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ARTICLE INFO ABSTRACT
Keywords: Floating offshore wind turbines have arisen as a promising option to access massive wind energy resources in
Renewable energy deep water, where the existing fixed-type offshore wind turbine is no longer practical. However, due to the
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nature of the oceanic environmental conditions, large uncertainties are involved in the aerodynamic/hydrody-
namic calculations, which are coupled with those within the structures and materials. This not only threatens its
reliability but also drastically increases the manufacturing cost of floating offshore wind turbines. To understand
the uncertainty within the system and properly predict its reliability, first, the uncertainties involved in the
environments and subsystems need to be defined. Therefore, this paper aims to provide an extensive review of
the uncertainty models involved in the structural design of floating offshore wind turbines. The presented un-
certainties within the structures include those inherent in the material and geometrical/mechanical properties of
the wind turbine, floating structures, and mooring lines. The uncertainties within hydrodynamics include
empirical parameters and nonlinearities involved with the hydrodynamics modeling of the floaters. Within the
environmental loads, the parameter uncertainties as well as the randomness of wind and wave loads are pre-
sented. The uncertainties growing over time caused by fatigue, corrosion, and climate hazards are also discussed.
In addition, the correlation between the random variables, such as the correlation of the wind and wave, is
presented. Finally, the method of treating those uncertainties is discussed, including the probabilistic model
which incorporates the uncertainties and the correlations between the random variables, as well as modeling
errors.

generation. Because winds are stronger and steadier at seas than they are
on land, it is anticipated that offshore wind power installation occupies
increasing clean energy industry capacity [4]. In addition, offshore
power generation does not suffer from disadvantages such as space
availability, noise, and aesthetics. The generation capacity of offshore
wind turbines (OWTs) in Europe was nearly 22.1 GW by the end of 2019,
with a projection of 70 GW by the year 2030 [5]. Currently, the offshore
wind energy market is dominated by stationary (or fixed-type) founda-
tions including monopiles, jackets, tripods, and gravity-based [6]. The
stationary OWTs, however, require sites with relatively shallow water
depth (usually smaller than 50 m), where sites with abundant wind
conditions are inevitably limited [7]. In contrast, floating offshore wind
turbines (FOWTs) with mooring lines and anchors including Tension Leg
Platform (TLP), spar-buoy, semi-submersible, and barge-type could be
deployed in deep water (up to 1000 m), generating substantial untapped
wind energy [7,8]. The world’s first FOWTs (five spar-buoys turbines)
were installed in Scotland in 2017 [9]. According to the National

1. Introduction

There is a pressing need to shift toward renewable energy resources
to mitigate the catastrophic climate change effects resulting from the
increased greenhouse gas (GHG) emissions due to the burning of fossil
fuels. Among all, wind energy is the fastest-growing renewable source.
The global cumulative wind energy capacity reached 837 GW in the year
2022, exhibiting a year-on-year growth of 12% [1], yet wind energy
contributes to less than 4% of the total energy produced in the United
States [2]. According to the U.S. Department of Energy, wind energy
(both onshore and offshore) would contribute to about 35% of the U.S.
electricity demand (i.e., 404 GW) by 2050, avoiding 12.3 gigatonnes of
GHG emissions [3]. For a wind turbine to be utilized as an efficient
renewable energy source, it is necessary to secure continuous and effi-
cient energy production. From this point of view, it is essential to locate
a site that can maintain a constant or higher wind speed for wind power
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Abbreviations and nomenclature:

GHG Greenhouse Gas

OWT Offshore Wind Turbine

FOWT  Floating Offshore Wind Turbine

TLP Tension Leg Platform

IEC International Electrotechnical Commission

DNV Det Norske Veritas
ABS American Bureau of Shipping

LRFD Load and Resistance Factor Design
PSF Partial Safety Factor

PDF Probability Distribution Function
cov Coefficient of Variation

o Standard Deviation

GM Graphical Method

MLM Maximum Likelihood Method

LSM Least Square Method

EPFM  Energy Pattern Factor Method

MM Moment Method

MMLM Modified Maximum Likelihood Method
EM Empirical Method

EEM Equivalent Energy Method
EML Empirical Method of Lysen
EMJ Empirical Method of Justus

LTF Linear Wave Force Transfer Function

QTF Quadratic Sum and Difference Wave Force Transfer
Function

K Shape Parameter

c Scale Parameter

Y Location Parameter

u Mean value

Y Shape Parameter for Gamma Distribution

[ Rate Parameter for Gamma Distribution

K Concentration Parameter for Von Mises Distribution

Iy(K) Modified Bessel function

E[C(t)] Mean Capacity

D Demand

6, Initial Standard Deviation

o(t) Standard Deviation at Time t

X Random Vector

gX) Limit State Function

MPP Most Probable Point

B Reliability Index

FEA Finite Element Analysis

SHM Structural Health Monitoring

CM Condition Monitoring

WRF Weather Research and Forecasting

NWS National Weather Service

NOAA  National Oceanic and Atmospheric Administration

NCEP National Centers for Environmental Prediction

CFSRR  Climate Forecast System Reanalysis Reforecast

FAST Fatigue, Aerodynamics, Structures, and Turbulent
Simulation Tool

IAV Inter-annual Variability

FD Drag Force

FI Inertia Force

K-C Keulegan-Carpenter Number

H; Significant Wave Height

MSL Mean Sea Level

T, Wave Peak Period

To2 Conditional Mean Period

E Elastic Modulus

p Density

G Shear Modulus

v Poisson’s Ratio

" Soil Friction Angle Property Variability

f(Hy) Marginal Distribution of Significant Wave Height

f(To2|H;) Distribution of the Mean Zero-crossing Period Conditional

on Significant Wave Height
f(Hs,To2) Joint PDF of Significant Wave Height and Mean Wave

Period

Vy Mean wind speed at various heights

Vao Mean wind speed at the height of 2 = 10 m

a Wind shear exponent

Vy85 Sub-surface current speeds at a position of z below sea level

VzNS Near-surface current speed at a position of z below sea
level

FORM  First-Order Reliability Method

IFORM Inverse First-Order Reliability Method

SORM  Second Order Reliability Method

RSM Response Surface Method

MCS Monte Carlo Simulation

MVFOSM Mean Value First Order Second Moment

EGRA Efficient Global Reliability Analysis

AK-MCS Active Learning Reliability Method Combining Kriging and
Monte Carlo Simulation

ULS Ultimate Limit State

FLS Fatigue Limit State

SLS Serviceability Limit State
ALS Accidental Limit State

Renewable Energy Laboratory, the total potential production capacity of
OWTs is double the United States’ annual power consumption (4000
TWh per year), where 42% of the potential power might be generated
from fixed-type turbines and the remaining 58% could come from
FOWTSs. Tapping into this lucrative market of $70 billion by 2030,
FOWTs are under extensive research and development worldwide. It is
worth noting that due to technology and cost constraints, FOWTs are
still in their infancy [4]. It is estimated that FOWTs could only generate
between 4.0 GW and 5.0 GW of energy in Europe by 2030 [10]. For rapid
development, a good understanding of inherent engineering challenges
associated with FOWTs is therefore needed.

As FOWTs are incrementally deployed to deep waters with an
increased rotor diameter and tower height, they could inevitably expe-
rience more significant dynamic motions and responses throughout the
course of their service life [11]. The highly nonlinear dynamic motions
and the response of FOWTs due to the coupled effects of aerodynamics,

hydrodynamics, mooring dynamics, etc. make their design much more
complex than onshore and fixed-type OWTs. In the meantime, severe
environmental conditions (e.g., wave, current, and wind loads) and their
significant uncertainties in the deeper ocean aggravate the design
complexity of FOWTs. Also, the effects of fatigue reliability on the FOWT
structures should not be overlooked [12]. In the period of 2000-2020,
human errors (e.g., design deficiency and fabrication/construction de-
fects) and inadequate safety margins to accommodate uncertainties
were the main reasons for wind turbine failures [13]. Traditionally, the
available international design standards and codes consider load factors,
such as partial safety factors (PSFs) and Load and Resistance Factor
Design (LRFD), to account for uncertainties in a deterministic manner
under various loading conditions. However, this design simplification
using existing LRFD or PSFs may lead to over-design with undesired
expenses in most cases [14]. Besides, the applicability of PSFs for FOWT
structures might be questionable because the uncertainties arise from
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the continuous cyclic hydrodynamic and aerodynamic loads, resulting in
nonlinear behaviors [15]. An alternative approach is to design FOWT
structures considering both aleatory and epistemic uncertainties in
variables in a stochastic manner with proper types of distribution
functions. Non-deterministic (probabilistic) structural reliability anal-
ysis might be used to properly estimate the target reliability index to be
integrated into the conventional design codes, achieving certain safety
levels in terms of fatigue and ultimate failure criteria, in addition to
inspection/maintenance planning. Yet, the reliability analysis is merely
referred to in this context [16,17]. Compared with the deterministic
approach, this method may take into account the random nature of the
sea state, allowing the identification of the worst conditions which are
essential for the reliable design of FOWTs. However, very limited studies
are available that extensively account for FOWT environmental, mate-
rial, and geometric stochastic uncertainties [18,19]. Therefore, the
objective of this work is to summarize and quantify various uncertainties
involved in the design of FOWTs such as nonlinear environmental
loadings, turbine blades, turbine material, soil properties, fatigue, etc.,
which significantly affect the FOWT reliability. The findings may be
used to calibrate the existing load factors or certain loading conditions,
avoiding their generalization which is a key step to increasing the reli-
ability of FOWTs.

2. Uncertainties & uncertainty models

Reliable power generation can significantly reduce the cost of energy
for FOWTs. Nevertheless, there are still many sources of uncertainties in
the FOWT industry because of the lack of knowledge, the nature of the
nonlinear dynamic system, lacking measurement capability, etc. Toft
and Sgrensen [20] categorized sources of uncertainties related to wind
turbine into four groups: 1) physical, 2) model, 3) statistical, and 4)
measurement uncertainties. Uncertainties in probabilistic modeling can
be categorized into two types: epistemic uncertainty (reducible) and
aleatory uncertainty (irreducible). Epistemic uncertainties arise from a
lack of knowledge, our decision to simplify matters, measurement er-
rors, and a small number of observations [21]. Aleatory uncertainties
are inherent within the nature of the system, which therefore cannot be
reduced. These uncertainties can often be modeled in the form of
random variables that express environmental loads (aerodynamic and
hydrodynamic loads), geometrical and mechanical properties within the
structures, soil properties, and growing uncertainties over time. To
improve the reliability, knowledge of the types of probability distribu-
tion and characteristic values of the random variables (i.e., how these
uncertainties propagate through the models) is vital. Non-probabilistic
uncertainty models, such as fuzzy logic, interval analysis, possibility
theory, and belief functions, provide an alternative approach to quan-
tifying uncertainty, especially in cases where limited or incomplete in-
formation is available [22]. These models enable the representation and
reasoning of uncertainty without relying on explicit probability distri-
butions, making them useful tools in addressing epistemic uncertainty in
complex systems or when dealing with sparse data. It should be noted
that epistemic uncertainties can be reduced throughout the design
process, data collection, and measurements.

This section provides a comprehensive review of various uncertainty
models and/or variability quantified in existing literatures. In Section
2.1, we discuss the parameter uncertainties within the environmental
loads, which will determine the uncertainties of structural demands of
FOWTs. Section 2.2 presents those uncertainties inherent in the struc-
tural capacity of FOWTs, which includes the material and structures. We
also discuss the uncertainties within the geotechnical properties in
Section 2.3, which may indirectly impact both of the structural capacity
and demand of the system. Section 2.4 presents temporal uncertainty
considerations and Section 2.5 discuss the modeling uncertainties. The
reliability methods and examples are provided in Sections 3.1 and 3.2,
respectively, where the structural capacity and demand are combined to
determine the structural reliability of FOWTs.
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2.1. Environmental load

The design of FOWTs must account for the various environmental
loads such as aerodynamic loads on the rotor and tower, the hydrody-
namic forces on the mooring system and floating platform, as well as the
coupling between them. These will determine the structural demands of
FOWTs. Therefore, an accurate prediction of environmental loads
including various stochastic wind, wave, and current conditions is crit-
ical. This section presents extensive literature of the various research
that has considered the uncertainties of the environmental loads in the
development of wind turbines. The summary tables of variabilities and
uncertainty models are provided over the text and discussions are placed
at the end of each section.

It noted that variability and uncertainty are two distinct concepts.
The term variability pertains to the inherent variation present within the
modeled physical systems, or the environment being considered, which
is described by a distributed quantity that encompasses a range of po-
tential values. Some literature characterizes this variability as one of the
aleatory uncertainties which are irreducible. On the other hand, the
uncertainty represents a possible limitation in any stage or aspect of the
modeling process arising from a lack of knowledge. This can typically be
described in the form of a probability distribution, while there are non-
probabilistic uncertainties discussed in the previous section. In this
paper, the term “uncertainties” specifically refers to epistemic
uncertainties.

