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DATA-DRIVEN CONSTRUCTION OF HIERARCHICAL MATRICES
WITH NESTED BASES*
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Abstract. Hierarchical matrices provide a powerful representation for significantly reducing
the computational complexity associated with dense kernel matrices. For example, the fast mul-
tipole method (FMM) and its variants are highly efficient when the kernel function is related to
fundamental solutions of classical elliptic PDEs. For general kernel functions, interpolation-based
methods are widely used for the efficient construction of hierarchical matrices. In this paper, we
present a fast hierarchical data reduction (HiDR) procedure with O(n) complexity for the memory-
efficient construction of hierarchical matrices with nested bases where n is the number of data points.
HiDR aims to reduce the given data in a hierarchical way so as to obtain O(1) representations for
all nearfield and farfield interactions. Based on HiDR, a linear complexity \scrH 2 matrix construc-
tion algorithm is proposed. The use of data-driven methods enables better efficiency than other
general-purpose methods and flexible computation without accessing the kernel function. Exper-
iments demonstrate significantly improved memory efficiency of the proposed data-driven method
compared to interpolation-based methods over a wide range of kernels. For the Coulomb kernel,
the proposed general-purpose algorithm offers competitive performance compared to FMM and its
variants, such as PVFMM. The data-driven approach not only works for general kernels but also
leads to much smaller precomputation costs compared to PVFMM.

Key words. hierarchical matrix, kernel matrix, data-driven construction, complexity analysis,
data reduction, Gaussian
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1. Introduction. In various applications, the pairwise interaction between two
objects is characterized by a nonlocal kernel function. A system of n objects then
gives rise to an n-by-n dense kernel matrix. Such matrices arise frequently in in-
tegral equations [23, 42, 43], astrophysics [4], statistics [27, 18], machine learning
[7, 24], etc. A computational challenge is that the naive computational or storage
cost associated with the dense kernel matrix is at least O(n2). For the Coulomb
kernel, pioneering work such as the fast multipole method (FMM) [42, 43, 29] and
the Barnes--Hut algorithm [4] use multilevel approximation to successfully reduce the
cost to linear or quasi-linear complexity. Variants of FMM such as KIFMM [47] and
PVFMM [38] were later developed to extend FMM to kernels related to fundamen-
tal solutions of classical constant-coefficient elliptic PDEs. Further computational
savings can also be achieved by incorporating singular value decomposition in the
multilevel compression [20]. These techniques can be generalized into the powerful
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DATA-DRIVEN HIERARCHICAL MATRIX CONSTRUCTION S25

algebraic framework of hierarchically low-rank matrices [33, 34, 9, 31], or hierarchi-
cal matrices for short, for efficiently approximating dense kernel matrices associated
with general kernel functions. Two widely used classes of hierarchical matrices are
\scrH matrices and \scrH 2 matrices. The \scrH matrix yields an O(n logn) representation, and
the \scrH 2 matrix yields an optimal O(n) representation for approximating the kernel
matrix and computing the matrix-vector multiplication. For dense kernel matrices,
the efficient construction of these hierarchical representations associated with general
kernels remains a challenging problem. In this paper, we address this issue for the
\scrH 2 matrix representation. For general kernels, interpolation-based methods are often
adopted as a black-box tool used in hierarchical matrix construction. However, as will
be demonstrated in later sections, the use of interpolation nodes (or points outside
the given dataset) is in general not robust with respect to the kernel function or the
data distribution and may lead to loss of accuracy. We present a general-purpose
data-driven framework for hierarchical matrix construction that resolves these issues
and offers improved efficiency.

Given a set of points and a kernel function, hierarchical matrix construction starts
with an adaptive partitioning of the data. The partitioning can be encoded by a tree
structure in which each node represents a subset generated in the adaptive partition-
ing procedure. For example, the root node corresponds to the entire set of n points,
and its children nodes correspond to the subsets generated from the first partitioning
of the dataset. For hierarchical matrix construction, directly compressing the subma-
trix corresponding to a pair of nodes/subsets will be inefficient since one of the subsets
may contain O(n) points (see Figure 1.1(a)) and the total cost for all such pairs will
be at least O(n2). We propose to first process the tree-structured data to obtain a
reduced representation in which each node only corresponds to a small subset with
O(1) points while the farfield corresponds to O(1) points as well. These O(1) subsets
are called representor sets in [6]. See Figure 1.1(b). Using representor sets, the mul-
tilevel compression of the kernel matrix can be rapidly computed. To achieve optimal
efficiency, we design a hierarchical data reduction (HiDR) procedure with computa-
tional cost of O(n). Different from many existing approaches that create out-of-data
points to facilitate the low-rank compression (cf. [47, 9, 38]), the proposed procedure
operates entirely on the given data without using artificial points outside the data or
accessing the kernel function. Thus, the approach works for general kernel functions
in addition to those related to fundamental solutions of elliptic PDEs. Furthermore,
no algebraic compression is performed in the data reduction. Hence, the approach
is termed data-driven. We show how to incorporate HiDR in hierarchical matrix
construction to obtain a fast algorithm for general kernels. Numerical experiments
demonstrate the competitive performance of the new method in terms of generality,
memory use, speed, and accuracy.

The rest of the manuscript is organized as follows. Section 2 reviews hierarchical
matrix structures and existing methods for constructing hierarchical matrices. Section
3 introduces the HiDR algorithm. Based on this HiDR, the complete hierarchical
matrix construction is presented in section section 4. Section 5 presents numerical
experiments to investigate different data reduction techniques. Numerical results
for the proposed data-driven hierarchical matrix construction are given in section 6.
Concluding remarks are drawn in section 7.

The notation used in this paper is listed below:
\bullet | x - y| denotes the Euclidean distance between x and y in \BbbR d.
\bullet diam(X) denotes the diameter of set X, i.e., max

x,y\in X
| x - y| .
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S26 DIFENG CAI, HUA HUANG, EDMOND CHOW, AND YUANZHE XI

(a) Left: the farfield (shown in blue) of the or-
ange box contains O(n) points. Right: the O(n)
points are reduced to a subset of O(1) points. (For
another orange box, the farfield is different and
the reduced subset is generally a different set of
points.)

approximate
column basis

(b) The kernel matrix is shown, highlighting the
interaction between points in the orange region
and points in its farfield. The arrows point to col-
umns corresponding to the points selected in the
O(1) subset. These columns form an approximate
basis for the farfield.

Fig. 1.1. Farfield data reduction as a way to construct an approximate column basis for the
farfield block row in the kernel matrix.

\bullet dist(X1,X2) denotes the distance between sets X1 and X2, i.e., min
x\in X1,y\in X2

| x - 
y| .

\bullet card(X) denotes the cardinality of set X.
\bullet X\ast denotes a representor set of X.

2. Review of hierarchical matrix representations. Given a kernel function
\kappa (x, y) and a dataset X = \{ x1, . . . , xn\} , the associated kernel matrix is defined by

K = [\kappa (xi, xj)]
n
i,j=1.

