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Abstract

While existing fairness work typically focuses on fair-by-design algorithms, here we
consider making a fairness-unaware algorithm’s output fairer. Specifically, we explore
the area of fairness in clustering by modifying clusterings produced by existing algo-
rithms to make them fairer whilst retaining their quality. We formulate the minimal
cluster modification for fairness (MCMF) problem, where the input is a given parti-
tional clustering and the goal is to minimally change it so that the clustering is still of
good quality but fairer. We show that for a single binary protected status variable, the
problem is efficiently solvable (i.e., in the class P) by proving that the constraint matrix
for an integer linear programming formulation is totally unimodular. Interestingly, we
show that even for a single protected variable, the addition of simple pairwise guid-
ance for clustering (to say ensure individual-level fairness) makes the MCMF problem
computationally intractable (i.e., NP-hard). Experimental results using Twitter, Cen-
sus and NYT data sets show that our methods can modify existing clusterings for data
sets in excess of 100,000 instances within minutes on laptops and find clusterings that
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are as fair but are of higher quality than those produced by fair-by-design clustering
algorithms. Finally, we explore a challenging practical problem of making a histori-
cal clustering (i.e., zipcodes clustered into California’s congressional districts) fairer
using a new multi-faceted benchmark data set.

Keywords Clustering - Protected status - Fairness - Algorithms - Complexity

1 Introduction

As machines help and even replace humans in decision making processes on other
humans, the need to ensure that the algorithms used by these machines are fair becomes
critical. Consider a future scenario where job, loan and even grant applications are
automatically adjudicated by machines. When a person’s application is denied, their
natural questions are “Was it fair? Did other people as good as me also get denied?”.
This is an example of individual level fairness (Dwork et al. 2012) where fairness is
measured between a pair of individuals. As another example, policy makers wish to
ensure that under-represented groups are not being discriminated against. To achieve
this, they would like to ensure that the fraction of successful applications for each
under-represented group is above some threshold (such as the fraction of the group in
the population). This is an example of group level fairness where we measure fairness
on a group of individuals (Chierichetti et al. 2017). For a more detailed discussion on
fairness issues in machine learning, we refer the reader to Barocas et al. (2017). In
this paper, our focus is on fairness in clustering.

Motivation. Existing work on clustering and fairness takes a known clustering algo-
rithm and modifies it into a fair-by-design algorithm that produces fair results. The
seminal work of Chierichetti et al. (2017) looked at k-center and k-median style algo-
rithms whilst later work has explored other formulations such as spectral clustering
(Kleindessner et al. 2019). Subsequently, many other researchers have studied fair-
by-design clustering algorithms for different types of clustering and fairness criteria
(e.g., Abbasi et al. 2021; Ziko et al. 2021; Flores 2019; Chhabra et al. 2021). How-
ever, there is a plethora of different clustering algorithms, with a decade old survey
(Xu and Wunsch 2005) listing over 15 popular partitional clustering algorithms with
a variety of settings, formulations and followings by end user communities. Further,
the no free lunch theorems for learning and optimization (Schaffer 1994; Wolpert and
Macready 1997) in machine learning indicate a need for a variety of algorithms. It is
unlikely that fair versions of all these algorithms or future clustering algorithms will
be developed. Finally, historical clusterings (such as electoral maps) already deployed
and often created by humans, permeate the society.

In these circumstances, one research direction is to modify an existing clustering
(be it from a machine or historical) to make it fairer whilst not unduly changing its
quality. For example, congressional districts can be considered a historical clustering
of zipcode areas which may be unfair and can be minimally modified to make them
fairer. Similarly, a clustering produced by a popular algorithm for which there is no fair
variant can be modified to become fairer. This paper considers this precise situation,
where one already has a good clustering IT and the goal is to modify IT to improve its
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fairness with respect to a set P of protected status variables (PSVs). We focus on the
simplest but most common type of protected variables, namely binary variables such
as gender.

A Flexible and Efficient Approach to Ensure Fairness. Our approach places upper
and lower bounds on the number of protected status individuals in each cluster. These
bounds, which can be computed from the input, may even be different for each cluster.
This allows us to encode group-level fairness. Of the three classic definitions of group-
level fairness (Barocas et al. 2017), namely independence, separation and sufficiency,
only the first is appropriate for unsupervised learning. For a PSV A, and a given set
of clusters Cy, C», ..., Ck, the classic definition of independence is simply that for
1 <i <k, P(A|C;) = P(A); the notion of disparate impact (Barocas and Selbst
2016; Feldman et al. 2015) softens this requirement to (1 — @) P(A) < P(A|C;) <
(14+a)P(A), 1 <i <k, where « is typically chosen as 0.2.

Consider a data set D where there is one protected status variable x. The data
items in D for which the variable x has value 1 will be referred to as special items.
Suppose D, with N, special items, has been partitioned into k clusters, denoted by
Ci, Ca, ..., C. Then the number of special data items per cluster could be set to be
approximately N, /k, to effectively balance the protected status instances uniformly
across all clusters. This gives rise to a strong definition of fairness:

Definition 1 Let D be a dataset where each data item has a single binary protected
attribute x. Let N, denote the number of special data items in D. A partition of D
into k > 2 clusters is strongly fair with respect to x if in each cluster, the number of
special items is either | N, /k] or [N, /k].

The above is useful in our intractability results and algorithm design. However, it is
a strong requirement; hence we define a relaxed notion called «-fairness below. Here,
we require each cluster to have approximately N"'ll)f’ | special items, where |C;| is the
size of cluster C;; this would require that the ratio of the number of special items to

the size of the cluster be (approximately) the same for all clusters and P(x) = %.

Definition2 Let D be a dataset where each data item has a single binary pro-
tected attribute x. Let Ny denote the number of special data items in D. Let
o = (o1,02,...,0r) be a vector such that o; is a positive integer < [NT‘D?"‘L

1 <i < k. A partition of D into k > 2 clusters is «-fair with respect to x, if in clus-

ter C;, the number of special items is in the range [|'N’|‘g‘;"|] - .. [%1 + ai],

1<i<k.

ILP Formulations for the Minimal Cluster Modification for Fairness (MCMF) Prob-
lem. A natural way to formulate the MCMF problem is as a discrete optimization
problem (expressed as an integer linear program (ILP)) where the goal is to mini-
mize the effect of modifying the clusters (see Sect. 3 for a precise formulation). Here,
the effect can be in terms of the number of instances moved or even changes in the
quality of the clustering. Solving an ILP is, in general, computationally intractable
(Garey and Johnson 1979). However, for our formulation of the MCMF problem, we
show that (see Theorem 2) the constraint matrix resulting from our fairness require-
ments is totally unimodular (TU) (Schrijver 1998). As a consequence, one can use
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any polynomial time linear programming (LP) algorithm to obtain integer solutions
to MCMF.
Summary of Main contributions.

1. Rather than taking an existing and create a fair variant, we define a novel opti-
mization problem (referred to as MCMF) which can post-process the results of
any partitional clustering method to make the clusters fairer whilst ensuring that
the cluster quality is not affected significantly.

2. We formulate the MCMF problem as an ILP and show that under our definitions
of fairness, the formulation produces a constraint matrix that is totally unimod-
ular (see Sect. 3). This leads to algorithms capable of modifying clusterings with
millions of instances.

3. For modifying clusters of even larger data sets, we present an algorithm whose
running time is better than that of an LP solver (see Sect. 3).

4. Our complexity result for the MCMF problem shows an interesting conundrum.
Finding a group level fair clustering is in the computational class P as is finding
an individual level fair clustering (using must-link constraints). However, find-
ing a group level and individual level fair clustering is intractable (see Sect.5,
Theorem 3).

5. Experimental results show that our method is computationally efficient (as
expected) and that our objectives are useful for post-processing the results from
k-means, k-medians and spectral clustering algorithms.

6. Finally, we explore a challenging case study of making a historical clustering (i.e.,
zipcodes clustered into California’s congressional districts) fairer using a new
multi-faceted benchmark data set. This involved defining new spatial continuity
constraints and testing our method on a significantly challenging problem. This
data set will be publicly made available for others to study.

Organization. We begin by discussing related work in Sect.2. We then formulate
the minimal clustering modification for fairness (MCMF) problem in Sect. 3 as an ILP
and show that its constraint matrix is totally unimodular. We establish the complexity
of achieving fairness while satisfying instance-level constraints in Sect.5. We then
present results from our experiments on classical data sets in Sect. 6. Results of our
case study on the congressional district data from California are presented in Sect. 7.
Conclusions and directions for future work are provided in Sect. 8. Three sections of
appendices are included. “Appendix A” provides a short introduction to ILPs and also
presents an example of a constraint matrix arising from our ILP formulation for the
MCMF problem. “Appendix B” contains a more efficient algorithm for the MCMF
problem where the goal is to ensure strong fairness. “Appendix C” contains additional
information about the congressional district data from California and the experimental
settings used in our work for that data set.

An earlier version of this paper was published in the proceedings of AAAI-2020
(Davidson and Ravi 2020). We have added the following to the conference version.

— The AAAI-2020 version does not include proofs for any of the formal results. The
journal version includes all the proofs.
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— We point out a simple relationship between our notion of strict fairness (for post-
processing for fairness) versus the notion of balance [used in earlier work on
fairness by design (Chierichetti et al. 2017)].

— In The AAAI-2020 version, we only briefly mention that for the strict fairness
case, there is an algorithm that is more efficient than solving the LP. This version
provides the details of the algorithm.

— We go into greater detail regarding the counter-intuitive result that satisfying indi-
vidual level fairness is tractable as is group-level fairness, but satisfying both makes
the problem computationally intractable.

— Sect.7 which adds a new fairness data set for clustering and discusses our results
for CA congressional districts is completely new. It considers multiple PSVs while
the AAAI-2020 version only considered a single PSV.

2 Related work and background
2.1 Previous work on fairness and minimal modification of clustering

We briefly review two related areas of work, namely fairness in machine learning (ML)
and minimal modification of clustering. Fairness in ML is an emerging area that has
received much attention in the context of supervised learning, often under different
names such as algorithmic bias (Thanh et al. 2011). More recently, in clustering (i.e.,
unsupervised learning), the issue of fairness generally aims at balancing protected
status individuals across clusters as we have.

