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ABSTRACT

Finger biometrics are widely used by smartphones as a secure and
user-friendly credential for privacy protection. However, this in-
formation is difficult to measure without high-resolution images,
leaving most works to treat this as an image-domain problem. We
demonstrate that low-effort alternatives on smartphones are possi-
ble through the use of sound propagation in ubiquitous smartphone
cases. Inexpensive and widely adopted, smartphone cases are al-
ways in contact with fingers, making them ideal for collecting finger
biometrics. We thus design BioCase, an acoustic sensing system that
leverages smartphone cases equipped with mini-structures to cap-
ture unique biometric-hybrid signatures (i.e., reflections influenced
by the user’s fingertip physiology and behavior) for smartphone
privacy protection. The system generates inaudible structure-borne
sound and measure the propagation through the smartphone case,
mini-structures, and user finger. The design of the mini-structure
controls the behavior of structure-borne sound such that unique
responses are produced when different users and fingers touch the
smartphone case. This enables low-cost, low-effort privacy protec-
tion, merely touching the smartphone case can authenticate users.
Comprehensive experiments with 46 users over 10 weeks demon-
strate BioCase can differentiate users with over 94% accuracy at a
5% false positive rate.
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Privacy Protection on Smartphones Via
Passive Finger Biometric-Hybrid Sensing
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phone cases before displaying alerts.
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1 INTRODUCTION

Smartphones have become invaluable tools for daily work and recre-
ation. However, they are also high-priority targets for attackers due
to the sensitive data they carry. Information such as text messages,
work contacts, social media, photos, and health app records are
all concentrated on a single device that is prone to theft or snoop-
ing. User authentication is often used to secure sensitive content.
Knowledge-based methods (e.g., password, PIN) are low-cost but
require cognitive and physical effort (i.e., memorization, typing
long strings). Biometric-based authentication lowers this burden by
measuring user physiology, such as face or voices. However, this
creates dependency on specialized sensors. This motivates two of
our goals: (1) low-effort biometric-based privacy protection usable
anytime and anywhere while (2) lifting the authentication burden
from specialized senors.

We observed that smartphone owners often use protective cases
for their devices [15, 18]. These cases are highly diverse in shape,
material, elasticity, and other attributes that can modify the struc-
tural characteristics of the smartphone. They may also contain holes
or hollow chambers for shock absorption, creating mini-structures
in the greater smartphone body. This is particularly interesting
when measuring structure-borne sound. When griping the phone,
the user’s fingers naturally touch the back surface, influencing the
propagation behavior of structure-borne sound due to the combined
medium of the fingers, smartphone, and case. Properties such as
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finger and mini-structure shape strongly affect acoustic signals in
the form of propagation speed, acoustic diffraction, and signal at-
tenuation. Well designed mini-structures can even alter oscillation
of acoustic frequencies, resulting in amplified frequency responses.
Such responses manifest as resonant frequency and are commonly
observed in musical instruments. In this work, we propose to lever-
age this phenomenon to recognize smartphone users by their finger
touches.

The majority of finger sensing works favor image domain ap-
proaches, which require high quality scans and cameras [10, 22, 36].
Unfortunately, finger scans can be stolen or presented without
consent [40, 44]. Scanning only works at a single pre-determined
sensor location, which can be obstructed by dirt or sweat. We envi-
sion an alternative where users are free to touch anywhere on the
smartphone in order to authenticate themselves and control their
private data (e.g., hide/display message previews, incoming phone
calls).

A few prior works have explored using acoustic sensing for rec-
ognizing users, including face scans [45], breathing patterns [4],
and lip movements [24]. These works require high-effort posing,
gestures, or speech utterances. Recently, several pioneering works
have tried to capture palm biometrics on smartphones [12, 42]. How-
ever, palm biometrics are increasingly under threat by sophisticated
attacks (e.g., 3D printed hands [25], gloves [9]). Unlike previous
works, we use acoustic sensing to recognize users based on their
fingertip physiology and behavior traits, referred to as biometric-
hybrid signatures, which aim to provide more security and flexibility
for privacy protection on smartphones. Acoustic sensing is capa-
ble of distinguishing coarse-grained finger touch locations [34],
but to our knowledge, no works are sufficiently fine-grained to
identify users with finger touches. We find that mini-structures of
smartphone cases can enhance the sensitivity of structural-acoustic
sensing, differentiating users not only by finger, but also by finger
quantities and touch locations. We exploit this in our biometric-
hybrid signature to verify that knowledge-based keys (e.g., touch
location) can only be accepted if inputted by a valid user (e.g., autho-
rized finger), preventing knowledge-based attacks with no further
effort from the user [1, 23]. Similarly, biometric attacks cannot suc-
ceed without knowledge of a secret key (e.g., touch location, finger
to use, number of fingers). Finger touches on smartphone cases
happen at the back of the phone, making them difficult to observe
through popular shoulder surfing attacks.

Motivated by these observations, we propose BioCase, a novel
privacy protection system that leverages mini-structures of smart-
phone cases to produce structure-borne acoustic responses unique
for different users and fingers. Intuitively, the combined structure
of the user finger, smartphone, smartphone case, and internal mini-
structures creates a uniquely shaped propagation medium diffi-
cult to replicate. Much like acoustic instruments, different shaped
structures can produce different acoustic frequency responses con-
trollable by finger interactions as depicted in Figure 1. BioCase
is accessible in practice because smartphone cases are low-cost
and common (reports for 2017 estimate 79% of users have cases
[19] while only 55% have fingerprint scanners [37]). We embed
smartphone cases with multiple mini-structures that each produce
distinct resonant frequencies, providing frequency diversity. Since
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mini-structures are located at different positions along the case, our
responses also provide spatial diversity.

We stimulate the smartphone body and elicit such responses via
a high-frequency acoustic challenge signal using built-in speak-
ers. By pressing one or more fingers against mini-structures, users
can alter the resonance of the challenge and produce a unique
acoustic response. The force exerted by the finger changes the mini-
structure shape such that the frequency oscillation will be changed,
thereby producing different resonant frequencies, akin to pressing
keys on a musical instrument. The changed frequency response
is measurable by built-in microphones and is specific to both the
finger that triggered the compression and mini-structure being
compressed. Attackers cannot impersonate the response without a
matching finger structure and knowledge of which mini-structure
to press, making our biometric-hybrid signature more robust than
biometrics or knowledge alone. Eavesdropped responses cannot be
deployed due to loss of structural information in in-air recordings.
To defeat replay attacks using engineered signals, we randomize
qualities of our acoustic challenge signal at each transmission. At-
tackers cannot predict the qualities of the randomized challenge
and fabricate the necessary response in real time.

