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Summary

A general, rectangular kernel matrix may be defined as Kj; = x(x;,y;) where
K (x,y) is a kernel function and where X = {x;}]", and Y = {y;}}_, are two sets
of points. In this paper, we seek a low-rank approximation to a kernel matrix
where the sets of points X and Y are large and are arbitrarily distributed, such as
away from each other, “intermingled”, identical, and so forth. Such rectangular
kernel matrices may arise, for example, in Gaussian process regression where X
corresponds to the training data and Y corresponds to the test data. In this case,
the points are often high-dimensional. Since the point sets are large, we must
exploit the fact that the matrix arises from a kernel function, and avoid forming
the matrix, and thus ruling out most algebraic techniques. In particular, we seek

methods that can scale linearly or nearly linearly with respect to the size of data
for a fixed approximation rank. The main idea in this paper is to geometrically
select appropriate subsets of points to construct a low rank approximation. An
analysis in this paper guides how this selection should be performed.
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1 | INTRODUCTION

Given a function x(x,y) and two sets of points X = {x;}", and Y = {y; the m-by-n matrix with entries

n
i=1’
Kl] = K(xi,yj)s Xi S X’ yj € Y (1)

and denoted by Ky is called a kernel matrix and x(x,y) is called a kernel function. Kernel matrices associated with var-
ious kernel functions arise in diverse computations such as those involving integral equations,'> N-body simulations,®’
Gaussian processes,®® and others.!%-14

One frequently encounters the problem of finding a low-rank factorization, exactly or approximately, of a kernel
matrix. We first note that algebraic techniques such as the singular value decomposition and some pseudoskeleton!> 18
and CUR decompositions'>? do not take advantage of the fact that a matrix is a kernel matrix. We further note that
when the kernel function x(x, y) is smooth (but possibly singular at x = y) and the datasets X, Y are well-separated, then
the corresponding kernel matrix Kyy generally has low numerical rank and there exists a variety of efficient methods
for finding the low-rank approximation (e.g., degenerate approximations of the kernel function*’?!2> and proxy point
methods?5-27).
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In this paper, we seek a low-rank approximation to a kernel matrix where the sets of points X and Y are large and
are arbitrarily distributed, such as away from each other, “intermingled”, identical, and so forth. Since the point sets are
large, we must exploit the fact that the matrix arises from a kernel function, and avoid forming the matrix, and thus ruling
out most algebraic techniques. In particular, we seek methods that can scale linearly or nearly linearly for a fixed rank.
Such kernel matrices arise, for example, in Gaussian process regression where X corresponds to the training data and Y’
corresponds to the test data. In this case, the points are often high-dimensional, which also rules out the use of any existing
methods (e.g., degenerate approximations and proxy point methods) that are limited by the curse of dimensionality.

An existing method called adaptive cross approximation (ACA)*?° is often suitable for our case. ACA scales linearly
with the number of points. ACA corresponds to a pivoted partial LU factorization and only needs to compute matrix
elements used in the partial factorization. However, ACA may fail in some circumstances since it does not perform full
pivoting.3®3! We will numerically compare our proposed method to ACA later in this paper.

The main idea in this paper is to geometrically select a subset of points S; in X and/or a subset of points S, in Y to
construct a low rank approximation. An analysis in this paper guides how this selection should be performed.

We analyze the use of these subsets of points to construct two forms of low-rank factorizations. The first is a two-sided
form:

Kxy ~ KXSZK;lSszlY, 51CX, SCY, 2

where K;f1 s, denotes the pseudoinverse of K s, . This form is a CUR decomposition, except that we will treat Kxy as a kernel
matrix. Note that this form is similar to that of a Nystrom factorization, except that a Nystrom factorization®? expects the
kernel matrix to be symmetric, with Y = X, since eigenvalues of the kernel matrix are implicitly being approximated in
the Nystrom factorization. The matrix Kxy in (2) is rectangular in general.

The second form of low-rank factorization that we study is the one-sided form of the interpolative
decomposition:*?

I
Kxy ~UKzy, U=P lG] , 3)

where I C X, Pisapermutation matrix, I is an identity matrix and G is a general dense matrix. This form can be computed
algebraically using the strong rank-revealing QR factorization3* with the property that the max-norm of G is bounded
by a prescribed constant larger than 1. However, this algebraic factorization requires the entire matrix Kxy to be formed
explicitly.

Instead, it is common to algebraically compute the interpolative decomposition of the smaller matrix

1
Kxs, ~ UKzs,, U=P lG] , 4)

where S, CY or S, is an entirely different set of points altogether, and then use U and I computed in (4) for
the approximation (3). Examples of this approach can be found in References 26,30,31. In these approaches, the
choice of S, is made analytically (e.g., Chebyshev points3*3! or proxy surface points?®) or algebraically (e.g., ACA).*
In this paper, for the one-sided approximation (3), we will analyze a geometric choice of the subset S,. After
S, is chosen, the subset 7 is selected by the algebraic interpolative decomposition via strong rank-revealing QR
factorization.

Low-rank methods based on subset selection are useful in improving the scalability of Gaussian process, often under
the name of “sparse Gaussian process”(cf. References 35-37), where “sparse” refers to the fact that the selected subsets,
for example, S1, S, in (2), are much smaller than (thus sparsely distributed in) the original data sets. Thus one application
of the paper is the design of scalable Gaussian process.

This paper will show that the low-rank approximation error in the maximum norm depends on the quantities 6x s,
and/or dys,, where

6z = maxdist(x, S)
XE€Z
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measures the closeness between Z and S. In order for 6x s, (or dys,) to be small, points in S, (or S;) should be close to as
many points in X (or Y) as possible. This implies that selecting sample points that are evenly distributed over the entire
dataset can yield better approximations than, for example, choosing clustered points in small regions that fail to capture
the geometry of the entire dataset. A similar geometric selection can be used in a version of skeletonized interpolation3®
but has only been studied in the case of well-separated sets of points.

Several known methods can be used to select O(1) sample points that are evenly distributed over a dataset with a
complexity that scales linearly with the size of the dataset. For example, farthest point sampling (FPS)* constructs a subset
S of X by first initializing S with one point and then sequentially adding the point in X not in S that is farthest from the
current points in S. The complexity for selecting r samples from n points in R? is O(dr?n). FPS produces highly evenly
distributed samples and is often used in mesh generation,* computer graphics,*! and so forth, but primarily where the
data are at most three dimensional. It has not previously been used for the low-rank compression of matrices or applied to
high dimensional datasets. Computationally, for high dimensional datasets, FPS can be potentially slow in practice due to
its sequential nature. One can combine FPS with uniform random sampling for faster speed, for example, by generating
approximately 20% of samples using FPS and 80% using uniform random sampling. As will be shown in Section 4.2, the
resulting mixed method tends to yield an approximation that is less accurate than FPS and more accurate than random
sampling.

Another method for selecting evenly distributed sample points is the anchor net method.*? This method was proposed
for the efficient generation of landmark points for Nystrom approximations such that the resulting approximation is
accurate and numerically stable. It leverages discrepancy theory to generate evenly-spaced samples and was shown in*?
to achieve better accuracy and robustness than uniform random sampling and k-means clustering for low-rank approx-
imations. The anchor net method has the optimal complexity O(drn) for selecting r points from n points in R? and is
efficient for a wide range of problems from low to high dimensions. However, the anchor net method has only been used
for approximating symmetric kernel matrices and its performance for approximating general rectangular kernel matrices
is as yet unknown.

Figure 1 shows the 100 samples obtained from FPS and the anchor net method for a highly irregular dataset in two
dimensions. Results for uniform random sampling is also shown, which does not generally produce a uniform distribution
of points over the data.

In summary, we seek a linear or nearly linear complexity low-rank factorization approach for kernel matrices where
the points may be intermingled and the points may be high-dimensional. Some low-rank approximation techniques are
matrix-based (e.g., ACA) and don’t rely on knowing the specific kernel function or sets of points, except for assuming
that the kernel function is smooth and gives rise to a kernel matrix Kxy that is low rank. Other techniques only need
knowledge of the kernel function and bounding boxes for the sets of points, and do not depend on the points themselves
when selecting the set S, in (4), for example. The method we propose is based on the sets X and Y and is independent
of the kernel function. We thus call our method a data-driven method. By choosing S, to be existing points rather than
a new set of points that sample possibly high-dimensional space, the data-driven method is not limited by the curse of
dimensionality.