All of the work below uses a similar fairness measure (discussed below) and focuses
on simple k-means/medians/centers algorithms, with the exception of Kleindessner
et al. (2019) which explores spectral clustering. The idea of balancing protected indi-
viduals aims to address the disparate impact doctrine (Feldman et al. 2015; Friedler
et al. 2016) and was formalized in the seminal work of Chierichetti et al. (2017).
They assumed that each object has one of two colors (red or blue). If £ denotes the
number of clusters and the number of instances of each type in cluster i are R; and B;
respectively, the fairness of a clustering is given by

) .| R By . [ Rx By
min {min | —, — |,...,min| —, — | ¢ .
B1 Ry B Ry

The work of Chierichetti et al. (2017) refers to the above quantity as the balance of

the given clustering and the quantity min [II;—;, %] as the balance of cluster C;. Their
work creates fairlets (groups of instances) which when post-processed by k-center and
k-medians algorithms are guaranteed to produce a specified level of fairness (balance)
and achieve a constant factor approximation with respect to cluster quality. In Sect. 2.2,
we present a simple observation that relates the balance measure and our measure of
strict fairness when all clusters have nearly the same size. As will be seen in Sect.6

(Table 4), by ensuring that cluster sizes are not unduly changed, the balance measure
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of Chierichetti et al. (2017) and our fairness measure can yield similar results in
experiments with data sets.

The work of Backurs et al. (2019) showed how a fairlet decomposition algorithm can
be implemented to run in nearly linear time. The work of Rosner and Schmidt (2018)
extended the work of Chierichetti et al. (2017) by allowing objects with more than two
colors but assumes that each object has only one color. Bera et al. (2019) also consider
three or more colors and allow an object to have more than one color. They also allow
users to specify upper and lower bounds on fairness measures for each cluster and
develop clustering algorithms under any £, norm. Other references that discuss fair-
by-design non-hierarchical clustering algorithms include (Flores 2019; Chen et al.
2019; Ahmadian et al. 2020; Ahmadi et al. 2020; Mahabadi and Vakilian 2020).
Incorporating fairness into an algorithm for agglomerative hierarchical clustering is
studied in Chhabra and Mohapatra (2020).

In this paper we take an alternative path of improving fairness by post-processing
(i.e., by minimal modification of) clustering results produced by existing methods.
The idea of minimal modification of clustering solutions has been explored before by
ourselves (Kuo et al. 2017); however, the focus there is on human-in-the-loop style
settings where the domain expert can choose to adjust geometric measures of a cluster
such as diameter. Hence, the results in the current paper and those in Kuo et al. (2017)
are fundamentally different. Further, the focus of this earlier work was on improving
cluster quality by moving a small number of instances between clusters; it did not take
fairness into consideration. Further, due to the use of the constraint programming, this
earlier work scales only to data sets of size around 1000. In contrast, our modification
algorithm for improving fairness scales to larger data sets (hundreds of thousands of
points), even on a laptop (see Sect. 6).

2.2 An observation relating our fairness measure to balance

We presented the definition of balance for a cluster and a given clustering used by
Chierichetti et al. (2017) in the previous section. Here, we present a simple observation
that relates our strict measure of fairness and their notion of balance when all the
clusters are of equal (or nearly equal) sizes. One of the results mentioned in Chierichetti
et al. (2017) is the following.

Observation 1 Let X be a set of points where each point is colored red or blue. For

any partition Il of X into k > 1 clusters, balance(I1) < balance(X).
To see a relationship between the balance measure and our strict notion of fairness,

consider the following example with a single protected status variable denoted by x.
Suppose a data set D has a total of kN, objects where N, are special; that is, N,
objects have protected attribute value of 1. The parameter k > 2 here is the number
of clusters into which D will be partitioned. For convenience, we assume that Ny is
a multiple of k. We think of the special objects in D as Red objects and non-special
objects as Blue objects. Since the number of Red objects in D is Ny, the number of
blue objects in D = (k — 1) N,. Thus, there are at least as many blue objects as red
objects. Using the definition of balance, we have

balance(D) = Ny/[(k — 1)Ny] = 1/(k—1).
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1410 I. Davidson et al.

By Observation 1, no clustering of D can have a balance value greater than 1/(k — 1).

Suppose D is partitioned into k clusters of equal size; thus, the size of each cluster
is N,. By our definition of strict fairness, each cluster has N, /k red objects and
Ny — (Ny/k) = N, (1 — 1/k) blue objects. Therefore, the balance of any cluster C; in
this clustering is given by

N 7L
balance(C;) = Ne — N.JK) = 1/(k—1)

which is exactly the best possible balance value possible for D.

When clusters are of different sizes, we can argue that for clusters whose size is
close to the average size of a cluster, the balance value is close to the best possible
balance. Since | D| = k N, and the number of clusters is k, the average size of a cluster
is N,. Suppose we have a cluster C; whose size is o N, for some =~ 1. (Thus, |C;|
is close to the average cluster size.) Since C; has N, /k red items and |C; | — N, /k blue
items, we have

Nufk) (Nx/k)

balance(C;) = (ICil = Ne/k) — (aNy — Ny/k)

= 1/(ak — 1).

As « approaches 1, the above balance value gets close to the best possible balance
value of 1/(k — 1). We thus have:

Proposition 1 When clusters are of equal (or nearly equal) size and special objects
are taken as the Red items, distributing the special items equally among the clusters
(i.e., our notion of fairness) gives the best (or close to the best) possible balance.

3 An ILP formulation and proof of total unimodularity

Here we present an ILP formulation! of the MCMF problem which can find fairer
clusters. We then show that the resulting constraint matrix is totally unimodular (TU)
and hence the ILP is efficiently solvable. Our formulation can be used to ensure any
upper and lower bound on the number of special instances (i.e., number of instances
whose PSV value is 1) in a cluster. These bounds need not be the same for each
cluster and most importantly, since the TU property depends on the constraint matrix
coefficients and not on the right-hand side of the constraints, these formulations are
also efficiently solvable.

Our aim is the following: given a desirable existing clustering (defined in a k X
n allocation matrix Z*, where k is the number of clusters and n is the number of
instances), find a minimal modification that makes the clustering fairer with respect
to the single protected variable P. In our experiments, we consider a formulation that
allows many PSVs. Later in this paper, we discuss other settings that can lead to TU
constraint matrices.

! For the convenience of readers, a short introduction to ILP formulations is provided in Sect. A.1 of the
appendix.
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Table 1 Several penalty schemes and their meaning when used in Eq. (1)

Measure Meaning of objective function

w=1 The number of instances moved

wj =7y dy ]’(Ci) —d(j,C*) The increase in mean L2 (distortion) or L1 (median)
distances (average distance from j to cluster i:
d@j,Cp)

wj = YLEG ), j) e, The increase in external degree by moving instance j

away from cluster I,

Each measures the increase if instance j is moved away from the cluster (C*) to which it is assigned in Z*.
We assume that Z* is optimal for the given objective

Objective. We wish to find another allocation matrix Z that is fairer but similar to Z*.
As z;f and z; are both binary column vectors indicating the cluster to which instance

J belongs, Y j (z}’f)T X (zj) counts the number of agreements between Z and Z*; this
forms the basis for useful objectives. We can easily encode preferences/importance
amongst instances by having a penalty (w;) (see Eq. (1)) if instance j is moved.
This penalty value can represent different objectives, and some examples are shown
in Table 1. The first example simply minimizes the number of instances moved, the
second is useful for centroid based methods such as k-means since it minimizes the
increase in distortion (assuming that the existing solution minimizes the distortion) and
the last is useful for graph based formulations since it minimizes increase in cut cost
(again assuming that the existing solution minimizes the mincut). Of course, domain
experts can easily encode their own preference schemes. The minimization objective
of our formulation is given by

argming ij[l - (Zj)T x (zj)], (D
J

where Z is the collection of all valid allocation matrices (over which the objective is
to be minimized), w; is the weight of moving instance j to a different cluster, 7% is
the initial allocation vector for instance j and z; (to be found) is the allocation vector
for instance j in the modified clustering, 1 < j < n.

Adding Constraints With Slack Variables. The aim of the constraints is two-fold: to
balance the protected instances across clusters whilst also restricting Z to be a legal
cluster allocation matrix. Note that we use the encoding where indicator vectors are
stacked column-wise, thatis z; ; = 1 iff instance j is assigned to cluster i. We encode
protected status as a vector P of length n with an entry of 1 if the instance has the status
and O otherwise. We use |P| to denote the number of non-zero entries in the vector
P. (Thus, | P| is the number of special items in the dataset.) Our first two constraints
(in the formulation given below) require that the distribution of the protected variable
be upper and lower bounded. For example, to follow our definition of strong fairness
(see Definition 1), we would have the constraint leﬂj <> jPjzij = (lkﬂ] Vi.
In solving ILPs, such inequality constraints are changed to equality constraints using
slack variables (Schrijver 1998); we use u; and /; respectively as the slack variables in
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the upper and lower bound constraints for ) j Pjzi,j- Inthe following specification of
constraints, we generalize this to any upper and lower bounds and note they can vary
depending on the cluster. The last set of constraints below (i.e., ) ; z; ; = 1 V) simply
require that Z is a valid allocation matrix. Note again that the instances are stacked
column-wise in Z and that u; and /; represent the slack variables in the following
constraints.

ijzi,j +u; =U, Vi (2)
J
—> pizij+li=—Li, Vi 3)
J
dozuj=1j )
i

Note that when U; = [|P|/k] and L; = [|P]|/k], for 1 < i < k, Lemma 2
(presented later in this section) points out that there is always a solution to the above
set of constraints.

An example to illustrate the resulting set of constraints and the constraint matrix is
given in “Appendix A.2”.

Total Unimodularity of Constraint Matrix. It is well known (Schrijver 1998) that
if the constraint matrix of an ILP is totally unimodular (TU), we can solve the ILP
using an LP (linear program) solver and the solution will still be integral. Further,
linear programming problems can be solved in O (n (n +d)'-> L) time, where 7 is the
number of variables, d is the number of constraints and L is the total number of bits
needed to encode all the constants specified in the LP (Vaidya 1989). This running
time is clearly polynomial in the input size.