This prevents information such as text messages, contact lists,
social media, photos, and health monitoring records from being
easily leaked on screen. Lock screens frequently display notifica-
tions that expose data without any authentication check. Disabling
the display of such alerts prevents privacy leaks, but also denies the
user access to their own information. BioCase can greatly enhance
the convenience and security of privacy protection on smartphones
by concealing sensitive onscreen information until unlocked by a
simple finger touch. Incoming text messages, caller IDs, and emails
can be selectively hidden until touches from an authorized fin-
ger are confirmed. This allows for seamless, real-time protection
of private information with unpredictable display behaviors. We
envision BioCase can pioneer a new pillar of authentication tech-
niques alongside existing methods like Face ID [13] or Touch ID
[6]. BioCase can also work together with existing methods through
multi-factor authentication as a low-effort enhancement to smart-
phone security. We studied the feasibility of achieving such privacy
protection using finger touches on smartphone cases and made the
following contributions:

e We propose a novel privacy protection system, BioCase, that
authenticates users via finger touches on smartphone cases in-
stead of specialized sensors. Finger touches embed user-specific
information into structure-borne sound propagating in the smart-
phone case, allowing us to distinguish users and selectively dis-
play or hide their private data.

e We design a biometric-hybrid signature leveraging the user’s
natural interactions with the smartphone case (i.e., touches when
holding the case). This signature is more convenient than knowl-
edge credentials (e.g., PINs) alone since finger touches require
less effort than typing/swiping. It is also more robust than bio-
metrics alone, as attackers cannot easily reproduce the user’s
finger touch behavior. Moreover, it is more secure than either of
them because our signature is unique for each user in knowledge
credentials and finger physiology.
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Figure 2: Sound propagation inside a smartphone case.

o We study mini-structures and how their different specifications
can produce different resonant frequencies in smartphone cases.
We apply our findings towards developing an acoustic response
embedded with frequency-diversity and user finger touch infor-
mation that is reliable for authentication and difficult to attack.

e We conduct extensive experiments involving 46 participants,
multiple smartphone devices, and smartphone cases. Our exper-
iments consider real-world factors including noise, movement,
and user finger interactions. Results show that users can be rec-
ognized with over 94% accuracy.

2 ACOUSTICS OF MINI-STRUCTURES

We introduce the behavior of acoustic signal propagation in physical
structures relative to external forces caused by user hands and
internal forces controlled by mini-structures.

2.1 Spatial Diversity in Mini-structures

We provide privacy protection by verifying users through their fin-
ger touches as they operate their smartphones. In particular, we uti-
lize acoustic information to conduct tactile sensing. Unlike common
acoustic-based technologies, which leverage airborne propagation
to distinguish user voices or gestures, we utilize structure-borne
sound propagation and its behavior in differently shaped objects.
Most smartphones have well-defined dimensions (i.e., rectangu-
lar prism) and relatively uniform density, producing consistent
structural acoustic responses. When touching the smartphone, the
user’s hands and fingers transform the shape of the structure and
the resulting response. Moreover, different users produce unique
responses due to their distinctive finger shapes, tissue structure,
and bone density. The smartphone body and user finger therefore
contribute to a joint structure that is specific to the user-smartphone
combination. We find that, rather than impose burden on the user
(i.e., extensive hand motions or gestures), we can generate the
unique acoustic responses by controlling the joint structure.
Toward this end, we propose to expand the joint structure through
the use of smartphone cases as shown in Figure 2. We embed in-
ternal hollow mini-structures in the case to intentionally change the
acoustic response based on structural specifications. Mini-structures
are linked to the case surface through connecting tubes, creating
holes that the user can easily identify and touch. We illustrate this
concept in Figure 3. Each mini-structure is shaped differently in or-
der to produce different responses based on resonant frequency. We
liken this concept to frequency responses in musical instruments
in Figure 3(a). Stimuli such as string vibrations produce different
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Figure 3: Mini-structures can produce acoustic responses sen-
sitive enough to capture finger biometric-hybrid signatures.

frequencies based on characteristics of the string and instrument
structure. BioCase employs this concept on a smaller scale using
smartphone case mini-structures in Figure 3(b). The stimulus in this
scenario is a high-frequency inaudible signal. Through structural
propagation, the signal will permeate into the mini-structure and
resonate if the mini-structure size and pressure are sufficient to
amplify oscillation, yielding two observations: (1) The small size of
the mini-structure ensures that only the inaudible-frequencies will
resonate. (2) Different mini-structures specifications will resonate
with different frequencies, producing distinct acoustic responses.
Finger touches that cover the mini-structure tubes will alter specific
frequency bands. Similar to fingerprints, the altered frequencies
are also user-specific due to the unique physiological traits of the
finger. By observing how frequencies are altered, and knowing the
location and resonant frequencies of each mini-structure, Biocase
can derive biometric-hybrid signatures. Our mini-structures have
minimal location constraints so long as they are in the structure-
borne sound propagation path, meaning they can be placed almost
anywhere on the back surface of the smartphone case. They can
also be placed in large quantities, enhancing both security (i.e.,
increasing sensing resolution) and convenience (i.e., allowing more
touch locations to authenticate the user).

2.2 Frequency Diversity in Mini-structures

Structure-borne sound behavior can be predicted knowing speed of
propagation ¢ and physical properties of the propagation medium.
We model behavior within mini-structures as a form of Helmholtz

resonance H:

H= A 1)

2n Y VL

where V is volume of the internal space. A hole is bored from
the mini-structure to the exterior surface of the smartphone case,
the area and length of which is denoted as A and L. Similar to
hollow chambers of musical instruments, the mini-structure ampli-
fies the oscillations of different frequencies through constructive
interference, creating stronger vibrations or ’echoes’. These res-
onant frequencies can be intentionally enhanced or diminished
through the design of the mini-structures as well as user interac-
tion. For example, sealing the hole to the mini-structure with the
user finger can decrease the volume V and increase pressure in the
internal chamber, absorbing sound and altering the resonance akin
to soundproofed rooms. By transmitting a frequency matching the
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Figure 4: Modeling of user interaction with smartphone mini-
structures. The unique shape and mass of the finger will alter
mini-structure resonance frequencies to yield user-specific
acoustic features.

resonance of the mini-structure, it is possible to determine whether
the user touched the mini-structure based on the received signal
strength. For multiple mini-structures, the user response R(w) to a
transmitted signal S(w) can be modeled as:

R(@) = ) HiMg()S(0)Ma, @

i=1

where My and Mg are the forces exerted by the external mass (e.g.,
user hand, table, etc.) and a user finger, respectively. Note that Mg
is a nonempty tuple rather than a constant like M, as the user
may use multiple fingers of differing mass to interact with the
mini-structures. The response signal is therefore a unique convo-
lution determined by the physical characteristics of the external
mass, mini-structure, and user finger. Note that sealing all mini-
structures simultaneously causes H; to approach 0, allowing Eq. 2
to be approximated as:

R(w) = S(w)Ma, ®)

which is functionally equivalent to having no mini-structures at all
and diminishes the frequency diversity. Note that different users
have different My and Mg values as no two fingers are completely
identical. When exerting force against the mini-structure, these
differences embed user-specific acoustic features in the resonant
frequency response, even when interacting with the same mini-
structure. This model of user interaction with BioCase is illustrated
in Figure 4. We elaborate on specific features in Section 5.1. A
total of n mini-structures may exist, distinguished by numerical
designation i. The user may choose to cover zero or more mini-
structure holes with their finger, creating distinct responses for
each possibility from the same user. This ensures potential attackers
cannot easily forge our biometric-hybrid signature without similar
biometric credentials (i.e., external mass M, and finger Mpg shapes)
and knowledge credentials (i.e., finger interaction Mg, ;) with mini-
structure H;). The frequency diversity of the acoustic responses
can be most effectively leveraged by designing the mini-structure
resonant frequencies and transmitted acoustic signal to operate
within the same bandwidth.
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Figure 5: Euclidean distance of amplitudes from different
touch locations. Smartphones with mini-structures produce
stronger differences than without.

2.3 Feasibility Study

A preliminary experiment was performed to understand the sensi-
tivity of structure-borne sounds to different finger touch interac-
tions. Three scenarios were examined to demonstrate how changes
to the internal structure of the propagation medium can influence
structure-borne sound propagation. Figure 5 shows the experimen-
tal setup for each scenario; using a smartphone with no case, a
smartphone equipped with a case and no mini-structures, and a
smartphone equipped with a case and two mini-structures. For each
scenario, we attempt to distinguish between no finger interaction,
finger touches near the top of the device, and finger touches near the
middle of the device. Three samples of each interaction are obtained,
denoted as 1-3, 4-6, and 7-9 in Figure 5(d)-5(f). Note that for the sce-
nario shown in Figure 5(c), we position mini-structures for the user
to touch. The smartphone cases for Figure 5(b) and Figure 5(c) are
otherwise identical. The scenario without mini-structures approxi-
mates the same touch location by using the camera lens position as
a reference point. An inaudible chirp signal sweeping from 18 kHz
to 22 kHz was emitted from the bottom device speakers to induce
vibration, which is then recorded by a single microphone near the
top of the device.

We extract the average amplitude for each recording. The Eu-
clidean distance was then computed for each combination of sam-
ples to quantify similarities and differences. The results can be seen
in Figure 5(d)-5(f). Samples native to the same scenario (e.g., 1 &
2) displayed naturally low amplitude difference whereas samples
of different scenarios (e.g., 1 & 9) had increased differences. Note
across the diagonal that the distance is zero as these are comparisons
between a sample with itself. We observe in Figure 5(d) that the
base smartphone may coarsely distinguish between the touches and
no touches, but cannot adequately differentiate between different
touch locations. Equipping a smartphone case, however, enhances
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sensitivity by expanding the propagation medium. With the in-
clusion of mini-structures, this sensitivity is responsive enough
to recognize the different touch location. This suggests that, even
with minimal sensors and signal processing, structural-borne sound
propagation is capable of communicating critical information about
the user and their interaction with the smartphone device.

3 ATTACK MODEL

Attackers may wish to gain unauthorized access to personal data
(e.g., email, social media, shopping accounts, health monitoring
apps) on smartphones. We consider attack scenarios under the fol-
lowing assumptions: (1) The attacker can be in close proximity to
the legitimate user such that they can monitor the user or gain phys-
ical access to the smartphone unnoticed. (2) The attacker has full
knowledge of our acoustic challenge-response system and how it
measures the biometric-hybrid signature. (3) The attacker does not
have power over operating systems to skip authentication checks.
Accordingly, we define the most feasible attacks below:

Impersonation Attack. The attacker attempts to impersonate
the legitimate user’s acoustic response by mimicking their hold
style and finger touches on the mini-structures. We consider attack-
ers that may either be informed or uninformed. For the uninformed
case, the attacker has no information of the authentication process
and can only impersonate the legitimate user through educated
guessing. For the informed case, the attacker has knowledge of the
legitimate user’s biometric-hybrid signature via passive observa-
tions.

Replay Attack. The attacker may bypass the challenge-response
by presenting a pre-obtained signal instead of their own live-generated
physical response. The signal can be stolen from the legitimate user
by eavesdropping instances of authentication attempts. This can
be done by placing external microphones near the target smart-
phone or by installing a malicious app that covertly controls the
internal microphones of the user’s smartphone. In such scenarios,
the attacker can obtain a signal embedded with valid credentials
known to authenticate the user. Alternatively, an original signal
can be synthesized that has similar properties to the legitimate user
response. Afterwards, the attacker gains access to the smartphone
device and replays the signal in guise of the legitimate user using a
speaker.

Puppet Attack. The attacker may bypass the challenge-response
by moving the legitimate user’s hands and fingers into the positions
necessary for BioCase to measure and authenticate. This attack is
possible during situations where the user is unresponsive (e.g.,
asleep, intoxicated). The attacker must know the correct touch lo-
cations to press the user’s fingers against; the knowledge of this
configuration can be obtained through passive observation of the
user.

4 SYSTEM DESIGN

4.1 Privacy Protection Framework

Our system must distinguish between different people to ensure
private content is disclosed to authorized users only. We consider
the example scenario where data may be leaked when an incoming
message is displayed on the smartphone screen without regard for
who can see it. To prevent this breach of privacy, we selectively hide
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Figure 6: System overview of BioCase.

or display this content depending on the user identity touching the
smartphone. BioCase provides smartphone user authentication by
measuring user response to an identity challenge in the form of an
acoustic signal transmission. Finger physiological and behavioral
information are captured in our biometric-hybrid signature through
the transformation of the acoustic challenge signal as it propagates
through mini-structures. The combination of the smartphone, user
finger, and smartphone case mini-structures creates a uniquely
shaped medium that produces distinct features for different users.
We thus propose the privacy protection system shown in Figure 6,
consisting of four major components.