Our proposed method relies on the geometric selection of the subsets S; C X and/or S, C Y. We address the following
questions: (1) how does the data selection affect the low-rank approximation error? (2) given two subsets with equal
numbers of points, how can one tell which one leads to a more accurate low-rank approximation? (3) how can one perform
the desired data selection efficiently?
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(b) Uniform random sampling (c) Farthest point sampling (d) Anchor net method

(a) Pony dataset

FIGURE 1 Different geometric selection schemes for the Pony dataset.
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The rest of the paper is organized as follows. Section 2 proposes the data-driven approach for efficiently computing the
two-sided factorization (2). Section 3 similarly considers the one-sided factorization (3). We will show that the one-sided
factorization is more stable than the two-sided factorization. The two-sided factorization, however, is slightly cheaper
to compute than the one-sided factorization. The results of numerical experiments are presented in Section 4, and a
conclusion given in Section 5. Unless otherwise stated, all norms used in this paper are the 2-norm, denoted by || - ||. The
Euclidean distance between x,y € R is denoted by |x — y].

2 | TWO-SIDED LOW-RANK KERNEL MATRIX APPROXIMATION

This section analyzes the data-driven geometric approach for the two-sided low-rank approximation (2).

2.1 | Algorithm

The two-sided factorization (2) can be computed immediately once the subsets S; C X and S, C Y are determined.
The subsets can be computed in linear time with suitable geometric selection schemes. The full algorithm is given in
Algorithm 1. Depending on the specific geometric selection scheme, the total complexity of Algorithm 1 is O(dr(m + n))
for uniform random sampling and the anchor net method, or O(dr?(m + n)) for farthest point sampling, where r =
max(ry, r;) denotes the maximum sample size. The choice of subsets has a strong impact on the low-rank approximation
accuracy, robustness of the algorithm, as well as numerical stability, and thus the subset has to be chosen judiciously. The-
oretical guidance on geometric selection is provided in Section 2.2 via analyzing the approximation error of the two-sided
factorization. Experiments in Section 4.2 show that different geometric selections can yield dramatically different results
for approximating the kernel matrix, with FPS and the anchor net method yielding the best results, which is consistent
with our analysis.

Algorithm 1. Data-driven two-sided compression of Kxy with two sets of points X, Y

Input: Datasets X = {x1,...,Xn}, Y = {J1,....yn} C R%, kernel function x, numbers of sample points ry,r, for X,Y,
respectively
Output: Approximation Kyy ~ KXSZK;1 SZKSIY with card(S;) = rq, card(S,) =1,
Apply a linear complexity geometric selection algorithm to X and Y to generate r; and r, samples S; C X and S, C Y,
respectively
Return KXSz , Kglsz, KSIY

2.2 | Error analysis for two-sided approximation

The goal of this section is to derive an error estimate of the two-sided approximation that is able to provide a straightfor-
ward geometric understanding of how the subsets S1, S, affect the approximation accuracy. This analysis is independent of
how the subsets S1, S, are selected in Algorithm 1. To prepare for the derivation of the geometric estimates, in Section 2.2.1,
we derive error bounds involving only submatrices of Kyy. The geometric estimates are presented in Section 2.2.2.

2.2.1 | Algebraic preparation

In order to estimate for the approximation error of (2) for arbitrary subsets S; C X and S, C Y, we first review one lemma
from [ 42, Lemma 3.1], which is stated below.

Lemma 1. Assume A is an m-by-n matrix, a, & are m-by-1 vectors and p, f} are n-by-1 vectors. Define e,(u) :=

|@ — a|| and €, := || — BI|. Then

|aTAf — aTAp| < |laTAll - e + |AB| - ex(w) + ||A]| - €1 (W)ey. (5)
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In the next theorem, we derive the estimate for the entrywise approximation error of (2) at an arbitrary pair of points
(, ). This can be viewed as an error estimate for the “algebraic” separable approximation to the kernel function x(x, ).

Theorem 1. Consider finite sets X, Y c R? and a kernel function «(x,y) defined on X X Y. For any non-empty
subsets S1 C X and S, C 'Y, the entrywise error of the approximation in (2) satisfies

|k (x,y) — szzK;lSszlﬂ < I}gfl <|’<(X,Y) —kW,v)| + e1(u) + e2(v) + ||K;152 ||€1(u)62(v)> , (6)

VES)

where €1(u) = ||Kxs, — Kys, || and €;,(v) = [|Ks,y, — Ks,l.

Proof. Since KSlszK;szKSLSZ = Kg,s,, we have Vu € S1,v € S

K(us v) = K”SZK;;SZKSW‘ (7)

Foranyx € X,y €Y, u € 51, v € S,, define the column vectors

A

a:=Kl., a:=KL, p:=Ksu Pp:=Ksy.

usS,’ XS,
Then it is easy to see that e;(u) = ||@ — «|| and e,(v) = ||§ — B||. With (7), we obtain

KG6Y) = Kus K Koy = kG6y) = 7KL g § = (e(ey) = cw ) + (7K - 6KE B)). ®)
for any u € S;,v € S,. According to Lemma 1, we get

AT+ A T+
a Kslszﬂ_a Kslszﬁ

< HaTK;l Sz”ez(v) + HK; Szﬁ“efl(u) + ||KS+1 Sz||el(u)€2(v)

< &) + @) + ||Kj ¢ |erew. ©)

The last inequality in (9) follows from the fact that o:TK;r 5 = MSZK; ¢ isarowin KslszK; s and K; (B=
192 192 192 192

Kt Kg,isacolumnin K} . Ks s , and meanwhile
518,71 5,8, P12

[, | = [, K| = 2
We see from (8) to (9) that
K(X,y) — ATK;ISZ/?’ < ’K(x,y) — x(u, v)l +e1(u) + &) + ”K;Sz”el(u)ez(v), VUES), VES,. (10)
Minimizing the upper bound in (10) over all u € S1,v € S, yields (6), which completes the proof. [

The entrywise estimate in Theorem 1 immediately leads to a matrix max norm estimate, which is proved in the next
theorem.

Theorem 2. Consider finite sets X, Y C R¢ and kernel function x(x,y) defined on X X Y. For any non-empty
subsets S C X and S, CY, denote by X =X XY, S =8, X8S,. Then the approximation in (2) satisfies the

following estimate
Kxy — Kxs, K¢ . Ksy < maxmin ( |k(x,y) — kU, V)| + e1(w) + &20) + |KJ ¢ [lerex(v) ), (11)
2778187 1Y [ max xeX  ues; 515,
YEY  veS,

where e1(u) = ||Kxs, — Kus,

2

and €2(V) = ||K51y - K.S‘lv

Proof. Taking maximum of both sides of (6) over x € X,y € Y yields (11). n
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Assuming k is Lipschitz continuous, Theorems 1 and 2 imply that the bounds will be small if for any point x € X there
is a point u € S; nearby and for any pointy € Y there is a point v € S, nearby. As a result, Theorems 1 and 2 indicate that
S: and S, should be evenly distributed inside X and Y in order to achieve a small approximation error. This can be more
easily identified when the special case S; = X or S; = Y is considered.

Corollary 1. Let X,Y C R? be finite sets and «(x,y) be defined on X x Y. For any non-empty subsets S; C X
and S, C Y, the following estimates hold

||ny - QL(SZKXYHM < maxmin (1xCe,y) = ke V)| + IKxy — Kxoll) »

yeYy

Ko = K Q5. |, < maxmin (Ixx.y) = k@)l + 1Ky = Kar I (12)
1+ [lmax xeX  yes,

YEY
[ + - .+
where QXS2 1= KXSzKXSZ’ Q51Y = KSIYKSIY'

Proof. We only show the first inequality in (12) and the second one can be proved in a similar fashion. Note
that the first inequality in (12) is a special case of (11) with S; = X. In this case, in the upper bound of (11),
the minimum over u € X is no greater than the value achieved by choosing u = x. Hence we see thatif S; = X
and u = x, then €; = ||Kys, — Kys, || = 0 and (11) becomes

which is the first inequality in (11). [

[ = Qg K], < maxmin (1ic6x.y) = el + [y~ Ko

YeY

Assuming k is Lipschitz continuous, Corollary 1 further reveals the interconnection between the approximation accu-
racy and the geometry of sample points. Algebraically, ||[Kxy — QL{SZKXyllmaX and ||Kxy — KXYQEIY”maX measure how well
Kxs, and K y capture the column and row spaces of Kxy, respectively. Geometrically, the bound on the right-hand side
of (12) will be small if S; and S, are able to capture the global geometry of X and Y, respectively.

