

max
x∈X ,y∈Y

|x−y|2 , and in 𝜅5, x1 denotes the first entry of the vector x ∈ Rd.

TABLE 2 Rank-r approximation accuracy of the data-driven factorizations (DD-ANC and DD-FPS) and ACA on the kernel matrices

defined by the smartphone dataset (d = 561) and six kernel functions shown in Table 1.

r 10 50 90 130 170 210 250

𝜅1(x, y) ACA 2.4E-3 4.8E-4 1.2E-4 8.2E-5 3.1E-5 1.7E-5 8.5E-6

DD-FPS 1.3E-3 2.4E-4 1.4E-4 4.2E-5 3.5E-5 1.4E-5 4.7E-6

DD-ANC 3.5E-4 9.0E-5 3.8E-5 1.9E-5 9.9E-6 4.6E-6 2.7E-6

𝜅2(x, y) ACA 2.2E-4 6.1E-5 4.8E-5 2.3E-5 6.7E-6 3.6E-6 2.7E-6

DD-FPS 1.7E-4 4.5E-5 2.7E-5 7.5E-6 5.1E-6 2.4E-6 1.1E-6

DD-ANC 5.9E-5 1.6E-5 6.4E-6 3.6E-5 1.9E-6 9.0E-7 5.5E-7

𝜅3(x, y) ACA 2.5E-3 9.3E-4 3.2E-4 1.8E-4 6.3E-5 4.3E-5 2.9E-5

DD-FPS 5.2E-3 9.8E-4 2.5E-4 1.2E-4 6.8E-5 3.8E-5 2.0E-5

DD-ANC 8.3E-4 1.3E-4 6.4E-5 3.9E-5 1.8E-5 9.9E-6 6.0E-6

𝜅4(x, y) ACA 1.2E-2 8.7E-4 3.3E-4 1.4E-4 7.1E-5 4.9E-5 4.8E-5

DD-FPS 3.6E-2 2.5E-3 3.9E-4 1.7E-4 1.0E-4 4.6E-5 1.8E-5

DD-ANC 1.8E-3 2.8E-4 1.2E-4 6.2E-5 3.5E-5 1.7E-5 9.0E-6

𝜅5(x, y) ACA 9.1E-4 1.7E-4 7.7E-5 5.7E-5 2.2E-5 1.1E-5 7.1E-6

DD-FPS 4.0E-4 1.1E-4 4.9E-5 2.1E-5 1.1E-5 4.1E-6 2.1E-6

DD-ANC 2.9E-4 5.7E-5 3.2E-5 1.3E-5 5.4E-6 2.0E-6 1.2E-6

𝜅6(x, y) ACA 1.3E-1 8.9E-3 5.1E-3 2.8E-3 2.2E-3 1.8E-3 1.7E-3

DD-FPS 1.8E-2 3.7E-3 2.0E-3 1.2E-3 9.8E-4 7.6E-4 6.3E-4

DD-ANC 1.2E-2 2.7E-3 1.1E-3 7.5E-4 6.8E-4 5.4E-4 4.5E-4
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for almost all cases except 𝜅4(x, y) when r = 10, … , 170. Together with Test 4 in Section 4.2, the results show that the

proposed fast data-driven approach is not only more robust, but also more accurate for the high dimensional dataset with

general kernels. Compared to existing methods, one advantage of the data-driven method is that, for the same dataset

and fixed rank r, the geometric selection is performed only once and can be used for different kernel functions or kernel

function parameters. This can hardly be achieved by methods that require kernel function evaluation as the first step of

the compression. For example, for algebraic methods such as ICA (Incomplete Cross Approximation60) and ACA, if the

kernel function changes, the pivots need to be computed anew. In Table 2, for each r, ACA computes pivots six times for

six kernels, while DD-FPS and DD-ANC each only select one subset, which is used for all six kernel functions.