Challenge Transmission. A potential privacy leakage incident
such as the incoming message will trigger the built-in speaker of the
smartphone to transmit our acoustic challenge. A pool of inaudible
frequency chirps is used to dynamically generate a randomized
challenge at each transmission instance. The specific frequencies are
chosen based on their ability to resonate for a given mini-structure
and can be different for different smartphone case designs. The
challenge will propagate through the physical device, transformed
by the joint structure of the user hand, smartphone, and mini-
structures. During propagation, the user touches a mini-structure,
which embeds the finger physiology information and transforms
the challenge. The transformation creates a user-specific response
that is measured by built-in microphones.



MobiSys "23, June 18-22, 2023, Helsinki, Finland

Figure 7: Example of pass code input using BioCase. The
smartphone is face down for visual clarity of the finger-mini-
structure interactions.

Response Pre-Processing. We isolate the transmitted challenge
from background noise and filter out any sources of interference.
A bandpass filter is applied to remove irrelevant frequency bands.
Once segmented and filtered, we confirm the integrity of the re-
sponse by verifying the frequency of each received chirp. Only
the user smartphone is aware of the challenge frequency pattern;
fabricated signals from attackers will be rejected as they cannot
know the randomly generated order of the challenge.

Feature Extraction. User finger features are extracted and used
to construct a preliminary feature vector. Simultaneously, the fre-
quencies of each received chirp are inspected to determine if a
corresponding mini-structure was sealed by the finger touch to
diminish the resonant frequency. The frequency response can be
controlled by the user based on the mini-structure they choose to
touch. We detect this choice by computing the degree of transfor-
mation to each chirp frequency; larger differences implies a specific
mini-structure was touched. This ensures that adversaries cannot
be mistaken for the user, even with similar physical characteristics,
without knowing the user’s mini-structure interactions.

Profile Decision Making. We determine if the response matches
the profile of the legitimate user by comparing the received re-
sponse with saved feature profiles. Our system utilizes a support
vector machine (SVM)-based classifier to perform this comparison.
A pre-installed database of anonymized challenge-responses act
as negative labels. The verification decision can be used by other
applications to selectively display private information, such as text
messages, or unlock the smartphone device itself.

4.2 Encoding Biometric-Hybrid Signatures

Biometric credentials may be stolen or impersonated by adver-
saries with no recourse for the legitimate user. Therefore, it is
also necessary to challenge the biometric information presented
to ensure authenticity. We achieve this by controlling not only the
acoustic signal, but the structure itself as well. We devise a code
k = {Aj1, ..., AN} where each member corresponds to an acoustic
response produced by user interaction with a mini-structure in
the smartphone case. Each member of the alphabet is a response
derived from Eq. 2. The size of the code alphabet N is determined
by the number of mini-structures n and the number of possible
user interactions with the mini-structures m, generalized by the
following equation:

N=n+Cl +1, 4)
We define C}}, as the unordered combinations of length m derived
from the set of n elements or C}, = Wlm),
example, if n = 3 and we allow the user to interact with at most

where m < n. For
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Figure 8: Iterative prototyping of BioCase designs.

2 mini-structures simultaneously (to avoid the dilemma of Eq. 3),
then the number of possible user interactions and alphabet size
isN =3+ Cg + 1 = 7. Note that our alphabet can also match or
exceed PIN code complexity (e.g., a 4th mini-structure n = 4 yields
a code size N = 11 under the same assumptions). Unlike PIN codes,
however, our system does not require an arbitrarily large number
of code combinations to guarantee security. User physiology and
behavior is also recognized based on where and how they touch
the smartphone case. The user can therefore prove their identity by
inputting a touch-based pass code as shown in Figure 7. Pass code
P is a secret combination of finger(s) and mini-structure(s) that the
user may choose during enrollment.

4.3 Mini-structure Design

Mini-structures along the sound propagation path influences the
frequency response of the pass code [20]. In order to develop a
smartphone case capable of differentiating users through finger
touches, we iterated our case design over dozens of single-purpose
prototypes and recruited volunteers to better understand how to
control and isolate the acoustic responses. This data-driven proto-
typing process enabled us to achieve a more optimized smartphone
case design that alters the acoustic properties of structure-borne
sound propagating through a controlled pathway.

The evolution of our prototyping process can be seen in Figure 8.
Based on Eq. 1, the design of the mini-structure is a relatively open-
ended problem so long as the geometry constrains the structure-
borne sound propagation to diffract with constructive interference
at the desired resonant frequency. We find that using multiple
miniature chambers are more likely to produce distinct frequency
responses due to their more dissimilar geometries. For modeling
simplicity, we design these structures to be rectangular prisms.
Our mini-structures are positioned vertically as directly in the
propagation path as possible. We find that smaller holes allow users
to more consistently seal the mini-structures and therefore produce
repeatable patterns in the challenge-response. We also determined
that multiple holes to the same mini-structure will diminish the
ability of each hole to alter the acoustic properties. Hence, we
feature only a single hole to each mini-structure. We also develop
a pseudo-random case that does not follow any specific design
philosophy to verify these our observations through experimental
comparison. Note that the locations of our mini-structures are
flexible. We envision that BioCase variants with more ergonomic
considerations can allow users to touch virtually anywhere for
authentication.

4.4 Challenge Signal Design

A chirp signal is transmitted by the built-in speakers of the smart-
phone to stimulate a response in the user hand while operating the
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Figure 9: Example of five challenge signals. Frequency sweeps
are random each transmission.

device [21]. Both time-domain and frequency-domain parameters
must be considered for the chirp design.

Time-Domain. Unlike most acoustic works, we consider structure-
borne sound to be the target signal and airborne sound to be noise.
Separating the two is possible by controlling the time duration of
the chirp transmission; sound propagation is faster in solids than
air. By keeping chirps short and buffer space between transmissions
sufficiently large, the arrival of airborne noise can be staggered
such that it does not coincide with structure-borne sound.

Frequency-Domain. To minimize disturbances, the signal should
be inaudible while also being robust to interference. The ultrasonic
frequency band (~ 16kHz and above) is both inaudible to most
adults and beyond the frequencies of common daily noise sources,
simplifying filtering. However, most commercial smartphone mi-
crophones are limited in sampling rate to ~ 48kHz, bounding the
upper frequency limit to 24kHz according to Nyquist-Shannon
Theorem.