We first introduce some terminology to present a proof of the TU property of
the constraint matrix resulting from Egs. (2)—(4). We note that the total number of
constraints is 2k + n. This is because there are two equations for each of the k clusters
[Egs. (2) and (3)] and there is one equation (Eq. (4)) for each of the n data items.
We refer to the first 2k equations as Type 1 constraints and the last n equations as
Type 2 constraints. Further, among the Type 1 constraints, we will refer to the ones
corresponding to upper bounds (i.e., the constraints in which slack variables uq, .. .,
uy appear) as positive Type 1 constraints since the coefficients pi, ..., p, appear
with a ‘4’ sign. Likewise, among the Type 1 constraints, we will refer to the ones
corresponding to lower bounds (i.e., the constraints in which slack variables /1, . . ., [y
appear) as negative Type 1 constraints. For each positive Type 1 constraint, note that
there is a corresponding negative Type 1 constraint; such constraints are referred to as
companion pairs.

In the above equations, there are kn regular variables (namely, 211, z12, - - -» Z1n>
« v Zk1s Zk25 - - -» Zkn) and 2k slack variables (namely uy, ..., uy and [y, ..., ). For
the purpose of constructing the constraint matrix |, we will use the following order
of these kn + 2k variables: (Z11, 212, « -+« Zlns -« > Zhls Zk2s «+ s Zhns Uls « o s Uk, 11,
.. lx). Matrix | has 2k + n rows (one corresponding to each constraint) and nk + 2k
columns (one corresponding to each variable). In |, we will list the 2k constraints
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corresponding to Egs. (2) and (3) in the order specified by those equations. This is
followed by the n constraints in the order specified by Eq. (4). Note that each entry of
| is from {—1, 0, 4+1}. In each row of | (which specifies one constraint), we will list
the coefficients of the kn + 2k variables in the order specified above. We refer to the
first kn columns of | as regular variable columns and the last 2k columns as slack
variable columns. Using this terminology, we can prove the following lemma.

Lemma 1 (a) In any regular variable column of |, there are at most three non-zero
elements. (b) In any slack variable column of |, there is exactly one element with value
1; the other entries in that column are 0.

Proof (a) Consider any regular variable column and suppose it corresponds to variable
zij. In Type 1 rows of that column, the variable z;; appears with coefficient p;
or —p; which may both be non-zero. In Type 2 rows, variable z;; appears with
coefficient +1 in the row corresponding to data item j. Thus, there are at most
three non-zero elements in the column.

(b) Each slack variable appears in exactly one Type 1 row; in that row, its coeffi-
cient is +1. No slack variable appears in any Type 2 row. Thus, in any column
corresponding to a slack variable, there is exactly one non-zero element (namely,
+1).

O

To prove the TU property of the constraint matrix |, we will use the following
result, which is Theorem 19.3 in Schrijver (1998). In the literature, this result is also
referred to as the Ghouila-Houri characterization (Berge 1972).

Theorem 1 [TU Identity (Schrijver 1998)] Let C be a matrix such that all its entries
are from {0, +1, —1}. Then C is totally unimodular, i.e., each square submatrix of C
has determinant 0, +1, or —1 if every subset of rows of C can be split into two parts
A and B so that the sum of the rows in A minus the sum of the rows in B produces a
vector all of whose entries are from {0, +1, —1}.

Theorem 2 The matrix C formed by the coefficients of the constraints used to encode
Egs. (2) through (4) is totally unimodular.

Proof In proving the result, we use the terminology regarding the constraints and
variables introduced above.

As mentioned earlier, each entry of | is from {—1, 0, +1}. Consider any subset X
of rows of |. We will show that X can be partitioned into two sets A and B to satisfy
the condition mentioned in Theorem 1. Our partitioning scheme is as follows.

1. All positive Type 1 rows of X are put into A.

2. If a negative Type 1 row appears along with its companion positive Type 1 row in
X, then the negative Type 1 row is also put into A.

3. If a negative Type 1 row appears in X without its companion positive Type 1 row,
then the negative Type 1 row is put into B.

4. All Type 2 rows of X are put into B.

@ Springer



1414 |. Davidson et al.

It is possible that the above construction causes one of A or B to be empty; in that
case, the sum of the rows in that part is a row vector with all zeros.

Let row vectors S(A) and S(B) denote the sums of the rows in sets A and B
respectively. Our goal is to show that all the elements of the row vector O = S(A) —
S(B) are from {—1, 0, +1}. To prove this, consider any entry « of the vector Q. There
are two main cases depending on the type of column corresponding to «.

Case 1: Entry « corresponds to a slack variable (u; or ;) column. In this case, from
Lemma 1, we know that only one element in the corresponding column of | has the
value 1 and the rest have the value 0. So, if the row corresponding that element appears
in A, then the value of o will be +1; if the row does not appear in A, the value of «
will be —1. If the row does not correspond to the chosen slack variable, the value of
ais 0.

Case 2: Entry o corresponds to a regular variable z;;. In this case, from Lemma 1,
we know that in the matrix |, there are at most three non-zero elements in the column
corresponding to z;;. There are four subcases since the number of non-zero entries in
this column corresponding to the given set of rows X can be 0, 1, 2 or 3.

Case 2.1: Among the rows in X, there are no non-zero elements in the column
corresponding to «. In this case, the corresponding entries in S(A) and S(B) are both
0 and hence the value of « is 0.

Case 2.2: Among the rows in X, there is only one non-zero element in the column
corresponding to «. In this case, the non-zero element (+1 or —1) appears in exactly
one of S(A) and S(B), so the the value of @ is +1 or —1.

Case 2.3: Among the rows in X, there are two non-zero elements in the column
corresponding to the entry «. There are three possible subcases here.

Case 2.3.1: The non-zero elements are from two Type 2 rows. From Lemma 1, we
know that in any column of a Type 2 row, there is at most one non-zero entry. So, this
case cannot arise.

Case 2.3.2: The non-zero elements are from two Type 1 rows. Here, the non-zero
elements must be from two companion Type 1 rows (since rows that are not companions
don’t have a non-zero entry in the same column). Here, our construction adds them
both to A and hence the corresponding entry of S(A) is 0. Since there are no other
non-zero entries in that column, the corresponding entry of S(B) is also O; that is, the
value of « is zero.

Case 2.3.3: Suppose the non-zero elements correspond to a Type 1 row and a Type 2
row. Note that our construction placed the Type 2 row in B. Hence the corresponding
entry in S(B) is +1. If the other row is a positive Type 1 row, it was placed in A and
the corresponding entry in S(A) is also 41, thus making the value of « to be 0. If the
other row is a negative Type 1 row, it was also placed in B (since its companion is not
in X). Thus, the corresponding entries in both S(B) and S(B) are zero, thus making
the value of « to be 0. This completes all the subcases of Case 2.3.

Case 2.4: Among the rows in X, there are three non-zero elements in the column
corresponding to the entry «. In this case, X must contain two Type 1 companion
rows and a Type 2 row which contains a 1 in the column corresponding to «. By our
construction, the two companion rows were placed in A and the elements of those
rows in the column corresponding to « are +1 and —1; thus, the corresponding entry
of S(A) is 0. Since the Type 2 row is in B and has the element 1 in the column
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corresponding to «, the corresponding entry of S(B) is +1. Hence, the value of « is
—1. This completes the proof of Theorem 2. O

Our formulation of MCMF considered simple optimization objectives (see Table 1)
that use a single weight (penalty) to each instance regardless of the cluster to which
the instance is moved. One can also consider formulations where there is a vector of
penalty values associated with an instance so that the penalty is different for different
clusters. As long as the resulting objective function is linear, the TU property of the
constraint matrix implies that the corresponding optimization problem is efficiently
solvable.

The following result presents a necessary and sufficient condition for the distri-
bution of the special items across clusters in any strongly fair clustering of D. This
condition can be used to develop an alternative efficient algorithm for modifying a
given clustering to achieve strict fairness.

Lemma 2 (A necessary and sufficient condition for Strong Fairness) Let D be a data
set with one binary protected attribute x. Let D,, C D denote the subset of special data
items and let Ny = |Dy|. Let q and r be non-negative integers such that Ny = gk +r
with k being the number of clusters and 0 < r < k — 1. A partition of D into k clusters
is strongly fair with respect to x if and only if it has exactly r clusters each with [ Ny /k]
special data items and k — r clusters each with | Ny /k] special data items.

Proof The “if” part of the lemma is obvious since each cluster has either [N, /k]
or | Ny/k]| special items. We now prove the “only if” part. Since N, = gk + r and
0<r<k-—1,wehaveq = | N, /k].If r =0, then [N, /k] = [Ny /k] = q.1Ifr > 1,
then | Ny /k] = q and [N, /k| = g + 1. The reader should keep these observations in
mind throughout the proof.

We will first prove that in any clustering that is strongly fair with respect to x, there
are exactly r clusters that have [N, /k] special data items. We do this by considering
two cases based on the value of r.

Case 1: r =0.

In this case, Ny = gk andg = | N, /k] = N, /k. Thus, the strong fairness condition
requires that each cluster must have exactly g = N, /k special data items. We can think
of this as having exactly k clusters each with g = | N, /k] special data items and » = 0
clusters each with [N, /k] special data items.

Case 2: r > 1.

In this case, ¢ = |Ny/k] and since r > 1, [Ny/k] = g + 1. Thus, the strong
fairness condition requires that each of the k clusters must have either ¢ or g + 1
special data items. Let « clusters have ¢ + 1 special data items. We must show that
a = r. To see this, note that there are « clusters with ¢ + 1 special items and k — «
clusters with ¢ special items. Hence, the total number of special items in all the clusters
isa(g + 1)+ (k — a)g = gk + «. Since the total number of special items is exactly
gk +r,wehave gk +r = gk + «; that is, « = r as required. This completes the proof
that exactly r clusters have [N, /k] special items.