5 CONCLUSION

For compressing low-rank kernel matrices where sets of points X and Y are available, it appears appealing to use subsets

of X and Y that capture the geometry of X and Y . This paper presented theoretical justification and numerical tests that

argue for choosing points such that no original point in X (or Y ) is very far from a point chosen for the subset. If these

subsets can be selected in linear time, then the overall compression algorithm can be performed in linear time, which is

optimal for kernelmatrices.We demonstrated effective low-rank compression for both low and high dimensional datasets

using geometric selection based on farthest point sampling and the anchor net method, which are both linear scaling. It is

possible that even more sophisticated linear scaling schemes for selecting subsets can lead to even better approximation

accuracy with the same number of selected points, especially in the high-dimensional case.

ACKNOWLEDGMENTS

We would like to thank anonymous referees for their valuable suggestions. The research of Difeng Cai and Yuanzhe Xi is

supported by NSF award OAC 2003720. The research of Edmond Chow is supported by NSF award OAC 2003683.

CONFLICT OF INTEREST STATEMENT

This study does not have any conflicts to disclose.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available inUCImachine learning repository at https://archive.

ics.uci.edu/ml/index.php.

ENDNOTES
∗https://archive.ics.uci.edu/ml/index.php
†https://archive.ics.uci.edu/ml/machine-learning-databases/00364/

ORCID

Yuanzhe Xi https://orcid.org/0000-0003-0361-0931

REFERENCES

1. Kress R. Linear integral equations. Applied mathematical sciences. New York: Springer; 2013.

2. Hsiao GC, Wendland WL. Boundary integral equations. Applied mathematical sciences. Berlin, Heidelberg: Springer; 2008.

3. Atkinson KE. The numerical solution of the eigenvalue problem for compact integral operators. Trans AmMath Soc. 1967;129(3):458–65.

4. Rokhlin V. Rapid solution of integral equations of classical potential theory. J Comput Phys. 1985;60(2):187–207.

5. Cai D, Vassilevski PS. Eigenvalue problems for exponential-type kernels. Comput Methods Appl Math. 2020;20(1):61–78.

6. Barnes J, Hut P. A hierarchical O(N log N) force-calculation algorithm. Nature. 1986;324:446–9.

7. Greengard L, Rokhlin V. A fast algorithm for particle simulations. J Comput Phys. 1987;73:325–48.

8. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.

9. Chow E, Saad Y. Preconditioned Krylov subspace methods for sampling multivariate Gaussian distributions. SIAM J Sci Comput.

2014;36(2):A588–608.

10. Vapnik V. The nature of statistical learning theory. Berlin, Germany: Springer; 2013.

11. Hackbusch W. Hierarchical matrices: algorithms and analysis. Springer Series in Computational Mathematics. Berlin Heidelberg:

Springer; 2015.

12. Henderson J, He H, Malin BA, Denny JC, Kho AN, Ghosh J, et al. Phenotyping through semi-supervised tensor factorization (PSST).

AMIA annual symposium proceedings. Volume 2018. American Medical Informatics Association; 2018. p. 564.

 1
0

9
9

1
5

0
6

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/n

la.2
5

1
9

 b
y

 E
m

o
ry

 U
n

iv
ersitaet W

o
o

d
ru

ff L
ib

r, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
8

/0
9

/2
0

2
3

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



CAI et al. 25 of 26

13. He H, Henderson J, Ho JC. Distributed tensor decomposition for large scale health analytics. The World Wide Web Conference. 2019

659–69.

14. He H, Xi Y, Ho JC. Fast and accurate tensor decomposition without a high performance computing machine. Paper presented at: 2020

IEEE international conference on big data (big data). IEEE. 2020 163–170.

15. Tyrtyshnikov E. Mosaic-skeleton approximations. Calcolo. 1996;33(1):47–57.

16. Goreinov SA, Tyrtyshnikov EE. The maximal-volume concept in approximation by low-rank matrices. Contemporary Math.

2001;280:47–52.

17. Goreinov SA, Tyrtyshnikov EE. Quasioptimality of skeleton approximation of a matrix in the Chebyshev norm. Doklady mathematics.

Springer; 2011;83:374–5.

18. Cortinovis A, Kressner D. Low-rank approximation in the Frobenius norm by column and row subset selection. SIAM JMatrix Anal Appl.

2020;41(4):1651–73.

19. Mahoney MW, Drineas P. CUR matrix decompositions for improved data analysis. Proc Natl Acad Sci. 2009;106(3):697–702.