Accordingly, we design a set of candidate chirp signals for trans-
mission. Each chirp sweeps one of five singular inaudible frequen-
cies (i.e., 18kHz to 22kHz in steps of 1kHz). The duration lasts only
25ms to aid the separation of structure-borne sound from multipath
reflections. From our experiments, we observed that commercial
smartphone speakers may struggle to consistently sweep such high
frequencies in a short time period. Therefore, we transmit multiple
chirps in succession to ensure a viable response can be captured
by the microphones. During the acoustic challenge, each chirp of
the transmission S(w) will be embedded with biometric-hybrid
signatures from the user’s finger geometry and interaction with
the mini-structures. Biometric data may be vulnerable to imperson-
ation if static (e.g., still image of the face). To avoid this problem, the
frequency of each chirp in the challenge signal is randomly selected
at transmission, seen in Figure 9. Attackers may eavesdrop past
challenge-responses but cannot reuse them since future challenges
will differ.

The receiving microphone, knowing the design of S(w), can lo-
cate and verify the authenticity of the challenge by applying cross-
correlation with the response. We compute correlation through the
function 3> S*(w)R(w + t) where $*(w) is the complex conju-
gate of our transmission and R(w + t) is the recorded propagation
sequence time shifted by some unknown delay t. Both $*(w) and
R(w + t) are normalized to compensate for amplitude differences
in the differing sound propagation. By locating the index with the
highest correlation to our transmission, we can determine the start
point of our signal. Environmental reflections arrive at a much
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slower speed, thus we can safely remove interference by keeping
our transmission short (i.e. milliseconds long), calculating the signal
endpoint based on sequence length, and segmenting audio at this
point.

5 IMPLEMENTATION
5.1 Feature Extraction

We construct a user finger feature profile that integrates both finger
physiology and user knowledge (i.e., mini-structure pass code). A
series of candidate features are identified through empirical tests
similar to Section 2.3.

Time-domain Features. In the time domain, we extract sta-
tistics including mean, standard deviation, maximum, minimum,
range, kurtosis and skewness. We also estimate the response’s dis-
tribution by calculating second quantile, third quantile, fourth quan-
tile, and signal dispersion. We examine peak change by deriving
the index position of the data point that deviates most significantly
from the statistical average.

Frequency-domain Features. In the frequency domain, we
apply Fast Fourier Transformation (FFT) to the response and derive
256 spectral points to capture the unique characteristics of the user’s
holding hand. We also derive the acoustic features from the received
sound using the MFCC. Our response signal is first processed using
a first-order FIR filter with a pre-emphasis coefficient value of
0.97. The filtered signal is then subjected to the Discrete Cosine
Transform to produce our MFCC features consisting of 13 filter
bank coefficients. Intuitively, touching mini-structures will suppress
some, but not all, resonant frequencies.

Pass Code Detection. The challenge signal S(w) contains a
sequence of chirps assembled from a pool of candidate chirps of
varying frequencies. We compute the differences between S(w) to
R(w) as d; = /|S(w) — R(w)|? and use d; to scale the user hand
feature vector. Minor differences already exist between code words
k(A;) and x(Aj) when performed by the same user due to changes
in finger position and mini-structure. Feature vector scaling thus
magnifies pre-existing differences to aid in distinguishing user.

5.2 User Profiling

We develop learning-based algorithms to recognize the unique char-
acteristics of the user from the acoustic challenge-response. This
information is used to verify whether the finger and code input
match the known profile of the legitimate user. An existing data set
of anonymized user profiles is included to serve as negative labels
when classifying the user during authentication attempts. For each
chirp component of R(w), our algorithm utilizes the prediction
probabilities returned by the classifier as a confidence level and ap-
plies a threshold-based method to examine the classification results.
If the confidence level of the classification is above the threshold,
the user is authenticated and otherwise rejected. A majority vote
based on the confidence of all chirp signals is conducted to confirm
the decision. This decision can be used for multiple applications
such as locking devices when an unknown user attempts to gain
access. We choose a Support Vector Machine (SVM)-based archi-
tecture with 10-fold cross-validation for our classifier due to its
efficacy at processing features with high dimensionality.
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Figure 10: Isometric view of BioCase prototypes. Mini-
structures are designated a number for reference.

6 EVALUATION

6.1 Data Collection

Hardware. A prototype app of BioCase was developed for Android
platforms. Our smartphone cases and mini-structures are designed
in Autodesk Inventor and exported in STL format for slicing in
commercial 3D printers. We fabricate physical prototypes using
Prusa I3MK3S printers and choose TPU plastic filament for it’s
low cost and usage in commercial smartphone cases. An isomet-
ric view of our designs, based from our study in Section 4.3, are
shown in Figure 10. Our cases were designed to fit the Nexus 5 and
Galaxy Note 5 smartphones. We assume the user may use up to
two fingers to touch two mini-structures simultaneously, yielding
a code alphabet size of N = 7. We also produce alternate designs
of our prototypes for different mini-structure designs and filament
material to study the impact on sound propagation.

Scenarios. We recruit 46 volunteers, 40 males and 6 females rang-
ing from ages 18-60, to participate in our study with the approval
of our IRB. We evaluate our system by conducting the experiments
in a typical office with an average 35dB background noise level.
We simulate additional environments by playing corresponding
background noise at appropriate sound pressures (e.g., construc-
tion noise at 80db). Tested scenarios include using different fingers
with BioCase, simulating different attacks, and studying impact
factors such as noise and motion. All experiments are conducted
using the Nexus 5 in a typical office environment without strong
noise unless otherwise noted. For each use case scenario and each
participant, we collect 80 acoustic challenge-responses of finger
touch information or over 3,600 user samples. To ensure diversity
in user samples, the participants were asked to pick and put down
the phone several times. Participants are also encouraged to hold
the smartphone naturally based on their own habits (e.g., tightness
of the grip, preferred hand). In our evaluation, we iterate over all
participants where we treat each participant as the legitimate user
of the smartphone and all remaining participants as non-legitimate
users or attackers. We do not consider our acoustic responses to
be personally revealing information but will maintain this data
privately as a precaution.

6.2 Performance Analyses

We describe accuracy of our system by evaluating the relation be-
tween True Positive (TP), False Positive (FP), and False Negative
(FN) rates. We compare TP and FP through receiver operating char-
acteristic (ROC) curves to measure general performance and com-
pare FP and FN through equal error rates (EER) to quantify balance
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Figure 11: Performance for finger-only interactions.
between security and convenience. For our purposes, higher TP
means higher probability the legitimate user is recognized, higher
FP means higher probability for non-legitimate users to be mistaken
for the user, and higher FN means higher probability that the user is
not recognized. The ideal system has a simultaneous 100% TP rate,
0% FP rate, and 0% FN rate (i.e., the user is always recognized, never
rejected, and attackers are always rejected). We evaluate BioCase
by answering four main questions regarding usability and security
aspects.