Dense kernel matrices are ubiquitous and arise in various applications where the kernel
function measures the interaction between objects. In Coulombic N-body simulations,
\kappa (x, y) = 1

| x - y| . In boundary integral equations, \kappa (x, y) can take very different forms,

including \Phi (x, y), \nabla vy\Phi (x, y), where \Phi (x, y) denotes the fundamental solution of the
underlying differential operator and vy denotes the unit outer normal at y on the
boundary. In certain structured matrix computations such as those involving Cauchy
and Cauchy-like matrices, \kappa (x, y) is taken as 1

x - y with x, y \in \BbbC . In statistics and

machine learning, \kappa (x, y) is often taken as the Gaussian kernel e - | x - y| 2 or the Laplace
kernel e - | x - y| . A major computational bottleneck in these applications lies in the
O(n2) cost in storing the dense matrix K and performing operations such as matrix-
vector multiplication.
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DATA-DRIVEN HIERARCHICAL MATRIX CONSTRUCTION S27

To avoid the high cost in forming K explicitly, hierarchically low-rank matrix
representations are used to approximate K. The hierarchical representation is based
on the fact that K can be partitioned into blocks in a hierarchical fashion and many
blocks are numerically low rank. Low-rank factors are computed for the blocks and
are stored in the hierarchical representation to replace original dense blocks. Two
widely used hierarchical representations are \scrH and \scrH 2 [33, 9, 32, 31]. The \scrH matrix
representation in general has a complexity of O(n logn) in space, while \scrH 2 has the
optimal complexity of O(n). The matrix-vector multiplication can be computed in
O(n logn) complexity for \scrH matrices and in O(n) complexity for \scrH 2 matrices, which
is much more efficient than directly multiplying K by a vector.

We review the mathematical description of hierarchical matrices in subsection
2.1. Existing methods for constructing the hierarchical matrices are discussed in sub-
section 2.2.

2.1. Hierarchical matrix representations. In the following, we review the
general algebraic framework of \scrH and \scrH 2 matrices.

Given a dataset X = \{ xi\} ni=1 in \BbbR d, one builds a tree structure by recursively
partitioning X spatially until no more than m = O(1) points are contained in each
partitioned subset. The tree encodes the subsets of X generated by the adaptive
partitions. Namely, the root node is associated with X, and its children nodes are
associated with subsets of X created by the first partition. Inductively, each node
is associated with a nonempty subset of X. For node i, we denote by Xi the subset
associated with that node. Hence, Xroot =X. An illustration is given in Figure 2.1.

The tree structure automatically yields a blockwise partition of the matrix K.
See Figure 2.2 for an example with data points lying inside an interval. We define
Ki,j = [\kappa (x, y)]x\in Xi

y\in Xj

. Block Ki,j is approximated by a low-rank factorization if (i, j)

satisfies an admissiblity condition that requires Xi and Xj to be separated from each
other to some extent. For example, the pair (i, j) is considered admissible if

(2.1) diam(Xi) + diam(Xj)\leq 2\tau | ai  - aj | 

for some \tau \in [0,0.7], where ai denotes the center of the box associated with Xi in
the partition. The admissiblity condition in (2.1) is used in [46, 15]. The parameter
\tau , often called the separation ratio [46], controls how separated the two subsets are.
Smaller \tau implies better separation, and the value 0.7 can be replaced by other values
less than 1 (but not close to 1). For any admissible (i, j), the corresponding submatrix
Ki,j is called an admissible block . An admissible block is also referred to as a farfield
block. Nonadmissible blocks are referred as nearfield blocks. For a subset Xi \subset X,
the union of all Xj that are separated from Xi in the sense of (2.1) is called the
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Fig. 2.1. Adaptive partitioning of the dataset (left), label for each subset (middle), and the
associated partition tree (right).
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S28 DIFENG CAI, HUA HUANG, EDMOND CHOW, AND YUANZHE XI
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Fig. 2.2. Hierarchical matrix structure for the one-dimensional problem (left to right): tree
(only the top four levels are plotted); admissible blocks (colored) at levels 3, 4, 5, and 6; and all
admissible blocks (colored) in the kernel matrix.

farfield of Xi. Points that are not in the farfield of Xi constitute the nearfield of
Xi. In hierarchical matrices, each admissible block is approximated by a low-rank
factorization,

Ki,j \approx UiBi,jV
T
j ,

where Ui, Vj are column and row basis matrices and Bi,j is called a coupling matrix .
The maximum column size of all basis matrices Ui and Vj is the approximation rank
for K. A larger approximation rank yields a more accurate approximation. For each
node i, the interaction list of i consists of nodes j such that Xj is well separated from
Xi but, for the parent p of j, Xp is not well separated from Xi. The interaction list
specifies the blockwise partition of the matrix in which each admissible block has a
low-rank approximation. For example, in Figure 2.2, the interaction list of node 4 is
\{ 6,7\} ; the interaction list of node 10 is \{ 8,12,13\} . The number of elements in any
interaction list is bounded by the so-called sparsity constant csp, which is independent
of n. The blockwise low-rank representation yields the \scrH matrix structure, which
stores all nearfield blocks and low-rank factors Ui,Bi,j , Vj . \scrH matrices generally
admit O(n logn) storage complexity. The more refined \scrH 2 structure requires the
basis matrices to be nested . The nested bases property states that if node p has
children c1, . . . , ck, then there exist transfer matrices Rci , Wci such that

Up =

\left[   Uc1Rc1
...

UckRck

\right]   , Vp =

\left[   Vc1Wc1
...

VckWck

\right]   .

See Figure 2.3 for an illustration. The sizes of the transfer matrices are equal to r if
rank-r factorizations are used for approximations to admissible blocks. In practice,
one uses r = O(1) independent of n. Due to the nested bases property, only basis
matrices Ui, Vi associated with leaf nodes need to be stored in an\scrH 2 representation, in
addition to all transfer matrices (whose row and column sizes are O(1)) and nearfield
blocks. This results in O(n) storage cost.

Note that the above complexity estimates for storing hierarchical representations
assume that the low-rank factors have already been computed. In practice, comput-
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DATA-DRIVEN HIERARCHICAL MATRIX CONSTRUCTION S29

Fig. 2.3. Admissible block (10, 12) and nested bases.

ing these hierarchical low-rank factors is usually the most costly step, compared to
applying the hierarchical representation to a vector. Extensive research has focused
on the efficient computation of the hierarchical representation. We review several
state-of-the-art methods in subsection 2.2.

2.2. General-purpose methods. For an n-by-n kernel matrix K associated
with a general kernel function \kappa (x, y), the hierarchical matrix representation can be
computed in linear or quasi-linear time with a variety of techniques, including in-
terpolation [33, 31], adaptive cross approximation [5, 6] and its high-performance
extensions [37, 48], hybrid cross approximation [8], SMASH [15], etc. These methods
work for general kernels (for example, nonsymmetric, nontranslationally invariant).
For special kernel functions, such as fundamental solutions of certain elliptic PDEs,
analytic methods such as the FMM [42, 43, 29, 46, 19] and its variants [1, 47, 38, 20]
can be used to construct a hierarchical matrix representation efficiently. Two notable
variants, KIFMM [47] and PVFMM [38], extend the original FMM [42, 43, 29] by solv-
ing integral equations on certain surfaces to obtain blockwise low-rank approximation
instead of using an analytic expansion of the kernel function.

When constructing the hierarchical matrix with nested bases, one needs to com-
pute basis matrices Ui, Vi for submatrices KXiYi

that account for the interaction
between Xi with O(1) points and its entire farfield Yi with O(n) points (see Fig-
ure 1.1(a)). In order to achieve O(n) optimal complexity for building the hierarchical
representation, each basis matrix Ui (as well as Vi) must be computed with O(1) com-
plexity. This requires that the matrix KXiYi

, which is O(1) by O(n) in size, must not
be formed. For general kernels, a widely used technique to construct a column basis
matrix Ui in O(1) complexity is based on interpolation. For KXiYi

, interpolating the
kernel function \kappa (x, y) at r nodes Q= \{ q1, . . . , qr\} ,

\kappa (x, y)\approx 
r\sum 

i=1

\kappa (qi, y)Li(x),

yields a rank-r approximation,

(2.2) KXiYi
\approx UiKQYi

,

where Li is the Lagrange polynomial corresponding to node qi and Ui = [Lk(x)]x\in Xi
k=1:r

.