It is now easy to show that the remaining k — r clusters must have exactly | N, /k|
special items each. This follows from the facts that exactly r clusters have [N, /k]
special items and each cluster must have either [N, /k] or | Ny /k] special items. This
completes our proof of Lemma 2. O
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An Alternative More Efficient Algorithm Only for Strong Fairness. It is possible
to obtain another efficient algorithm for MCMF using the following idea. Given an
arbitrary distribution of the special items into k clusters, we use Lemma 2 (above) to
identify which clusters have an “excess” amount of special items and which ones are
“deficient” with respect to special items. It can be seen using Lemma 2 that the total
number of excess items gives the lower bound on the number of special items that
must be moved to achieve strong fairness. The algorithm provides an optimal solution
by ensuring that the number of special items moved between clusters is equal to the
lower bound. As the details of the algorithm involve many cases, a description of the
algorithm and its running time analysis are given in Sect.B of the appendix. From
the running time of the LP-based algorithm given in Sect. 3 (in the paragraph entitled
“Total Unimodularity of Constraint Matrix”), one can see that this algorithm’s worst-
case running time, namely O(n + klogk), is asymptotically better than that of an
LP solver. However, this algorithm is only for the strong fairness condition while the
LP-based algorithm can handle more general form of fairness mentioned in Sect. 1.

4 Other variations that are and are not TU

Here we discuss variations some of which lead to constraint matrices with the TU
property while others do not. It is important to bear in mind that the proof of TU only
depends on the coefficients of the constraint matrix. It does not depend on the objective
function (which is why we can have the variations such as those in Table 1); nor does
it depend on the right hand side of the constraints.

Allowing Overlapping Clusters. A desirable situation to enforce fairer cluster is
to allow an instance to belong to multiple (say, s > 2) clusters. Our slack variable
formulations easily facilitates an instance belongs to s clusters. This has the benefit of
spreading the protected individuals to multiple clusters. The corresponding constraint
is ) ;zi,j = s, Vj. This does not change the coefficients of the constraint matrix;
it only changes the constant on the right side of the equality. Hence this formulation
also has the TU property.

Multiple Protected Variables. When there are r > 2 protected variables, r — 1
additional sets of constraints similar to Egs. (2) and (3) must be added. Since the same
data item may have many protected attributes, it is not clear whether the resulting
constraint matrix satisfies the TU property. Determining if this case satisfies the TU
property will be left for future work.

Weighted or Continuous Protected Variables. The proofs of TU require the con-
straint matrix to contain entries of only {—1, 0, 4+1}. In general, any work that requires
degrees of protection (e.g., age) even if encoded in ordinal form cannot be encoded as
TU matrices to our knowledge.
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5 Computational intractability of satisfying group- and
individual-level fairness

Here we show an interesting but counter-intuitive result. We showed earlier that satis-
fying group level fairness is in the computational class P (from Lemma 2). It is known
that satisfying instance level fairness, assuming that pairwise guidance is given in the
form of must-link constraints, is also in the computational class P (Davidson and Ravi
2007). However, as we will show, when attempting to satisfy both types of fairness,
the problem becomes computationally intractable. We formalize these claims below,
but an intuitive explanation is as follows. Suppose we allocate people to satisfy indi-
vidual level fairness, that is, everyone is assigned to the cluster to which they belong.
However, there may be too few (or too many) males in one cluster to satisfy group
level fairness. Then we may be required to move a male from one cluster to another
violating their individual fairness. To fix this, we must move another person to this
new cluster and in doing so violate their individual fairness or perhaps group level
fairness for the cluster. The critical point is that these two measures of fairness are not
necessarily compatible with each other: satisfying one may violate the other.

Our measure of strong fairness (Definition 1) is a group (cluster) level measure
(Barocas and Selbst 2016). An alternative measure is individual-level fairness (Barocas
and Selbst 2016) where we require similar individuals to be treated/clustered the same.
This can be encoded as the popular must-link (ML) constraints (Wagstaff and Cardie
2000; Basu et al. 2008) where the constraint ML(a, b) requires data items a and b to
be in the same cluster.

As shown in Lemma 2, satisfying strong fairness is computationally tractable.
Similarly the feasibility problem with respect to ML constraints (i.e., given a data set
D, aninteger k and a set S of ML constraints, can D be partitioned into k clusters so that
all the ML constraints in S are satisfied?) can also be solved efficiently (Davidson and
Ravi 2007). However, we now show satisfying both requirements is computationally
intractable (Theorem 3). We start with a definition of the corresponding feasibility
problem.

Feasibility of Strongly Fair Clustering under ML Constraints (FSFC-ML)
Instance: A dataset D where each item has a set of attributes, a protected attribute x,
an integer k < |D|, a set S of ML constraints.

Question: Can D be partitioned into k clusters so that the resulting clustering (i) is
strongly fair with respect to x and (ii) satisfies all the ML constraints in S?
The following result points out that FSFC-ML is computationally intractable.

Theorem 3 Problem FSFC-ML is NP-complete.

Proof Tt is easy to see that FSFC-ML is in NP since one can guess a clustering | of D
into k clusters and verify that it satisfies the two required conditions.

To prove NP-hardness, we use a reduction from the 3-PARTITION problem (Garey
and Johnson 1979). An instance of the 3-PARTITION problem is specified by two
positive integers m and B, a set A = {ay, az, ..., a3z} of positive integers such that
B/4 < a; < B/2,1 <i < 3m and Z?;"l a; = mB. The question is whether A
can be partitioned into m subsets such that the sum of each subset is equal to B. It is
known that 3-PARTITION is strongly NP-complete; that is, the number of bits needed
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to represent B and each integer in @; are polynomial functions of log, m, the number
of bits needed to represent m. Also note that the condition B/4 < a; < B/2 implies
that whenever there is a solution to a 3-PARTITION instance, each of the m subsets
in the partition has exactly three integers from A. The reduction from 3-PARTITION
to FSFC-ML is as follows.

1. For each integer a; € A, we create a set S; containing a; data items, 1 <i < m.
For each pair of data items p and ¢q in S;, we create the ML constraint ML(p, ¢),
1 <i < m. (These constraints ensure that in any feasible solution to the FSFC-ML
instance, all the data items in S; must be in the same cluster.)

2. The data set D for the FSFC-ML instance is given by D = U/_ | S;. There is one
protected attribute x and for each data item in D, the value of the protected attribute
is 1. Thus, the number of special data items is m B.

3. The number of clusters is set to m.

Using the fact that the numbers of bits needed to represent B and each integer
ina; (1 <i < m) are polynomial functions of log, m (the number of bits needed to
represent m), it can be seen that the above construction can be carried out in polynomial
time. We now show that there is a solution to the FSFC-ML instance if and only if
there is a solution to the 3-PARTITION instance.

Suppose there is a solution to the 3-PARTITION instance. Let X1, Xo, ..., X);
denote the partition of the set A into m subsets. As mentioned earlier, each subset X ;
has exactly three integers from A, 1 < j < m. Let the subset X ; contain integers a;,,
aj, and aj,. Then for 1 < j < m, cluster C; in the solution to the FSFC-ML instance
consists of the data items S, U S;, U §j;. Clearly, this satisfies all the ML constraints
since for each set S; (1 < i < 3m), all the elements of S; are in the same cluster. To
show that the resulting clustering is strongly fair with respect to the protected attribute
x, we start by noting that the number of special data items is m B. Since there are
m clusters, we have |mB/m| = [mB/m] = B. Thus, the strong fairness condition
requires that each cluster should have exactly B data items that are special. Since the
sum of the integers in each subset X ; is B, each cluster contains exactly B data items.
Since each data item is special, it follows that each cluster has exactly B data items
that are special. In other words, the clustering is strongly fair with respect to x and
satisfies all the ML constraints. Thus, we have a solution to the FSFC-ML instance.

For the converse, assume that we have a solution to the FSFC-ML instance. Let
the m clusters be denoted by Cy, Ca, ..., C,,. As argued above, the strong fairness
condition requires that each cluster must have exactly B data items that are special.
Since each data item in D is special, it follows that each cluster has exactly B data
items. Further, the ML constraints require that for each S;, 1 <i < 3m, all the data
items in S; must be in the same cluster. Since B/4 < |S;| < B/2 and each cluster has
exactly B data items, it follows that each cluster has all the data items from exactly
three of the data sets from Sy, 2, ..., S3,z. Suppose cluster C; contain the sets S,
Sj, and Sj;, 1 < j < m. From the cluster C;, we construct the subset A; consisting
of the integers a,, aj, and a j; that correspond to the three sets S;,, S;, and Sj;. Since
each cluster has exactly B data items, it follows that the sum of the three integers in
Ajisexactly B, 1 < j < m. In other words, we have a solution to the 3-PARTITION
instance, and this completes our proof of Theorem 3. O
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A consequence of Theorem 3 is that the minimum modification problem where
the goal is to achieve group-level fairness (as per our definition) and individual-level
fairness is computationally intractable.

6 Experimental results on classic data sets

To illustrate the usefulness of our method, we consider several classic data sets
(Adult/Census, Twitter Healthcare and NYT) using k-means, k-medians and spectral
clustering algorithms. Since no other work attempts to post-process results to make
them fairer, we do not present the standard “Us versus Them” tables of results; instead,
we attempt to illustrate our work’s uses, limitations and comparisons to fair-by-design
clustering algorithms. We attempt to answer the following questions:
Q1. What is the impact of our modification approach on real world data sets? Can our
objectives in Table 1 find fairer clusters whilst also retaining a high quality clustering?
Q2. How does making existing clusterings fairer compare to approaches that find fair
clusterings to begin with (e.g., Chierichetti et al. 2017)?
Q3. What is the approximate run time of our method and the impact of increasing the
number of instances and clusters?

We begin with an illustrative data set (= 50k instances) used by many previous
fairness papers and then move onto two larger collections of data sets (= 58k and
300k instances).

6.1 Q1—Effects of post-processing

Here we first analyze the well studied Adult dataset (e.g., Chierichetti et al. 2017;
Backurs et al. 2019) that consists of 48,842 individuals (males: 66.8% and females:
33.2%) from the UCI repository (Dua and Graff 2017).

Post-Processing Results of k-Means. The best clustering result of partitioning this
data into 5 clusters using k-means is shown in Table 2. The clustering was done using
the attributes Age, Education, Status, Occupation and Gain. We immediately see that
the first two clusters are desirable from a marketing perspective as they consist of
highly educated individuals with high gains (related to income) who can be targeted
for better loans, credit cards, ads, etc. However, they are overwhelmingly male, with
no more than 21% of the total population per cluster being female. Note the proportion
of females in this data set is 33.2%.