6.2.1 How well does BioCase authenticate legitimate users?

Finger-Only Interaction. We study scenarios where the smart-
phone is not held by the user, such as when resting on a table. We
equip our cases to the smartphone and position the mini-structures
face up. Each user is asked to attempt every pass code input possible
for the given case design (i.e., the case in Figure 10(a) has the fewest
while Figure 10(c) has the most). The experiment is repeated for
each case from Figure 10. For all 46 participants, we let each act
as a legitimate user of the smartphone device while others act as
non-legitimate users. Figure 11 shows we can achieve an average
94.4% TP rate for a simultaneous 5% FP rate using biometric-hybrid
signatures gathered by BioCase. In particular, we find single finger
interactions to be slightly more effective at distinguishing users
(95.6% TP) than two fingers (93.2%). Meanwhile, the EER is under
4% for both interactions. Our results suggest finger physiology is
recognized as 46 users touching the same mini-structure can still
be distinguished.

Hand and Finger Interaction. We evaluate the ability of the
privacy protection system to distinguish user responses while oper-
ating the smartphone in their hand. We study each user’s response
single mini-structure interactions. We also compare with no mini-
structure interactions (i.e., phone simply held in hand) for a baseline
comparison. Figure 12(a)-12(d) depict examples of users interacting
with BioCase, picturing the back of the smartphone to show finger-
mini-structure interactions. Figure 12(e)-12(h) shows the average
performance when authenticating all participants for each possible
code word. Specifically, we can achieve an average 95.1% TP rate
for a simultaneous 5% FP rate and an EER of 3.79% on our case with
3 mini-structures. Our performance is comparable to that of palm
biometric sensing methods. However, our finger-based biometric-
hybrid signature also adds robustness in the form of multiple viable
pass codes (i.e., mini-structure interactions).

6.2.2 How secure is BioCase when under various attacks?
Impersonation Attack. Our attack setup is similar to EchoLock
[42] where we involve a subset of 10 participants. One participant
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Figure 12: Authentication performance when distinguishing users based on the pass code input using one finger.
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Figure 13: Performance under different attack types that may be launched against BioCase. We consider scenarios where the
attacker attempts to gain unauthorized access with varying degrees of knowledge about the user.

acts as our victim and the remainder act as attackers in round
robin order, meaning dozens of user pairs are tested. We consider
scenarios where the user may prioritize security over convenience
and choose multiple code inputs in sequence to verify themselves,
akin to using longer passwords. We evaluate blind attacks, where
attackers have no knowledge of the user or code, and informed
attacks, where attackers are explicitly told the pass code and allowed
to observe the user for 30 seconds to understand the victim’s finger-
mini-structure interactions. For all scenarios, the attackers are given
10 attempts to imitate the user. For state-of-the-art comparisons,
we develop an implementation of EchoLock [42] that does not use
smartphone cases and repeat the experiments.

Figure 13(a) and 13(b) indicate that impersonation attacks are
not viable, showing only a 6% rate at being falsely identified as the
legitimate user in the best case impersonation scenario of a short
pass code and informed attacker. EER can be maintained under
5% for all tested pass codes. We achieve substantial improvement
over existing work, reducing false positives by nearly 10% in the
informed impersonation scenario. We observed that the majority
of false positives were consistently caused by the same attacker-
victim pair, suggesting that physical hand similarity may be more

crucial to successful impersonation. However, attackers cannot
control how similar their hands are to potential victims, nor always
know the pass code in advance. This suggests that user physiology
is captured in our responses as different users pressing the same
location are not easily mistaken for one another.

Replay Attack. We consider attacks using eavesdropped signals
and synthesized signals. To obtain eavesdropped signals, we seat
the victim user at a desk while they operate our privacy protection
system. A separate mobile device positioned 0.2m from the victim
acts as a malicious sensor, listening for the acoustic response. Many
devices can activate microphones without obvious indicators, mak-
ing this attack strategy highly plausible. For the synthesized signal,
we generate 10 challenge signals for the attacker to replay. Note
that the random seed is different for each synthesis. We recruit 10
of our participants to act as 9 victims and 1 attacker. The profiles
of the remaining participants are used as negative labels during
identification. We exclude attacker data from training to simulate
an attack by an unknown user.

BioCase is able to correctly block the attacker when attempting
to replay eavesdropped and synthesized signals, resulting in 0% EER
and 100% TP rates for both scenarios. For the synthesized replay
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Figure 14: Performance in noisy environments with common
sources of acoustic interference.

scenario, we also ensured at least one instance where the genuine
challenge matched the synthesized challenge. Both eavesdropped
and synthesized signals fail to be accepted by BioCase as the re-
played signal loses structural properties when attenuating through
the air from attacking speaker to victim microphone.

Puppet Attack. We simulate scenarios where the user may
have their fingers interact with BioCase without their consent (e.g.,
asleep). We recruit 9 participants to act as victims and one to act
as the attacker. We place the smartphone on a flat table surface
with the mini-structures face up. For each victim user, the attacker
moves the victim fingers to press against the mini-structure hole.
To simulate the best case scenario for the attacker, we assume the
attacker is informed (i.e., knows where to press). During the attack,
the victim keeps their hand limp. The puppet response is compared
to profiles trained when the smartphone is lying on a table (invalid
training, best scenario for the attacker) and when the smartphone
is held in hand (valid training, most common scenario).

The results of Figure 13(c) suggest that puppet attacks are un-
likely to succeed in most conditions. Notably, we find interactions
using two fingers (index and middle fingers) to be too complex for
attackers to manipulate, resulting in 0% FP in all tested conditions.
Meanwhile, single finger interactions were only possible when the
user profile was trained in a similar condition to the attack scenario
(i-e., phone lies on table). However, we consider this training style
invalid as most users will not enroll their profile without holding
the device. Additionally, we assumed the attacker is informed and
already knows the correct finger interaction. This implies our re-
sponses capture user behavior as well since the attacker cannot pass
as the victim, even when possessing the legitimate finger physio-
logical information and pass code. For uninformed attackers, brute
forcing the attack becomes much more complex due to the possible
finger-structure combinations. Brute force can be defended against
by imposing a limit on number of attempts permitted.