2.2.2 | Geometric estimates

In the following, we reveal the geometric implication of the error bounds in Theorem 2 and Corollary 1 with the help of the

so-called discrete Lipschitz constant as defined below. It is used to derive new error bounds that give a more straightforward

interpretation of how the sets of landmark points S; and S, affect the accuracy of the approximation Kxy ~ Kxs, K;r s Ks,v-
192

Definition 1 (Discrete Lipschitz constant). Let x(x,y) be a function defined on X X Y. Denote Z = Z; X Z,,
S =8; X S, W1 X W, as three non-empty subsets of X X Y. The discrete Lipschitz constants of x associated
with these three subsets are defined by

L(Z,S) :=min{C : |k(x,y) — ku,v)|*> < C¥(|x —u|* + |y = v|*) V(x.,y) € Z,(u,v) € S},
L(Z>,So)w, :=min{C : [k(x,y) — k(x,V)|* < C*|ly —v|* Vx € W1,y € Z,,v € S,},
L(Z1,S)w, :=min{C : |k(x,y) — ku,y)|* < C*lx —u|> Vy € W5, X € Zj,u € S1}. (13)

Since X, Y are finite sets, each minimum in (13) exists. Note that in general L(Z, S) is not the Lipschitz constant of
since we do not assume « to be Lipschitz continuous or even defined outside X x Y. If k(x,y) is Lipschitz continuous in
aregion containing X X Y with Lipschitz constant L, then it is easy to see that L(Z, S) < L, as stated in Proposition 1.

Proposition 1. Let x(x,y) be a Lipschitz continuous function on a domain Dy X D, with Lipschitz constant L.
For any discrete subset X X Y C Dy X D,, the discrete Lipschitz constants defined in (13) are all smaller than or
equal to L.

The discrete Lipschitz constants are introduced to make the result derived in this section applicable to general kernel
functions with as few constraints as possible. In many applications, the kernel functions are actually not only Lipschitz
continuous but also smooth in the domain of interest. Hence it is sufficient to use the Lipschitz constant. For example, in
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eyl

0-2

) is smooth; radial basis functions like /1 + |x — y|? and

(1 + |x — y|*)~1/? are smooth; in potential theory, kernels like ﬁ are smooth in D; X D, with well-separated domains D,

machine learning and statistics, the Gaussian kernel exp (

and D,, which is a key assumption in the fast multipole method*”-?* and hierarchical matrices in general.!1-28:43.44
Using the discrete Lipschitz constant, we can show in the following that the low-rank approximation error bound
depends on the geometric quantity

6zs = maxdist(x,S) SCZ. (14)
xeZ

The quantity 6z s measures the closeness between Z and S. The smaller 6, s is, the “closer” Sis to Z. In fact, if 6, 5 is small,
then for any x € Z, there exists a point in S that is close to x.

We can now derive an error bound for (2) in terms of the geometric quantities dx s, , dys, for subsets S} C X, S, C'Y,
respectively. The result is stated in Theorem 3.

Theorem 3. Let X, Y C RY be finite sets and x(x,y) be a function defined on X x Y. For any non-empty subsets
S1CXand S, CY,defineX =XXY,S =851 XS,. Then the following estimate holds

“KXY - KXS2K;152K51Y“maX < Ciéxs, + Cadys, + C30x.5,0v.s,
where

C1 = L(X,S) + \/r.L(X, S1)s,,
C, = L(X,S) + \/riL(Y, S)s,,
Cs = ||k 5 | VAL, S0s,L(Y. S5, (15)

with r; = card(S;). Furthermore, if k(x,y) is Lipschitz continuous over D, X D, containing X X Y with Lipschitz
constant L, then

“KXY - KXSZK;ISZKSlY“maX <+ +/r)Léxs, + A+ +/r1)Léys, + ”K;lsznv nrL*sxs dy.s,.

Proof. The result can be proved using Theorem 2 and the definition in (13). First we estimate the terms in the
upper bound in Theorem 2. The definition of Lipschitz constants in (13) implies that

(e, ) = k@) < L, S)(Ix = ul® + [y —v1?) > < L@, S) (x = ul + |y - v)),

1/2
| < (ZL(X, S5, b = u|2) < VL, S))s, Ix — ul,

e1(u) = |[Kxs, — Kus,
VES,
1/2
&) = [[Ks,y = K| < (ZL(Y, S2)4, v = v|2> < VRL(Y, S2)s, 1y = vl. (16)
uUEes,

Define Cy, C,, C; as in (15). The estimates in (16), which separate (x, u) and (y,v) into different terms, allow
us to organize the upper bound in (11) in terms of |x — u| and |y — v| and deduce that

maxmin (1x(x,y) = K@ V)] + e1(w) + ) + [Ki g [lerwe0)

yeEY VES,

< maxmin (Cy|x — ul + Cyly = v| + Cslx — ully - v])
Xt ueSsy

YEY  VvES,

= max (Crdist(x, S1) + Cydist(y, Sp) + Csdist(x, S;)dist(y, S»))

yey

= Cymaxdist(x, S;) + Comaxdist(y, S;) + Czmax dist(x, S;)max dist(y, S;)
xex yey xex yey

= C16x5, + Cadys, + C30x.5,0v.s,-
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This, together Theorem 2, completes the proof of the first inequality. The special case where x(x, y) is Lipschitz
continuous follows immediately from the first inequality and Proposition 1. [

The estimate in Theorem 3 implies that in order to obtain a good approximation, S, S, should be chosen such that
8x.s,» Oy,s, are small. Geometrically, according to the definition of 6 in (14), this means that S; and S, should repre-
sent the geometry of X and Y as much as possible. In the context of integral equations, a recent analytical study* also
discussed the relationship between the approximation error of adaptive cross approximation (ACA) and the selected
subsets measured by the geometric concept of fill distance (cf. Reference 46), which reflects how well the subset spans
the computational domain. Both fill distance and 6 in (14) provide similar geometric interpretations of the quality
of the selected subsets, where the fill distance in [ 46, sect. 1.3]: d(Q,X) = SUpyeq infrex |y — x| is defined for contin-
uous regions Q while § focuses on finite sets of points. As a result, § is always computable but fill distance is not
in general.

The error estimates derived in this section apply to any subsets S; C X, S, C Y, regardless of the algorithm
used to generate S;, S,. Thus when S;, S, are poorly chosen (i.e. corresponding to poor low-rank approximation),
we expect the bounds to reflect the fact that the matrix approximation error is large. This motivates the use of
the estimates as indicators to distinguish “good” subsets and “bad” subsets, which will be investigated next in
Section 2.3.

Remark. The estimate in Theorem 3 (as well as the one in Theorem 6) is derived to offer guidance to the fast and general
algorithm based on subset selection, and it is not necessarily “tight”. Since the goal is to design an algorithm with linear
(or nearly linear) complexity in time and space for computing accurate low-rank kernel matrix approximations by subset
selection, it is desirable to obtain a straightforward characterization of “good” subsets via analyzing the approximation
error, in order to inspire the algorithm design. The geometric quantity 6 serves the purpose. In fact, for O(1) subsets Sy, S5,
the quantities 6x s, , 6y,s, are not only easy to compute (with linear complexity in the size of X, Y), but also consistent with
the practical result when distinguishing “good” and “bad” choices of subsets for low-rank approximation as illustrated in
the following section. Hence we see that the geometric quantity 6 from the theoretical result in Theorem 3 (or Theorem 6)
leads to error indicators for subset selection.

2.3 | Subset quality indicators

The error bounds in Theorems 2 and 3 are fully computable and can be used to relate the choice of subset to the low-rank
approximation error. Error bounds of this kind often arise in a posteriori error estimates for the numerical solution of
partial differential equations using adaptive mesh refinement (AMR). In AMR, an error indicator, usually a computable
term in the a posteriori error estimate, is used to indicate the quality of the numerical solution and determine whether
further refinement is needed without knowing the exact solution (cf. References 47-53). Inspired by this philosophy, in
low-rank compression methods based on geometric selection, we can use the error estimates to construct subset quality
indicators for inferring the quality of the selected subsets. For any choice of subset S; X S, C X X Y, we consider the
following five subset quality indicators:

indicator 1 = maxmin|x(x,y) — x(u,v)|, indicator 2 = maxmin||Kys, — Kys, ||,
xeX  uesy xeX uESl

YEY VES)

. an

indicator 3 = 6x5,, indicator 4 = dy,, indicator 5= HK;r s
192

The first two indicators are related to the upper bound derived in Theorem 2, while the last three indicators are from the
estimate in Theorem 3. The costs for computing the indicators are not the same. In fact, assume Kxy is m-by-n and there
are O(1) points in S; and S,. The computational complexities for the five indicators in (17) are: O(mn), O(m), O(m), O(n),
0O(1), respectively. Hence in practice, it is more convenient to use the latter four indicators.