Due to its generality and efficiency in computing Ui, this interpolation method is used
in a number of general-purpose hierarchical matrix algorithms, e.g., [33, 9, 8, 15].

Another way of finding a column basis matrix forKXiYi is through subset selection
[6, 26]. The column basis matrix is chosen as the submatrix corresponding to a
judiciously chosen O(1) subset Y \ast 

i from Yi. Similar to interpolation, subset selection
can be applied to general kernel functions. The reference [6] presents an efficient
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S30 DIFENG CAI, HUA HUANG, EDMOND CHOW, AND YUANZHE XI

hierarchical scheme to select representor sets for all nodes using two steps: top-down
and bottom-up. The cost of the algorithm in [6] is dominated by computing farfield
representor sets in the top-down step. Computing representor sets for all nodes i leads
to O(n logn) complexity for a balanced tree with O(logn) levels. The total complexity
of the resulting hierarchical matrix construction is O(n logn) instead of the optimal
O(n) complexity achieved by interpolation-based methods. However, compared to
using interpolation nodes (which are generally outside the given dataset), selecting
subsets directly from the dataset is more memory efficient for low-rank approximation.
See section 6 for a detailed discussion.

3. Fast HiDR. To facilitate the fast construction of hierarchically low-rank
representations, we propose an efficient preprocessing scheme to reduce the tree-
structured data so that each node in the partition tree induces O(1) cost in the
subsequent hierarchical matrix construction process. Specifically, let Xi be the set
of points corresponding to node i and Yi be the farfield of Xi. The data reduction
aims to find representor sets X\ast 

i \subset Xi with O(1) points and Y \ast 
i \subset Yi with O(1) points

for each node i. Note that a naive data reduction for Yi with O(n) points into a
subset of evenly spaced points as shown in Figure 1.1 will lead to O(n) computational
complexity. The cost can be reduced to O(1) with a carefully designed hierarchical
procedure presented in subsection 3.1.

We present the HiDR algorithm in subsection 3.1 and verify that it scales linearly
with the size of the data in subsection 3.2. Several algorithms for performing data
reduction are discussed in subsection 3.3.

3.1. Linear complexity HiDR. The fast HiDR consists of two traversals of
the tree: bottom-up and top-down. The O(1) representor set X\ast 

i for Xi is computed
in the bottom-up pass, and the O(1) farfield representor set Y \ast 

i for Yi is computed in
the top-down pass. An illustration of HiDR for a one-dimensional dataset of quasi-
uniform points is shown in Figure 3.1, where X\ast 

i contains 2 points computed in the
bottom-up pass and Y \ast 

i contains 3 points computed in the top-down pass (each set
in blue is the farfield of Xi in orange).

A building block for the hierarchical scheme is a DataReduct subroutine that
takes the form

DataReduct(X,k)\rightarrow X\ast ,

Data reduction

Merge

Data reduction

Child node

Data reduction

Data reduction

Farfield

Farfield

Bottom-up pass Top-down pass

Fig. 3.1. HiDR for a one-dimensional dataset (that yields a perfect binary partition tree).
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DATA-DRIVEN HIERARCHICAL MATRIX CONSTRUCTION S31

where X\ast is a subset (representor set) of the input X and k is a parameter that
specifies the size of X\ast . There are several options for the subroutine DataReduct

to obtain X\ast from X. A detailed discussion is presented in subsection 3.3. Given
a set of points, the subroutine selects a subset of evenly spaced points whose size is
bounded by a prescribed constant and scales linearly with the size of the input data.
The HiDR is designed such that the input dataset for DataReduct is always O(1) in
size.

In the bottom-up sweep, starting from leaf nodes i, each Xi contains O(1) points,
and thus the data reduction from Xi to X\ast 

i induces O(1) cost only. After children
nodes have been processed, we define for each parent p an intermediate set Sp as the
union of reduced sets X\ast 

i for all its children i. The representor set X\ast 
p is obtained by

applying data reduction to the intermediate set Sp. Since each parent has at most
C children (C = 2,4,8 for binary tree, quadtree, and octree, respectively) and each
X\ast 

i is O(1) in size, the intermediate set Sp is always O(1) in size. Thus, the cost of
computing the representor set for p is always O(1). Recursively, all nonroot nodes
can be processed in O(1) complexity in the bottom-up procedure (see Figure 3.2).
Figure 3.3 shows the data reduction to generate X\ast 

i from the lowest level to upper
levels of the tree constructed in Figure 2.1, where each X\ast 

i contains 2 points.
In the top-down sweep, starting from the top nodes i in the tree with the nonempty

interaction list, we define the intermediate set Ti as the union of Yp (p denotes the
parent of i) and X\ast 

j for all nodes j in the interaction list of i. The representor set Y \ast 
i

for the farfield Yi of Xi is computed by applying data reduction to the intermediate
set Ti. Since the cardinality of the interaction list of i is bounded by the sparsity
constant csp, which is O(1), and each X\ast 

j is already O(1) in size, we see that Ti only
contains O(1) points, and consequently computing Y \ast 

i has O(1) cost. Once parent
nodes have been processed, we define the intermediate set Ti for each child i as the
union of all X\ast 

j from its interaction list and Y \ast 
p from its parent p. From this definition,

Ti is also O(1) in size. Similar to the above, the representor set Y \ast 
i is then obtained

by applying data reduction to Ti. Recursively, each reduced farfield representation Y \ast 
i

Fig. 3.2. Bottom-up pass for a general tree. Representor sets X\ast 
i are first computed for nodes

i at the deepest level and then at upper levels. Nodes with X\ast 
i computed are eliminated. The three

trees from left to right correspond to the 1st, 3rd, and 5th configurations in Figure 3.3.

Fig. 3.3. HiDR for two-dimensional nonuniform data: bottom-up pass. Each Xi is reduced
to X\ast 

i such that X\ast 
i contains at most 2 points. The 1st, 3rd, and 5th arrows correspond to the

subroutine DataReduct for the boxes at the bottom level of the tree, where points in red are output
from DataReduct. The 2nd and 4th arrows correspond to merging children boxes and going up in
the tree.
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S32 DIFENG CAI, HUA HUANG, EDMOND CHOW, AND YUANZHE XI

Fig. 3.4. HiDR for two-dimensional nonuniform data: top-down pass. For each X\ast 
i in an

orange box, the blue region contains the entire farfield, where each representor set Y \ast 
i (circled)

contains at most 4 points.

Algorithm 3.1 HiDR
Input: The adaptive partition tree \scrT for dataset X, the collection of subsets Xi for
all leaf nodes i, prescribed maximum size r1 of X\ast 

i and maximum size r2 of Y \ast 
i

Output: Reduced representations X\ast 
i and Y \ast 

i for all nodes i
1: for all i\in \scrT do
2: Y \ast 

i = \emptyset , Si = \emptyset 
3: if i is a leaf node then
4: Si =Xi

5: end if
6: end for
7: for each level (from bottom to top) do
8: for all i at this level do
9: if i is a parent then
10: Si =

\bigcup 
c\in ch(i)

X\ast 
c with ch(i) the set of children of node i

11: end if
12: X\ast 

i = DataReduct(Si,r1)
13: end for
14: end for
15: for each level (from top to bottom) do
16: for all i at this level do
17: if i has nonempty farfield then
18: Ti = Y \ast 

p

\bigcup 
X\ast 

j over all j in the interaction list of i (p denotes the parent
of i)

19: Y \ast 
i =DataReduct(Ti,r2)

20: end if
21: end for
22: end for
23: return X\ast 

i , Y
\ast 
i for all nodes i\in \scrT 

can be computed in O(1) complexity via the top-down procedure. Figure 3.4 shows
the top-down data reduction for farfield to generate Y \ast 

i (circled) as i goes from a node
near the root node to a leaf node. In Figure 3.4, each Y \ast 

i contains at most 4 points
only.