6.2.3 How stable is BioCase under different impact factors?

Noise Pressure Level and Distance. In order to test the per-
formance of BioCase in various noisy environments, we play three
categories of noise at different sound pressure levels and distances
from the user using an external speaker. When controlling distance
to the noise source, we calibrate our noise pressure level to 80dB as
measured by the smartphone at 0.5m and progressively test perfor-
mance at longer distances. When controlling noise pressure level,
we calibrate the noise to the desired dB level as measured by the
smartphone at 1m distance. Noise sources include human voices,
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Figure 15: Performance comparison for alternate case designs
featuring three mini-structures.

traffic sounds such as car honks, and construction noise such as
jackhammers. Figure 14 indicates that the lower frequencies of
most audible noise (human speech, traffic) have limited impact
on our ultrasonic frequency band. FN rates are consistently under
10%, regardless of distance. The higher frequencies of drilling and
jackhammers were more challenging, having the highest FN rate.
However, most participants found this noise source annoying. We
believe most users will stop using their smartphones in order to
distance themselves from this noise, mitigating the problem.

Different BioCase and Smartphone Designs. We design and
manufacture variations of our BioCase mini-structures for use
in experimentation. We first study variations for our three-mini-
structure design on the Nexus 5. Upon determining the best per-
forming case, we adapt the design for other smartphone models.
We depict examples of these cases in Figure 15 and compare their
performance at distinguishing user challenge-responses. As seen
in Figure 15(e), our primary design, denoted as Case A, has the high-
est TP rate of 94% for a 5% FP rate. Meanwhile, the EER is 3.79%.
Notably, the pseudo-random mini-structures of Case B performed
slightly better (91% TP rate) than Case C, our variation of Case
A with larger hole diameters (89% TP rate) for the same FP rate.
Although the pseudo-randomness of Case B is not intentionally
optimized, the drastic differences in mini-structure configuration
may be distinct enough to produce unique responses for each mini-
structure. Case C has considerably lower accuracy than Case A,
possibly due to the larger holes being more difficult for users to
seal with fingers consistently.

Because of its higher performance, we replicated the mini-structure
design of Case A in a BioCase prototype for the Galaxy Note 5. We
found performance on the Galaxy Note 5 to be competitive with
our Nexus 5 device, outperforming the Case B and C designs while
achieving 93% TP for a 5% FP rate and a 4.1% EER. While we ob-
served success in adapting BioCase from the Nexus 5 to the Galaxy
Note 5, the larger size and different sensor placements (e.g., cam-
era) of the Galaxy Note 5 may also enable new design choices not
possible on the Nexus 5 that could further improve performance.

Different Fingers. We study performance when using different
fingers to interact with BioCase. We leave the smartphone on a table
with the case mini-structures face up and allow 10 users to input
their pass codes. We also ask the users to use each of their five fin-
gers when interacting with the different mini-structures. Figure 16
shows we can achieve an average 92.1% TP rate for a simultane-
ous 5% FP rate across all fingers. EER can be maintained under
10% for all fingers. Note that performance can vary depending on
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the specific finger used. During ordinary smartphone usage, users
primarily use their index and middle fingers, which were among
the highest performing fingers. While thumbs also perform well,
users typically rest their thumbs on the front of the smartphone
rather than the back, making them less intuitive to use. Ring and
little finger interactions are noticeably more difficult to recognize,
possibly due to most users having lower dexterity in these fingers.
We consider this comparable to fingerprint scanning as users rarely
choose to scan ring or little fingers.

Sampling Rate. The sampling rate determines the quality of the
received signal. Signals received by high sampling rate can provide
more information at the expense of storage and power consumption
overhead. Therefore, we conduct experiments to examine the per-
formance of our system by lowering our preferred 48kHz sampling
rate to 44.1kHz and 24kHz. From Figure 17, it can be observed that
our system can maintain stable 94% TP rate for the comparable
44.1kHz whereas halving the sampling rate to 24kHz noticeably
lowers performance to 79% TP. Due to the high frequencies utilized
by our acoustic challenge-response, lowering the sampling rate can
cause aliasing in our measurements. However, if audibility is not
a concern, lower acoustic frequencies could be utilized and allow
lower sampling rates.

User Motion. Users may operate their smartphones in mobile
settings such as while walking or during exercise. We therefore
verify that the acoustic sensing process of BioCase is not disrupted
by such motions. We consider two actions specifically; walking and
running. To create the most natural experimental conditions, we
only ask the participants to walk or run at a comfortable pace for
several minutes. No further instruction on body motions is given.
Therefore, the precise behavior varies slightly between users, but
all participants exhibited ordinary behaviors (i.e., swaying arms,
rhythmic steps). We are able to generalize the motions as approxi-
mately one step per second for walking (comparable to daily routine
walking) and two to three steps per second for running (comparable
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Figure 20: Examples of commercial smartphone cases studied.
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to light jogging exercise). The results of Figure 18 indicate these ac-
tions do not have significant affects on BioCase performance. Only
minor deterioration was observed for running, showing decreases
in TP by 3% and EER increases by 2% on average for 10 participants.
While higher running speeds are possible and could negatively
impact performance, we believe few users simultaneously use their
phones during such actions due to safety risks. Furthermore, attacks
are difficult to launch against a running person, reducing security
risks.

Time Variance. We verify that our acoustic challenge-response
is sufficiently stable to authenticate the user even after significant
time passes. We invited 10 of our participants to return and interact
with BioCase 10 weeks after their initial participation. Figure 19
shows that BioCase can still successfully authenticate individuals,
achieving an average 95.2% TP for a simultaneous 5% FP or lower
and an EER of 3.75%. This result is actually slightly better than
initial averages recorded immediately after enrollment, possibly
due to users already being familiar with BioCase. We note this
performance can be further improved by periodically sampling new
challenge-responses from the user.

7 DISCUSSION

System Overhead. We find that the memory required for the
challenge-response signals is ~2.5MB while the authentication
model itself is only 15KB. The total size of the BioCase app is 14MB,
which is less than most commercial smartphone apps. For instance,
the Spotify app officially recommends 1GB of memory [33]. In ad-
dition, we estimate the battery costs of BioCase by calculating the
number of authentication attempts necessary to deplete 1% of total
battery based on Android app settings. We find that our method
consumes negligible power (i.e., 0.036% battery capacity per authen-
tication) based on tests across 10 participants, 20 authentication
attempts per person, and two smartphones.