2.1.1. Wind

Wind characteristics are parameters that are used to describe the
wind such as wind speed and profile, turbulence intensity, dynamic
wind spectrum, and wind direction. Due to interannual variability and
inaccurate measurements (e.g., sensor inaccuracy, human error, and
physical or atmospheric interference), wind characteristics are highly
uncertain. Prior to a wind turbine project execution, details of these
stochastic variables (available at the proposed site) must be obtained
and analyzed for the viability/suitability of the proposed site for the
turbine design and project. For the design of wind turbines, the long-
term wind conditions that are dominated by the mean and standard
deviation of the wind speed, serve as a representation of the wind
climate. The standard deviation (¢) of annual mean wind speeds to the
long-term mean value is often used to illustrate the Inter-annual vari-
ability (IAV). Therefore, it is often expressed as a percentage of the
mean. The standard deviation value of IAV is typically assumed as 6% of
the annual average wind speed [23,24]. This indicates that the
long-term mean wind speeds annual variability at various ground sites
are comparable and might reasonably be considered to be a normal
distribution with ¢ = 6%. This assumption plays a crucial part in
assessing the uncertainty in predicting the wind farm. Nevertheless, the
assumption derives from examining wind speeds at 10 m above the
ground level [23,25,26], employing data either from a small number of
in-situ monitoring stations or from reanalysis output of a relatively
coarse resolution [27]. Pryor et al. [28] developed numerical simula-
tions using the Weather Research and Forecasting (WRF) model in order
to investigate IAVs with the mean wind speed near the typical wind
turbine hub height. They concluded that the annual mean wind speed
variability at a height of a typical wind turbine hub in the eastern USA
was less than a 6% standard deviation. Table 1 summarizes some liter-
ature data on the IAV of the wind climates.

Wind data usually consists of thousands of measurements over an
extended period (e.g., 20-50 years) for the wind direction and speed.
Fig. 1(a) through Fig. 1(c) represents a clustered wind direction distri-
bution with 12, 32, and 360 direction sectors, respectively, in the north
sea (80 km away from the Sylt island in Germany) for a period of 8 years
(2010-2017) [31]. While increasing the number of wind sectors may
enhance the accuracy of the model, it is important to exercise caution as
excessive number of sectors can lead to overfitting. Fig. 2 plots the wind
speed data fitted by a Weibull distribution for a wind direction sector
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Table 1
Summary of the wind climates inter-annual variability [28].
Study  Descriptor Data type Location No. of Data Assumption Magnitude
sites duration
[28] Annual mean wind WRF output at 12 by 12km  Eastern North - 15 years Median & interquantile range 5.20% &
speed (m/s) grid cells America 5.50%
[26] Observations at 10 m Ireland - 13 years Gaussian distribution 4.40%—
6.90%
[25] Spatial composites of 10 m UK - 29 years Gaussian distribution 3.10%—
observations 7.00%
[29] NARR interpolated to 80 m - - 36 years Max %increase or %decrease in wind speed 5.00%—
anomaly from 35-year mean 40.0%
[30] Observations at 10 m Scotland - 13-43 Dispersion is divided by mean from one yearto ~ 10.0%—
years the next year 15.0%
[27] Reanalysis - - 41 years Gaussian distribution 8.00%—
12.0%
[23] Observations at 10 m - 30 - Gaussian distribution ~6.00%
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Fig. 1. Wind direction measurements at a 100 m height in the North Sea between 2010 and 2018 clustered in wind direction sectors of (a) 12, (b) 32, and (c)
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Fig. 2. Wind direction Weibull distribution in the North Sea between 2010 and
2018 for the wind direction sector [225°, 255°) facing southwest [31].

between 225 °-255 ° using the maximum likelihood estimation method
[31]. To simulate a wind farm, every sector of the wind direction and the
corresponding wind speed should be taken into account. It is worth
noting that in an offshore wind farm, the upstream turbines decelerate
the incoming wind flow (because of the viscous interaction along the
blades) and the wake effect is generated which is responsible for the
wind speed reduction for the subsequent FOWTs. Various models have
been constructed to consider the wake effect including the Park wake

model, linearized  Reynolds-average  Navier-Stokes  model,
Eddy-viscosity wake model, large Eddy simulations, and deep-array
wake model [32-36].

Different probability distribution functions (PDFs) were used in the
literature to fit the wind speed data. Ouarda et al. [37] investigated the
suitability of one-component parametric distributions. They concluded
that Generalized Gamma and Kappa distribution functions provided the
best fit for estimating the wind speed among others. Previous research
exhibited that Weibull distribution might be utilized to adequately
represent the wind speed probability distribution for wind energy
forecasting. International Electrotechnical Commission (IEC) [38] sug-
gested using Rayleigh distribution for predicting wind speed data
analysis and annual energy production. Rayleigh distribution is a
two-parameter (2-p) Weibull distribution with the shape factor (x) of 2.
However, Rayleigh distribution may lead to incorrect results [39].
Table 2 summarizes wind component’s variability along with the most
widely used distributions which include two- or three-parameter dis-
tribution functions in the literature. It is noteworthy to acknowledge
that various studies utilized different equations and methods to derive
the parameters indicated as P1 to P3 in Table 2. For instance, in Refs.
[40,41], the 2-parameter Weibull distribution parameters were obtained
through distinct approaches. In Ref. [40], the Method of Moments was
employed, while the empirical method of Lysen was utilized in Ref. [41].
For comparison purposes, in addition to data related to offshore wind
turbines (herein, shallow-water for depths less than 60 m [40,42-50]
and deep-water for depths greater than 60 m [14,48,51-59]), onshore
wind turbine data is also included [37,40,41,48,60-67]. In order to
facilitate a direct comparison Fig. 3(a) shows the boxplots of the mean
wind speed at a height of 10 m (as indicated in the last column of
Table 2) for deep-water, shallow-water, and on-shore wind turbines. To
achieve this comparison, it is necessary to extrapolate the mean wind
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Table 2
Uncertainty models of wind characteristics in literature.
Study Variable Original data Mean wind speed at
. B b - 10 m height (m/s)
Distribution type P1 P2 P3 Reference Mean at cov
height (m) reference height
[14] Wind speed (m/s)  Normal 12 0.6 - 90 12& 14 0.05 8.82 & 10.29
[56] 2-p Weibull 2.66 12.8 - 10 11.4 0.4 11.4
[59] 2-p Weibull 2.56 11.04 - 10 9.8 0.42 9.8
Lognormal 2.18 0.48 - 10 2.18 0.22 2.18
Gamma 5.13 0.52 - 10 9.56 0.45 9.56
[40] 2-p Weibull 1.98 2.86 - 10 2.79 0.48 2.79
2 5.5 - 40 5.31 0.49 4.37
2.01 6.27 - 50 6.05 0.49 4.83
2.03 7.6 - 70 7.33 0.49 5.58
2.04 8.25 - 80 7.96 0.49 5.95
1.94 7.31 - 10 6.48 0.54 6.48
2.17 9.19 - 40 8.14 0.49 6.70
2.22 9.56 - 55 8.47 0.48 6.67
2.24 9.66 - 70 8.56 0.48 6.52
2.27 10.16 - 80 9 0.47 6.73
[41] 2-p Weibull —-2.05 3.18 - 20 2.81 0.52 2.55
2.10 3.77 - 40 3.34 0.5 2.75
211 4.16 - 60 3.73 0.5 2.90
211 4.47 - 80 3.96 0.5 2.96
[45, 3-p Weibull 9.49 2.19 2.28 100 - - -
46]
[57] - - - - 90 49 - 36.02
- - - 90 23.2 - 17.06
[53] Generalized Extreme - - — 10 8.23 0.44 8.23
Value (GEV) - - - 10 7.62 0.46 7.62
- - - 10 8.28 0.46 8.28
- - - 10 7.14 0.45 7.14
[51] 2-p Weibull - - - 10 11.4 - 11.4
- - - 10 21 - 21
[48] 2-p Weibull 2.36 6.7 - 10 5.91 0.48 5.91
2.49 7.81 - 10 6.94 0.43 6.94
2.45 8.09 - 10 7.18 0.43 7.18
[67] 3-p Weibull 2.097 5.104 —1.269 10 4.59 0.51 4.59
2-p Weibull 1.655 4.195 - 10 3.71 0.63 3.71
[63] 2-p Weibull 2.5 1.495 - 10 1.32 0.43 1.32
3-p Weibull 3.499 1.969 —0.438 10 1.32 0.32 1.32
Gamma 3.941 0.338 - 10 1.29 0.51 1.29
Lognormal 0.153 0.592 - 10 2.18 0.48 2.18
[58] 2-p Weibull 2.12 9.77 - 90 8.64 0.5 6.35
213 9.5 - 90 8.41 0.49 6.18
21 8.38 - 920 7.42 0.5 5.45
[37] Gamma - - - 10 2.47-4.28 0.53-0.70 2.47-4.28
- - - 30 3.85 0.52 3.30
- - - 40 4.06-5.61 0.47-0.50 3.34-4.62
- - - 50 4.37 0.49 3.49
- - - 60 5.67 0.48 4.41
- - - 80 5.8 0.46 4.33
[54] Maximum Entropy 1.98 9.12 0.9 10 32.02 - 32.02
[47] 2-p Weibull 1.94 6.89 - 80 6.11 0.52 4.57
2 5.35 - 80 4.75 0.53 3.55
211 6.33 - 80 5.61 0.5 4.19
[49] 2-p Weibull 1.92 8.03 - 97.35 7.12 0.55 5.18
1.94 6.86 - 26.31 6.08 0.54 5.31
[60] 2-p Weibull 1.08 1.80 - 10 2.32 0.76 2.32
1.11 1.82 - 10 2.51 0.76 2.51
0.98 1.23 - 10 1.78 0.764 1.78
0.96 1.57 - 10 2.18 0.90 2.18
[55] Lognormal 2.8 0.16 - 10 16.71 0.16 16.71
2.79 0.17 - 10 16.6 0.17 16.6
2.79 0.16 - 10 16.42 0.16 16.42
[64] 2-p Weibull 1.94 8.56 - 10 7.57 0.546 7.57
2.12 7.77 - 10 6.88 0.496 6.88
1.74 8.29 - 10 7.39 0.593 7.39
[65] 2-p Weibull 3.05 11.13 - 10 (Site A) 9.94 0.358 9.94
2.58 9.21 - 8.18 0.416 8.18
2.27 7.53 - 6.67 0.467 6.67
6.62 11.415 - 10 (Site B) 10.65 0.177 10.65
3.85 9.895 - 11.06 0.29 11.06
2.665 7.851 - 6.98 0.4 6.98
[66] 2-p Weibull 2.02 4.81 - 10 4.243 0.53 4.243
[62] 2-p Weibull 2.55 3.03 - 10 2.7 0.42 2.7
[43] 2-p Weibull 2.08 10.61 - 83.9 9.29 - 6.9

(continued on next page)
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Table 2 (continued)

Study Variable Original data Mean wind speed at
s ctribit a b c 10 m height (m/s)
Distribution type P1 P2 P3 Reference Mean at cov
height (m) reference height
2.04 11.68 - 83.9 10.05 - 7.46
[45, Wind direction Von Mises Mixture 0.277 1.02 111 100 - - -
46] © 0.433 2.02 227 100 - - -
0.29 1.73 324 100 - - -
[58]1 - [-0.5:0.12] 0.38-2.62 90 - - -
- [-0.42:0.27] 0.66-88 90 - - -
- [-0.02:0.38] 1.08-3.22 90 - - -
[61] 0.106 2.796 - 10 (Site A) 41.94 - -
0.577 12.067 - 83.37 - -
0.189 1.034 - 223.0 - -
0.074 30.464 - 249.4 - -
0.359 7.406 - 67.72 - -
0.510 40.284 - 76.03 - -
0.079 5.106 - 170.2 - -
0.029 5.269 - 266.1 - -
0.024 16.656 - 359.3 - -
0.366 7.817 - 10 (Site B) 0.000 - -
0.209 51.813 - 20.46 - -
0.086 53.947 - 43.43 - -
0.059 4.928 - 74.43 - -
0.149 3.386 - 201.2 - -
0.097 14.489 - 292.8 - -
0.860 34.416 - 17.13 - -
0.045 144.385 - 42.80 - -
0.027 3.002 - 57.52 - -
0.013 44.976 - 176.5 - -
0.055 1.163 - 325.0 - -
[52] Thrust force Trunc. Normal 781 78.1 (static) - 70.15 (from 781 0.1 -
(MN) (static) mudline)
197 39.4 - 197 0.2 -
(fatigue) (fatigue)
[57] - - - - - 173 0.37 -
[44] Normal 0.129 0.028 - 17.73 (from 0.13 0.22 -
mudline)
[68] Wind Pressure Gumbel - - - At rotor height 538 0.23 -
(kPa)
[42] Turbulence Weibull & Gamma - - - 10 29.2 (for 2 m/s) - -
Intensity (%) - - - 10 20.4 (for 4 m/s) - -
- - - 10 17.5 (for 6 m/s) - -
- - - 10 16 (for 8 m/s) - -
- - - 10 15.2 (for 10 m/ - -
s)
- - - 10 14.6 (for 12 m/ - -
s)
- - - 10 14.2 (for 14 m/ - -
s)
- - - 10 13.9 (for 16 m/ - -
s)
- - - 10 13.6 (for 18 m/ - -
s)
- - - 10 13.4 (for 20 m/ - -
s)
- - - 10 13.3 (for 22 m/ - -
s)
- - - 10 13.1 (for 24 m/ - -
s)
- - - 10 13.0 (for 26 m/ - -
s)
[50] 3-p Weibull 0.009 0.134 0.534 90 18 (for 16 m/s) 0.18 -
0.01 0.14 0.484 90 12.4 (for 20 m/ 0.124 -
s)
0.009 0.141 0.565 90 14.4 (for 20 m/ 0.144 -
s)
0.01 0.139 0.638 90 16.5 (for 20 m/ 0.165 -
s)
0.009 0.145 0.59 90 12 (for 24 m/s) 0.12 -
[68] Lognormal - - — Rotor height 5 0.05 -

@ Parameter 1: shape factor for Weibull distribution, mean for Lognormal distribution, shape parameter for Gamma distribution, weight parameter for Von Mises
distribution.

b parameter 2: scale factor for Weibull distribution, standard deviation for Lognormal distribution, rate parameter for Gamma distribution, concentration parameter
for Von Mises distribution.