To make the first two clusters fairer, we apply our method by placing bounds on the
first and second cluster’s protected status ratios to be 0.5 £0.05 with the remaining
clusters’ proportion of females to be their current values as reported in Table 2 £0.15.
This is achieved by setting the U; and L; bounds appropriately in Equations (2) and
(3). We then applied the minimal modification method with the second objective in
Table 1 asitis compatible with the k-means objective. The results are shown in Table 3.
Since we used k-means clustering, we measure the impact of our modified clustering
in terms of the increase in the distortion (the objective function used by k-means).
The results show several interesting insights:
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Table 2 For k-means and Census dataset

Cluster 1 2 3 4 5

Female 21% 12% 25% 51% 14%

Size 5352 2776 15180 20182 5352

Age 42 47 43 31 46

Education Bachelors Bachelors HS-grad Some-college Some-college
Status Married Married Married Never Married
Occupation Prof Sales Craft Prof Exec

Gain 3910 2887 353 233 2556

Clustering was done using the attributes Age, Education, Status, Occupation and Gain. A description of
the best clustering found using k = 5 (minimized distortion over 1000 random restarts) and the fraction of
the protected variable (females) per cluster. The distortion of the solution is 110402.48. This is the given
clustering we minimally modify to obtain results in Tables 3 and 4

Table 3 For k-means, Census dataset and our method

Cluster 1 2 3 4 5

Female 45% 45% 34% 52% 10%

Size 5923 6321 12366 10231 14001
Age 41 43 44 35 45
Education Bachelors HS-grad HS-grad Some-college Bachelors
Status Married Never Married Never Married
Occupation Prof Sales Craft Prof Sales
Gain 2834 2532 1431 452 2641

Clustering was done using the attributes Age, Education, Status, Occupation and Gain. A description of the
clusters found using our method (using second objective in Table 1) by minimally modifying the clustering
described in Table 2. The distortion of this solution increased approximately 2% to 112400.68. Compare
with Table 2. Interesting changes between this table and Table 2 are in boldface

1. We find that when only modifying to make clusters fairer, the distortion only
increased by 2%. This indicates that our objective function in Table 1 is useful
in ensuring that the clustering quality is not diminished.

2. However, the description and sizes of the clusters do change (highlighted by bold
in Table 3) sometimes adversely. For example, the second cluster now becomes
less desirable from a marketing perspective as it contains less educated individuals
who are not married. This motivates our next experiments on multiple protected
attributes.

Experiments with Multiple Protected Attributes to Overcome Challenges. The last
item in the above list points out a challenge with balancing just one protected variable.
To address this, we can constrain other variables, even though they are not protected.
It is important to realize that we can constrain the sizes of the clusters by creating
a dummy protected variable that every instance possesses. Thus, to better ensure
fairness (with respect to gender) across the clusters whilst retaining other properties
of the two desirable clusters, we also constrain Education and Marital-status attributes.
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The increase in distortion for these more complex experiments is shown in Table 4.
Not surprisingly, the requirement of keeping cluster sizes similar to their previous
values produces a greater increase in distortion. Next, we measure the fairness of
our clusterings using the classic fairness measure of Chierichetti et al. (2017). As
expected, we find (Table 4 last column) no large difference as both measures are based
on cardinality. In question Q2 (Sect. 6.2) we explore whether the two methods produce
different results.

More Data Sets and Experiments With k-Means and Spectral Clustering. We now
explore two larger data sets: (i) the NYT Articles Bags of Words Data Set (300,000
instances) and (ii) Twitter Data of Health News (58,000 instances). Each data set
is represented by the 1000 most frequent words including gender (male, female),
race/ethnicity (black, hispanic, white) and age (elderly, young). The former data set is
already processed whilst we processed the latter using the BOW toolkit.? For each data
set, we find the best k = 10 clustering using plain k-means and spectral clustering + k-
means (both from 1000 random restarts). We then report the increase in distortion and
cut cost by ensuring fairness across all clusters for a variety of keywords mentioned
in Table 5 and Table 6. For spectral clustering (von Luxburg 2006), we created a fully
connected graph based on the cosine distance between bags of words vectors, created a
spectral embedding into a 10 dimensional space and used k-means to find 10 clusters.
We used our third objective function in Table 1 which is in principle similar to the
spectral clustering objective function (from a graph cut perspective); see Tables 5 and
6.

As before, we found that modifying a clustering to ensure fairness for a single
protected attribute can be achieved by minimally increasing the objective function of
the algorithm. However, balancing multiple protected attributes produces a greater
increase than the sum of the increases for the same two variables. For example, in
Table 5, balancing Female and Black produced a distortion increase of 5.9% but
just Female or just Black produces increases of 1.3% and 1.9% respectively.

6.2 Q2—Direct fair clustering comparison

Here we answer the important question of how post-processing an existing clustering
to make it fairer compares to finding fair clusters to begin with. In Table 4 we showed
that the classic measure of fairness (Chierichetti et al. 2017) is similar to our own
as they are both cardinality based (see Sect.2). However, this is different from the
following question: does post-processing to increase fairness find the same, better or
worse clusterings compared to finding a fair clustering to begin with? To explore this
question, we used a scalable version of the fair k-median algorithm in Chierichetti et al.
(2017) as discussed in the work of Backurs et al. (2019). The work on fair spectral
clustering (Kleindessner et al. 2019) could be a suitable comparison but for our data
sets of 48k, 58k and 300k instances, it was not scalable as the resulting affinity matrices
were nearly 300Gb large (i.e., to encode a 300k x 300k matrix of short integers).

2 https://www.cs.cmu.edu/~mccallum/bow/.
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Table 4 Census dataset, k-means and our method with multiple constraints on variables

Attribute Focus Distortion increase Fairness decrease
per (Chierichetti
etal. 2017)

Education 2.1% 1.3%

Marital Status 1.8% 2.5%

Education + Marital Status 8.0% 3.6%

Keep Cluster Sizes +0.05% 15.4% 0.1%

Education + Keep Cluster Sizes +0.05% 19.8% 0.8%

Marital Status + Keep Cluster Sizes £0.05% 20.3% 0.9%

Education + Marital Status +

Keep Cluster Sizes +0.05% 23.6% 0.8%

The distortion increase of the modified to be fairer (with respect to gender) clustering over the clustering
in Table 2 is shown under the requirement that other properties in Table 2 must be retained

Table 5 Results of applying k-means, spectral clustering and our method for NYT data set

Word Focus Distortion Increase Cut Cost Increase
Base Clustering Method 0 0

Female 1.3% 1.8%

Black 1.9% 2.3%

Elderly 2.3% 3.1%

Female, Black 59 % 7.2%

Female, Elderly 6.8% 8.3%

Black, Elderly 71% 8.9%

Female, Black, Elderly 13.9% 17.3%

Female + Cluster Sizes £+ 5% 18.1% 20.3%

The increase in distortion if we minimally modify the clustering of the NYT Articles Bag of Words Data Set
with 10 groups using k-means and spectral clustering is shown. Each row shows the increase in distortion
and cut-cost caused by a fairness requirement

We performed two experiments. Firstly, we ran both methods (k-medians® plus
ours (objective function 2 with L2 distance in Table 1) and Backurs et al. (2019) for
k-medians) on the same collection of bootstrapped samples (50% of the original data
set size) for our three data sets and measured the normalized Rand Index (RI) between
the clusterings found by the two methods. If the Rand Index is 1, then the clusterings
found are identical. Table 7 (2nd column) shows our methods do not find the exact
same clustering. However, if we post-process (using our method and a constraint to
retain cluster sizes) the result of the (Backurs et al. 2019) method, it does not unduly
change the resultant clustering (Column 3 of Table 7).

We next explored how the outputs of the two methods are different. To achieve
this, we plot the results of the Census data experiments in a 2D scatter plot where one

3 Theory and applied literatures use different terms for the same algorithm. We use the k-medoid MATLAB
algorithm which is referred to the k-medians algorithm in the theory literature.
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Table 6 Results from k-means and spectral clustering and our method for Twitter Healthcare Data Set

Word Focus Distortion Increase Cut Cost Increase
Base Clustering Method 0 0

Female 2.4% 2.1%

Elderly 3.2% 3.8%

Female, Elderly 7.4% 8.8%

Female + Cluster Sizes £ 5% 17.3% 19.4%

The increase in distortion if we minimally modify the clustering of the Twitter Healthcare Data Set with
10 groups using k-means and spectral clustering is shown. Each row shows the increase in distortion and
cut-cost caused by adding a fairness requirement

Table 7 Comparison of post-processing for fairness versus searching for fair clusterings for 350 bootstrap
samples each of the Census, NYT and Twitter Healthcare data sets

Data Set Adjusted RI Change in Fairness (number of
instances moved) after
post-processing results from
Backurs et al. (2019)

Adult/Census 0.95 0.18% (0.05%)
NYT 0.75 1.1% (0.13%)
Healthcare 0.85 1.3% (0.11%)

The second column shows the Rand Index (RI) between the clustering each method finds averaged over
100 bootstrap samples. The third column shows how applying our method after finding a fair clustering
decreases the fairness. In the last column, the numbers in parentheses show the number of instances moved
as a percentage of the cluster size
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Fig.1 For 350 bootstraps of the Census data set, the comparison of our method (crosses) versus Chierichetti
etal. (2017) (circles) of the k-medians loss versus our measure of fairness (left) and Chierichetti et al. measure
(right)

dimensions is the objective of the k-medians algorithm whilst the other is the fairness
criterion used by the algorithms. Since the two notions of fairness used are similar
but not identical, we have two plots in Fig. 1. We find that as expected each method is
better at optimizing its own measure of fairness but our method is on average better at
finding more compact clusters (according to the objective of k-medians). This is not
unexpected as the work of Backurs et al. (2019) guarantees fairness but has a weaker
approximation bound than MATLAB’s k-medians implementation.
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Table 8 Scalability results of " "
our algorithm using NYT (left) K Run-time " Run-time
and Twitter Health care (rlght) 2 3.8s/4.3s 1000 0.205/0.29s
data sets
6.15/6.5s 2000 0.81s/0.95s
8 8.3s/9.1s 4000 1.11s/1.45s
16 27.30s/23.1s 8000 3.23s/4.935s
32 75.435/85.1s 16000 16.41s/18.55s
32000 69.325/73.81s

The min/max run time over 100 experiments on a single core of a
MacBook Pro laptop (i5 processor) for a randomly created subset of
the data sets. Left: Data set with 10,000 instances and varying numbers
of clusters. Right: 5 clusters and varying data set sizes

6.3 Q3—Scalability

Theorem 1 shows that our ILP formulation has the TU property and hence can be solved
by an LP solver. However, as indicated in Sect. 3, this can still take O (n(n + d ySL)
time in the worst-case, where 7 is the number of variables, d is the number of constraints
and L is the number of bits needed to specify all the constants specified in the ILP
(Vaidya 1989). In our experiments, we found that instances of the Adult data set took
under one minute to run on a single core of a MacBook laptop. For the larger NYT data
set, the time was under 5 min and for the Twitter Healthcare data set, it was about 4 min.
Here we wish to see how the execution time of our algorithm is affected by increasing
the number of clusters and number of instances. In Table 8, we show the execution
time on a laptop for the NYT and Twitter Healthcare data sets using sample of various
sizes. We averaged results over 100 experiments with 25 experiments each balancing
Female, Black, Elderly and Hispanic attributes to match the population ratios.