Given different choices of subsets, we present numerical experiments below to demonstrate how to use the subset
quality indicators to predict which choice is more likely to yield a better approximation without computing the exact
matrix approximation error. The results also underscore the impact of the geometry of the selected subset on the low-rank
approximation accuracy. We perform two experiments, one with a rectangular kernel matrix associated with two sets of
points and the other with a symmetric positive definite kernel matrix associated with one set of points.
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Experiment 1. We consider the approximation Kxy = Kxs, K;l SzK s,v- The kernel function is chosen as k' (x, y) =
log |x — y| and the rectangular kernel matrix Kxy is associated with X, Y (illustrated in Figure 2a), where X
contains 50 points and Y contains 100 points. We considers two choices for S; X S, € X X Y. Choice 1 gener-
ates points Si, S, via random sampling from X, Y. Choice 2 chooses evenly distributes points to form S, S,
using FPS. These subsets are shown in Figure 2c,d. To determine which choice yields the better approxima-
tion, we take the ratio of the respective indicators and compare it to the ratio of the exact matrix approximation
errors from the two choices. Namely, we compute

matrix error of Choice 2
matrix error of Choice 1’

indicator k of Choice 2

, ratio-error =
indicator k of Choice 1

ratio-indicator k =

where the matrix approximation error is measured in max norm. If the ratio-indicator is larger than 1, then the
prediction is that Choice 1 is better. Otherwise, the prediction is that Choice 2 is better. We then compare the
indicator ratios to the ground truth: the ratio of matrix approximation errors between Choice 2 and Choice 1.
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FIGURE 2 Experiment 1: Predicting the better choice of subsets S;, S, using subset indicators in (17).

ASURDIT suowwoy) aAneax) dqeoridde ayy £q pauseAod are sa[dIE YO SN JO SN 10§ AIRIGIT SUIUQ A3[IAN UO (SUOTIPUOI-PUR-SULID}/ WO K3[1m " ATeIqrjaur[uo//:sdny) suonipuoy) pue suLd ], ay) 22§ *[£207/60/82] U0 A1eiqry auruQ AS[IA\ “IqI] JJRIpoo 1aeNsIaATun) Alowy £q 6 ST BIU/Z001 0 1/10p/wod K3[im Kreiqriaur[uoy/:sdny woiy papeojumo( 0 ‘90S 16601



10 of 26 WI LEY CAI ET AL.

If the indicator ratio is consistent with the error ratio, that is, both larger than 1 or both smaller than 1, then the
prediction based on the indicator is correct. The result is shown in Figure 2b. It is easily seen that, for different
approximation ranks, the indicator ratios and the error ratio always stay below the horizontal liney = 1. Hence
the indicators correctly predict the fact that Choice 2 of subsets yields a better low-rank approximation than
Choice 1. Furthermore, note that unlike Choice 1, the points in Choice 2 are evenly distributed over the dataset
and thus are expected to yield a better approximation according to the theoretical results in Section 2.2. =

Experiment 2. We consider the Gaussian kernel x(x, y) = exp(—|x — y|2/0.09) and the symmetric approxima-
tion Kxx ~ KXSK;SKSX, where the dataset X contains 100 points as shown in Figure 3a. We follow the same
choices of subset as in Experiment 1, that is, Choice 1 selects random samples while Choice 2 selects evenly
distributed points. These two choices of subset S are shown in Figure 3c,d. We compute the same indicators
as in (17), where in this case Y = X and S, = S; = S. The result is shown in Figure 2b. We see that when
the approximation rank is larger than 5, all indicator ratios and the error ratio stay below the horizontal line
y = 1 simultaneously. This implies that Choice 2 yields a better approximation and the indicators give the
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FIGURE 3 Experiment 2: Predicting the better choice of subset S using subset indicators in (17).
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correct prediction. Again, we see that evenly distributed points yield a better approximation, as discussed in
Section 2.2. -

3 | ONE-SIDED LOW-RANK KERNEL MATRIX APPROXIMATION

This section analyzes the data-driven geometric approach for the one-sided low-rank approximation (3). Compared to the
two-sided case, the algorithm in the one-sided case only samples points from one set of points and applies an algebraic
factorization to postprocess the selected submatrix. Numerical experiments in Section 4 show that the one-sided algorithm
is slightly more accurate.

The key algebraic technique we use is the strong rank-reveal QR factorization (SRRQR3*). The original setting in
Reference 34 considers “tall” matrices and direct application of the result yields pessimistic computational complexity in
the current setting where “short” matrices are of interest. To resolve this issue, we discuss the new setting and derive a
nearly optimal complexity estimate in Section 3.1. We present the algorithm for the one-sided low-rank approximation
in Section 3.2 and provide the error analysis in Section 3.3. The special case of a symmetric kernel matrix Kxx with a
symmetric kernel x(x,y) = k(y,x) is discussed in Section 3.4.

3.1 | Strongrank-revealing QR for “short” matrices

The classical result on SRRQR is cited in Proposition 2. Algorithms for computing SRRQR are proposed in Reference 34
and we use [34, alg. 4] in our approach to postprocess the r X n matrix K;;Sz’ where S, C Y is the selected subset with r
points. We point out that the original result on SRRQR (cited in Proposition 2) only considers “tall” matrices of size m X n
with m > n and the complexity contains a term of O(n?). Such a complexity will be too pessimistic for the “short” matrix
K};Sz of size r X n with r < n in general. To obtain a complexity estimate that is nearly optimal in n, we present in this
section a rigorous analysis of SRRQR for “short” matrices. The result in Proposition 3 shows that the complexity of SRRQR

is in between O(r?n) and O(r?n log, n) for r X n matrices with rank r. That is, the complexity is linear or nearly linear in n.

Proposition 2 (Strong Rank-revealing QR Factorization®**). Let M be an m X n matrix with m > n.
The SRRQR of M yields M = Q [Ak gi] I1, where Q is m X m orthogonal, 11 is a permutation matrix,

Ay is a well-conditioned k X k upper triangular matrix with the ith (1 <i < k) singular value o;(Ax) >

oi(M)/ /1 + s2k(n — k), Cy satisfies 0;(Cx) < ok4j(M)\/1+ s2k(n —k)with1 <j <n -k, ||A,;13k||max < s. Here

s > 1 is a user-specified constant. The complexity for SRRQR is O(mn? + n®log, n).

We are interested in applying SRRQR to “short” r X n matrices as described below and the complexity in Proposition 2
does not reflect the efficiency in the new setting, where M is r X n with rank r.
Algorithm [34, alg. 4] for computing the SRRQR in Proposition 3:

Compute R = [A;, By] := QR (M) and define IT = I, where QR denotes the QR factorization;

while ||A;7 By |lmax > s do

Find i, j such that [(A;'B,);;| > s;

Compute R = [A,, B;] := QR(RI;j;,) and IT :=I1 I1; , where I1;j,; denotes the permutation that interchanges the
ith and j + k th columns;

5. endwhile

e

We analyze SRRQR for “short” matrices and prove the nearly optimal complexity of the algorithm above. The result
is summarized in Proposition 3. A straightforward corollary of Proposition 3 gives a stable interpolative decomposition
for “tall” matrices (Corollary 2) that will be used in the one-sided low-rank approximation in Algorithm 2.

Proposition 3 (SRRQR for “short” matrices). Let M be an r X n matrix with rank r (thus r < n). The SRRQR
of M yields M = Q [Ar Br] I1, where Q, P, 11, A, B, are as in Proposition 2, with ||Ar‘1B,||maX <S.Heres>1is
a user-specified constant. The complexity for computing such a factorization is O(Rie F*n), where nie; denotes the
number of while loops in Line 2 of the SRRQR algorithm above, and nj, is between O(1) and O(log, n). That

is, the complexity of SRRQR is between O(r*n) and O(r*nlog, n).
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Proof. The QR factorization in Line 1: [4,, B,] := QR(M) for has complexity O(r?n). The number of while
loops nier is at most O(log, n) according to the estimate in [34, sect. 4.4]. In fact, the O(log, n) estimate is
calculated for the two nested while loops in [34, alg. 5] in which nj., corresponds to the inner while loop. As
a result, the complexity of nir must not exceed O(log, n). In the while loop, computing each [|A;*B;||max
requires O(r’n) complexity, since A, is triangular and B, is r X (n — r).

Next we analyze the complexity for each QR factorization to R := RIl; j;, in the while loop. Without loss
of generality, we assume i = 1. Thisis because in this case, R = RII; j;, has the following sparsity pattern (blank
entries denote zeros) and QR will be applied to the whole matrix, which results in the highest complexity.
If i > 1, then the first i — 1 columns already form an upper triangular matrix and QR is applied to the
non-triangular submatrix in the lower right part of R whose size is strictly smaller than r-by-n.