¢ Parameter 3: displacement factor in 3-p Weibull distribution.
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Fig. 3. Boxplots for different wind turbine types: (a) mean wind speed, (b) mean wind speed coefficient of variation, (c) mean wind speed standard deviation.

speeds measured at different heights in various studies to a consistent
height (herein, 10 m). This extrapolation was accomplished using the
following well-established equation [38]:

v, =V, X (£> (€D)]
20

where v, represents the mean wind speed at various reference heights,
Vz, is the mean wind speed at the height of zp = 10 m, and « is the wind
shear exponent which is commonly accepted as 0.14 [42,43]. The box-
plots show minimum and maximum values, first and third quartiles,
medians, and outliers. It is noteworthy to mention that the exceptionally
high mean wind speed of 36.0 m/s pertains to storm conditions, spe-
cifically followed by the responses to 50-year extreme values according
to the IEC design standards, North Sea statistics, and Portugal’s coastal
storm data [57]. Fig. 3(b) and (c) show the boxplots of the coefficients of
variations (COV; the ratio of the standard deviation to the mean value)
and standard deviation of the mean wind speed data, respectively. The
median, minimum and maximum, and first and third quartiles of the
wind speed COV at deep water exhibited lower values than both shallow
water and onshore wind turbines, while the standard deviation values
exhibit different trends. Overall, Fig. 3 indicates stronger and steadier
winds as turbines are placed farther from the shore.

Through extensive literature data analysis, it is found that the 2-p
Weibull distribution is the most prevalent distribution function for
estimating wind speed [62,66,67]. Nevertheless, in meteorological
conditions that provide high percentages of null wind speed, a 3-p
Weibull distribution function is recommended over a 2-p Weibull dis-
tribution in general engineering practices in the industry. The suitability
of a 3-p Weibull distribution and its preference over a 2-p Weibull dis-
tribution was also outlined by several studies [69,70].

The most common methods for determining the Weibull parameters
include the maximum likelihood method (MLM), graphical method
(GM), and least square method (LSM). Yaniktepe et al. [60] studied the
wind properties and potential energy production in Osmaniye (east of
the Mediterranean Sea), Turkey. They employed Rayleigh and 2-p
Weibull distributions for 44 months wind speed data collected fro
2008 to 2011. The graphical method was used for determining the
Weibull parameters (k and c). Altunkaynak et al. [64] employed
perturbation theory to formulate wind power expectations and statisti-
cal parameters (coefficient of variation and standard deviation), which
followed a Weibull distribution. Keyhani et al. [66] assessed the po-
tential of wind energy using the wind speed statistical data in Tehran,
Iran, for a period of eleven years (1995-2005). Weibull shape and scale
parameters were obtained on a yearly basis. Other techniques for esti-
mating Weibull parameters were also compared for the wind data in
Brazil and Pakistan [41,65]. Costa Rocha et al. [65] used the wind speed
data of two cities in the northeast of Brazil from 2004 to 2006 in order to
assess the effectiveness of seven numerical techniques in determining
Weibull parameters: 1) maximum likelihood method (MLM), 2) modi-
fied maximum likelihood method (MMLM), 3) graphical method (GM),

4) moment method (MM), 5) energy pattern factor method (EPFM), 6)
equivalent energy method (EEM), and 7) empirical method (EM). They
concluded that the EEM was the most efficient method, while GM and
EPFM were the least efficient techniques for fitting the wind speed data
using Weibull distribution. In another study, Saeed et al. [41] used two
years (2016-2018) of wind speed data at four different heights from sea
level to assess the wind energy potential in North of Pakistan. Six nu-
merical methods including Empirical method of Justus (EMJ), Empirical
method of Lysen (EML), modified maximum likelihood method
(MMLM), Graphical method (GM), Method of Moments (MoM), and
Energy pattern factor method (EPFM) were used for determining the
Weibull parameters. Among these methods, MMLM was the most effi-
cient technique, while the GM was the least effective to fit the wind data.
In another comprehensive study, the 2-p Weibull distribution exhibited
the best fit, performing better than some of the 3-p distribution functions
such as the 3-p Lognormal and the Generalized Extreme Value [37]. On
the other hand, Pobocikova et al. [63] reported that 3-p Weibull dis-
tribution fits the wind speed data best, and 2-p Weibull distribution is
the second best distribution function compared to the 2-p Gamma and
2-p Lognormal distributions.

The standard deviation of turbulence intensity significantly affects
the wind excitation spectrum more than the horizontal average wind
speed does. Therefore, when evaluating the safety of FOWTs under
horizontal random excitation, the standard deviation of turbulence in-
tensity must be considered. To obtain the wind load distribution, design
wind, and turbulence intensity were used and a 1-h thrust force to the
hub was estimated [44]. The Kaimal spectrum was used to find the
turbulent wind. Horn and Jensen [71] considered the wind component’s
phase angle as a stochastic variable with a normal distribution. To
reduce the computational burden, the environmental contour method is
widely used for long-term design loads of FOWT [72,73]. To this end,
the marginal distribution of the environment is required to construct the
environmental contour. While this study acknowledges the existence of
numerous contour methods, it is beyond the scope of the current work to
provide an in-depth analysis of these techniques. For a comprehensive
understanding and thorough comparisons of various environmental
contour techniques, Haselsteiner et al. [74] offers a detailed examina-
tion, providing valuable insights and analyses. Li and Zhang [59]
compared the three most prevalent parametric distributions for envi-
ronmental parameters (Gamma, Lognormal, and Weibull distributions).
They used MLE to obtain the distribution parameters, where the best fit
was recognized by having the highest log-likelihood value. They re-
ported that the Weibull distribution with the largest log-likelihood value
was suitable for wind speed [59]. In a study conducted by Carta et al.
[61] data on wind direction from several stations in the Canary Islands
(Spain) was used. The distribution of directional wind speed was rep-
resented by a finite mixture of Von Mises probability density function.
They suggested using a mixture of two Von Mises probability functions
for the Canary Islands. The authors found that the maximum number (N)
of probability densities exceeding 6 exhibited a dramatic decrease in the
suitability of the distribution function.
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In general, the wind speeds, directions, and turbulence intensities are
found to be inherent uncertainties that significantly impact the reli-
ability of FOWT structures. The uncertainty models representing these
parameters in Table 2 present the COV level between 0.2 and 0.7 with a
median of 0.43 for the wind speed in deep water, and COV between 0.2
and 0.4 with a median of 0.24 in shallow water. The most of literature
provides 2-p & 3-p Weibull distribution as the best representation of the
model based on the data. However, in the stage of reliability analyses of
FOWT, it is also recommended to use the Lognormal distribution due to
its simplicity. The wind direction can be considered as a variability
instead of an uncertainty. Therefore, it is reasonable that COVs are not
reported as commonly as wind speed. However, if uncertainties are to be
modeled, one can also refer to an industrial standard where +15° of
variation is recommended to consider based on the given direction [75].
The turbulence intensities can be considered as variability or un-
certainties depending on the purpose of the study.

2.1.2. Wave

Although both FOWTs and fixed-type OWTs are subject to significant
wave-induced motions, the non-stationary structural properties of
FOWTs are largely affected by the uncertainties of the wave excitations.
The undulatory phenomena of wind-induced waves disturb the surface
of the sea. They are produced by wind friction at the sea-atmosphere
interface (wind sea) and spread over long distances (swell) by being
transformed through various mechanisms. These transformations in
deep water are due to the white capping and viscosity effect of energy
dissipation, wind energy addition, and energy transmission to short
frequencies. Therefore, wind growth, white capping, and quadruplets
are the most dominant processes. Waves with small amplitudes of deep
water can be expressed relatively simply and accurately at the sea sur-
face height or elevation. The wave’s field is better described by the sea
state using statistical parameters such as peak period, peak enhance-
ment factor, and significant wave height. The parameters of the model
for wind sea waves (young waves) are dependent on the wind speed
duration, wind speed phasing, and fetch length. Also, it is recommended
that a normal distribution could be used to describe the relative direc-
tion between the young waves and wind [14,46].

The uncertainties in hydrodynamic parameters (e.g., drag coeffi-
cient) associated with wave modeling make it difficult to accurately
predict the response of FOWTs. Taylor et al. [19] and Ruzzo et al. [76]
introduced constrained quasi-deterministic wave models to consider the
random nature of the oceanic waves. To predict the hydrodynamic loads
due to waves and floater motions, a hybrid analysis method is widely
used which is combining 3D diffraction/radiation theory and the
semi-empirical formula Morison equation [77,78]. For diffraction
dominant floating structure members, hydrodynamic loads such as ra-
diation damping, added mass, quadratic sum and difference wave force
transfer function (QTFs), and linear wave force transfer function (LTFs)
are estimated by using 3D diffraction/radiation theory, and viscous
loads are obtained using the Morison equation. On the other hand, hy-
drodynamic forces on the slender members of a floating structure are
estimated by the Morison equation.

In the Morison equation, hydrodynamic forces consist of two com-
ponents: drag force (FD) which is attributed to the inertia force (FI), and
water particle velocity as a result of the water particle acceleration. The
drag coefficient in the Morison equation is characterized by the
Keulegan-Carpenter (K-C) number and Reynolds number. In general
engineering practices in the industry, a constant drag coefficient is used
for the analysis. Therefore, there are limitations to analyzing drag
loading in random sea states. According to previous research [79-82],
uncertainties inherent in Morison’s equation are crucially important and
cannot be neglected. In addition, 3D diffraction theory has been devel-
oped up to 2nd-order accuracy. To overcome theoretical limitations,
Computational Fluid Dynamics (CFD) simulations and scaled model
tests are widely used for extracting highly non-linear hydrodynamic
loads. However, CFD simulations are still too expensive to replace the
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conventional design analysis tools, and the scaled model tests have
inherent scale effects. Therefore, there are uncertainties and limitations
in calculating highly non-linear waves and motions-induced loading on
the floating structure.

Some researchers recommended environmental parameters like peak
period and significant wave height with their relevant probability dis-
tribution to be considered for the reliability analysis of FOWT [11,45,
59]. Also, the influence of wave load on the reliability assessment of
wind turbines with appropriate distribution and limit state functions has
been taken into account as stochastic parameters in the design process
[44,52]. The wave uncertainty can also be expressed as a distribution
combined with Lognormal and Weibull distributions [83] for fatigue
evaluation. To limit the number of random variables in an irregular sea,
wave amplitudes can often be defined as a deterministic variable [71],
while it can also be modeled as a random variable with Rayleigh dis-
tribution. The phase angles can be modeled with uniform or normal
distribution. Table 3 summarizes wave component variabilities.

In addition, the presence of abnormal waves, such as solitary waves,
freak waves, and wave groups, poses significant challenges for FOWTs
[89,90]. These waves can lead to structural damage, reduced opera-
tional lifespan, and increased fatigue. Advanced modeling and fore-
casting systems are being developed to better understand and predict
these waves, enabling engineers to enhance turbine design and opera-
tional strategies. Ongoing research focuses on improving turbine sur-
vivability through optimized structural design, adaptive control
systems, and real-time monitoring [91-93]. Mitigating uncertainties
related to abnormal waves enhances turbine performance, safety, and
the growth of offshore wind energy.