7 Case study: experiments on real world congressional districts data

Prior work on fairness in clustering has focused on classic academic data sets that we
experimentally compared against in the previous section. In this section, to test the
usefulness of our work, we explore the fairness of California’s congressional districts
with respect to a number of PSVs (e.g., socioeconomic, housing, and demographic
information) collected from the Census Bureau’s 2018 American Community Survey
Bureau (2020a). This data set will be made publicly available and will serve as a good
test bed application for fair clustering.

7.1 Data description and experimental goals

California is divided into 53 congressional districts (CDs) which are redrawn every
decade (CNMP 2020; NCSL 2019). Each CD consists of a subset of 1769 ZCTAs
(zip code tabulation areas) shown in Fig.4 7b (Bureau 2020b). We can view the CDs

4 This figure appears in “Appendix C”.

@ Springer



Making clusterings fairer by post-processing 1425

Table9 Some of the 63 PSVs from our curated dataset and the number of CDs that violate disparate impact
with respect to that PSV (see Definition 3)

Protected Status Variable (PSV) #CDs ViolatingDisparate Impact
Population 16 years and over in labor force 10
Population 16 years and over NOT in labor force 9
Private wage and salary worker 17
Government worker 18
Self-employed in own not incorporated business worker 29
Male citizen over 18 14
10-14 yr old 12
Race: Vietnamese 47
Total Household Income Over 100k 36
Age: 55+ 20

as the clusters and the ZCTAs as the instances. Typically, each of the 1769 distinct
ZCTAs in California is assigned exclusively to one CD, but some ZCTAs on the bound-
aries of CDs can be shared by multiple congressional districts. In our experiments,
if a ZCTA is shared by multiple congressional districts, its population is distributed
equally amongst those CDs to create multiple ZCTA-Instances. See “Appendix C.1”
for details regarding the most recent congressional districts. The current major focus
of the selection committee that creates the congressional districts is to ensure relatively
equal sizes of populations across the 53 CDs (Ballotpedia 2020). However, this causes
unfairness in terms of disparate impact (Feldman et al. 2015) for some protected sta-
tus variables (PSVs). Table 9 shows several PSVs for which unfairness occurs due to
disparate impact. To analyze fairness issues in the context of congressional districts,
we use the following version of the standard definition of disparate impact.

Definition 3 (Disparate Impact in Congressional Districts) The notion of disparate
impact indicates unfairness but not by design [U.S. Equal Employment Opportunity
Commission 2007 (Commission 2007)]. Disparate impact in the congressional districts
(CDs) setting occurs if a CD’s population of protected status (PS) individuals is outside
the bounds of £20% of the PS individuals’ occurrence in the population. This codifies
the classic legal precedent known as the “80% rule” that if the selection rate of protected
status individuals is less than 80% of that for individuals of unprotected status, disparate
impact occurs.

In the rest of this section, we attempt to redistrict CDs by modifying the ZCTAs
assigned to them. This modification redistributes the population to address unfairness
due to disparate impact. Specifically, our experiments explore the following questions.

— Q1. Can we minimally modify (i.e., redistrict) the ZCTAs of the 53 CDs in Califor-
nia to make them fairer with respect to a single PSV? Further, how do the shapes
of the CDs change?

— Q2. When improving fairness with respect to different PSVs, does our method
redistrict the same ZCTAs to make the CDs fairer?
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Original CDs Reclustered CDs

Fig. 2 Side by side comparison of the original congressional district boundaries and the ones after re-
clustering with respect to Race: White. Numbers on the left figure indicate the congressional district number
of each region whilst numbers on the right indicate the congressional district ZCTAs that have moved. (These
numbers can be seen by magnifying the two panels)

— Q3. Can we make the 53 CDs fairer with respect to multiple PSVs at the same
time? Further, how does the shapes of the CDs change?

To explore Q1, we summarize results generated by our method under some spatial
constraints (described in Sect.7.2) to make the CDs fairer with respect to different
PSVs (see Table 10). To explore the second parts of Q1 and Q2, we visualize the
changes of shapes of the CDs by highlighting the resultant redistricted ZCTAs with
respect to different PSVsin Figs. 2, 3,4 and 5. To explore Q3, we explore different pair-
wise combinations of PSVs in Table 12. We also highlight the resultant redistricted
ZCTAs in making the CDs fairer with respect to 5 PSVs simultaneously in Fig. 6.

7.2 Additional constraints

Due to spatial requirements, one cannot arbitrarily move a ZCTA from one CD to
another; for example, moving a ZCTA currently allocated to San Jose (which is located
towards the Northern part of California) to Los Angeles (which is in the Southern part
of the state) is not permitted. To facilitate this, we add a simple allocation constraint
encoded in a matrix M. Here, M is an n x k matrix, where n and k represent the
number of ZCTAs and CDs respectively. An entry of M; ; = 1 indicates ZCTA i can
be allocated to CD j. The sum of each row in M is lower bounded by 1, and is often
equal to 2 for ZCTAs that border two CDs. (In some unusual cases, the sum of the
entries in a row of M can be as high as 4 for ZCTAs on the boundary of that many
CDs)Forl <i <mnand1 < j <k, letting z;; denote a {0, 1}-valued variable that
indicates whether the redistricting step allocates ZCTA i to CD j, the constraint that
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(a) All the ZCTAs (marked by the blue regions) (b) The new CDs after re-clustering with respect

redistricted during re-clustering (with respect

to Race: White are highlighted. All the other

to Race: White) and the new CDs (illustrated ~CDs are unchanged and are colored white.

in red) to which they are redistricted.

Fig.3 Re-districting ZCTAs to make CDs fairer with respect to the PSV Race: White while ensuring spatial
continuity of CDs through constraints based on the M matrix. Numbers in the figures (which can be seen
by magnifying the figures) indicate the congressional district number of each region

Original CD

Reclustered CD

Fig.4 Detailed view of the shape of the original Congressional District #21 before (left) and after (right)
the re-clustering step. (Re-clustering was done with respect to Race: White)
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Table 10 The explored PSVs and which constraints yield feasible solutions in balancing each PSV

PSV Ensuring Spatial ~Relaxation of Relaxation of
Continuity Fairness for Spatial
(PSVs for all every CD (80%  Continuity
CDs must be of CDs must be
+20% of fair)
non-PSVs)

Race: White v v v

Female v v v

People over 16 Not in Labor Force v v v

Foreign Born X X v

Hispanic/Latino X X v

Citizen v v v

Age: 55+ v v v

Total Household Income over 100k+ X X v

Language Other Than English Spoken at Home x X v

The PSVs were selected by sorting the PSVs in decreasing order of variance with respect to population
across the CDs and choosing the top nine PSVs

encodes the spatial requirement is simply:
Zzi,j < Mjj, 1<i<n, 1<j<k (5)

We add in a constraint to ensure the CD sizes in terms of population stay approximately
the same.

7.3 Experimental results for single PSVs

We present the results of experiments that explore which PSVs can be balanced indi-
vidually to make the CDs fairer according to disparate impact. First we overview the
results for balancing one PSV as an example and then balance many PSVs simultane-
ously.

Results for Fairness wrt- Race: White. The left panel of Fig.2 shows the boundaries
of the CDs in the original allocation and the right panel of the figure shows the new
boundaries of the CDs when our method is used (along with spatial constraints given
by Eq. (5)) to balance the PSV Race: White. To provide more details about the results,
Fig.3a shows all ZCTAs that were redistricted during re-clustering and their new
CDs after the re-clustering step. Figure 3b illustrates the specific ZCTAs redistricted
and the new congressional districts to which they belong. Note how the new ZCTAs
and the corresponding CDs are contiguous. This is because of the spatial constraints
mentioned above. Figure 4 provides a detailed view of the shape of one congressional
district before and after re-clustering.

Results for Fairness wrt Remaining PSVs. The number of redistricted ZCTAs varies
with the PSVs. The specific number of ZCTA-instances that needed to be redistricted
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(b) Reclustered CDs with respect to the PSV

Total Household Income Over 100k. Each ZCTA
(a) Highlighted in blue are the ZCTAs that were and new CD pair are colored the same. Note
redistricted and in red, their new CDs after re- that it is much harder to visually see this as the
clustering with respect to the PSV Total House- ZCTA and its CD are no longer required to be
hold Income Over 100k. spatially next to one another.

Fig. 5 Re-districting ZCTAs to make CDs fairer with respect to the PSV Total Household Income Over
100k Numbers in the figures indicate the congressional district number of each region. For this experiment,
the continuity constraint (see Sect. 7.2) is relaxed

for each PSV is shown in Table 11. The specific subset of ZCTAs redistricted also
varies across the investigated PSVs. The results in Table 11 demonstrate that it is easier
to make the CDs fair with respect to some PSVs (e.g., Gender: Female needs only 6
ZCTAs to be redistricted) whilst others are more challenging (e.g., Race: White needs
108 ZCTAs to be redistricted). Table 10 shows that for some PSVs (e.g., Language
other than English Spoken at Home) redistricting for fairness couldn’t be done when
spatial continuity constraints were imposed. Table 11 also shows the number of ZCTAs
that were redistricted for such PSVs when spatial constraints were relaxed.