The HiDR algorithm is summarized in Algorithm 3.1. In practice, the cost of
HiDR is lower than the hierarchical low-rank compression. HiDR reduces the compu-
tational cost of the subsequent hierarchical matrix construction.

3.2. Complexity analysis. In this section, we show that Algorithm 3.1 (HiDR)
has linear complexity with respect to the number of points in X.
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DATA-DRIVEN HIERARCHICAL MATRIX CONSTRUCTION S33

Theorem 3.1. For the given dataset X that contains n points, let \scrT be a partition
tree for X, in which each leaf node corresponds to a subset of X with O(1) points and
the sparsity constant csp =O(1). Then the complexity of Algorithm 3.1 is O(n).

Proof. We first analyze the complexity in the bottom-up pass. Since for each leaf
node i, Xi contains O(1) points, the DataReduct for Xi has (1) cost. We next prove
by induction that the cost for each nonleaf node is also O(1). For a nonleaf node i,
assume that for each child c, X\ast 

c contains O(1) points. Then the intermediate set Si

in line 10 of Algorithm 3.1 contains O(1) points because i has O(1) children and X\ast 
c

contains O(1) points for each child c. Consequently, the cost of DataReduct applied
to Si is O(1). This shows that the cost to obtain X\ast 

i is also O(1). From the induction,
we conclude that the cost for each node is O(1) and that each reduced subset X\ast 

i has
O(1) points.

Now we analyze the complexity for the top-down pass. First note that each Y \ast 
i

has at most O(1) points according to the construction. Consequently, each Ti in line
18 of Algorithm 3.1 contains at most O(1) points because the interaction list of i
contains at most csp = O(1) nodes and each X\ast 

j has O(1) points. This implies that
the DataReduct of Ti to generate Y \ast 

i has O(1) complexity.
Overall, we see that for each node i, the associated total cost to compute X\ast 

i and
Y \ast 
i is O(1). Since there are O(n) nodes in the tree, the total cost for all nodes is O(n).

This completes the proof of the theorem.

3.3. Data reduction methods. In this section, we provide several algorithms
for performing data reduction. The goal is to select a subset of Xi and of Yi such
that the selected subsets preserve the geometry of Xi and Yi. For an input set X, the
subroutine takes the simple form DataReduct(X,k) \rightarrow X\ast with X\ast \subset X the selected
subset whose size is controlled by the parameter k = O(1). Note that DataReduct

only depends on the input data and is independent of any kernel function. It has been
shown in [17] that the choice of the subset is essential for the accuracy and robustness
of the low-rank approximation. According to the results in [17, 16], a subset evenly
distributed over the containing set can offer an improved approximation robustness
and accuracy over one that is not. The methods below can be used to generate such
a subset efficiently. Many of them rely on a reference set with good uniformity, such
as a uniform tensor grid. In addition to a tensor grid, it was shown recently that deep
neural networks can be used to generate distributions with good uniformity [10].

We briefly review some of the existing data reduction methods below. An empir-
ical comparison of these methods for the low-rank approximation of kernel matrices
is presented in subsection 5.2.

Farthest point sampling. Given X and a target size k for the reduced subset S of
X, farthest point sampling (FPS) constructs S in a sequential manner. S is initialized
with 1 point only. Then FPS searches for a point in X\setminus S that is farthest from S and
adds the point to S. This procedure is repeated until S reaches size k. FPS generates
evenly distributed subsets and has been widely used in computational geometry [25,
41, 44]. FPS was recently proposed for computing low-rank approximations [16].

Volume-based data reduction. Volume based data reductions choose a subset S
of X via a reference grid Q with O(1) points inside the computational domain. For
example, Q can be chosen as a tensor grid (cf. [6]) inside the rectangular domain that
encloses the data. S is chosen to be the collection of points in X that are closest to
each point in Q.

Surface-based data reduction. Following the same idea as the volume-based
method, we can also use a reference set Q based on surfaces constructed from the
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S34 DIFENG CAI, HUA HUANG, EDMOND CHOW, AND YUANZHE XI

given data X. In the surface-based method, we define Q as the union of points dis-
tributed on surfaces near the boundary of the computational domain. For example,
we can construct ellipsoids centered at the center of a rectangular domain that en-
closes X. The principal semiaxes of the ellipsoids are chosen to be equal to \gamma times the
width of the rectangular domain in each dimension, where \gamma > 0 is a hyperparameter.
In subsection 5.2, we use three ellipsoids with \gamma = 0.3,0.6,1.2.

Anchor net method. The anchor net method [17] is a newly proposed subset
selection method based on approximating the geometry of the given dataset with low-
discrepancy subsets. It constructs a set of points with low discrepancy (termed anchor
points) via a two-level scheme over the given data and then selects a subset of the given
data close to the anchor points. For low-rank approximation, the construction helps
avoid numerical instability encountered in random sampling or k-means clustering
when the kernel matrix has rapidly decaying singular values (cf. [17]). The anchor
net method is shown to achieve a good time-accuracy trade-off in practice and is
particularly efficient for high-dimensional data (cf. [17, 16]).

4. Data-driven hierarchical matrix construction. In this section, we first
show how to extract a low-rank factorization instantly for an admissible block after
the prepossessing procedure HiDR in subsection 4.1 and then present an algorithm
with O(n) complexity (Algorithm 4.1) for constructing an \scrH 2 matrix representation
in subsection 4.2. We analyze the computational complexity of Algorithm 4.1 in
subsection 4.3. The proposed method enjoys the following features:

(a) black-box general-purpose (kernel-independent) construction of the hierarchi-
cal low-rank format;

(b) optimal O(n) complexity, where n is the number of points in the given dataset;
(c) better efficiency for data from complex geometry compared to general-purpose

approaches as well as specialized kernel-dependent techniques.

4.1. Approximating the entire farfield \bfitK \bfitX \bfiti \bfitY \bfiti 
. In this section, we show

how to derive a low-rank approximation for the entire farfield KXiYi
based on the

representor sets X\ast 
i , Y

\ast 
i returned by Algorithm 3.1.

When computing an approximate column basis for KXiYi , Xi contains O(1)
points, and its entire farfield Yi contains O(n) points for the leaf node i (see Fig-
ure 1.1). In order for the entire algorithm to have linear complexity, the column basis
matrix of KXiYi

must be computed in O(1) complexity.
We first apply strong rank-revealing QR factorization [30] to the submatrixKXiY \ast 

i
,

(4.1) KXiY \ast 
i
= P

\biggl[ 
I
G

\biggr] 
K \^XiY \ast 

i
,

where P is a permutation matrix, | | G| | max is bounded by a prescribed constant, and
\^Xi is a subset of Xi with O(1) points. Then the column basis matrix is chosen as
Ui = P [I;GT ]T , and the low-rank approximation for the entire farfield reads

(4.2) KXiYi \approx P

\biggl[ 
I
G

\biggr] 
K \^XiYi

.