The responses of FOWTs cannot be estimated by a single met-ocean
parameter. Consequently, various models have been proposed to fit the
joint distribution of significant wave height (H;) and conditional mean
period (Toz). For accurate estimation of the long-term probability of sea
state occurrences, it is critical to have a continuous dataset and fit it with
an appropriate probabilistic model. Typically, joint probability theorem
is employed for the conditional modeling using Eq. (2).

f(Hy, Tox) =f(H,) x f (T2 |Hy) 2

where f(H;) is the marginal distribution of significant wave height,
f(To2|Hs) is the distribution of the mean zero-crossing period conditional
on significant wave height, and f(H;, To2) denotes the joint PDF of the
mean wave period and significant wave height. The joint distribution in
Eq. (2) can be obtained using both peak and mean wave periods. It
should be noted that wind-wave parameter correlations play a key role
in determining the joint probability distribution. A multivariate distri-
bution or copula function can be used for the joint modeling of wave
parameters and wind speed to capture their correlations [94,95]. By
incorporating wind speed into the conditional modeling, f(H;, To2) can
be expanded to a multivariate distribution by introducing wind speed as
an additional variable. The Weibull distribution function is employed to
fit the marginal significant wave height data [11,96-100]. The accuracy
of the extrapolated wave height using the environmental contour
method is dependent on the quality and length of the data. When using
calibrated hindcast predictive models, the statistical, model, and mea-
surement errors introduce uncertainties within the design conditions
[101]. The wave period is often modeled using the Lognormal distri-
bution function. The mean () and standard deviation (¢) of the
Lognormal distribution are employed for wave period prediction and is
formulated in Eq. (3) and Eq. (4), respectively [11].

u,(Hy) =ay + axH® 3)

6,(H,) = b, + bye™™ @

FOWTSs’ heave natural period is in the wave frequency range, which
is influenced by the uncertainties in the wave-breaking phenomenon.
The wave-breaking limit depends on the physical and environmental



M. Ramezani et al.

Renewable and Sustainable Energy Reviews 185 (2023) 113610

Table 3
Uncertainty models for wave properties at both shallow and deep-water sites.
Study Variable Distribution P1* p2’ p3¢ Mean cov
[141¢ Significant wave height (m) Normal 8.52 0.43 - 8.52 0.05
[84] 3-p Weibull 2.26 2.77 0.03 2.44 0.47
[591¢ Gamma 5.54 1.8 - 3.08 0.24
2-p Weibull 2.47 3.48 - 3.09 0.43
Lognormal - - - 1.03 0.43
[45,46] 3-p Weibull 1.56 1.43 —0.09 - -
3-p Weibull 0.64 1.32 0.33 - -
[51] Gumbel - - - 15.6 -
_ _ _ 95 _
[85] Normal 2 0.25 - 2 0.13
[861¢ 3-p Weibull 1.46 0.87 0.26 1.04 0.57
Lognormal —0.09 0.49 - 1.04 0.57
8714 Lognormal - — — 3.48 0.59
[88] 3-p Weibull 0.89 1.47 2.77 - -
[55]d 3-p Weibull 1.47 2.46 4 6.23 0.25
1.42 2.36 4 6.15 0.25
1.21 2.08 4 5.95 0.27
[83] 2-p Weibull - - - 2.7 0.26
- - - 2.7 0.1
- - - 2.7 0.08
[83] 2-p Weibull 2 4.58 - 4.06 0.53
1.25 2.03 - 1.9 0.8
[141¢ Wave period (s) Normal 12.45 0.62 - 12.5 0.05
[84] Lognormal 2.07 0.39 - 2.07 0.19
[59]d Lognormal 2.37 0.24 - 2.37 0.1
Gamma 18.4 1.68 - 10.9 0.23
2-p Weibull 4.34 11.93 - 10.9 0.26
[45,46] Lognormal - - - 1.61 0.22
[51] Lognormal - - — 2.03 0.14
Gumbel - - - 11.06 -
- - - 6.93 -
[58] Gamma 0.63-167 0.03-0.30 - 21-556.6 0.07
0.78-126 0.04-0.52 - 19.5-242 0.09
1.22-116 0.03-0.16 - 40.6-725 0.09
[861¢ Lognormal 1.69 0.19 - 5.53 0.2
3-p Weibull 2.51 2.9 2.96 5.53 0.2
[871° Lognormal - - - 10.5 0.24
[88] Lognormal 2.26 0.54 - 2.54 0.05
[55]d Lognormal 11.5 1.37 — 11.5 0.12
11.5 1.26 - 11.5 0.11
11.2 1.34 - 11.2 0.12
[83] Lognormal 21.7 — — 21.7 N/A
5.81 - 5.81 N/A
[45,46] Relative wave-wind direction Trunc. Normal - - - 0.24 71.8
[85] Mean sea level (m) Normal 31 3.5 - 31 0.11

@ Parameter 1: shape factor for Weibull distribution, mean for Lognormal distribution, shape parameter for Gamma distribution, « parameter for Maximum entropy

distribution.

b parameter 2: scale factor for Weibull distribution, standard deviation for Lognormal distribution, rate parameter for Gamma distribution, f parameter for

Maximum entropy distribution.

¢ Parameter 3: displacement factor in 3-p Weibull distribution and ¢ parameter for Maximum entropy distribution.

4 Correlation between wind and significant wave height was studied.

characteristics [101]. Raed et al. [11] estimated the uncertainties of a
semi-submersible platform, compatible with the environmental condi-
tion of the northern part of the North Sea. Log-normal and Weibull
distributions were used to fit the recommended conditional distribution
of the mean zero up-crossing period and the marginal distribution of the
significant wave height [88]. They employed an alternative approach
utilizing Monte Carlo simulations of the joint environmental model for
establishing the environmental contour lines in the original space [88].
The 3-parameter Weibull and Lognormal distributions were used to
model the marginal significant wave height and the conditional distri-
bution of the mean wave period, respectively. Although the proposed
method produced similar findings as conventional inverse first-order
reliability method (IFORM), it arguably had two advantages: 1) result-
ing contours allowed for easier interpretation in the original space, and
2) the proposed approach did not require a joint parametric model to
account for the environmental parameters.

Dong et al. [87] employed bivariate Maximum Entropy (ME) distri-
bution for both significant wave height and corresponding peak period.
According to the maximum entropy theory, over the set of probability
distributions, the probability model that maximizes entropy is the best
for describing data [102]. It is the most unbiased estimate based on the
available information and is as noncommittal as possible regarding
missing information. Maximum Entropy distribution can be used to
predict the marginal PDF of the significant wave height.

In general, the uncertainties of the significant wave heights and the
periods are identified as those impacts the structural reliability of
FOWTs. The most typical probability distribution for the significant
wave height is found to be Weibull distribution. In addition, other dis-
tributions such as Lognormal and Gumbel distributions are used. For the
simplicity of the structural reliability calculation of FOWTs, we identi-
fied Lognormal distribution as a practical option. The COV levels be-
tween 0.1 and 0.5 are found with a median of 0.2, i.e., 20% of the



M. Ramezani et al.

uncertainties. Similarly, the median value of the uncertainties in the
wave periods is estimated to be approximately 15%.

2.1.3. Current

The movement of water from one location to another is referred to as
an oceanic current. Tidal currents are caused by astronomical forces and
coexist with the tide’s rise and fall in the sea level. The direct impact of
the wind’s shear stress on the water’s surface produces wind-generated
currents which are typically found in the upper layer of a body of water.
The mean speed of a typical ocean current ranges from 0.2 m/s to 0.6 m/
s, and the maximum speed ranges between 1.1 m/s and 2.7 m/s,
depending on the location of the site [103]. Currents would add viscous
loads on FOWTs. In addition, the presence of current affects the wave
loads through the transformation of the wave shapes due to the
wave-current interactions [104]. The wave-current interactions might
change the FOWTs responses, and therefore must be considered. When
the directions of the current and wave are opposite, the wavelength
becomes shorter, and the wave height increases, leading to the forma-
tion of steeper waves [104]. The wave height could occasionally reach
more than 30 m in height, which can severely damage FOWTs [90].
Conversely, when current and wave follow the same direction, wave-
length becomes longer and wave height reduces, resulting in the for-
mation of shallower waves. Qu et al. [90] studied the impact of
wave-current interaction on the dynamic responses of a Spar-type
FOWT, called the doppler effect. They reported that the opposite cur-
rent increased and the following current decreased the peak value of the
wave spectrum. However, the met-ocean data delivered to the designer
already includes the interaction effects as the instruments cannot mea-
sure current and wave separately.

Like wind speed, the current speed also fluctuates in space and time.
The timescale and length of current speed variations, however, are much
greater than that of the wind speed [105]. Thus, currents might be
characterized as a function of the vertical coordinate in space and a
constant velocity in time [106]. Fig. 4(a) illustrates the recorded ocean
current speed measurements obtained from the Su-ao anchor station in
Taiwan, specifically at a depth of 30 m below sea level [107]. To
distinguish between sub-surface and near-surface components of the
currents, the measured values of current speed and direction may be
converted as follows [38]:

d—N\"
Ves§ = Vom.ss ( Z) ()
z
20m — z>
Vouns | —n—— | Jforz<0
VoNs = 0 Ns( 20m (6)
0 forz>0

where v, g5 and v, ns denote sub-surface and near-surface current speeds
at a position of z below sea level, and d represents the ocean depth. In the
study conducted by Hiibler et al. [42], sub-surface and near-surface
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current speed profiles were plotted using Eq. (5) and Eq. (6). These
profiles were specifically generated for a water depth of 25 m, with the
normalization of current speeds (i.e., Vomss = Vomns = 1), as depicted in
Fig. 4(b).

In order to better understand the hydrodynamic performances of
FOWTs, particularly the interaction of wave-current-structure, a moored
platform in regular wave and uniform current was taken into consider-
ation [108]. It was found that the current had considerable effects on
low-frequency motions and the mean wave-drift forces. Most direct
time-domain second-order models disregard the effects of forward speed
or current. Nevertheless, the offshore sites’ current speeds might be
non-negligible, particularly in FOWT applications with small
cross-section dimensions. Hydrodynamic forces caused by waves and
currents, such as viscous force and inertia, are critical in the design of
FOWTs, and dynamic response evaluations are necessary for the specific
design of load cases in accordance with design standards and recom-
mendations to ensure that FOWTs have sufficient stability and structural
strength [109]. Therefore, the safety of mooring lines relies on an ac-
curate estimate of the current load on the floating platform. To model
the nonlinear random wave groups with a superimposed current, Nava
et al. [89] developed a second-order quasi-deterministic theory. Qu et al.
[90] developed a more effective phase modulation algorithm consid-
ering the randomness of the wave groups with high efficiency. They then
analyzed the effect of current on the wave energy spectrum taking into
account various current velocities for determining the dynamic re-
sponses of a spar-type FOWT. Their analysis provided insights into the
wave-current interaction mechanism for identifying extreme wave
conditions in Gaussian seas which is critical for the analysis for the
design of FOWTs.