ES * ES ES
ES * ES
R:=1]x *
ES ES ES
ES ES

To compute the QR factorization of R efficiently, we apply Householder reflection or Givens rotation to sub-
matrices of row size two in a bottom-up fashion, which will reduce the matrix into an upper Hessenberg form.
Then we apply Householder reflection or Givens rotation to the upper Hessenberg form in a top-down fashion
to obtain an upper triangular matrix, which completes the QR factorization.

In the bottom-up reduction, we first apply Householder reflection or Givens rotation to the last two rows
of R to zero out the entry in the bottom left corner (see (18)), i.e., entry (r, 1) in R. Note that this will introduce
a nonzero entry at (r, ¥ — 1), denoted by ‘e’ in (18).

—
Applying the same process recursively to the two-row submatrices (rows k — 1,k) with k=r—1,r —
2, ..., 3, we obtain an upper Hessenberg form:

ok L. %
° *

* ok

o ik

The total complexity of this bottom-up procedure is
O((n=r+3)+(m—r+4+---+n-r+r)=0(n),

where the number in each inner parenthesis denotes the number of nonzero columns in each two-row matrix.
Then we reduce the upper Hessenberg form in (19) into an upper triangular matrix by applying House-
holder reflection or Givens rotation sequentially (in a top-down fashion) to the two-row submatrix (rows
k.k+1) with k=1,2, ... ,r—1, in order to zero out the subdiagonal entries. Similar to the bottom-up
procedure, it is easy to see that the total complexity of the top-down procedure is also O(rn).
Therefore, we see that the each execution in the while loop is donimated by the cost of computing
|A; By || max, With O(r?n) complexity. The total complexity of the entire algorithm is then

O(Vzl’l + niterrzn) = O(niterrzn)-

(18)

19
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Given the fact that nj., is between O(1) and O(log n), the complexity of SRRQR is between O(r’n) and
O(r*nlog, n). n

Corollary 2. Let M be an n X r matrix with rank r. Then M can be factorized via SRRQR as M = P [é] M,

where P is a permutation matrix, I is an identity matrix, M is the matrix that consists of the first r rows of PTM,
and ||G|lmax < s. Here s > 1 is a user-specified constant. The computational complexity is at most O(r*nlog n).

Proof. Applying SRRQR to the r x n matrix MT yields
M'=Qla, B|M. (20)

where Q,T1, A,, B, are matrices in Proposition 3. In particular, ||A; !B, ||max < s. Meanwhile, the complexity is
at most O(r*nlog, n) according to Proposition 3.

Since ITis a permutation matrix, QA, is a submatrix of M” containing the first » columns of M TMT. Define
MlT = QA,. We see that M; contains the first r rows of [IM. We can then rewrite (20) as

MT = QA, [1 Ar‘lBr] =M [I A;lBr] 1.

Transposing both sides yields the desired factorization with P :=T17, G := A;'B,, ||G|lmax < 5. The complexity
is at most O(r*n log, n) thanks to Proposition 3. L]

Remark 1. Note that in the original SRRQR,** the permutation is performed for the smaller dimension, that is,
n columns for a “tall” m X n matrix with m > n. In Proposition 3 and Corollary 2, the permutation is performed
over the larger dimension. This calls for the new complexity analysis in the proof of Proposition 3 different
from the original estimate in Reference 34.

3.2 | Algorithm

The one-sided approximation method consists of two stages. In the first stage, a subset S; C Y is selected using a linear
complexity geometric selection scheme (Section 1). In the second stage, we compute the interpolative decomposition
in (3) via applying SRRQR>** to guarantee the maximum norm of the column basis matrix is bounded by a prescribed
number s > 1. More precisely, we apply SRRQR to the “short” matrix K§SZ and then transpose the output to obtain Kxs, =

p é Kzs,, with 7; C X, P a permutation matrix and ||G||max < s. See Corollary 2 for a more detailed discussion.

The full one-sided compression algorithm is summarized in Algorithm 2. Notice that in Step 2 of Algorithm 2, SRRQR
is only used to obtain a stable factorization of Kxs, and thus no approximation error is introduced.

Algorithm 2. Data-driven one-sided compression of Kxy with two sets of points X, Y

Input: Datasets X = {x1,...,Xn}, Y = {y1,...,u} C R4, kernel function x, number of sample points r for Y
Output: Low-rank approximation Kxy ~ UKz,y in (3)
Apply a linear complexity geometric selection algorithm to Y to generate r sample points S, C Y
Apply SRRQR-based ID to the m-by-r kernel matrix Kxs, : Kxs, = P [é] K7 s,, where I is an identity matrix, 7; € X, P
is a permutation matrix that maps the row indices of I to the indices for 7; in X, and ||G||max < 2
Define U = P I

o}

Return U, KIIY

Compared to purely algebraic methods such as LU, QR, rank-revealing QR, and SVD decompositions, Algorithm 2
does not access the full kernel matrix and scales linearly or nearly linearly with respect to the data size. Compared to the
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proxy point methods,?%?7 hybrid cross approximation,*® Algorithm 2 does not require the evaluation of the kernel function
outside the given dataset (where the function may not necessarily be defined) and is able to scale to high dimensions. In
terms of numerical stability, Algorithm 2 leverages the robustness of algebraic methods to obtain a stable factorization
compared to the two-sided approximation. As we shall see in Section 4, despite being more stable and more general, the
error-time trade-off of the proposed method can be noticeably better than that of existing methods.

In addition to the factorization K ~ UK7,y, a similar one-sided factorization K ~ Kxz,V* can be computed by applying
Algorithm 2 to K%, . That is, we first select a subset from X and then apply ID to obtain a subset 7, C Y. Both options first
apply geometric selection to X or Y to obtain a small submatrix and then apply algebraic factorization to it. They differ
in which data set the geometric selection is applied to, that is, X or Y. If one set contains significantly more points than
the other one (for example, m > n), for efficiency, it is better to perform geometric selection on the larger set to reduce
its size to O(1), so that the following algebraic factorization, which is more expensive than geometric selection, is applied
to a submatrix with a smaller dimension n-by-O(1) instead of m-by-O(1).

3.3 | Complexity and error analysis

In this section, we analyze the complexity and the approximation error of Algorithm 2. First, we show that Algorithm 2
scales as O(r?(m + n)) for obtaining a rank-r approximation to an m x n kernel matrix.

Theorem 4. Given X = {x;}",, Y = {yi}, in R? and kernel function «, the complexity of Algorithm 2 to

i=1’
compute a rank-r approximation Kxy ~ UKy, y is o(dr’(m + n)).

Proof. Compressing a set of n points into r points with any scheme in Section 1 has a complexity at most
O(dr*n). The cost of applying ID on a m-by-r matrix Kxg, is O(r*m). Therefore, the overall complexity of
Algorithm 2 is O(dr*(m + n)). n

Next we analyze the approximation error for Kxy ~ UKy, y computed by Algorithm 2. We will see that, different from
the two-sided factorization, the error bound for Kxy ~ UKy, y does not involve the norm of the pseudoinverse of the matrix.

Theorem 5. Let X and Y be finite sets in R? and k(x,y) be defined on X x Y. For any non-empty subset S C Y,
let Kxs be decomposed by SRRQR-based ID as Kxs = UKzs = P [é] Kzs with ||G|lmax < 2. Then

1Ky = UKy llmax < maxmin (|x(x,) = <6 v)| + 1Ky = Kol

yeY
+ 2rmaxmin (|x(x,y) = k(e v)| + Ky = Knll) D)
yeY v
where r = card(T).

Proof. We decompose Kxy as

KXY = KXSK;SKXY + E1 with E1 = KXY - KXSK;SKXY

_I_
=P | | KisK}Kxy + Ex
_G_
_I_ '
=P G (KZY + Ez) + E1 with E2 = KISK;SKXY - KIY
] I
=P Ky +P lG] E; + E;. (22)

According to Corollary 1,

IE1 |lmax < max min (ICe.y) — k()| + [|Kxy — Kxol) - (23)

yey
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Similarly, for E,, we have

12l lmax < maxmin ([x(x,y) = €6, v)| + 1Ky = Kxll) - (24)

yEY

Since ||G||max < 2 and the row size of E; is equal to r = card(Z), it follows that

”GEZ”max < 2r||E2”max-

Together with (24), (23), and (22), we deduce the inequality in (21). [

The estimate in Theorem 5 relates the approximation error to the subset S. We remark that in the estimate, r is fixed
and S is viewed as a variable since we aim to study how the choice of S affects the low-rank approximation accuracy. This
is different from estimates that study how error decays with r. We show a more geometric characterization of the error
bound of Theorem 5 in the following theorem. This theorem implies that the approximation error depends on the ability
of S to capture Y, which is similar to the two-sided approximation case described in Theorem 3.