For notational convenience, we denote the procedure in (4.1)--(4.2) for computing
an approximate column basis for KXiYi

by

(4.3) getBasis(KXiYi
) = (Ui, \^Xi),
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DATA-DRIVEN HIERARCHICAL MATRIX CONSTRUCTION S35

Algorithm 4.1 Data-driven HiDR-based \scrH 2 matrix construction
Input: Dataset X, kernel function \kappa (x, y), approximation tolerance \epsilon , separation
ratio \tau , maximum number of points q for a leaf node
Output: \scrH 2 matrix representation
1: Apply adaptive partitioning to X to generate the partition tree \scrT with at most

q points for each leaf node and obtain subsets Xi for all leaf nodes i
2: Determine approximation parameters r1, r2 from \epsilon 
3: Apply HiDR in Algorithm 3.1 with approximation parameters r1, r2 to obtain

O(1) representor sets X\ast 
i and Y \ast 

i for all nodes i\in \scrT 
4: for all i\in \scrT do

5: Define \=X
(row)
i = \=X

(col)
i = \emptyset 

6: if i is a leaf node then

7: define \=X
(row)
i = \=X

(col)
i =Xi

8: end if
9: end for
10: for all nonroot i\in \scrT from bottom level to top level do

11: Apply getBasis(K \=X
(\mathrm{r}\mathrm{o}\mathrm{w})
i Y \ast 

i
) to obtain Ui, \^X

(row)
i and getBasis(KT

Y \ast 
i

\=X
(\mathrm{c}\mathrm{o}\mathrm{l})
i

) to

obtain Vi, \^X
(col)
i

12: Update \=X
(row)
p = \=X

(row)
p \cup \^X

(row)
i and \=X

(col)
p = \=X

(col)
p \cup \^X

(col)
i , where p is the

parent of i
13: end for
14: Define the \scrH 2 column and row basis matrices: U = \{ Ui\} leaf i, V = \{ Vi\} leaf i,

transfer matrices R= \{ Ri\} ,W = \{ Wi\} :\left[   Rc1
...

Rck

\right]   =Ui,

\left[   Wc1
...

Wck

\right]   = Vi if i has children c1, . . . , ck,

coupling matrices B = \{ Bi,j\} :

Bi,j =

\Biggl\{ 
K \^X

(\mathrm{r}\mathrm{o}\mathrm{w})
i

\^X
(\mathrm{c}\mathrm{o}\mathrm{l})
j

if (i, j) is admissible,

KXiXj otherwise.

15: return \scrH 2 representation: U,V,R,W,B

where Ui := P [I;GT ]T is the computed column basis and \^Xi \subset Xi. Note that the
kernel matrix KXiYi

is never formed because the input of ``getBasis"" is the kernel
function and the subsets Xi, Y

\ast 
i .

The cost to obtain Ui and \^Xi from (4.3) is O(1), as the matrix KXiY \ast 
i
is O(1) by

O(1). Also notice that

(4.4) card( \^Xi)\leq rank(KXiY \ast 
i
)\leq card(Y \ast 

i ) =O(1).

Thus, \^Xi always contains O(1) points.
As we shall see in section 6, the column basis Ui derived from KXiY \ast 

i
can yield

better accuracy than analytic methods, such as interpolation.
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S36 DIFENG CAI, HUA HUANG, EDMOND CHOW, AND YUANZHE XI

4.2. Computing hierarchical matrices with nested bases using HiDR.
Hierarchical matrices with nested bases, e.g.,\scrH 2 matrices, can offer optimalO(n) com-
plexity in time and space when approximating an n-by-n kernel matrix. A black-box
hierarchical matrix construction proposed in [15] works for general kernel functions
and allows for arbitrary low-rank compression techniques. In this section, we show
that the HiDR can be incorporated naturally into the construction of \scrH 2 matrix rep-
resentations via the general framework proposed in SMASH [15]. SMASH employs
a bottom-up procedure that recursively applies rank-revealing factorization to the
initial basis matrix (with O(1) entries) for each node in the tree. In [15], the initial
basis matrices are constructed via either interpolation or analytic expansion of the
kernel function. In this section, we leverage representor sets produced by HiDR in
Algorithm 3.1 to construct the initial basis matrices.

The full data-driven construction is presented in Algorithm 4.1. The algorithm
automatically determines the approximation parameters r1, r2 for HiDR in Algorithm
3.1 according to the approximation tolerance \epsilon prescribed by the user. The idea
here is to apply the low-rank approximation in (4.2) to the artificial kernel matrix
KZ1Z2

, where Z1,Z2 \subset \BbbR d are well-separated subsets (in the sense of (2.1)) of O(1)
random points. The parameters r1, r2 are chosen adaptively by increasing from r1 =
r2 = 1 to a point such that the approximation error to KZ1Z2 is smaller than 10 - 2\epsilon .
More sophisticated techniques, like a posteriori error estimation (cf. [12, 13, 14, 11]),
can also be studied to estimate the approximation error. After the parameters are
determined, Algorithm 3.1 first applies HiDR to X associated with tree \scrT to obtain
representor sets. Then the hierarchical matrix representation can be computed rapidly
by following the SMASH \scrH 2 construction and using KXiY \ast 

i
as the initial basis matrix

for each leaf node i.
We perform numerical experiments in section 6 to demonstrate that the new data-

driven method improves the matrix approximation accuracy of the interpolation-based
SMASH algorithm [15]. Moreover, the cost of HiDR is smaller than the subsequent
hierarchical matrix compression.

4.3. Complexity analysis.
Theorem 4.1. For the given dataset X with n points, let \scrT be a partition tree

for X, in which each leaf node corresponds to a subset of X with O(1) points and the
sparsity constant csp =O(1). Then the complexity of Algorithm 4.1 is O(n).

Proof. Algorithm 4.1 follows the \scrH 2 construction in SMASH [15] with an addi-
tional HiDR in line 3. According to Theorem 3.1, HiDR has O(n) complexity. Thus,
to prove the O(n) complexity of Algorithm 4.1, it suffices to show that the cost per
node is O(1) in lines 11--12.

We first show that \=X
(row)
i and \=X

(col)
i contain at most O(1) points. If i is a leaf

node, then according to the definition in line 7, \=X
(row)
i = \=X

(col)
i = Xi contain O(1)

points. If i is a parent node, then after all children of i have been updated, \=X
(row)
i

and \=X
(col)
i can be written as

\=X
(row)
i =

\bigcup 
c is a child of i

\^X(row)
c , \=X

(col)
i =

\bigcup 
c is a child of i

\^X(col)
c .

Since the number of children for every node is bounded from above by a constant and
every subset \^Xc contains O(1) points according to (4.4), we see that \=X

(row)
i and \=X

(col)
i

contain O(1) points. This implies that the complexity in line 12 is at most O(1) for
all i.
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DATA-DRIVEN HIERARCHICAL MATRIX CONSTRUCTION S37

Next we analyze the complexity in line 11. Since Y \ast 
i contains O(1) points only,

it follows that in line 11, the input matrices K \=X
(\mathrm{r}\mathrm{o}\mathrm{w})
i Y \ast 

i
and KT

Y \ast 
i

\=X
(\mathrm{c}\mathrm{o}\mathrm{l})
i

have O(1) rows

and columns. Consequently, performing ``getBasis"" in line 11 only takes O(1) time.
Now we conclude that the total complexity in lines 11--12 is O(1). Therefore, the

total complexity for Algorithm 4.1 is O(n).

5. Data reduction and low-rank approximation. In this section, we in-
vestigate different data reduction techniques for low-rank approximation. Subsec-
tion 5.1 presents an example to reveal a drawback of methods that rely on points
outside the given dataset (such as interpolation nodes or random points) for com-
puting the low-rank approximation to kernel matrices. In subsection 5.2, we com-
pare the performance of the data reduction methods of subsection 3.3 for low-rank
approximation.