2.1.4. Correlation between the environmental loads

The current practices (e.g., IEC 61400-3 [110]) necessitates the
utilization of joint wind speed and wave height distributions, rather than
independent sets of wind and wave information. Generally, the sets of
waves are calculated from wind information prior to the analysis. For
instance, significant wave height and period at the peak of the spectrum
of a fully developed sea were estimated using the Pierson-Moskowitz
spectrum [111] or JONSWAP (Joint North Sea Wave Observation
Project) spectrum [112]. Since the correlation between the environ-
mental loads may significantly affect the results, the proper correlation
needs to be modeled in the estimation of reliability. The correlation
between the wind and wave loads and other random variables will be
modeled in this task to be used in the reliability analysis. To investigate
this correlation, we suggest utilizing the sets of long-term global
wind/wave databases such as a) Buoy data sets from National Data Buoy
Center, National Oceanic and Atmospheric Administration (NOAA),
National Weather Service (NWS), b) Model data sets from National
Centers for Environmental Prediction (NCEP), NOAA, Environmental
Modeling Center, and c¢) NCEP Climate Forecast System Reanalysis
Reforecast (CFSRR) 30-year homogeneous data set.
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Fig. 4. (a) Sample sub-surface current speed distribution in Taiwan, (b) sub-surface and near-surface current speed profiles in the North Sea [42,107].
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The intricate interaction between the environmental loads makes
predicting the dynamic response of FOWT challenging. The simulation
length of fixed-type and land-based wind turbines is 10 min as specified
by the design standard IEC 61400-3 [110]. However, a 10-min simula-
tion length is too short to capture extreme hydrodynamic loads on
fixed-type OWTs in random sea states. Therefore, a 3-h simulation
length is suggested to capture the extreme wave loads induced by
random sea states. Haid et al. [113] analyzed the simulation length ef-
fect of FOWT using the nonlinear aero-hydro-servo-elastic simulation
tool (FAST: Fatigue, Aerodynamics, Structures, and Turbulent). They
reported that at a constant total simulation time, the length of the wind
file did not affect the dependence of the aerodynamically induced load
on the simulation length. The supporting platform of a FOWT must
accommodate six-DOF motion because of the integrated random wind
and wave loads, which complicates the random cyclic loads acting on
the structural components (e.g., the tower base) compared to fixed-type
or onshore wind turbines. These cyclic loads might lead to unanticipated
fatigue damage to a FOWT. According to the research conducted by
Chen and Basu [114], FOWT tower and cable responses are significantly
affected by the current and wave-current interactions. The wave-current
interaction is expected to have a more significant effect in nonlinear
waves of large amplitude. Joint wind and wave distribution must be
estimated prior to obtaining accurate fatigue damage in real environ-
mental situations. The marginal PDF of the mean wind speed which
follows a 2-p Weibull distribution, the conditional PDF of the significant
wave height, and the joint probability density function of the mean wind
speed, the peak spectral period, and significant wave height have been
considered [51,115,116]. Stewart et al. [58,117] conducted extensive
analyses where they constructed long-term joint probability distribu-
tions using probability distribution functions. These distributions were
then utilized to create three representative sites for the United States: 1)
East Coast, 2) West Coast, and 3) Gulf of Mexico. By combining the
respective probability distributions, they effectively captured the sta-
tistical characteristics of wind and wave conditions at specific locations.
Fig. 5 presents the correlation between the mean wind speed and the
significant wave height for multiple locations within the aforemen-
tioned sites. This correlation analysis provides valuable insights into the
variations and patterns that exist across different geographical regions.
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Fig. 5. Mean wind speed and significant wave height for different locations at
three generic sites in the United States [58,117].
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Montes et al. [55] employed Gaussian copula (Nataf model) to establish
the joint probability distribution of environmental loads at three distinct
sites in the Bay of Campeche located in the Gulf of Mexico. The water
depth considered ranged from 500 m to 1500 m. The corresponding
correlation coefficients were determined using maximum likelihood
estimation (MLE). The average correlation coefficient between signifi-
cant wave height and wave period was found to be 0.71 for the studied
sites. Similarly, the average correlation coefficient between wind speed
and significant wave height was determined to be 0.79. In contrast, the
average correlation coefficient between wind speed and wave period
was observed to be relatively lower, specifically 0.25.

2.2. Uncertainties within materials and structures

A FOWT structure consists of a tower, wind turbine blades, and a
floating platform. The floating platform is moored to the seabed to
prevent drift motions. This enables FOWTs to operate in a variety of
seabed soil conditions and water depths [118]. FOWTs are subject to
both hydrodynamic and aerodynamic loads. Hydrodynamic loads arise
from the actions of waves, currents, and floater motions on the floating
platform. Aerodynamic loads arise from the action of wind and weather
on the turbine blades, nacelle, and tower. Together these loads interact
with each other through the turbine tower to the floating platform
connection, and through mooring connections to the foundation. This
section presents the uncertainies involved in the materials and struc-
tures of these components listed above. The uncertainties presented in
this section impact the uncertainties of the structural capacity and
therefore on the structural reliability of FOWTs.

Based on contemporary design practices, wind turbines are generally
designed for material factors that are expected to maintain target reli-
ability levels. Traditionally, the load-carrying capacity would be calcu-
lated using deterministic equations provided in the design codes and
standards. Nevertheless, significant variations in the load-bearing ca-
pacity could be observed due to the variations in the material properties
[119]. Okpokparoro [14] reported that consideration of the un-
certainties of material and geometric uncertainties has increased the
probability of FOWT failure by up to 39%.

2.2.1. Turbine blade

Past research exhibits that the blade system’s risks would result in
more considerable financial losses and downtime. The blade, which has
a typical slender structure, is the crucial part of the wind turbine for
capturing wind energy. As the blade’s length increases, the wind turbine
generates more power. General Electric (GE) researchers designed the
most powerful FOWT (12 MW) which was 260 m tall with a rotor
diameter of 220 m. This turbine is capable of generating 67 GWh of
electricity per year, enough to power 16,000 households [120]. How-
ever, under extreme environment loads, larger blades are prone to easy
vibration, their anti-fatigue property would significantly reduce, and
they are more likely to break [50]. Chou et al. [121] reported that the
main damage types of blades under extreme environmental conditions
were cracking in front/rear flanges and envelope delamination. Blades
at OWTs and FOWTs are composed of Fiber Reinforced Composites
(FRP). This material is usually composed of fiber and matrix materials
using compounding technology. The mean stress for composite mate-
rials could significantly affect the fatigue properties [68]. Material
properties are known to be the primary source of uncertainty in blade
elements. Geometrical size and local defects affect the load-carrying
capacity of the blade such that the weakest link model must be regar-
ded once a small local defect appears on a blade. The variables con-
cerned with the material and geometry (herein, thickness of the
laminate) of blades are assumed to follow a normal distribution
although other distribution functions including Weibull, Lognormal, etc.
might also be used [68]. Gonzaga et al. [122] assumed a normal dis-
tribution for density, elastic, and shear moduli of blades in all directions.
Suzuki et al. [123] proposed a novel phenomenological fatigue model
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based on stiffness degradation for predicting the service life of glass Table 4
fiber-reinforced plastics (GFRPs) subjected to random oceanic current Considered material and thickness uncertainties of wind turbine blades.
loads. A Weibull cumulative density function was used to take into Study  Material Variable Distribution ~ Mean  COV

consideration a shift in failure modes and associated changes in the rate

. .. . [122]  Bi-directional Biaxial Young’s Normal NpP* 0.04
of damage accumulation. Also, the initial strength and the probability glass fiber modulus (1) (Gaussian)
distributions of residual strengths were described by 3-p Weibull dis- laminate Biaxial Young’s 0.04
tributions [124]. modulus ()
The existing models of material uncertainties inherent in turbine Blaslil Y‘)I‘Emg’s 0.04
blades are tabulated in Table 4. All material properties including blade modulus (Ess)
_ X X K Biaxial density 0.006
thickness, density, young’s modulus, shear modulus, and Poisson’s ratio »
are assumed to follow a normal distribution. Biaxial shear 0.03
modulus (G2)
2.2.2. Turbine tower Biaxial shear 0.03
imilarl h ial .. . in th li £ modulus (G3)
Similarly, the material uncertainties considered in the modeling o Biaxial shear 0.03
wind turbine tower components are represented in Table 5. Young’s modulus (Gas)
modulus, yield stress, and density of structural steel used in turbine Biaxial blade 0.02
towers are considered to be modeled as random variables for reliability Unidirectional 3‘1?“‘_6515 ® 003
assessment [14,52,68,130]. In the reliability analysis of FOWTs, tower gg;;;ﬁfgona Ysi’;fis )
failure is associated with strong winds, large waves, and typhoons [130]. laminate modulus (E;;)
Buckling is one of the limit states of offshore wind turbines resulting Uniaxial 0.05
from the slenderness of towers [131]. The local buckling failure mode of Young’s
towers was also considered by Sgrensen and Toft [68]. Tower bending mo_dul_us (E22)
. Uniaxial 0.05
natural frequency changes due to the floater mass and stiffness, and Young’s
rotor 3P frequency could excite the turbine’s 1st bending mode which modulus (Ess)
might cause fatigue damage to the blade and tower. Therefore, un- Uniaxial 0.006
certainties in tower, blade, and floater coupled responses must be density (p)
considered Uniaxial shear 0.03
. modulus (G;2)
Uniaxial shear 0.03
2.2.3. Mooring line modulus (Gi3)
Mooring systems are sets of lines that connect the floating structure Uniaxial shear 0.03

modulus (Gz3)
Uniaxial blade 0.03
thickness (t)

to the seabed. Mooring lines in FOWTs are used to keep the floater in a
certain area (watch circle) in the presence of environmental loads. A

FOWT mooring system must be designed taking into account multiple [125]  Unidirectional E; (GPa) 39.04  0.0264

factors including the stability of an often-lightweight platform, appli- (UD) layer E; (GPa) 14.08  0.0231

cation to relatively shallower water depths, and cost. In deep waters, the G12 (GPa) 4.24 00234

d i f a floating platform withstands wave frequenc Poisson’s ratio 0-291  0.0934
ynamic response o g q y W12)

forces, leaving low-frequency drift forces to be handled by the mooring Structural foam E (GPa) 75.00 012

system [133]. Many FOWT concepts involve light displacement plat- G (GPa) 20.00 0.05

forms that are moored in shallow water and exposed to severe storms Poisson’s ratio 042 0.1071

with high-speed winds. Large wind- and wave-induced motions on [126]  Composite (Yvo)ung’s 56 002

FOWT platforms might cause shock loadings on the mooring lines. The hydrokinetic modulus (Ey) ’ ’

mooring lines’ tension is closely associated with the surge, sway, and material [GPa]

yaw motions [90]. Mooring lines are available in three distinctive ge- Young’s 16.2 0.02

ometries. Catenary, semi-taut, and taut-leg mooring lines are composed modulus (B &

of steel cables, anchor-chains, or synthetic fiber chains and/or wire gfliagil:z;ulus 5.83 0.02

components. Table 6 summarizes uncertainty models considered in the (G12 & G1s)

structural reliability analysis of mooring line components in offshore [GPa]

wind turbines. Shear modulus 5.786  0.02

(G23) [GPa]
[127]  E-glass fiber Longitudinal 74 0.25
modulus (E;1)

In summary, the material property uncertainties associated with
turbine blades, towers, and mooring lines in FOWT structures exhibit

varying degrees of uncertainty. Turbine blades are characterized by [GPa]

moderate to high levels of uncertainty, with COV values ranging from Transverse 74 0.20
0.02 to 0.25. Towers display moderate uncertainty, with COV values modulus (B> &

ranging from 0.05 to 0.1. Mooring'lines demonstrate reilatively lower to f:;k[lgziear 3080  0.25
moderate levels of uncertainty, with COV values ranging from 0.02 to modulus (Gi5)

0.07. Normal distribution is found to be the most widely used proba- [GPa]

bility distribution for the uncertainty modeling of FOWT material Transverse 30.80  0.20

properties. However, alternative distributions such as Lognormal and shear modulus

e . . . G134 G

Gumbel distributions might also be used depending on the desired level EG;Ba(]& 2)

of simplicity and accuracy in the reliability analysis. Major Poisson’s 020 005
ratio (v12)

2.3. Geotechnical Uncertainties Minor Poisson’s 023 0044
ratio (Vi3 & v23)

X . L. MY750 Epoxy Elastic modulus 3.35 0.25
The foundation design of FOWTs presents some uncertainties such as (GPa)

scour phenomena due to the erosion of the seabed near the foundation
caused by waves and currents acting together, soil-structure interaction

(continued on next page)
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Table 4 (continued)
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Table 4 (continued)