System Generalizability. We test our system with commercial
smartphone cases, as shown in Figure 20. Each case has distinct
physical traits (e.g., built-in stands, decorative indents, shock ab-
sorbers). We found that the average performance of distinguishing
10 users is around 83% TP rate. This is an encouraging sign, as per-
formance is still moderately high for smartphone cases not designed
with structure-borne sound in mind. This observation indicates that
mini-structure design is highly influential in the quality of acoustic
responses produced by BioCase. With minor modifications, manu-
facturers can integrate compatible mini-structures and enable an
additional layer of security at a low cost.



MobiSys "23, June 18-22, 2023, Helsinki, Finland

System Usability. Our system is highly usable with low latency.
We only transmit 5 chirp signals, and each lasts only 25ms. When
incorporating computation time (variable by hardware), we can
achieve latency under 500ms, similar to existing authentication
methods. In addition, BioCase is more accessible and lower in cost
than specialized sensors like fingerprint scanners [19, 37]. We allow
the user to perform a single finger touch to authenticate themselves,
which is similar to traditional fingerprint scanning in terms of user-
friendliness. Longer challenges or touch sequences may improve
performance at the expense of longer wait times. We leave a detailed
study of this for our future work.

Additional Case Design Factors. This is a pioneering work
leading to the development of more ergonomic, user-friendly Bio-
Case designs. To this end, we plan to explore more mini-structure
factors (e.g., distance, shape, size, and positions) in our future work.
We also intend to examine the impact of different case materials,
which may affect sound propagation. TPU is a flexible plastic and
one of the most popular materials for building off-the-shelf smart-
phone cases. The cost to manufacture one of our prototypes with
TPU is competitive with existing commercial case prices (around
5 to 10 USD). We note that cosmetic scratches have minimal im-
pact on the structure of the TPU case. Although severe trauma or
extensive aging could damage the structure and change the sound
propagation behavior, the user is unlikely to continue using the
same case in such scenarios. Such damaged smartphone cases are
easy to replace, unlike sensors. Users can also quickly enroll a new
profile through a one-time training process, similar to providing
their fingerprints on a new phone. In addition to TPU material,
our experiments also include an alternative Nylon 12 polymer case,
which find negligible differences in performance. We will consider
other materials in the future.

Acoustic Signals and Sensors. The high frequencies utilized
by BioCase are generally benign and difficult for adults to hear,
but could be perceived by younger individuals [30]. We keep trans-
mission short to reduce risks. We interviewed all participants after
experiments to understand their experience and found none were
able to hear the transmissions. Our system requires only a single
speaker-microphone pair. In this work, we leverage the speaker
and microphone located at the top and bottom of the smartphone,
which is a common setting in most of off-the-shelf smartphones.
There may be other configurations (e.g., speakers and microphones
on the front/back) that could affect our system. We leave further
study of these configurations for future work.

Changes to User Hand. We studied the impact on performance
when the user’s hand is in atypical conditions. We invited five par-
ticipants to interact with BioCase in scenarios such as dampening
hands with sweat or wearing thin wool gloves. Our system is robust
even under such conditions, with no significant decrease in authen-
tication performance. We also consider variances in users’ hand
interactions. Inconsistent touch pressures (i.e., stronger or weaker)
may alter the amount of user information the system may capture.
Similarly, different phone holding styles will change the degree of
physical contact with BioCase, which may have adverse effects on
performance. During data collection, participants were asked to
hold the device naturally. However, a more controlled study can be
conducted in future work to better understand the impact of these
factors.
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8 RELATED WORK

Traditional privacy protection favors text-based passwords [27],
graph-based swiping patterns [38], and image-based picture recog-
nition [7, 35], which requires memorization of long inputs (e.g., ran-
dom characters or pictures) and verifies possession of keys rather
than user identity. To ensure credentials are submitted by the user,
biometric-based schemes (e.g., face recognition [5, 8, 28], finger-
printing [40, 41, 43], iris scanning [2, 17, 31], retina patterns [26, 29])
use physical traits of the users for authentication. However, these
methods require dedicated hardware components for precise mea-
surements, limiting the devices they can be deployed on.

Fortunately, all smartphones possess microphones and speakers,
enabling acoustic sensing. Most acoustic-based user authentication
leverage voice characteristics for speaker recognition [3, 11, 14].
However, these features are vulnerable to impersonation or spoof-
ing attacks [16]. To minimize such risks, some works integrate bio-
metric and behavioral traits. LipPass [24] leverage build-in audio
devices on smartphones to extract unique behavioral characteristics
of speaking lips for user authentication. BreathPrint [4] uses the
audio signatures associated with breathing to identify users. Other
strategies include challenge-responses based on bodily reflections.
EchoPrint [45] uses inaudible acoustic signals to scan the user’s face
and authenticate features of the reflecting signals. However, this still
requires active user participation to aim speakers towards the face.
EchoLock [42] verifies the user based on palm biometrics (i.e., hand
geometry, holding strengths and holding styles) using structure-
borne sound propagation, which can be threatened by sophisticated
forgery attacks [9, 25]. EchoHand [39] combines acoustic sensing
with hand image recognition to improve robustness, but raises hard-
ware costs by requiring cameras. SonicPrint [32] detects the sound
of finger swipes to authenticate the user, which requires more user
effort than our simple finger touches. BioCase is most similar to
the latter category of techniques. Unlike prior works, we capture
both palm and finger information and demonstrate enhanced se-
curity and robustness due to our fusion of biometric-based and
knowledge-based credentials. We achieve a similar performance
while testing more participants and devices. We also more study
how the physical structures of smartphones can enhance authenti-
cation performance. We develop low-cost smartphone cases capable
of integrating biometric sensing with knowledge-based verification
via finger touch inputs.

9 CONCLUSION

We presented BioCase, an acoustic-based smartphone privacy pro-
tection system that authenticate users via finger touches. An inaudi-
ble acoustic challenge signal is used to stimulate the smartphone
structure and produce a user finger response. By embedding mini-
structures of specific shape and design into smartphone cases, we
can control characteristics of structure-borne sound propagation.
Mini-structure location imparts spatial diversity in the response, re-
vealing where the user touches. Mini-structure dimensions control
resonant frequency, imparting frequency diversity in the response
and enabling secret code inputs by the user. This enables our fusion
of biometric and knowledge-based credentials into a biometric-
hybrid signature for verification. We demonstrate that BioCase
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provides robustness against multiple attacks. Evaluations of multi-
ple use case scenarios indicate we can identify users with over 94%
TP rate and under 5% FP rate.
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