5.1. Drawback of using points outside the given data for irregular
datasets. Interpolation nodes, random points, or, in general, points outside the given
dataset are commonly used in low-rank approximation to obtain an approximate col-
umn basis efficiently without forming the original kernel matrix. Since these points
are created artificially (not part of the given data), we call these points virtual points.
For given data X and Y , virtual points are constructed in rectangular domains \Omega X

and \Omega Y that cover X and Y , respectively, and the kernel matrix associated with these
virtual points is used to compute the low-rank approximation.

One issue of of using virtual points is that it may lead to an incorrect approxima-
tion to the kernel matrix. This is because the virtual points lie outside the original
data, and the kernel matrix involving these virtual points may have a very different
spectrum from that of the kernel matrix to be approximated. Thus, methods using
virtual points may not be robust for approximating general low-rank kernel matrices.
To illustrate the issue, we use the ``nJ"" dataset as illustrated in Figure 5.1(a), where
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(c) Dataset X, Y
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Fig. 5.1. Dataset X,Y and different types of ``virtual points"" within \Omega X and \Omega Y .
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0 50 100 150
10-15

10-10

10-5

100

105

Fig. 5.2. Distinct singular value patterns for kernel matrices with original data X \times Y and
virtual points Xi \times Yi (i= 1,2) of Figure 5.1: singular values of KXY (120 by 150), KX1Y1

(2000
by 2000), and KX2Y2 (100 by 100). For KX1Y1 , the largest 150 singular values are plotted.

X contains 120 points in \Omega X = [ - 2.5,2.5] \times [0,3.75] and Y contains 150 points in
\Omega Y = [0,5.13]\times [16.25,23.84]. We consider the smooth kernel function

\kappa (x, y) =
\sqrt{} 
1 + 100| x - y+ a| 2

with a= [0,20]T . The same issue also arises for other kernels, such as Gaussians. The
corresponding kernel matrix KXY (120 by 150) has rapidly decaying singular values
as shown in Figure 5.2 (dashed line). Consequently, KXY can be approximated very
well by a low-rank matrix.

Now consider KX1Y1
, with X1 being 2000 random points selected in \Omega X and

Y1 being 2000 random points selected in \Omega Y . The singular values of KX1Y1
are

an approximation to the continuous singular values of the problem in (5.1). The
computed singular values of KX1Y1

are also plotted in Figure 5.2. It can be seen that
the singular values of KX1Y1 do not decay rapidly, compared to KXY .

Now consider KX2Y2 , where X2 and Y2 are 10\times 10 Chebyshev points in \Omega X and
\Omega Y , respectively. Like KX1Y1

, this matrix does not have singular values that decay
as rapidly as those of KXY , and therefore an algebraic compression of KX2Y2

will not
be an effective approximation for KXY .

Mathematical explanation. Employing a continuous treatment of the matrix ap-
proximation problem ignores the geometry of the discrete dataset. This can be prob-
lematic in general, as the continuous problem may have entirely different spectral
properties compared to the matrix. It is even possible that the kernel function is
undefined at virtual points. For the model problem in Figure 5.1, the matrix KX1Y1

with virtual points X1, Y1 is related to the following integral operator:

(5.1) T :L2(\Omega X) :\rightarrow L2(\Omega Y ), (Tf)(x) :=

\int 
\Omega X

\kappa (x, y)f(y)dy.

The singular values ofKX1Y1
(withX1 and Y1 chosen as described above) approximate

the singular values (up to a scaling constant) of the integral operator [3, 36, 45, 40, 2,
18]. These singular values do not decay rapidly like those of KXY . In essence, we see
that virtual point methods treat the matrix approximation as a continuous problem
and thus ignore the geometry of the discrete data. When the continuous problem
differs substantially from the original discrete problem (kernel matrix approximation),
the performance of methods that utilize virtual points can be very unsatisfactory.
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DATA-DRIVEN HIERARCHICAL MATRIX CONSTRUCTION S39

Fig. 5.3. Subsection 5.2 dataset: X and Y well separated.

5.2. Comparison of data reduction methods. In this section, we perform
experiments to compare the performance of the four data reduction methods in subsec-
tion 3.3: farthest point sampling (`FPS'), volume-based reduction (`Volume'), surface-
based reduction (`Surface'), and anchor net method (`AnchorNet'). These methods
operate on the dataset and do not require any kernel function.

Experiment setup. We consider low-rank approximation to the kernel matrix
KXY , where X (198 points) and Y (1577 points) are well-separated subsets from
a dinosaur manifold as shown in Figure 5.3. The diameter of X is 58.21, and the
distance between X and Y is 21.275. We test three different kernel matrices KXY

corresponding to the kernel functions below:

1

| x - y| 
, e - 

| x - y| 2
900 , | x - y| 11.

To obtain the low-rank approximation, we first perform data reduction for Y and
then build the factorization as described in subsection 4.1 using (4.1) and (4.2). The
low-rank approximation error is measured by the relative matrix approximation error
in the 2-norm.

The error plots for three different kernels are shown in Figure 5.4. For each
plot, the horizontal axis denotes the number of points selected by the data reduction
method, namely, the size of the subset Y \ast \subset Y . Each curve shows how the low-rank
approximation error for a specific data reduction method decays as we increase the
size of Y \ast . We see that `Volume' and `AnchorNet' offer the best performance and
are almost indistinguishable from each other in performance across all three kernels.
`Surface' achieves similar performance for the first two kernels but is slightly worse
than `Volume' and `AnchorNet' for the third kernel. The farthest point sampling
`FPS' performs well but is not as accurate as the other three methods for the same
number of selected points for all kernels tested.

6. Numerical experiments. We present a series of numerical experiments in
this section to illustrate the performance of the proposed data-driven construction in
Algorithm 4.1. The code for the algorithm is available on GitHub.1 The performance
of the proposed data-driven hierarchical matrix construction is shown in subsection
6.1, inlcuding linear scaling, generality for various kinds of kernels, and the efficiency
of HiDR for varying kernel parameters. Comparison to the state-of-the-art special-

1https://github.com/scalable-matrix/H2Pack/tree/sample pt opt.
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Fig. 5.4. Comparison of data reduction methods for low-rank approximation to KXY with
dataset X \times Y in Figure 5.3 and different kernels k(x, y) on top of each plot.

purpose methods for the Coulomb kernel is presented in subsection 6.2. Comparison
to the widely used general-purpose method (interpolation) for various kernels is pre-
sented in subsection 6.3. For the data-driven hierarchical construction, volume-based
data reduction is used. For experiments in subsections 6.1 and 6.2, we use one com-
pute node on the Georgia Tech PACE-Hive cluster. This node has two sockets and
192GB of DDR4 memory. Each socket has an Intel Xeon Gold 6226 12-core processor.

The approximation error is measured by the relative matrix-vector product error,
| | Kz - \~Kz| | 

| | z| | , where \~K denotes the hierarchical approximation to the kernel matrix K

and z is a standard normal random vector. | | \cdot | | denotes the 2-norm.

6.1. Data-driven construction: Scaling, generality, and once-for-all
HiDR. This section has three objectives: (1) test the complexity of the proposed
data-driven approach in subsection 6.1.1, including the HiDR and the resulting hier-
archical matrix construction; (2) illustrate the generality of the data-driven approach
by testing different kernels in subsection 6.1.2; and (3) apply HiDR once and use
the representor sets to construct hierarchical matrices for various types of kernels,
including Gaussian kernels with different bandwidths in subsection 6.1.3.