Study  Material Variable Distribution Mean cov Study  Material Variable Distribution Mean Ccov
Poisson’s ratio 0.35 0.057 Longitudinal 4.6 -
Shear modulus 1.24 0.2 compressive
(GPa) strength (MPa)
[128]  E-glass/epoxy Density (g/ Normal 1.97 - Transverse 4.6 -
laminate cm3) (Gaussian) compressive
(unidirectional) Longitudinal 41 - strength (MPa)
modulus (E;) In-plane shear 5.0 -
[GPa] strength (MPa)
Transverse in- 10.4 - [129] Various Blade root - 20.70 73.00°
plane modulus piezoelectric stress for
(E2) [GPa] materials material
In-plane shear 4.3 - (MPa)
modulus (G12) Blade root 13.30 47.00°
[GPa] stress for
In-plane 0.28 - material I
Poisson’s ratio (MPa)
(v12) Blade root 10.60  38.00"
Longitudinal 1140 - stress for
tensile strength material II
(MPa) (MPa)
Transverse 39 - Blade root 10.20  33.00"
tensile strength stress for
(MPa) material VI
Longitudinal 620 - (MPa)
compressive Flapwise of 1.00 2.48"
strength (MPa) blade tip for
Transverse 128 - material I (m)
compressive Flapwise of 0.94 2.37"
strength (MPa) blade tip for
In-plane shear 89 - material II (m)
strength (MPa) Flapwise of 0.92 2.29"
E-glass/epoxy Density (g/ 1.90 - blade tip for
laminate (biaxial)  cm3) material II (m)
Longitudinal 24.5 - Flapwise of 0.92 2.25"
modulus (E;) blade tip for
[GPa] material VI (m)
Transverse in- 23.8 - Edgewise of 0.03 0.20"
plane modulus blade tip for
(E) [GPa] material I (m)
In-plane shear 4.7 - Edgewise of 0.03 0.19"
modulus (G12) blade tip for
[GPa] material II (m)
In-plane 0.11 - Edgewise of 0.04 0.18"
Poisson’s ratio blade tip for
(vi2) material II (m)
Longitudinal 433 - Edgewise of 0.03 0.18"
tensile strength blade tip for
(MPa) material VI (m)
Transverse 386 - 2 Not published in th ticl
tensile strength b Pu shed In the article.
(MPa) Maximum values.
Longitudinal 377 -
Compre}fs“’e (such as the interaction between mooring lines, anchors, and the
f;rr:r?f‘:eriﬂpa) 335 B seabed), soil properties, etc. The methods for soil modeling could be
compressive mainly classified into the p-y and finite element analysis (FEA) methods.
strength (MPa) The p-y method where the soil is modeled using distributed equivalent
In-plane shear 84 - springs is widely used for reliability analysis of OWTs because of the
Structural foam ]S;:i;h (glpa) 0.5 _ computational efficiency. Nevertheless, the p-y method is incapable of
em3) accurately capturing the soil behavior [5]. To overcome this issue, FEA
In-plane 240 - can be used to model the soil. In the FEA, the soil material is normally
modulus (Eq) based on either Mohr-Coulomb or Drucker-Prager models, where the soil
[GPa] is generally represented using 3D brick elements. Through extensive
In-plane 230 - . . s 11s .
modulus (Ez) literature data analysis on the reliability assessment of FOWTs, it was
[GPa] observed that soil characteristic is one of the most crucial factors
In-plane shear 115 - considered in recent publications. Previous studies highlighted the need
modulus (G12) for additional research by investigating the impact of foundation
£i§;i]m dinal 7 _ configuration and site parameters on the natural frequency. Ziegler et al.
tensile strength [85] provided better insight into fatigue loads’ sensitivity to varying site
(MPa) conditions such as soil properties. In their study, the soil was modeled
Transverse 7.2 - using distributed linear springs via the p-y method. The soil stiffness

tensile strength
(MPa)
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obtained from a nominal p-y curve was scaled with a constant factor
over the entire depth to represent the soil variations. Soil properties
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Table 5 Table 6
Considered material uncertainties of wind turbine towers. Considered material uncertainties of mooring lines.
Study Material Variable Distribution =~ Mean Ccov Study  Material Variable® Distribution ~ Mean cov
[14] Structural Young’s modulus Normal 210.0 0.05 [14] Catenary Breaking load Lognormal 6.65 0.05
[52] steel (GPa) Normal 210.0 0.10 (MN)
[101] Lognormal 210.0 0.03 [134] Tension (Line 1) ~ Weibull 3000-6000 -
[68] Lognormal 210.0 0.02 (kN)
[14] Yield stress (MPa) Lognormal 355.0 0.05 Tension (Line 2) Weibull 3000-6000 -
[101] Lognormal 414.0 0.05 (kN)
[68] Lognormal 240.0 0.05 Tension (Line 3) ~ Weibull 500-1500 -
[101] Shear modulus - 80.8 - (kN)
(GPa) [135] Minimum Normal 13000 0.03-0.07
[101] Bending moment Gumbel 165.9 0.02 breaking load
(MPa) (kN)
[14] Density (kg/m3) Normal 8500.0 0.05 [55] Minimum Normal 1394 0.021
Tower base Normal 0.027 0.03 breaking load in
thickness (m) site 1 (t)
Tower base Normal 6.5 0.03 [135] Taut-leg Minimum Normal 19000 0.03-0.07
outside diameter breaking load
(m) (kN)
[52, Poisson’s ratio - 0.28-0.30 - [55] Minimum Normal 1204 0.023
132] breaking load in
[14] Tower base Normal 0.03 0.03 site 2 (t)
thickness (m) Minimum Normal 1933.1 0.023
breaking load in
site 3 (t)
generally contained high uncertainties due to difficulties in measure- Chain Minimum Normal 1423 0.05
ments. In contrast, the water depth was precisely known. Zhao et al. [50] breaking load in
developed a dynamic analysis system of the FOWT employing a beam on site 1 (1)
P yn YSIS Sy ; + employing a bea Minimum Normal 1213 0.05
a nonlinear Winkler foundation model to investigate the feasibility of breaking load in
soft-soft and soft-stiff design approaches, taking the soil geometric size site 2 (t)
and stiffness into account that affected the dynamic response in clay. Minimum ~~ Normal 2018 0.05
Soil properties have received the least attention in a probabilistic I:irtzaglg? load in
context among the main factors affecting wind turbines, yet they are Polyester  Minimum Normal 1560 0.05
vital in determining FOWT systems’ response. Although some standards breaking load in
let engineers apply probability-based approaches, the current design site 1 (D)
practice treats the uncertainty in offshore soil conditions in a deter- me‘lI{‘f‘“""‘l di Normal 1296 0.05
ministic manner. Carswell et al. [138] described how uncertainty in sirtzazl(rf oadin
subsea soil’s mechanical properties could contribute to significant un- Minimum Normal 2052 0.05
certainty in wind turbines’ response to offshore loads. The main sources breaking load in
of soil property uncertainty at potential FOWT locations are the high _ site 3 (1)
cost and logistical issues of conducting detailed soil sampling, as well as [136] ﬁ:ﬁm i}t:;glt]}:ﬂ? f Lognormal 1.2 0.05
measuring the in-situ soil properties. Due to the calculation simplifica- Steel Strength of steel  Lognormal 116 0.05
tions, the normal (or Gaussian) probability distribution is frequently wire wire
employed to partially model the variability in soil properties. However, [137]1  Catenary  Breaking load Lognormal 7334 0.05

non-Gaussian distributions might also be helpful because numerous soil
properties are skewed or are bounded by ranges. Concerning soil
properties with lower bounds, Lognormal distributions are commonly
employed. DNV also recommends using the beta distribution for soil
properties with lower and upper bounds where mean and standard de-
viation are known. Carswell et al. [138] used a beta distribution model
for the soil friction angle property variability (¢ ) due to the flexibility of
the distribution shape which made it possible to analyze different dis-
tribution skews in a way that the Lognormal distribution was not
capable of. Mardfekri et al. [139] developed a probabilistic model for
estimating the moment, shear, and deformation demands of the support
structure in OWTs. They used FEA to generate virtual experimental data
to calibrate the unknown model parameters. The developed probabi-
listic model could accurately capture the nonlinear soil-structure inter-
action, statistical uncertainty, and model errors.

In addition, time-varying waves and currents in an offshore envi-
ronment make the scour problem more complex than the structures in
the river. The scour phenomenon may significantly affect the stiffness,
fatigue reliability, and natural frequency of FOWT support structures
[140]. Many studies on scouring phenomena in offshore wind farms
proposed methods to predict and characterize maximum scour depth
and surrounding scour extension. Using the p-y method, the scour
phenomenon could be modeled by removing the relevant springs [141].
When using FEA, the scour might be represented by changing the soil’s
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capacity (kN)

@ For the comprehensive definition of the variables, it is referred to the cited
literature.

geometrical shape [142]. Breusers et al. [143] described the maximum
scour depth subject to steady-state current conditions. Sumer [144]
developed a new method for determining the scour depth subjected to
only the wave effect. However, this phenomenon has never been defined
as a formula or uncertainty of the combined wave and current
conditions.

Besides, many offshore sites are made up of sandy silts or loose silty
sands, making them prone to liquefaction [145]. In high seismicity re-
gions, soil liquefaction might impose design risks and engineering
challenges on the dynamic response of FOWTs due to the strong ground
motions. Yet, research considering the impact of seismic liquefaction on
FOWTs is very limited. According to ISO 19901-835 4, geotechnical
conditions for the anchors must be considered in seismically active re-
gions to assess the potential for liquefaction and dynamic soil properties
[146]. Patra et al. [145] investigated the seismic response of a monopile
OWT subjected to sand liquefaction under combined seismic and oper-
ational loads. They reported that in the case of a small earthquake or
seismic event (peak acceleration of 0.1 g-0.2 g), wind and wave loads
dominated over seismic load, while in the event of a large earthquake
(peak acceleration of 0.3 g-0.4 g), seismic load prevails over wind and
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wave loads. This implies the need for a proper combination of wave,
wind, and seismic loads for the seismic design of OWTs. Zhang et al.
[147] performed dynamic analyses of a 10 MW OWT under
earthquake-induced liquefaction subjected to combined wave, wind,
and seismic loadings. They reported that the liquefaction was aggra-
vated under the combined wind and seismic loadings, while liquefaction
was not significantly affected by the wave loading. Table 7 summarizes
the soil conditions and dynamic response uncertainties. Table 7 sum-
marizes the soil conditions and dynamic response uncertainties.

In the context of FOWT design, soil material properties uncertainty,
such as soil unit weight, Young’s modulus, Poisson’s ratio, and cohesion,
are commonly represented using the Normal distribution. The uncer-
tainty associated with soil friction angle is often modeled using the Beta
distribution, with COV values ranging from 0.05 to 0.20. Furthermore,
uncertainties stemming from terrain roughness, landscape topography,
lift and drag coefficients, and load-effect computations under external
loads contribute to the overall uncertainty, with COV values typically
ranging from 0.05 to 0.15, as reported in the literature. To accurately
characterize the soil conditions, we emphasize the importance of con-
ducting comprehensive geotechnical investigations, including soil
testing and analysis. By incorporating geotechnical uncertainty consid-
erations into the design process, FOWTs can be engineered to withstand
diverse environmental conditions and operate reliably throughout their
intended service life.

2.4. Growing uncertainties over time

Growing uncertainties over its lifecycle can significantly affect the
reliability of FOWT. We identify this as an area of critical research need.
The sources of this type of uncertainty can be from the natural change of
the material properties due to deterioration or fatigue and from the shift
of environmental loads such as winds and waves. This also can be caused
by the amendment of the current method of estimation or the re-
strictions following our improved knowledge.

The current practice to estimate the environmental loads are a simple
statistical extrapolation. Although extrapolation techniques are gener-
ally well established onshore, this concept provides very limited and
unrealistic information in the application of offshore environments due
to the large uncertainties involved in offshore environments. Agarwal
and Manuel [149] applied a probabilistic approach to predict the
extreme wave load. Young et al. [150] investigates global changes in
oceanic wave height and wind speed using data from calibrated and
verified satellite altimeter collected over a 23-year period. However,
growing uncertainty throughout its lifetime has not been investigated
nor considered in previous research, while the influence of the growing
uncertainties on FOWT reliability is significant.

Fig. 6 presents the effect of the time-variant uncertainties on struc-
tural reliabilities. Fig. 6(a) shows the reliability neglecting the time-
dependent variance, while Fig. 6(b) exhibits the reliability considering
the growing uncertainties over time. The cross-hatching area indicates
the reliability of the system where time-variant uncertainty significantly
changes its estimation. As shown in Fig. 6, neglecting the uncertainties
growing over time might lead to a significant error in the estimation of
the life-cycle reliabilities.