20. Anderson D, Du S, Mahoney M, Melgaard C, Wu K, Gu M. Spectral gap error bounds for improving CUR matrix decomposition and the

Nyström method. Artificial intelligence and statistics; 2015. p. 19–27.

21. Hackbusch W, Nowak ZP. On the fast matrix multiplication in the boundary element method by panel clustering. Numer Math.

1989;54(4):463–91.

22. Anderson CR. An implementation of the fast multipole method without multipoles. SIAM J Sci Stat Comput. 1992;13(4):923–47.

23. Sun X, Pitsianis NP. A matrix version of the fast multipole method. SIAM Rev. 2001;43(2):289–300.

24. Börm S, Grasedyck L, Hackbusch W. Introduction to hierarchical matrices with applications. Eng Anal Bound Elem. 2003;27(5):405–22.

25. Cai D, Chow E, Erlandson L, Saad Y, Xi Y. SMASH: structured matrix approximation by separation and hierarchy. Numer Linear Algebra

Appl. 2018;25(6):e2204.

26. Gillman A, Young PM, Martinsson PG. A direct solver with O(N) complexity for integral equations on one-dimensional domains. Front

Math China. 2012;7(2):217–47.

27. Xing X, Chow E. Interpolative decomposition via proxy points for kernel matrices. SIAM J Matrix Anal Appl. 2020;41(1):221–43.

28. Bebendorf M. Approximation of boundary element matrices. Numer Math. 2000;86(4):565–89.

29. Bebendorf M, Rjasanow S. Adaptive low-rank approximation of collocation matrices. Comput Secur. 2003;70(1):1–24.

30. Börm S, Grasedyck L. Hybrid cross approximation of integral operators. Numer Math. 2005;101(2):221–49.

31. Cambier L, Darve E. Fast low-rank kernelmatrix factorization using skeletonized interpolation. SIAM J Sci Comput. 2019;41(3):A1652–80.

32. Williams CK, Seeger M. Using the Nyström method to speed up kernel machines. Advances in Neural Information Processing Systems;

2001. p. 682–8.

33. Cheng H, Gimbutas Z, Martinsson PG, Rokhlin V. On the compression of low rank matrices. SIAM J Sci Comput. 2005;26(4):1389–404.

34. GuM, Eisenstat SC. Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J Sci Comput. 1996;17(4):848–69.

35. Smola A, Bartlett P. Sparse greedy Gaussian process regression. Adv Neural Inf Process Syst. 2000;13:598–604.

36. Lawrence N, Seeger M, Herbrich R. Fast sparse Gaussian process methods: the informative vector machine. Adv Neural Inf Process Syst.

2002;15:625–32.

37. Snelson E, Ghahramani Z. Sparse Gaussian processes using pseudo-inputs. Adv Neural Inf Process Syst. 2005;18:1257–64.

38. Xu Z, Cambier L, Rouet FH, L’Eplatennier P, Huang Y, Ashcraft C, et al. Low-rank kernel matrix approximation using skeletonized

interpolation with endo-or exo-vertices. arXiv preprint arXiv:180704787. 2018.

39. Eldar Y, Lindenbaum M, Porat M, Zeevi YY. The farthest point strategy for progressive image sampling. IEEE Trans Image Process.

1997;6(9):1305–15.

40. Peyré G, Cohen LD. Geodesic remeshing using front propagation. Int J Comput Vision. 2006;69(1):145–56.

41. Schlömer T, Heck D, Deussen O. Farthest-point optimized point sets with maximized minimum distance. Proceedings of the ACM

SIGGRAPH Symposium on High Performance Graphics. 2011 135–42.

42. Cai D, Nagy J, Xi Y. Fast deterministic approximation of symmetric indefinite kernel matrices with high dimensional datasets. SIAM

J Matrix Anal Appl. 2022;43(2):1003–28.

43. Hackbusch W, Khoromskij BN, Sauter SA. On ℋ 2-matrices. In: Bungartz HJ, RHW H, Zenger C, editors. Lectures on Applied

Mathematics. Berlin: Springer; 2000. p. 9–29.