7.4 Exploring fairness across multiple PSVs

Here, we explore the question of redistricting so that fairness is achieved with respect
to each of two or more PSVs. We first consider pairs of PSVs and then discuss the
case of a subset consisting of 5 PSVs.

We considered each pair from the set of nine PSVs shown in the leftmost column
of Table 10. Our goal was to check whether fairness could be achieved with respect to
each of the two PSVs. Our formulation produced feasible solutions to some pairs of
PSVs while other pairs were infeasible. The results are shown in Table 12, where the
cells in Cyan represent feasible pairs while the ones in Yellow are infeasible pairs. (The
numerical value in each cell indicates the correlation between the corresponding pair
of PSVs.) This exploration is important in understanding the compatibility between
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Table 11 The difficulty of re-districting to ensure fairness for a single PSV

PSV Constraint Type No. of
ZCTA-Instances
Redistricted
Female 6
Not in Labor Force 13
Citizen 16
Age 55+ 46
Race: White 108
Language Other Than En- | Relaxation of Spatial Continu- | 31
glish Spoken at Home ity
Foreign Born Relaxation of Spatial Continu- | 32
ity
Income 100k+ Relaxation of Spatial Continu- | 59
ity
Hispanic/Latino Relaxation of Spatial Continu- | 107 (This needed the re-
ity districting of some ZC-
TAs in the center of
CDs.)

For each PSV, the number of ZCTAs redistricted during re-clustering is shown. For the last four PSVs in
the table, spatial continuity constraints also needed to be relaxed to achieve fairness

the fairness of different PSVs. For instance, ensuring fairness with respect to the PSV
Gender: Female may cause unfairness for another PSV.

For PSV pairs in which fairness could be achieved under spatial continuity con-
straints for each individual PSV, our method was also able to achieve fairness for both
PSVs. This may appear to be surprising, but Table 12 also shows that these variables
are highly correlated. Hence the tasks of balancing fairness for the two PSVs are
mutually complementary.

Our experiments also showed that redistricting to achieve fairness with respect to
each of the five PSVs in the set {Female, Race: White, Age: 55+, Citizen, Not in
Labor Force} was feasible. The notion that one can simultaneously achieve fairness
for each of five PSVs is not intuitive. Nonetheless, we observe from Table 12 that this
particular set of PSVs is highly positively correlated. The re-clustering step for this
set of five PSVs used the spatial continuity constraints and caused 129 ZCTAs to be
re-districted. The ZCTAs that were re-districted and the resulting new CDs are shown
in the left and right panels of Fig. 6.

8 Discussion, conclusions and future work

We explored the novel idea of post-processing the results of existing clustering algo-
rithms to make them fairer. We formulated the problem as an ILP and showed that the
resultant constraint matrix is totally unimodular (TU). This means that we can solve
the ILP using an LP solver and thus obtain a polynomial time algorithm. We showed
that some variations such as a relaxed condition for fairness and overlapping clusters
also lead to TU constraint matrices. However, we also observed that some interesting
settings such as continuous protected variables may not lead to TU matrices.
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Table 12 The numerical value in a cell indicates the pairwise correlations between PSVs whilst the color
of the cell indicates if there exists a feasible re-clustering between the corresponding pair of PSVs

PSV Over Female | Race: Age > | Citizen | Not in | Other Hispaniq Foreign

100k White | 55 labor lan- /Latino | Born
force guage

Over 0.4838 | 0.3004 | 0.5912

100k

Female 0.7944 | 0.8674

Race: 0.6793 | 0.6473

White

Age > 0.6175 | 0.7589

55

Citizen | 0.6728 | 0.7796

Not in 0.7636 | 0.8198

labor

force

Other 0.9731

Lan-

guage

Hispani

/Latino S ———

Foreign

Born

The PSV combinations in yellow are infeasible while the ones in Cyan are feasible. The spatial continuity
constraints have been relaxed to achieve fairness. (For space reasons, names of many PSVs have been
abbreviated)

(a) The ZCTAs that were redistricted for re-
clustering to make all 5 PSVs (Female, Race: (b) The new 53 congressional districts after re-
White, Age: 55+, Citizen, Not in labor force) clustering to make all 5 PSVs fairer simultane-
fairer simultaneously. ously.

Fig. 6 Re-districting ZCTAs to make CDs fairer with respect to 5 PSVs (Female, Race: White, Age:
55+, Citizen, Not in labor force) simultaneously. Numbers in the figures indicate the congressional district
number of each region. For this complex problem the continuity constraint (see Sect. 7.2) is relaxed
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Our complexity results showed an interesting conundrum. Though finding a strictly
fair clustering for a single protected status variable (a type of group-level fairness) is
tractable and finding a clustering to satisfy popular must-link constraints (which can
encode individual-level fairness) is also tractable, satisfying both is computationally
intractable.

Our experiments aimed to shed light on the strengths and limitations of the approach
and the general problem of making clusterings fairer. We found that though we were
able to improve the fairness of large data sets efficiently on standard laptops (e.g.,
some data sets as big as 300K instances could be processed in 5min or under), we
observed several interesting phenomena when attempting to find fair clusters. Firstly,
making existing clusterings fair for a single protected variable can be achieved with
minimal decrease in the clustering quality for a variety of clusterings produced by
fundamentally different algorithms (e.g., k-means and spectral clustering). But this
could have the effect of unduly influencing the composition of the clustering (e.g.,
Cluster 2 in Table 3). We showed how this could be addressed by using our formulation
to balance multiple variables (even though they are not protected) including the cluster
sizes. However, balancing multiple protected variables can decrease the cluster quality
substantially. We showed that our measure of fairness does not produce results that
are fundamentally different from those of the seminal work in the field (Chierichetti
et al. 2017) by showing (for example) that post-processing the results of their output
minimally changes the clustering. However, our method does have the benefit of not
being tied to a particular clustering algorithm and is scalable due to our TU result.

Future Work: Our theoretical work considered a fairness measure for a single PSV.
A challenging research direction is to extend our work to allow multiple PSVs. Also,
developing appropriate notions of fairness and investigating how clusters can be mod-
ified to improve fairness in the context of non-partitional clusterings with single or
multiple PSVsis an interesting topic for future work. We showed that for a certain com-
bination of group and individual-level fairness specifications, the feasibility questions
may become computationally intractable. It is of interest to investigate the algorithmic
and complexity aspects of combining other forms of fairness criteria.
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out that the sufficient condition that we use for establishing the TU property of the constraint matrix
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by NSF Grants IIS-1908530 and IIS-1910306 titled: “Explaining Unsupervised Learning: Combinatorial
Optimization Formulations, Methods and Applications”.

A Additional material for Sect. 3

A.1 A short introduction to integer linear programs

Many combinatorial optimization problems can be expressed as Integer linear pro-
grams (ILPs) (Garey and Johnson 1979; Schrijver 1998). An ILP is specified by a

set of variables that are constrained to take on integer values, a linear objective func-
tion of these variables and a collection of linear constraints that each solution must
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satisfy. In general, unless P = NP, no efficient algorithms are possible for solving
ILPs (Garey and Johnson 1979). However, the availability of well known software
tools (e.g., Gurobi 2020), which incorporate many heuristic search methods, make it
possible to use ILPs to solve problems of moderate size arising in practice. We now
provide an example of a combinatorial problem that can be formulated as an ILP.
Example: We consider the Knapsack problem, where we are given a collection of n
objects. Each object o; has a weight w; (pounds) and value d; (dollars), | <i <n.We
are also given a knapsack whose total capacity is W (pounds). The goal is to choose a
subset of the items so that the total weight of the items is at most W and the total value
of all the items is a maximum subject to this constraint. This problem is known to be
NP-complete (Garey and Johnson 1979). An ILP for this problem can be developed
as follows.

Our ILP formulation uses n variables denoted by xi, x2, ..., x,. Each of these
variables takes on a value from {0, 1} with the following interpretation: object o; is
added to the knapsack iff x; = 1. With these variables, the optimization goal can be
expressed as:

Maximize Y ;_, dix;.
Since each d; is a (given) constant, this objective function is linear.

We now discuss the constraints. First, the total weight of the chosen items must be
at most the capacity of the knapsack. This constraint can be expressed as follows:

Yi—jwixi = W
Note that each w; is a given constant. Thus, this constraint is linear. The other con-
straint, which restricts the value of each x;, is as follows: x; € {0, 1}, 1 <i <n.

This completes the ILP formulation of an ILP for the Knapsack problem. Many
examples of such formulations are discussed in standard texts on algorithms and
related topics (e.g., Garey and Johnson 1979; Cormen et al. 2009; Vazirani 2001).
Many methods for solving ILPs are discussed in Schrijver (1998).

A.2 An example to illustrate the ILP formulation for MCMF

We present an example to show the constraint matrix that arises in the ILP formulation
of MCMF presented in Sect. 3. For simplicity, we will construct this example assuming
that we need strict fairness.

In this example, we have a set S = {s1, s2, 3, 54, S5} consisting of 5 instances. Of
these, instances s1, s» and s3 are special (i.e., their PSV values, denoted by p1, p2
and p3 respectively, are all 1) while s4 and s5 are not special (i.e., pa = ps = 0).
The initial clustering of S has two clusters C| and C, where C| = {sy, 52, s3} and
Cy = {54, 55}.

Since the number of special items N, = 3 and the number of clusters K = 2, under
strict fairness, each cluster must have either [N, /K] = [3/2] = 2 special items or
IN,:/K] =|3/2] =1 special item. Thus, the given clustering (which has all the three
special items in C1) is not strictly fair, and we need to modify it to achieve fairness.