As discussed above, failure modes associated with wind turbine
structures include several time-dependent phenomena that are impor-
tant for their design. To investigate the time-varying uncertainties of
ocean environmental loads, we suggest analyzing the sets of long-term
global wind/wave database: a) Buoy data sets from National Data
Buoy Center, NWS, NOAA, b) Model data sets from Environmental
Modeling Center, NCEP, NOAA., and c) NCEP CFSRR 30-year homoge-
neous data set. This section discusses the effect of corrosion, multi-
hazard environment, as well as fatigue damage caused by the ocean
environment, resulting in the material’s degradation, which ultimately
affects its resistance. To assess fatigue loads for FOWTs, it is crucial to
comprehensively account for a range of site-specific environmental
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Table 7
Summary of offshore soil conditions and dynamic response uncertainties.
Study  Variables® Soil depth Distribution =~ Mean  COV
& layer
[44] Soil effective unit Layer 1 Normal 16.0 0.05
weight (kN/m%) Layer 2 Normal 17.0  0.05
Layer 3 Normal 18.0 0.05
Internal friction Layer 1 Beta 33.0 0.08
angle of sand (°) Layer 2 Beta 35.0 0.07
Layer 3 Beta 37.0 0.05
[85] Soil factor Normal 1.00 0.20
[50] Young’s modulus 12m Normal 31.5 -
(MPa) 12.2 m Normal 20.0 -
13.3m Normal 33.0 -
141 m Normal 39.0 -
Poisson’s ratio 12m Normal 0.35 -
122 m Normal 0.30 -
13.3m Normal 0.23 -
141 m Normal 0.25 -
Cohesion (kPa) 12 m Normal 4.40 -
122 m Normal 4.70 -
13.3m Normal 10.8 -
14.1 m Normal 5.20 -
Friction angle (°) 12m Normal 335 -
12.2m Normal 33.2 -
13.3m Normal 29.1 -
141 m Normal 33.0 -
[138] Soil friction angle Beta N/A 0.05-0.10
property variability Beta N/A 0.10-0.15
@) Beta N/A  0.15-0.20
[52] Unit weight (kN/ Sandy - 10 -
m3) soil/loose
Unit weight (kN/ Sandy - 10 -
m3) soil/
medium
Unit weight (kN/ Sandy - 10 -
m3) soil/dense
Young’s modulus Sandy - 30 -
(MPa) soil/loose
Young’s modulus Sandy - 50 -
(MPa) soil/
medium
Young’s modulus Sandy - 80 -
(MPa) soil/dense
Angle of friction (°) Sandy - 33 -
soil/loose
Angle of friction (°) Sandy - 35 -
soil/
medium
Angle of friction (°) Sandy - 38.5 -
soil/dense
Cohesion (kPa) Sandy — 50 -
soil/loose
Cohesion (kPa) Sandy - 50 -
soil/
medium
Cohesion (kPa) Sandy - 50 -
soil/dense
Yield stress (kPa) Sandy - 59.2 -
soil/loose
Yield stress (kPa) Sandy - 58.5 -
soil/
medium
Yield stress (kPa) Sandy - 57.0 -
soil/dense
Friction Coefficient Sandy - 0.40 -
soil/loose
Friction Coefficient Sandy - 0.43 -
soil/
medium
Friction Coefficient Sandy - 0.48 -
soil/dense
[148]  Effective unit weight - - - 0.1
Friction angle - - - 0.1
Coefficient of lateral - - - 0.7-1.0
earth pressure
Poisson’s ratio - - - 0.4-0.5

(continued on next page)
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Table 7 (continued)

Study  Variables® Soil depth Distribution ~ Mean  COV
& layer
Shear modulus of - - - x or +5
elasticity
Initial modulus of - - - X or + 2
subgrade reaction
Position of - - - +1m

characteristic soil
layer transition

 For the comprehensive definition of the variables, it is referred to the cited
literature.

conditions throughout the system’s expected lifespan. This includes
wind direction, wind speed, turbulence intensity, wind shear, wave di-
rection, wave height, wave period, wind-wave misalignment, yawed
inflow, current direction, current speed, as well as factors like ice and
marine growth [152]. Compared to fixed-type offshore wind turbines,
FOWTSs are more sensitive to variations in environmental conditions,
necessitating the consideration of a larger number of conditions with
higher resolution. Specifically, the importance of wave period and
directionality becomes more significant in fatigue load analysis for
FOWTs.

Hiibler et al. [153] conducted an assessment of long-term environ-
mental conditions for fixed-type OWTs by employing various models to
predict changes in wind speed and air temperature, while considering
associated uncertainties. These predictions were then used to forecast
the environmental conditions experienced by FINO3 which is a meteo-
rological tower (meteorological mast or met mast) throughout its life-
span. The study highlighted that the expected changes in fatigue
damages over the tower’s lifetime were relatively small compared to
other sources of uncertainty in fatigue damage calculations. Further-
more, the analysis indicated shifts in the air density and wind speed
distributions, resulting in an increased likelihood of extreme wind
speeds. Consequently, slightly higher wave heights were observed
compared to scenarios with constant wind speeds. It was observed that
fatigue loads would experience a slight increase (below 5%) due to the
anticipated effects of rising wind speeds and air temperatures over the
next 25 years. They reported that considering the larger uncertainties in
lifetime calculations, the inclusion of climate change effects in current
lifetime calculations for OWTs or FOWTs is deemed unnecessary.
Nonetheless, this may change if lifetime calculations become more ac-
curate or if climate change intensifies.

Grabemann et al. [154] used the WAM wave model and analyzed a
30-year period from 2071 to 2100 to investigate the potential future
changes in mean and extreme wave conditions in the North Sea due to
anthropogenic climate change. They employed an ensemble of wind
field data sets from four climate change scenarios driven by two global
circulation models. The results showed that the long-term 99th
percentile wind speed and significant wave height in the North Sea could
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increase by up to 7% and 18% respectively. Variations in climate change
patterns were observed among the scenarios and model combinations,
with higher uncertainties in the northern part of the North Sea. The
findings indicated a moderate rise in extreme wind speeds and wave
conditions in the eastern region of the North Sea by the end of the 21st
century, emphasizing the need for appropriate planning and adaptation
measures for coastal and offshore activities. The study also revealed that
extreme wave heights could potentially increase by around 0.25 m-0.35
m (5-8% of present values) in the southern and eastern North Sea under
global warming conditions. The northern part of the North Sea exhibited
the highest uncertainties in the climate change signals, with uncertainty
ranges of up to 0.6 m-0.7 m for extreme wave heights south of the
Norwegian coast and up to 0.9 m/s for extreme wind speeds off the
Danish coast. Conversely, the southwestern part of the model domain,
towards the English Channel, showed the smallest model-related un-
certainties of approximately 0.1 m for extreme wave height and 0.2 m/s
to 0.4 m/s for extreme wind speed.

Recent research using global wind data from in-situ stations has
revealed that the global decline in average surface wind speed, known as
global terrestrial stilling, has reversed since around 2010 [155]. This
recovery in wind speeds is attributed to internal decadal
ocean-atmosphere oscillations, suggesting a continued rise for the next
decade with potential future declines. This positive trend supports the
expansion of wind power as a renewable energy source, offering envi-
ronmental benefits and opportunities for large-scale and efficient wind
power generation systems, particularly in mid-latitude countries. The
analysis also indicated a 17 + 2% increase in potential wind energy and
a 2.5% boost in the wind power capacity factor in the United States.

2.4.1. Corrosion and deterioration

The main disadvantages of FOWTs are the difficulty of access and
harsher environmental conditions such as higher humidity leading to
corrosion and oxidation. This significantly increases operation and
maintenance costs. To optimize the maintenance costs, extensive
experimental data is needed to assess the reliability of structures using
probabilistic approaches. Also, defining the proper distribution types as
well as quantifying the mean and standard deviation values is vital to
achieving accurate reliability analysis [5]. To this end, obtaining data
from condition monitoring (CM) and structural health monitoring
(SHM) could be used to provide valuable information concerning the
condition of FOWTs over a long project’s service life.

Steel chains in mooring lines that are in contact with seawater un-
dergo corrosion, degrading their physical and mechanical properties due
to section loss. Reduction in the material thickness due to corrosion
could also make it vulnerable to buckling and fatigue crack nucleation
and propagation, leading to the structure’s failure [52]. The severity of
this section loss depends on the water type, part of the mooring line
involved (e.g., bottom, catenary, and splash zone), and inspection type
[9]. Dong et al. [156] studied the impact of a salt fog environment on the

Fig. 6. Effects of the time-variant uncertainty on structural reliability: (a) considering a constant variance, and (b) considering a time-dependent variance. (E[C(¢)]:
mean capacity, D: given demand, 6,: initial standard deviation, and &(¢): standard deviation at the time t) [151].
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structural damage of offshore wind turbine blades. The pitted blade
surface formed by the milling and pumping of sand blown by the wind
was found to be the incentive. Also, ultraviolet radiation and water
molecule diffusion were found to be the main reasons for blade
degradation.

2.4.2. Multi-hazard environment

FOWTs are characterized as towering structures, meaning a slight
pitch motion of the support platform might result in large displacements
of the turbine rotor. Thus, it is vital to evaluate their dynamic response
subjected to extreme sea states. Extreme wind conditions are defined
with regard to air density in conjunction with wind events. The peak
wind speeds and wind shear events caused by storms, extremely rapid
changes in wind direction and speed (wind gusts), and extreme turbu-
lence are examples of extreme wind conditions [157]. Wind direction
and speed fluctuate at different scales in space and time. For wind loads
simulation, the period of particular interest ranges from several days to a
few seconds [158]. There high-frequency oscillations (i.e., small-scale
and short-term fluctuations in wind speed) and low-frequency oscilla-
tions (long-term wind statistics) exhibit a spectral gap that shows the
low energy content in these ranges. Subsequently, when a stationary
stochastic process is assumed, the error is minimized, and the wind can
be represented separately for the lower-frequency and the
higher-frequency ranges [158]. FOWTs are subjected to climate change
hazards such as hurricanes (central and eastern North Pacific Ocean),
and typhoons (northwest Pacific Ocean; usually east Asia). Failures of
OWTs due to typhoons are regularly reported. For example, typhoon
Usagi struck the Honghaiwan wind farm located in Coastal Shanwei City
in China and knocked out 17 out of 25 offshore wind turbines, resulting
in a loss of $16 million to the wind farm [159]. In addition, FOWTs are
exposed to potential earthquake hazards. Seismic events influence the
FOWT structures differently based on the station-keeping arrangements.
In the case of catenary lines, earthquake motions may lead to dynamic
mooring line tension loading which is a critical factor for the
station-keeping system, while its effect on the turbine and floater is
minimal. Concerning taut systems, however, the seismic motion might
be transferred directly to the floater [146]. Therefore, developing
advanced reliability models considering these environmental and
climate change hazards is vital.

2.4.3. Fatigue

FOWTs undergo significant environmental cyclic loads. Therefore,
their design is generally dominated by fatigue limit state [160]. For
structural integrity over a long period of operation, the fatigue effects of
these coupled loads can be critical to the design of floating wind plat-
forms. Areas of fatigue concern include the turbine tower to hull
connection, the connection of the mooring to the floating foundation,
and possibly the anchor connection. This can also be at any primary
structural connections such as between any columns and pontoons,
columns, and deck connections, or between upper and lower girder
connections depending on the foundation design. Welding connections
are particularly known to be vulnerable connections under fatigue. The
methods for fatigue analysis to assess fatigue reliability could be cate-
gorized into two main classes S-N curve and fracture mechanics
methods [161,162]. The crack growth data of an initial flaw is necessary
for the fracture mechanics approach, while the S-N curve method which
assumes constant amplitude stress cycles requires the S-N fatigue test
data to generate S-N curves using statistical analyses such as maximum
likelihood and least square methods [5]. The parameters associated with
the fracture mechanics and S-N methods are dependent on the envi-
ronmental condition, material types, and the utilization of corrosion
protection.

Fatigue loads, in current engineering practices, are generally evalu-
ated through extensive time-domain simulations of different load cases.
Because of a variety of environmental loads (e.g., wave direction, wave
height, current, and wind) a full fatigue limit state (FLS) analysis might
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become computationally expensive. Therefore, efforts have been made
to propose simplified methods for quick frequency domain load analysis
[85,163,164].

In addition, FOWTs face potential failure cases and accidents
including ship collisions, ice-related issues, and fire incidents [165]. To
mitigate these risks, robust collision avoidance systems, anti-icing
measures, and fire detection and suppression systems are essential.
Comprehensive risk assessment, proactive maintenance, and continuous
monitoring are crucial for ensuring the safety and reliability of FOWTs.
The industry is continuously learning and evolving regulations and
standards to enhance the resilience and integrity of these structures.

2.5. Modeling uncertainties

Another important type of uncertainty is modeling uncertainty
which is typically associated with our lack of describability of the system
or the modeling assumption for the sake of simplicity. The modeling
uncertainties can be addressed by a simple addition of a certain model
standard deviation. The most common type of distributions for the
modeling uncertainties are either Normal or Lognormal distribution [20,
166], although Lognormal distribution is more commonly used due to
the mathematical limitation which bounds above zero (0). Modeling
uncertainties in their study included modeling of exposure, assessment
of lift and drag coefficient, and the computation of load-effects under
external loads. Modeling uncertainties that have been applied to the
model and statistical parameters of FOWTs are presented in Table 8.

3. Reliability analyses
3.1. Available reliability methods

Limit state function (LSF) represents the failure status for various
failure modes of the systems. The LSF is formulated such that the
negative value of LSF represents the failure. In structural reliability, it is
generally expressed concerning stress, strain, displacement, and modal
frequency [5].

Structural reliability can be expressed in terms of either the proba-
bility of failure or the reliability index. The probability of failure rep-
resents the probability of the LSF at the negative value. The analyses can
be performed at various levels: from the conditional probability of
failure given the extreme events at the components lever, i.e., for spe-
cific element designs (univariate), to the probability of system failure
considering the failure scenarios over the lifetime (multivariate and
time-variant). These probabilities of failures, Py, can also be converted in
the form of the reliability index, 8, with a simple expression as follows
p = — @ '(P;), where @ indicates the normal distribution function
[171-173]. As expressed, a higher reliability index indicates a lower
probability of failure. In addition, the exponential function within ®
enables the reliability index to emphasize the reliabilities within the
range of our interest, i.e., the probabilities of the failure close to 0. For
instance, the probability of failures of 1.0E-4 and 1.0E-5 can be con-
verted into the reliability index of 3.72 and 4.26 respectively, which
increased scale allows us to emphasize the different levels of risks. DNV
2016 [174], specify the target reliability index of FOWT support struc-
tures is usually considered 3.72 equivalent to a failure probability of
0.0001.