6.1.1. Scaling test for different datasets.
Datasets. Three datasets are used: cube, 3-sphere, and Dino. The cube dataset

contains random samples from the uniform distribution in the unit cube [0,1]3. The
Dino dataset is used in [15] and is illustrated in Figure 6.1. It consists of points dis-
tributed on a dinosaur-shaped surface in three dimensions. The 3-sphere dataset (see
Figure 6.1) consists of random points distributed on the surface of three intersecting
unit spheres whose centers form an equilateral triangle with side length close to 1.
Roughly the same number of points is sampled from each sphere. Let n denote the
number of points in the dataset. For the first three synthetic datasets, we test for n

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

8/
23

 to
 1

70
.1

40
.1

42
.2

52
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



DATA-DRIVEN HIERARCHICAL MATRIX CONSTRUCTION S41

Fig. 6.1. 3-sphere (left) and Dino (right) datasets.

from 105 to 1.6\times 107. For the Dino dataset, since the size of the original data is fixed,
we sample n points randomly and vary n from 104 to 1.5\times 105.

The kernel function is chosen to be the Coulomb kernel 1
| x - y| , and the approxi-

mation error is 10 - 6 for each test. Figure 6.2 shows the timings for hierarchical data
reduction (HiDR), \scrH 2 matrix construction (build), and the resulting matrix-vector
multiplication (matvec) with respect to n, respectively. All timings scale linearly with
n, and the hierarchical data reduction (HiDR) has a much lower cost than the sub-
sequent hierarchical matrix construction (build). The low cost of data reduction and
the kernel independence make the data-driven approach suitable for the case when
the kernel matrix changes frequently due to changes in the data or kernel function.

6.1.2. Scaling test for different kernels. In this section, we test the proposed
data-driven algorithm for the kernel functions in Table 6.1. We show that the general
data-driven algorithm is scalable for different types of kernel functions for the same
approximation accuracy. The 3-sphere dataset is used.

For each kernel function, we measure the time cost of the proposed algorithm as
the size of data n increases. The three types of costs---HiDR, hierarchical
matrix construction, and matrix-vector multiplication---correspond to the three plots
in Figure 6.3.

In Figure 6.3, each plot shows the timing for all four kernels. The relative error
for each case is 10 - 6. It is easily seen from Figure 6.3 that each cost scales linearly
with data size n. The algorithm is able to maintain accuracy for different types of
kernel functions.
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Fig. 6.2. Subsection 6.1.1 experiment: timings of HiDR, \scrH 2 build, and matvec for n-by-n
Coulomb kernel matrices with three datasets in \BbbR 3.

Table 6.1
Kernel functions used in the experiments in subsection 6.1. Here \kappa 1(x,x) = 0.

\kappa 1(x, y) \kappa 2(x, y) \kappa 3(x, y) \kappa 4(x, y)

1
| x - y| exp( - | x - y| 2) cos(x \cdot y) exp

\Bigl( 
 - 1

1 - 0.1| x - y| 2

\Bigr) 

6.1.3. HiDR once for all. In this experiment---called ``HiDR once for all""---we
perform HiDR on the dataset to obtain representor sets and then use the representor
sets to construct a hierarchical matrix representation for the different kernel functions
in Table 6.1 and Gaussian kernels with different bandwidths. The key here is that, for
a fixed compression level, HiDR is only performed once and that the same representor
sets are used for all kernels.

Figure 6.4 shows the approximation error of the hierarchical matrix with respect
to the average size of farfield representor sets Y \ast 

i . Different error curves correspond to
approximations to different kernels. We see that by increasing the size of the farfield
representor sets, the matrix approximation error is reduced effectively for all kinds of
kernel functions. Since HiDR is only applied once, the precomputation cost is almost
negligible when amortized over multiple kernels. The accuracy as seen from Figure 6.4
justifies the data-driven construction with the efficient kernel-independent HiDR. We
see that the data-driven approach is particularly useful when hierarchical matrices for
different kernel functions or kernel parameters need to be computed.

In applications like Gaussian processes, the bandwidth parameter for the Gauss-
ian kernel is unknown and is determined by an iterative algorithm. Therefore, the
bandwidth changes constantly, thus the kernel function. This makes existing hierar-
chical matrix constructions inefficient because the entire hierarchical algorithm needs
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Fig. 6.3. Subsection 6.1.2 scaling test for kernels in Table 6.1: CPU time for HiDR (left),
hierarchical matrix construction (middle), and matrix-vector multiplication (right).

to be run from scratch every time the bandwidth changes. The proposed data-driven
approach, however, performs data reduction only once, and no matter what the band-
width is, the hierarchical matrix representation can be constructed rapidly based on
the computed representor sets. It can be seen from Figure 6.4 (right) that for a wide
range of bandwidth values, the approximation error decays effectively as more points
are used in the representor sets. The nearly zero approximation error for the band-
width L = 0.01 is due to the fact that the admissible block is almost a zero matrix,
as exp( - | x - y| 2/0.012)\approx 0 when x and y are away from each other.

Overall, it can be seen from the experiments that the data-driven approach serves
as a black-box tool for rapidly computing hierarchical matrices for general kernel
functions. It is especially efficient in the situation when multiple kernel functions
need to be approximated.

6.2. Comparison to special-purpose methods for the Coulomb kernel.
In this section, we compare the new general-purpose data-driven (DD) construction
to several optimized packages for the Coulomb kernel \kappa (x, y) = 1

| x - y| , for example,

FMM3D2 [22], PVFMM [38], and proxy surface method (cf. [39, 21, 28]) implemented
in H2Pack [35]. These methods are specialized for the Coulomb kernel to offer bet-
ter efficiency in practice than the interpolation-based methods for constructing \scrH 2

matrices.
DD, FMM3D, PVFMM, and H2Pack are compiled using an Intel C/C++/Fortran

compiler v19.0.5 with optimization flags ``-xHost -O3."" The Intel MKL 19.0.5 is used
in all tested libraries to perform general matrix-vector and matrix-matrix multiplica-
tions. DD, H2Pack, and FMM3D use one thread per CPU core and 24 cores on one

2https://fmm3d.readthedocs.io/en/latest.
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Fig. 6.4. Subsection 6.1.3: perform HiDR only once to obtain representor sets and then use
them to construct hierarchical matrices for multiple kernels. Matrix approximation error vs. average
size of farfield representor sets Y \ast 

i . Left: kernels in Table 6.1. Right: Gaussian kernel exp( - | x - 
y| 2/L2) with different bandwidth L= 10k with k= - 2, - 1,0,1,2.

computing node. PVFMM uses MVAPICH2 2.3.2 as the MPI back end and uses one
MPI process with 24 cores on one computing node.

We use the same datasets as in subsection 6.1. For every method, the total time
is computed as

total time = precomputation + \scrH 2 construction + matrix-vector multiplication.

FMM3D and the proxy surface method do not have precomputation, while PVFMM
and DD require precomputation. For DD, the precomputation refers to HiDR.

Timings for precomputation, hierarchical build, and matvec are shown in Fig-
ure 6.5, Figure 6.6, and Figure 6.7, respectively. The total time is shown in Figure 6.8.
The relative error (in 2-norm) for each test is 10 - 6.