44. Erlandson L, Cai D, Xi Y, Chow E. Accelerating parallel hierarchical matrix-vector products via data-driven sampling. Paper presented at:

2020 IEEE international parallel and distributed processing symposium (IPDPS). 2020 749–758.

45. BauerM, Bebendorf M, Feist B. Kernel-independent adaptive construction of H 2-matrix approximations. NumerMath. 2022;150(1):1–32.

46. Madych W, Nelson S. Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J Approx

Theory. 1992;70(1):94–114.

47. Zienkiewicz OC, Zhu JZ. A simple error estimator and adaptive procedure for practical engineerng analysis. Int J Numer Methods Eng.

1987;24(2):337–57.

48. Verfürth R. A posteriori error estimation and adaptive mesh-refinement techniques. J Comput Appl Math. 1994;50(1):67–83.

49. Verfürth R. Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J Numer Anal. 2005;43(4):1766–82.

50. Braess D, Schöberl J. Equilibrated residual error estimator for edge elements. Math Comput. 2008;77(262):651–72.

51. Cai D, Cai Z. A hybrid a posteriori error estimator for conforming finite element approximations. Comput Methods Appl Mech Eng.

2018;339:320–40.

 1
0

9
9

1
5

0
6

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/n

la.2
5

1
9

 b
y

 E
m

o
ry

 U
n

iv
ersitaet W

o
o

d
ru

ff L
ib

r, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
8

/0
9

/2
0

2
3

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



26 of 26 CAI et al.

52. CaiD,Cai Z, Zhang S. Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems.

Numer Math. 2020;144(1):1–21.

53. Ainsworth M, Vejchodský T. Fully computable robust a posteriori error bounds for singularly perturbed reaction–diffusion problems.

Numer Math. 2011;119(2):219–43.

54. Martinsson PG, Tropp JA. Randomized numerical linear algebra: foundations and algorithms. Acta Numer. 2020;29:403–572.

55. Nakatsukasa Y. Fast and stable randomized low-rank matrix approximation. arXiv preprint arXiv:200911392. 2020.

56. Niederreiter H. Random number generation and quasi-Monte Carlo methods. Philadelphia: SIAM; 1992.

57. Kuipers L, Niederreiter H. Uniform distribution of sequences. New York: Courier Corporation; 2012.

58. Cai D. Physics-informed distribution transformers via molecular dynamics and deep neural networks. J Comput Phys. 2022;468:111511.

59. Cai D, Ji Y, HeH, YeQ. AUTM flow: atomic unrestricted timemachine formonotonic normalizing flows. Proceedings of the Thirty-Eighth

Conference on Uncertainty in Artificial Intelligence. Vol 180. PMLR; Xi Y. 2022 266–74.

60. Tyrtyshnikov E. Incomplete cross approximation in the mosaic-skeleton method. Comput Secur. 2000;64(4):367–80.

How to cite this article: Cai D, Chow E, Xi Y. Data-driven linear complexity low-rank approximation of general

kernel matrices: A geometric approach. Numer Linear Algebra Appl. 2023;e2519. https://doi.org/10.1002/nla.2519

 1
0

9
9

1
5

0
6

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/n

la.2
5

1
9

 b
y

 E
m

o
ry

 U
n

iv
ersitaet W

o
o

d
ru

ff L
ib

r, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
8

/0
9

/2
0

2
3

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se


	Data-driven linear complexity low-rank approximation of general kernel matrices: A geometric approach 
	1 INTRODUCTION
	2 TWO-SIDED LOW-RANK KERNEL MATRIX APPROXIMATION
	2.1 Algorithm
	2.2 Error analysis for two-sided approximation
	2.2.1 Algebraic preparation
	2.2.2 Geometric estimates

	2.3 Subset quality indicators

	3 ONE-SIDED LOW-RANK KERNEL MATRIX APPROXIMATION
	3.1 Strong rank-revealing QR for ``short'' matrices
	3.2 Algorithm
	3.3 Complexity and error analysis
	3.4 The symmetric case

	4 NUMERICAL EXPERIMENTS
	4.1 Data on a manifold in three dimensions
	4.2 Data in high-dimensional ambient space
	4.3 Complexity test
	4.4 Kernel test

	5 CONCLUSION

	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