Theorem 6. Let X,Y,«,S, T be given in Theorem 5 and let Kxy ~ UKyy be the approximation in Theorem 5.
Then

IKxy — UKzy|lmax < LIX X Y, X X S)8y.s + (1 + 2r)\/mL(Y, S)xby.
+2rL(I X Y, T x S)dy.s, (25)

where m = card(X), r = card(Z). Furthermore, if x(x,y) is Lipschitz continuous over D; X D, containing X X Y
with Lipschitz constant L, then

IKxy — UKzy|lmax < LSy.s + (1 + 2r)\/mLby.s + 2rLéy s.

Proof. The proof is analogous to that of Theorem 3. According to (16), we deduce that

. B B 5 . B B
IIXI%XI‘{Iel?“K(x,y) k(e v)| + [|Kxy — Koll) < mrmin (L(XxY,XxS)|y v| + VmL(Y, S)x|y v|)
S ye

= max (L(X XY, X x S)dist(y, S) + V/mL(Y, S)xdist(y, S)>

yeY

= LX X Y, X X S)y.s + VmL(Y, S)x6ys.
Similarly, it can be deduced that

maxmin (|x(x.y) = k(e )| + 1Ky — Kxoll) < LI X Y. T X $)dv.s + V/mL(Y, S)xbv.s.
yey

Inserting the above two inequalities into (21) completes the proof of (25). The special case of x(x,y) being
Lipschitz follows immediately from (25) and Proposition 1. [

From Theorem 6, it is easy to see that smaller dy s contributes to better approximation and the approximation error
is zero if S = Y. Also, we see that the smoother the kernel function is (small Lipschitz constant), the more accurate the
low-rank approximation will be. This is consistent with the fact that smooth kernel functions yield kernel matrices with
rapidly decaying singular values.

Compared to the error estimates in Theorems 2 and 3 for the two-sided factorization, the estimates for the one-sided
factorization in Theorems 5 and 6 appear to be better since they do not contain the norm of any matrix, for example, the
possibly large factor ||K;r1 s, || in Theorems 2 and 3. This factor disappears when only one geometric selection is performed
(for either rows or columns), as shown in Corollary 1 and Theorem 5.
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3.4 | The symmetric case

In this section, we consider a variant of the approximation (3) when the kernel matrix Kxx = [k (x,¥)]xyex is associated
with one set of points X and a symmetric kernel x(x,y). This type of kernel matrix arises frequently as covariance or
correlation matrices in statistics and machine learning. In order to preserve the symmetry of Kxy, we compute a symmetric
factorization of the form

Kxx ~ UK7;UT with ITCX (26)

whose structure-preserving properties are shown in the next proposition. This is the symmetric version of the
“double-sided ID”.>*

Proposition 4. If Kyx is symmetric, then the low-rank approximation UK;7UT in (26) is also symmetric. If
Kxx is assumed to be positive semi-definite, then UKz U7 is also positive semi-definite.

Proof. Since T C X, Kz7 is a principal submatrix of Kxx. If Kxx is symmetric, K77 is also symmetric, which
implies that UK77 U7 is symmetric.

If Kxx is positive semi-definite, then K77 is also positive semi-definite since it is a principal submatrix of
Kxx. As aresult, UK7; UT is symmetric positive semi-definite. n

The symmetric factorization in (26) is a straightforward extension of the one-sided factorization and the algorithm is
summarized in Algorithm 3.

Algorithm 3. Data-driven compression of Kxx with one set of points X

Input: Dataset X = {xy,...,X,} C R4, kernel function x, number of sample points r
Output: Low-rank approximation Kxx ~ UK77UT

Apply a linear complexity geometric selection algorithm to X to generate r sample points S
Apply SRRQR-based ID to the n-by-r kernel matrix Kys:

Kys = [K(0.))]ex = P [é] Kis. @7)
yes

where T C X, P is a permutation matrix that maps the row indices in I to the indices for 7 in X, and ||G||max < 2
) I

Define U = P [G]

Return U, K77

4 | NUMERICAL EXPERIMENTS

In this section, we illustrate the data-driven geometric approach using both low- and high-dimensional data. All
experiments were conducted in MATLAB R2021a on a MacBook Pro with Apple M1 chip and 8 GB of RAM.

4.1 | Dataon a manifold in three dimensions

For data in low dimensional ambient space, for example, d = 3, there exist several effective methods for compressing
kernel matrices. However, their efficiency may decrease when the separation between the sets X and Y decreases and
when the data lies on a manifold rather than be distributed relatively uniformly in the ambient space. To illustrate the
advantages of the geometric approach in these cases, we use a sequence of three datasets as illustrated in Figure 4. In each
dataset, X and Y each contain 1400 points, with 400 on each small cube and 600 on the hemisphere in Figure 4. From
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3
FIGURE 4 Sequence of three datasets in three dimensions. From Datasets 1 to 3, Y is a vertical shift of X by 2.7, 2, and 0.5,

respectively. The minimum distance between points in X and points in Y from Dataset 1 to 3 is 1, 0.43, 0.12, respectively.
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FIGURE 5 Accuracy comparison of different methods for constructing low-rank factorizations on the kernel matrices defined by

Datasets 1, 2, and 3 shown in Figure 4 and the kernel function x(x,y) = 1/|x — y|.

Dataset 1 to 3, Y is a vertical shift of X by 2.7, 2, and 0.5, respectively. The minimum distance between points in X and
points in Y from Datasets 1 to 3 is 1, 0.43, 0.12, respectively. The smallest bounding boxes for X and Y are well-separated
in Dataset 1, adjacent in Dataset 2, and overlapping in Dataset 3. With these data, kernel matrices were constructed using
the kernel function x(x,y) = 1/|x —y|.

Test 1. Robustness with respect to data geometries. For above the settings, we compare the approximation error
of the data-driven geometric approach with that of an algebraic method, ACA,* and proxy point method (‘proxy’).?” For
the data-driven method (‘DD’), we construct a one-sided factorization (Algorithm 2) using farthest point sampling with
sample size at most 2r for a rank-r approximation. Namely, 2r points are chosen for S, and SRRQR is applied to Kxs, .
For the proxy point method, the sample size is 2000 for Qx (the smallest bounding box containing X) and 10000 for
Qy, independent of the approximation rank. Figure 5 shows, for the various methods, the relative matrix approximation
error as a function of the rank of the approximation. The relative error is defined as ||K — K||/||K||, where K denotes the
low-rank approximation to K and || - || denotes the 2-norm. The optimal relative approximation error as computed by the
SVD is also shown.

We observe that all methods are effective for Dataset 1, with the data-driven method-DD-being the most efficient
and most closely tracking the SVD approximation error. We remark that the large number of random samples in the
bounding box is not effectively used in proxy point method when the data is unstructured. Hence it is computationally
more expensive than DD and ACA in this experiment.

For Dataset 2, we are at the boundary at which hybrid methods are effective, that is, those methods that assume a
separation of the bounding boxes for X and Y. However, DD and ACA still closely track the SVD approximation error.
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For Dataset 3, the points in X and Y are actually “intermingled” (overlapping bounding boxes). ACA might not
effectively sample X and Y in this dataset, especially since the dataset contains disjoint clusters (points on a half-shell
and points in small cubes). However, DD continues to closely track the SVD approximation error.

4.2 | Datain high-dimensional ambient space

The data-driven geometric approach can be efficient for data in high-dimensional ambient space, whereas many other
existing low-rank compression methods have cost that is exponentially dependent on the dimensionality of ambient space.
To demonstrate the data-driven approach for high-dimensional data, we use two datasets from the UCI machine learning
repository:* Covertype (n = 581,012, d = 54) and Gas Sensor Array Drift (n = 13,910, d = 128). Each dataset is standard-
ized to have mean zero and variance along each dimension equal to one. Instead of using the entire datasets, we choose X
and Y to be two subsets of random samples, selected without replacement, with 8000 points for X and 10,000 points for Y.

For both datasets, the kernel matrix Kxy is a 8000-by-10,000 matrix associated with the Gaussian kernel x(x,y) =
exp(—|x — y|?/5?). Since the bandwidth parameter ¢ controls the smoothness of the kernel, we consider ¢ from among
three values, denoted as o1, 03, 63 and chosen to be 100%, 50%, 25% of the radius of X, respectively.