From Figure 6.5, we see that the proposed HiDR requires significantly lower pre-
computation cost compared to PVFMM. This is due to the fact that the kernel matrix
is never accessed in HiDR and no algebraic compression is computed. Moreover, we
see from Figure 6.5 that the advantage of the data-driven method becomes more ob-
vious for irregular data from a manifold, such as 3-sphere and Dino. It can be seen
that PVFMM has almost constant cost independent of the size of the dataset n. This
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Fig. 6.5. Subsection 6.2 experiment: precomputation time of PVFMM and DD for approximat-
ing n-by-n Coulomb kernel matrices with the cube, 3-sphere, and Dino datasets.
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Fig. 6.6. Subsection 6.2: Hierarchical construction time (after precomputation) of FMM3D,
PVFMM, proxy surface, and DD for approximating n-by-n Coulomb kernel matrices with the cube,
3-sphere, and Dino datasets.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

8/
23

 to
 1

70
.1

40
.1

42
.2

52
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



S46 DIFENG CAI, HUA HUANG, EDMOND CHOW, AND YUANZHE XI

105 106

number of points n

10-3

10-2

10-1

100

101
m

at
rix

-v
ec

to
r 

m
ul

tip
lic

at
io

n 
tim

e(
s)

Cube

FMM3D
PVFMM
Proxy Surface
DD
O(n)

105 106

number of points n

10-3

10-2

10-1

100

101

m
at

rix
-v

ec
to

r 
m

ul
tip

lic
at

io
n 

tim
e(

s)

3-sphere

FMM3D
PVFMM
Proxy Surface
DD
O(n)

104 105

number of points n

10-4

10-3

10-2

10-1

100

m
at

rix
-v

ec
to

r 
m

ul
tip

lic
at

io
n 

tim
e(

s)

Dino

FMM3D
PVFMM
Proxy Surface
DD
O(n)

Fig. 6.7. Subsection 6.2: matrix-vector multiplication time of FMM3D, PVFMM, proxy sur-
face, and DD for approximating n-by-n Coulomb kernel matrices with the cube, 3-sphere, and Dino
datasets.
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Fig. 6.8. Subsection 6.2: total construction time of FMM3D, PVFMM, proxy surface, and DD
for approximating n-by-n Coulomb kernel matrices with the cube, 3-sphere, and Dino datasets.
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is because PVFMM, based on KIFMM, treats matrix compression as a continuous
problem and the precomputation involves solving ill-posed integral equations to com-
pute ``equivalent density points"" in order to facilitate the farfield compression. The
integral equations are imposed on the surface that surrounds the data, and thus the
same integral equation will be used as long as the bounding surface remains the same
regardless of the data distribution. For this reason, the resulting matrix compression
may not reflect the potentially varying property of the kernel matrix for different data
distributions, and as pointed out in [47], ``in practice the cutoff number of equivalent
density points in which the compression is effective, is very large."" On the contrary,
HiDR is entirely based on processing the data without solving any equation or per-
forming any matrix compression, thus leading to a much smaller precomputation cost
than PVFMM or related methods. Moreover, the ``equivalent density"" approach in
KIFMM and PVFMM is not applicable to general kernel functions (such as sigmoid
kernel, Gaussian kernel, exponential kernel, polynomial kernel, etc.) that are un-
related to fundamental solutions of classical constant-coefficient elliptic PDEs. As
mentioned above, the HiDR-based approach is entirely data-driven and thus applica-
ble to general kernel functions.

From Figure 6.6, we see that FMM3D outperforms other methods in hierarchical
construction. This is because, unlike other methods, FMM3D does not compute
and store a hierarchical matrix representation. Instead, it computes the hierarchical
representation when performing matrix-vector multiplication. The other methods
have similar performance, where no single method performs significantly better than
others across all datasets. It should be noted that, for methods with precomputation,
the hierarchical construction time can be further reduced at the expense of more
precomputation time. In principle, more time spent in precomputation could yield
faster hierarchical construction.

For matvec, Figure 6.7 shows that the data-driven method and proxy surface
method achieve similar performance that is in general better than FMM3D and
PVFMM. FMM3D is significantly slower than other methods due to the on-the-fly
hierarchical construction. For data sampled from a manifold, PVFMM is outper-
formed by DD and proxy surface. The results in Figure 6.7 justify the efficiency of
the hierarchical matrix representation built from the fast HiDR in Figure 6.5.

For the total computation time, as can be seen from Figure 6.8, we see that the
proxy surface method provides the best performance overall, followed by DD. The
advantage of DD is more evident for data from a manifold, e.g., 3-sphere and Dino.
In general, we see that the data-driven method leads to a lot more computational
savings when data are sampled from a low-dimensional manifold.

It should be emphasized that the proxy surface method is a specialized method
optimized for the Coulomb kernel to offer superior efficiency, while DD is a general-
purpose approach that can be applied to a variety of kernel functions (cf. Table 6.1).
Unlike the special-purpose methods, no analytic property of the kernel function is
used in the data-driven hierarchical construction. It is nonetheless possible to de-
sign specialized data-driven algorithms for the kernel function of interest to improve
efficiency. Overall, we conclude from the results in Figure 6.8 that the data-driven
method, as a black-box tool for hierarchical matrix computations, also offers excellent
efficiency for special kernels without utilizing any specific property of the kernel.

6.3. Memory efficiency. In this section, we illustrate the memory efficiency of
the proposed data-driven approach by comparing it to interpolation-based hierarchi-
cal matrix construction. We test the two general-purpose methods for the different
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Fig. 6.9. Subsection 6.3 experiment: error vs. memory use of interpolation-based and data-
driven constructions for approximating the four kernel matrices (Table 6.1) with the 3-sphere dataset.

kernel functions listed in Table 6.1. The 3-sphere dataset is used with n = 20000
points.

In Figure 6.9, we plot the approximation error vs. the memory use for each
method and each kernel function. The memory use is measured by the cost for
storing the hierarchical representation derived by the respective method. The high
memory use of interpolation-based construction is clearly seen from the plots. In three
dimensions, the number of interpolation nodes is k3 if k interpolation nodes are used
in each dimension. This number may exceed the size of the admissible block to be
approximated. We found that, in practice, to achieve moderate to high approximation
accuracy, a large number of interpolation nodes is needed. The proposed data-driven
method, on the other hand, significantly reduces the memory needed to achieve a
certain approximation accuracy. Equivalently, we can also conclude that, for the
same approximation rank and memory requirement, the data-driven method is able
to provide a much more accurate hierarchical representation than the one derived from
interpolation. For large-scale data, the memory efficiency of data-driven construction
would be even more prominent.

7. Conclusion. We proposed general-purpose data-driven hierarchical matrix
construction accelerated by a novel HiDR. The algorithm first computes a reduced
data representation following the tree structure and then performs the hierarchical
low-rank compression. Different from all existing methods, HiDR entirely operates on
the given dataset, without accessing the kernel function or kernel matrix. The com-
plexity of the whole data-driven construction is linear with respect to the data size.
Compared to general-purpose methods such as interpolation, the new data-driven
framework requires less memory for the same matrix approximation accuracy. For
special kernels like the Coulomb kernel, the general data-driven method, as a black-
box approach, demonstrates competitive performance when compared to specialized
methods optimized for the Coulomb kernel. The data-driven approach yields low
computational cost and is particularly efficient for data sampled from low-dimensional
manifolds. Future work includes extending the data-driven framework to the efficient
construction of hierarchical matrices for high-dimensional data in machine learning
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applications. One appealing feature is that, when constructing hierarchical matrices
for different kernel functions associated with the same dataset, HiDR only needs to be
performed once, which significantly reduces the total computational cost. Addition-
ally, the data-driven procedure can be optimized toward the special kernel function
under consideration. In the current presentation, we focus on providing a general ap-
proach that could be useful for a general-purpose library for accelerating kernel ma-
trix computations with hierarchical matrix representations. Possible improvements
for special kernel functions will be investigated at a future date.
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