From the discussion in Sect. 3, let z; ; denote the {0,1}-valued variable that is set
to 1 if in the modified clustering, instance s; is assigned to cluster C;, 1 < j <5
and i = 1, 2. (Otherwise, z; ; is set to 0.) As discussed above, the upper and lower
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bounds on the number of special items in each cluster are 2 and 1 respectively. Let u;
and /; denote the slack variables for Cluster C;, i = 1, 2. Using Eqs. (2) through (4)
for the two clusters, and noting that only pi, p» and p3 are 1, we get the following
constraints:

zZia+zip+tziztur =2
-z —a2—u3+h =-1
1+02+03+ur=2
—221—212—223+h =—1
21,1t 22,1 =
212+ 222 =

1
1
213 +223=1
2i4+z24=1
1

215t 225 =

Note that the constraint matrix uses only the coefficients on the left side of each
constraint above. As indicated in Sect. 3, we use the following ordering of the variables
so that each constraint (which becomes a row of the constraint matrix) can be expressed
as a linear combination of the variables in this order:

(21,15 21,2, 21,3, 21,45 21,5, 22,15 22,2, 22,3, 22,45 22,5, U1, U2, [1, 1)

Thus, the resulting constraint matrix C has 9 rows (one corresponding to each con-
straint) and 14 columns (one corresponding to each variable). Variables that don’t
appear in a constraint have their coefficients as O in the constraint matrix. From the
above constraints, we get the following constraint matrix C with 9 rows (corresponding
to the constraints) and 14 columns (corresponding to the variables).

—_
—_
—_

cococo—oco | ~
coco~ococo | ~
co—~ocococo | ~
o—~ococococococo
—ocoocoococoocooo
cococo—| —oco
_
coco~o | —oco
_
co—~oco | —oo
—
oc—~ocococoocococo
—ocococococococo
cocoocoococococo~
coocoococo~oo
coocoocococo~o
cocoocooco~ocoo
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B An alternative algorithm for modifying a given clustering to
achieve strong fairness

In Sect. 3, we mentioned that it is possible to develop a faster algorithm for achieving
strong fairness. In that section, we also presented the basic ideas behind the algorithm.
Here, we provide a description of the algorithm.

Notation used in the description of the algorithm: In specifying this algorithm, we
assume that we need to only deal with special data items. (Data items that are not
special play no role in determining strong fairness.) Thus, the input to the algorithm
is an arbitrary partition IT of D, have k > 1 clusters denoted by Cy, Ca, ..., Ck,
with cluster C; containing §; special items, 1 < j < k. We also assume that the
clusters are numbered 1 through k so that 81 > By > --- > . (This can be ensured
in O (klog k) time by sorting the clusters.) The output of the algorithm is a partition
IT" of D, into k clusters such that IT" is strongly fair with respect to the protected
attribute x. The algorithm constructs 1" by moving the minimum number of special
items between clusters. It first moves the minimum number of special items into
a temporary container 7' and then redistributes those items to clusters which need
additional special items to satisfy the fairness condition. The steps of our algorithm
(which we call OPT-Modification) for the minimal modification problem are described
below.

Steps of Algorithm OPT-Modification:

1. For each cluster C; in 7 if B; = [Ny/k] or B; = | Ny/k], then output “z is
strongly fair” and stop.

2. Let Ny = gk+r,whereq > 0and 0 < r < k— 1. Use Case 1 or Case 2 depending
upon the value of r. Case 1: » = 0. Here, Ny = gk. (In this case, the algorithm
must ensure that each cluster has exactly Ny /k special items.)

(a) Letclusters Cy, ..., C; have > N, /k special items. (Other clusters have < N, /k
special items.)

(b) From each cluster C;j, 1 < j < ¢, move B; — N /k special items into a temporary
container 7.

(c) For each cluster C), such that 8, < N, /k, move N, /k — B, special items from T
into C),.

Case2:r > 0.Here, Ny = gk+r. (Inthis case, as required by Lemma 2, the algorithm
must ensure that exactly » clusters have [Ny /k] special items and r — k clusters have
Ny /k] special items.)

(a) Partition the clusters into 4 groups 'y, 'y, I'3 and I'4 as follows. (Some of the
groups may be empty.)

Let I'y consist of clusters Cq, ..., C; with > [N, /k] special items.

— Let I'; consist of clusters Cy1, ..., C), with exactly [N, /k] special items. (Thus,
groups I'1 and I'; together have p clusters.)

— Let I'3 consist of clusters Cp41, ..., Cp with exactly [ Ny /k] special items.

Let I'y consist of the remaining clusters, that is, Cy, 41, ..., Cx With < [Ny /k]

special items.
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(b) Use one of Cases 2.1, 2.2 or 2.3 depending upon the comparison between p and r.

Case 2.1: p < r (i.e., Groups I'| and I'; together have < r clusters).

(i) From each cluster C; in I'1, move B; — [N, /k] special items into a temporary
container 7.
(ii) For each of the first 7 — p clusters C; in I'3 UT'y, move B; — [ Ny /k] special items
from T into C;.
(iii) For each of the other clusters C; in I'3 U G4, move 8; — [Ny /k| special items
from T into C;.

Case 2.2: p =r (i.e., Groups I'] and I'; together have exactly r clusters).

(i) From each cluster C; in I'1, move B; — [N, /k] special items into a temporary
container 7.

(ii) For each of the clusters C; in I'4, move B8; — [ Nx/k] special items from 7 into
C;.

Case 2.3: p > r (i.e., Groups I'y and I'; together have > r clusters). Use one of the
subcases 2.3.1,2.3.2 or 2.3.3 depending on how ¢ compares with . Case 2.3.1: ¢ > r
(i.e., group I'1 has more than r clusters).

(i) From each cluster C; in I'y, move B; — [N, /k] special items into a temporary
container 7.
(ii) From each cluster C;,r < j < p, move ; — | N, /k] special items into T'.
(iii) For each cluster C; € 'y move B; — | Ny /k| special items from 7 into C;.

Case 2.3.2: ¢t =r (i.e., group I' has exactly r clusters).

(i) From each cluster C; € I';, move B8; — [N, /k] special items into the temporary
container 7.
(ii) From each cluster C; € I';, move B; — | Nx/k| = 1 special item into 7.
(iii) For each cluster C; € I'y, move B; — [ Ny /k] special items from 7 into C;.

Case 2.3.3: ¢ < r (i.e., group I'1 has < r clusters).

(i) From each cluster C; € I'1, move B8; — [N, /k] special items into the temporary
container 7.
(ii) From each cluster C;,r —t +1 < j < p, move B; — | Ny/k] =1 special item
into T.
(iii) For each cluster C; € I'y, move B; — [ Ny /k] special items from 7 into C;.

3. Output the modified partition I1" = (Cy, Ca, ..., Ci).

Running Time of Algorithm OPT-Modification: As mentioned earlier, sorting the list
of clusters so that their sizes are in non-increasing order can be done in O (k log k) time.
The remaining part of the algorithm consists of several cases, exactly one of which is
executed (depending on the values of Ny and k). In each case, the algorithm moves
the excess special data items from some of the clusters into a temporary container and
redistributes the items from that container to clusters that are deficient with respect
to special data items. Since there are at most n special items, the time needed for
redistribution step is O (n). Thus, the running time of this algorithm is O (n + k log k).
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Limitations of the Above Algorithm: Algorithm OPT-Modification has two limi-
tations. First, the algorithm handles only strong fairness. Second, it minimizes the
number of special data items moved from one cluster to another; it cannot handle
more general minimization objectives mentioned in Table 1. The LP-based algorithm
discussed in Sect.3 overcomes both of these limitations but has an asymptotically
larger running time.

C Other details about California’s congressional districts dataset and
our experimental settings

C.1 Background on congressional districts

One of the most important aspects of any election is how the voters are represented.
How lines are drawn to separate congressional districts can heavily impact an election
and how well everyone is represented. As an example, consider the 2016 presiden-
tial election where the boundaries of the electoral college led to the election of a
candidate even though they did not win the popular vote. California is divided into
53 congressional districts (CDs) (CNMP 2020), and these congressional districts are
redrawn every decade (NCSL 2019). The most recent congressional districts are shown
in Fig.7a. The selection committee that creates these lines focuses on ensuring the
relatively equal sizes of populations across the 53 CDs (Ballotpedia 2020). However,
based on this strategy, the congressional district lines are unfair for some protected
status variables (PSVs) as shown in Table 9.

(b) Mapping of the 1769 ZCTAs to the 53 con-
(a) Visualization of California’s 53 congressional  gressional districts. Note how the boundaries of
districts. Numbers in the figures indicate the the ZCTAs are shown in black and some ZCTAs
congressional district number of each region are shared with neighboring states.

Fig.7 California’s 53 congressional districts and 1769 ZCTAs
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In this paper, we explore the fairness of California’s congressional districts with
respect to a number of PSVs collected from the Census Bureau’s 2018 American
Community Survey (Bureau 2020a). After identifying the PSVs with respect to which
the CDs are unfair, we attempt to redistribute the population to correct this unfairness.

As previously mentioned, California is divided into 53 CDs. Each CD consists of
a subset of the 1769 ZCTAs (Zip Code Tabulation Areas) as shown in Fig. 7b (Bureau
2020b). Each ZCTA consists of multiple census blocks. ZCTAs are similar but not
identical to zip codes used the United States Postal Service (USPS). The latter are
managed by the USPS and can be arbitrarily changed, while ZCTAs only change
every decade. Additionally, ZCTAs are only used by the Census Bureau. Typically,
each of the 1769 distinct ZCTAs in California is assigned exclusively to one CD, but
some ZCTAs on the boundaries of CDs can be shared by multiple CDs.

C.2 Protected status variable creation

The data utilized during the case study is from the Census Bureau’s ACS (Ameri-
can Community Survey) 2018 Data (Bureau 2020a), which provides highly detailed
socioeconomic, housing, and demographic information of a given population (Bureau
2020a). This data forms the basis of our protected status variable (PSVs). In an effort
to protect people’s privacy, the PSVs are presented in an aggregated manner via popu-
lation numbers (e.g., how many females are in a ZCTA). There was difficulty finding
this information at the census block level, hence information at a ZCTA level was
used instead. Additionally, a relationship file is used to map ZCTA membership in a
congressional district. If a ZCTA is shared by multiple congressional districts, its pop-
ulation is distributed equally amongst those CDs to create multiple ZCTA-Instances.
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