Test 2. Different geometric selection schemes. We first examine the effect of different geometric selection schemes
(see Section 1) used to construct the two-sided low-rank factorization (2). It has been observed in Reference 42 that the
approximation error can be extremely large if the subset is not chosen properly. In this case, to deal with the pseudoinverse,
a stable implementation proposed in Reference 55 was used in Reference 42:

Kxy ~ (Kxs,RD)(Q"Ks,y), (28)

where K s, = QR is the QR factorization of K s, and R, is derived from R by truncating singular values smaller than e
in the SVD. It is also noted in Reference 42 that the above stabilization is not needed if the subset is well-chosen, that
is, spread evenly over the data. For a detailed numerical study on the effect of stabilization, we refer to [42, sect. 5.2].
To make a fair comparison of different selection schemes, the stabilization in (28) is used in this experiment. Namely, in
Algorithm 1, K s, is replaced with its truncated QR factors: Q and Rt

For these experiments, we use the Gas Sensor dataset with a Gaussian kernel with ¢ = o7 ~ 307.52.

Figure 6 shows the low-rank approximation error (relative error as in Figure 5) versus approximation rank when
different geometric selection schemes are used. We compare the following schemes: anchor net (‘ANC’), farthest point
sampling (‘FPS’), uniform random sampling (‘Unif’), as well as mixtures of uniform random sampling and FPS (some
points are generated by FPS, the rest by random sampling). In the mixed scheme, random sampling is used to reduce the
cost of FPS and we use the experiment to observe the effect of augmenting FPS samples with random samples. In these
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FIGURE 6 Accuracy comparison of different geometric selection schemes for constructing two-sided data-driven low-rank
factorizations on the kernel matrix defined by the Gas Sensor dataset (d = 128) and a Gaussian kernel with the bandwidth ¢, ~ 307.5.
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cases, the mixtures are denoted ‘mixedl’, ‘mixed2’, ‘mixed3’, for 5%, 10%, 50% FPS samples with the remainder of the
samples selected by uniform random sampling. We observe that ANC and FPS perform similarly. These methods have a
clear advantage over pure random sampling, suggesting that the data has structure to be exploited that is hidden from
pure random sampling. However, random sampling can reduce the cost of a pure FPS method. The accuracy of ANC and
FPS is attributed to the use of evenly spaced points. The generation of evenly distributed points is studied in discrepancy
theory for the unit cube (cf. References 56,57) and recently extended to general geometries using deep neural networks
(cf. References 58,59). We also note that the approximation error for ‘DD2-Unif does not improve after approxima-
tion rank about 50, creating the “flat” portion in the plot. In fact, this is due to the stabilization (28) that prevents the
approximation error from “blowing up”.

Test 3. One-sided versus two-sided low-rank factorization. With the same dataset and kernel as immediately
above, we compared the approximation error for one-sided and two-sided low-rank factorization. Figure 7 shows these
results. The one- and two-sided cases are denoted as ‘DD1’ and ‘DD2’, respectively, and each is tested with ‘Unif’, ‘ANC’,
and ‘FPS’ geometric selection.

We observe that one-sided factorization is generally more accurate. This is consistent with the theoretical results in
Theorems 2 and 5, where the two-sided approximation error estimate contains the norm of a pseudoinverse matrix while
the one-sided approximation estimate doesn’t contain any matrix norm.

We notice again the stagnating accuracy for ‘DD2-Unif when the approximation rank is larger than 50. On the con-
trary, “DD1-Unif” gives effective error reduction as the approximation rank increases. The difference reveals the fact that
the two-sided factorization is not as numerically stable as the one-sided factorization. It should be noted, however, that
the one-sided factorization is more expensive to compute than the two-sided factorization. The one-sided factorization
uses geometric selection on only X or only Y rather than both X and Y and applies algebraic compression to a much larger
intermediate matrix than the two-sided factorization.

Test 4. Comparison with ACA and robustness with respective to kernel parameters. There exist a few low-rank
compression algorithms that are both efficient in the high-dimensional case and able to handle intermingled data. One
notable method is the ACA method,?® which does not require access to the full kernel matrix, has linear complexity, and
produces a one-sided factorization. We thus now compare the data-driven geometric approach with ACA. Specifically,
we use the data-driven approach to compute a one-sided low-rank factorization with ANC and FPS geometric selection
schemes, corresponding to “DD-ANC” and “DD-FPS” in Figures 8-10.

Figures 8 and 9 show the approximation errors for the Covertype and Gas Sensor datasets, respectively, each with
three values of bandwidth ¢ for the Gaussian kernel. For the Covertype dataset, the data-driven methods yield much
better accuracy than ACA for all choices of 6. The accuracy of ACA stagnates as the approximation rank is increased,
suggesting that clusters in the dataset have prevented ACA from selecting rows and columns that help represent the kernel
matrix.
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FIGURE 7 Accuracy comparison of one-sided (dashed lines) versus two-sided (solid lines) data-driven factorizations on the kernel
matrix defined by the Gas Sensor dataset (d = 128) and a Gaussian kernel with the bandwidth ¢; ~ 307.5.
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FIGURE 8 Accuracy comparison of one-sided data-driven factorizations (DD-ANC and DD-FPS) with ACA on kernel matrices
defined by the Covertype dataset (d =54) and Gaussian kernel with three different bandwidths o.
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FIGURE 9 Accuracy comparison of one-sided data-driven factorizations (DD-ANC and DD-FPS) with ACA on the kernel matrices
defined by the Gas Sensor dataset (d =128) and the Gaussian kernel with three different bandwidths o.

For the Gas Sensor dataset, all methods behave similarly for a large bandwidth o;. For a smaller bandwidth o3, ACA
displays stagnation in accuracy for approximation rank greater than 100. The smaller bandwidth makes the Gaussian ker-
nel less smooth, and accentuates the effect of clusters in the data. These issues in ACA have been explored previously.3%3!
In general, these issues reflect the challenge in approximating kernel matrices associated with high ambient dimensions
but possibly lower dimensional structures within these dimensions.

Figure 10 shows timings for computing the low-rank approximations. Although our timings are limited to MAT-
LAB execution, the results indicate that a geometric approach using a fast geometric selection scheme (e.g., ANC)
can be faster than ACA for the same approximation error. The results also suggest that ANC is significantly faster
than FPS.

Test 5. Comparison of algebraically generated subsets and geometrically generated subsets. ACA?%% per-
forms a column-pivoted partial LU decomposition where the pivots are chosen algebraically based on the residual of each
rank-1 approximation in the sequential process. The resulting triangular factorization (LU) is mathematically equivalent
to KXSsztl ISZKSIY where K s, is a square matrix and the subsets (corresponding to the pivots) Si, S, are generated by ACA
(cf. [ 28, Lemma 3]). Hence we can use ACA to generate subsets for Algorithms 1 and 2. Now, given the proposed geo-
metric approach and the algebraic approach via ACA for generating subsets, a natural question is which approach yields
better performance in practice. In this experiment, we investigate the quality of subsets by comparing the following meth-
ods: (1) ACA; (2) one-sided factorization in Algorithm 2 with subset S, generated by ACA (‘DD1-ACA’); (3) one-sided
factorization with subset generated by anchor net (‘DD1-ANC’). We use the Gas Sensor dataset (d = 128) and consider
both symmetric positive definite (SPD) matrix and rectangular matrix. The SPD matrix is the Gaussian kernel matrix Kxx
with X containing 8000 random samples from the Gas Sensor dataset. For the rectangular matrix Kxy, we choose X and
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FIGURE 10 Time comparison of one-sided data-driven factorizations (DD-ANC and DD-FPS) with ACA on the kernel matrices
defined by the Gas Sensor dataset (d =128) and the Gaussian kernel with three different bandwidths . CPU timings (in seconds) are the
average of 10 runs.
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FIGURE 11 Accuracy comparison of ACA, one-sided factorizations with ACA-generated subsets (‘DD1-ACA’) and anchor
net-generated subsets (‘DD1-ANC’) on the Gaussian kernel matrices with Gas Sensor dataset (d = 128).

Y to contain 8000 and 10,000 samples, respectively, as in Test 4. The bandwidth paragraph is chosen as ¢ = o3 ~ 61.50.
The result is shown in Figure 11.

It is clearly seen from Figure 11 that, for this problem, ACA and ‘DD1-ACA’ yield almost the same performance,
indicating that the subset generated by ACA (or, algebraically, pivots) does not yield an accurate low-rank approximation
regardless of whether the underlying matrix is SPD. The geometric method with anchor net, on the other hand, generates
better subsets with more accurate low-rank approximations. Considering the time efficiency demonstrated in Figure 10,
we see that the geometric approach gives overall better performance in terms of accuracy, speed, and robustness.

To provide a straightforward illustration of the subset selected by ACA, we performed an experiment in two dimen-
sions (X c R?) for the Gaussian kernel x(x,y) = exp(—|x — y|?/0.25). The dataset X contains 400 points splitted into three
clusters (left to right) with 100, 200, and 100 points respectively. Thus the kernel matrix Kxx is a 400-by-400 SPD matrix.
The dataset X is shown as blue points in Figure 12b,c. We compare the points generated by ACA and AnchorNet and
show the corresponding low-rank approximation error measured by relative error in matrix 2-norm. The result is shown
in Figure 12. We see from Figure 12a that when the rank is smaller than 30, ACA entirely fails to improve the approxi-
mation accuracy despite the rank increase. To understand this from a geometric point of view, we show the scatter plots
in (b) and (c) for the case when the rank equals 25. It is clearly seen that the points selected by ACA are “locked” in the
first two clusters in X with no point selected in the third cluster. This results in the stagnation of accuracy. Algebraically,
this “locking” phenomenon is analogous to performing Gaussian elimination only on the first two diagonal blocks of a
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FIGURE 12 Comparison of ACA-based selection and AnchorNet-based selection.
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FIGURE 13 Linear scaling tests of the data-driven factorization method on the kernel matrices defined by the synthetic data X, Y

sampled from the uniform distribution over [0, 1]¢ and [2, 3]%, respectively, and the kernel function log |x — y|. Left: peak memory use. Right:
CPU time (average of 10 runs).

matrix that is composed of three diagonal blocks of similar rank structure. On the contrary, AnchorNet generates points
from all three clusters in a more balanced fashion and achieves consistently better accuracy than ACA according to
Figure 12a.

4.3 | Complexity test
In this section, we perform experiments to investigate the complexity of the proposed data-driven methods with respect
to the size of the data.

Test 6. Linear complexity with respect to data size. We consider approximating an n-by-n kernel matrix Kxy
with increasing matrix size n and dimension d. We consider dimensions d = 3,10, 50,100 and generate synthetic data
X,Y inR¢. X and Y are randomly sampled from the uniform distribution over [0, 1]¢ and [2, 3]¢, respectively. The kernel
function is chosen as log |x — y|. We use the one-sided factorization in Algorithm 2 based on farthest point sampling.
In Figure 13, we report the peak memory use and timing for our method as n increases. The CPU time is computed
as an average over ten repeated runs. For all cases in Figure 13, the relative low-rank approximation error is around
2x107%

It is easily seen from Figure 13 that, for each dimension d, the peak memory and timing both increase approximately
linearly as a function of n, that is, the number of pointsin X or Y.
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44 | Kerneltest

To show that the proposed data-driven approach can be applied to various kinds of kernel functions defined in high
dimensions, we consider six different kernel functions in Table 1 and a dataset in 561 dimensions. The kernel x5(x,y) in
Table 1 is non-symmetric. We demonstrate the generality and accuracy of the data-driven approach by comparing to ACA.

Test 7. Approximating various types of kernel functions. We use a high dimensional dataset from the UCI
Machine Learning Repository: Smartphone Dataset for Human Activity Recognition in Ambient Assisted Living’. The
training data contains n = 4252 instances with d = 561 attributes. We choose X to be the standardized data, and define
Y = 2—1; + X, where R = rile%{x dist(x, 0). By construction, X and Y do not overlap and kernel functions in Table 1 are all

well-defined over X X Y.

The kernel functions k1 (x,Y), ... ,ke(X,y) in the experiment are given in Table 1.

In Table 2, we report the relative approximation error | K — UV||/||K|| with respect to the approximation rank r, which
is equal to the number of columns of U. Three methods are compared: ACA, the data-driven compression in Algorithm 2
with farthest point sampling (“DD-FPS”) or anchor net method (“DD-ANC”).

We see from Table 2 that DD-ANC achieves the best result for all kernels and ranks tested. For the same approxi-
mation rank 7, the accuracy of DD-ANC is noticeably higher than that of DD-FPS and ACA. DD-FPS outperforms ACA

TABLE 1 Kernels used for experiment in Table 2.
Kl(xsy) Kz(x,.V) KS(xsy) K4(x9y) Ks(x,J’) Kﬁ(x9y)

e AN X
x=y _ 1 % ) 2 3
R ) exp( —1_C|x_y‘2> =] X-y+x-y)+x-y

=1 log x| (1+

0.8
max_[x—y|2’
xeXyEYl 2l

Note: In k4, the constant ¢ = and in ks, x; denotes the first entry of the vector x € IR4.

TABLE 2 Rank-rapproximation accuracy of the data-driven factorizations (DD-ANC and DD-FPS) and ACA on the kernel matrices
defined by the smartphone dataset (d = 561) and six kernel functions shown in Table 1.

r 10 50 90 130 170 210 250
x1(x,y) ACA 2.4E-3 4.8E-4 1.2E-4 8.2E-5 3.1E-5 1.7E-5 8.5E-6
DD-FPS 1.3E-3 2.4E-4 1.4E-4 4.2E-5 3.5E-5 1.4E-5 4.7E-6
DD-ANC 3.5E-4 9.0E-5 3.8E-5 1.9E-5 9.9E-6 4.6E-6 2.7E-6
K%, ) ACA 2.2E-4 6.1E-5 4.8E-5 2.3E-5 6.7E-6 3.6E-6 2.7E-6
DD-FPS 1.7E-4 4.5E-5 2.7E-5 7.5E-6 5.1E-6 2.4E-6 1.1E-6
DD-ANC 5.9E-5 1.6E-5 6.4E-6 3.6E-5 1.9E-6 9.0E-7 5.5E-7
K3(x,Y) ACA 2.5E-3 9.3E-4 3.2E-4 1.8E-4 6.3E-5 4.3E-5 2.9E-5
DD-FPS 5.2E-3 9.8E-4 2.5E-4 1.2E-4 6.8E-5 3.8E-5 2.0E-5
DD-ANC 8.3E-4 1.3E-4 6.4E-5 3.9E-5 1.8E-5 9.9E-6 6.0E-6
Ka(%, ) ACA 1.2E-2 8.7E-4 3.3E4 1.4E-4 7.1E-5 4.9E-5 4.8E-5
DD-FPS 3.6E-2 2.5E-3 3.9E-4 1.7E-4 1.0E-4 4.6E-5 1.8E-5
DD-ANC 1.8E-3 2.8E-4 1.2E-4 6.2E-5 3.5E-5 1.7E-5 9.0E-6
K5(x,y) ACA 9.1E-4 1.7E-4 7.7E-5 5.7E-5 2.2E-5 1.1E-5 7.1E-6
DD-FPS 4.0E-4 1.1E-4 4.9E-5 2.1E-5 1.1E-5 4.1E-6 2.1E-6
DD-ANC 2.9E-4 5.7B-5 3.2E-5 1.3E-5 5.4E-6 2.0E-6 1.2E-6
K6(%,) ACA 1.3E-1 8.9E-3 5.1E-3 2.8E-3 2.2E-3 1.8E-3 1.7E-3
DD-FPS 1.8E-2 3.7E-3 2.0E-3 1.2E-3 9.8E-4 7.6E-4 6.3E-4

DD-ANC 1.2E-2 2.7E-3 1.1E-3 7.5E-4 6.8E-4 5.4E-4 4.5E-4
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for almost all cases except x4(x,y) when r = 10, ... ,170. Together with Test 4 in Section 4.2, the results show that the
proposed fast data-driven approach is not only more robust, but also more accurate for the high dimensional dataset with
general kernels. Compared to existing methods, one advantage of the data-driven method is that, for the same dataset
and fixed rank r, the geometric selection is performed only once and can be used for different kernel functions or kernel
function parameters. This can hardly be achieved by methods that require kernel function evaluation as the first step of
the compression. For example, for algebraic methods such as ICA (Incomplete Cross Approximation®) and ACA, if the
kernel function changes, the pivots need to be computed anew. In Table 2, for each r, ACA computes pivots six times for
six kernels, while DD-FPS and DD-ANC each only select one subset, which is used for all six kernel functions.

5 | CONCLUSION

For compressing low-rank kernel matrices where sets of points X and Y are available, it appears appealing to use subsets
of X and Y that capture the geometry of X and Y. This paper presented theoretical justification and numerical tests that
argue for choosing points such that no original point in X (or Y) is very far from a point chosen for the subset. If these
subsets can be selected in linear time, then the overall compression algorithm can be performed in linear time, which is
optimal for kernel matrices. We demonstrated effective low-rank compression for both low and high dimensional datasets
using geometric selection based on farthest point sampling and the anchor net method, which are both linear scaling. It is
possible that even more sophisticated linear scaling schemes for selecting subsets can lead to even better approximation
accuracy with the same number of selected points, especially in the high-dimensional case.
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