To estimate the probability of failure, the failures are first defined in
the form of the LSF, gx(X,0), for each potential failure mode k, where X
represents the vector of the random variables discussed in this paper and
6 represents a vector of statistical variables that can be obtained from the
observations to improve our knowledge. LSF is expressed as g(X,0) =
Cr(X,0) — Dr(X,0) where Cy (X, 0) represents the capacity model, such as
a strength or drift, and Dy (X, ) represents the demand model, such as
the required strength from the environmental loads. The models can be
defined for the structural component level corresponding to the failure
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Table 8
Modeling uncertainties used in FOWT.

Study Variable® Distribution =~ Mean  COV

[14] Yield model uncertainty Lognormal 1 0.05
Exposure (terrain) Lognormal 1 0.1
Structural dynamics Lognormal 1 0.05
Aerodynamic parameters Lognormal 1 0.1
Hydrodynamic parameters Lognormal 1 0.1
Load effect computation Normal 1 0.03

[167, Loading for mooring lines Lognormal 1 0.17

168] Material properties for mooring lines Lognormal 1 0.03

[20] Mean wind speed Gumbel 1 0.23
Load carrying capacity Lognormal 1 0.05
Limited wind data Lognormal 1 0.10
Dynamic response Lognormal 1 0.05
Exposure Lognormal 1 0.20
Lift and drag coefficients Gumbel 1 0.10
Stress calculation Lognormal 1 0.03

[68] Exposure (terrain) Lognormal 1 0.2
Climate statistics Lognormal 1 0.1
Structural dynamics Lognormal 1 0.1
Shape factor/model scale Gumbel 1 0.1
Stress evaluation Lognormal 1 0.03
Scale effect for yield stress Lognormal 1 0.05
Scale effect for Young’s modulus Lognormal 1 0.02
Critical load capacity Lognormal 1 0.1

[169] Dynamic response including Lognormal 1.00 0.05
uncertainty in eigenfrequencies and
damping ratios, Xgyn
Terrain roughness and landscape Lognormal 1.00 0.15
topography, Xexp
Lift and drag coefficients, Xaero Gumbel 1.00 0.10
Computation of the load-effects given Lognormal 1.00 0.03
external load, X

[170] Linear damage accumulation Lognormal 1 0.30
Blade Elements Weibull 1 0.05
Uncertainty in full-scale tests Weibull 1 0.05
Structural dynamics Lognormal 1 0.05
Exposure Lognormal 1 0.2
Climate statistics Lognormal 1 0.1
Shape factors Gumbel 1 0.1
Stress evaluation Lognormal 1 0.03
Simulation statistics Normal 1 0.05
Rainflow counting Lognormal 1 0.02

 For the comprehensive definition of the variables, it is referred to the cited
literature.

mode k. The probability of failure for k-th failure mode is defined as Py =
P(g(X,0) < 0) = P(Ck(X,0) < Dr(X,0)) [175]. The probability of system
failure is defined as the logical union of the probabilities of failures

corresponding to each failure mode, expressed as P{U{gk(X ,0) < 0} X,
k

9} . General form of the time-variant structural capacity Ci(t, X(t),#) and

demand models Dy (t, X(t),0) are introduced by Choe et al. [176,177] for
the first time to estimate the time-variant structural reliability with an
example of corrosion of steel elements within concrete structures. The
growing uncertainties, 6(t), for the structural components are intro-
duced and discussed with an example of the fragility of concrete bridge
column problems [151]. DNV 2016 [174] presents four types of LSF: 1)
ultimate limit state (ULS) to resist plastic collapse, 2) fatigue limit state
(FLS) to resist cyclic loads, 3) serviceability limit state (SLS) to resist
excessive deflection, vibration, and buckling, and 4) accidental limit
state (ALS) to resist infrequent loads such as earthquake and explosion.
The main failure modes of FOWTs could be classified as plastic collapse,
fatigue, excessive deflections, vibration, and buckling [5].

Generally, typical methods of structural reliability estimation can be
categorized into two main groups 1) sampling (or simulation) methods
and 2) approximation methods. A general idea of the sampling method
such as Monte Carlo simulation (MCS) is to generate an acceptable
number of the most probable samples to observe the actual uncertainties
of the system. MCS is the foundation for sampling methods where the
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failure probability could be evaluated via both explicit and implicit
performance functions. MCS performs repetitive simulation processes
via random sampling of input variables to calculate the accurate prob-
ability of failures [178]. Nevertheless, MCS is computationally expen-
sive especially when dealing with complex problems with implicit
performance functions and/or low failure probabilities. To improve the
efficiency, other sampling methods such as importance sampling [179],
adaptive sampling, Latin hypercube sampling [180], subset simulation
[181], and directional simulation [182] have been proposed. Markov
Chain Monte Carlo (MCMC) [183] is one of the widely-used sampling
methods and was proposed for sample methods that enable us to
approximate the statistical properties of the system.

The approximation methods, on the other hand, use a local
approximation of the limit state function to evaluate the probability of
failure through various methods such as the First-Order Reliability
Method (FORM), Second-Order Reliability Method (SORM), First-Order
Second Moment (MVFOSM or FOSM), Response Surface Method (RSM),
etc. The MVFOSM method estimates the mean and variance of the
response to calculate the reliability index () via the first-order Taylor
series approximation of the response and its derivatives at the random
input variables’ mean values [184]. The MVFOSM method leads to
inaccurate estimations when the performance function is nonlinear, and
the input random variables do not follow Normal distribution (i.e., they
are non-Gaussian). To overcome these limitations, design point-based
methods (FORM and SORM) can be utilized to assess the limit state
function at the design point (also called the most probable point (MPP)
or p-point) in the standard normal space. FORM uses the first-order
Taylor expansion (linear) of the limit state function in the standard
normal space, while SORM employs the second-order Taylor expansion
(parabolic) to estimate the limit state space at the design point [185].

Generally, the approximation methods predict the probability of
failure quite accurately. However, if the limit state is multimodal
(multiple MPPs) or its surface is greatly non-flat, they may fail in solving
the problem. Although RSM could work, it might not provide accurate
approximations. In such cases, global reliability methods such as AK-
MCS (Active learning reliability method combining Kriging and Monte
Carlo simulation) and EGRA (efficient global reliability analysis) can be
used [186,187]. Global reliability methods estimate the performance
function using a Gaussian process (or Kriging model) which can model
the nonlinear limit state function sufficiently, and then employ sampling
methods to estimate the probability of failure using surrogate models
that significantly reduce the computational cost.

3.2. Review of existing uncertainty analyses

There are several efforts made for the uncertainty modeling for the
structural reliability of fixed-type offshore wind turbines considering
limited uncertainties on wind turbine structures or environmental loads
[139,149,188,189]. However, very few studies are available on struc-
tural reliability that accounts for the uncertainties that existed in
floating structures, mooring lines, and hydrodynamics. This section
describes uncertainty models related to offshore wind turbines’ struc-
tural components and systems. Furthermore, reliability analyses con-
cerning growing uncertainties over time are presented.

3.2.1. Turbine blades

The methods for improving the reliability of giant wind turbine
blades have been investigated by many researchers. Nevertheless, the
floating offshore wind turbine’s risk assessment is yet insufficient due to
the lack of experimental data. When their foundation is subjected to 6-
DOF motions under wind, wave, and current loadings, the blade’s un-
steadiness worsens and the blades exhibit higher peak loads and fatigue
damage compared to the onshore and fixed-type OWTs [190].

Liu et al. [129] conducted a reliability analysis for the blades of the
FOWTs. The structure failures of the blade could be attributed to three
scenarios: 1) fatigue damage, 2) serious damage and breakage accidents,
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and 3) general deficiencies. It was assumed that the fatigue limit state
followed a normal distribution, while the blade root stress followed the
Lognormal distribution. The displacement amplitude of a blade tip was
dealt with as normal distribution. The blade tip flap-wise motion’s
amplitude almost followed a normal distribution. It was concluded that
the probability of failure of blades supported by floating foundations
was higher than that of a fixed-type foundation.

Gonzaga et al. [122] used Monte Carlo simulation to characterize
and propagate uncertainties in a blade structural model.

3.2.2. Floating structures

The sources of uncertainties inherent to the floating structures
include potential high power output fluctuation towing to motions,
potential instability by blade pitch control, and increased inertia loading
from motions [191]. Due to the observation of significant dynamic ef-
fects in floating structures, the simulation of wave elevation and envi-
ronmental loads requires consideration of randomness and uncertainties
[83]. To predict the long-term design loads of OWTs with minimum
computational effort, Karmakar et al. [72] took advantage of the envi-
ronmental contour method. The floating structure’s shape is one of the
main aspects affecting the shape parameter in Weibull distribution
describing wave-induced loadings [192]. Zhao and Dong [193] per-
formed a structural reliability analysis of floating platforms using
response-based and environmental contour methods. The floater offset
was found to be one of the most significant criteria for the reliability
assessment of the floating structure. The existence of system failure
modes with non-structural nature and strong interaction between
structural and non-structural component failures are considered as main
obstacles to the proper application of structural reliability methods on
floating structures [194].

3.2.3. Mooring lines

Based on an R3 chain grade of DNVGL-OS-E301 [195], assuming the
breaking load of the mooring line as a Lognormal distribution, the
reliability of the FOWT placed at a water depth of 320 m was evaluated
[14], and robust reliability analysis of FOWT was presented. Hsu et al.
[134] proposed a composite Weibull probability distribution for the
dynamic tension of the mooring line that took snap events into account.
When snap events are not taken into account, the maximum tension on
FOWT mooring systems might be underestimated. It was found that
models simulated using Weibull distribution underestimated the upper
tail of the dynamic tension which includes snap events. When the
probability of shock load incidence is greater, the developed composite
Weibull distribution model may provide a good starting point for pre-
dicting extreme dynamic tensions of the mooring system. Generally, for
rare events with high peak responses, the Gumbel distribution out-
performs in extracting extreme responses.

Horte et al. [136] performed structural reliability analysis in order to
calibrate a design equation for FOWT mooring lines in their ultimate
limit state. The calibration was done based on six test scenarios for
mooring systems in water depths ranging from 70 m to 2000 m. Several
studies have been done on traditional catenary mooring systems that
include wire and/or chain components. It was assumed that the strength
of chain link and steel wire mooring lines were distributed using a
Lognormal function. It should be noted that in current engineering
practices, conventional catenary mooring system is not used in deep
water (>500 m) where the chain-wire-chain system (semi-taut mooring)
and chain-polyester-chain (taut mooring) system are considered more
efficient solutions. Hou et al. [196] also assumed a Lognormal distri-
bution function to model the allowable strength of mooring lines. Liu
et al. [197] performed a reliability analysis of mooring lines of FOWTs
using Teaching Learning Based Optimization (TLBO) algorithm. The
variables included in the limit state function of mooring systems were
defined to be axial tension and breaking strength, where both followed a
normal distribution. The average breaking tensile strength of three
mooring lines was 13,583 kN with a standard deviation of around
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2717.0 kN.

Zhao et al. [198] proposed a method based on a Bayesian network
inference-artificial neural network to evaluate the reliability of mooring
lines subjected to extreme environmental conditions. Since Bayesian
inference requires a large database in order to estimate a reasonable
posterior probability, the artificial neural network was used for nu-
merical data simulations to improve computational efficiency. Then, the
failure probability of mooring lines in a semi-submersible floating
platform was evaluated based on the allowable breaking strength as a
limit state function. The failure model of the mooring system was
simulated using the Bernoulli distribution. The probability of failure
exhibited a significant increase at higher extreme wave heights. In
another study, Rendon et al. [135] investigated the reliability index and
predictive reliability of mooring lines subjected to extreme metocean
conditions taking into account the impacts of parameter uncertainty. A
first-order analytical formulation was developed to account for the un-
certainty in parameters for maximum breaking and dynamic tension
resistance of mooring lines. The breaking resistance of mooring lines
was assumed to have a known mean value and its standard deviation
was uncertain. Also, the maximum dynamic tension of mooring lines
was modeled as a stationary Gaussian process since the random vari-
ables were functions of the peak spectral period and the significant wave
height. The predictive reliability and probability of failure were insen-
sitive to parameter uncertainty in probability distribution of mooring
lines breaking resistance, while they were quite sensitive to the statis-
tical uncertainty in the probability distribution of dynamic tension
loading. In addition, considerable discrepancies were observed between
the mean and predictive reliability indices.

Montes et al. [55] formulated a nested reliability analysis of the
mooring line’s ultimate limit state (ULS) considering the uncertainty in
the mooring line’s maximum dynamic tensions, which was evaluated
conditionally on the uncertain environmental variables. Response sur-
faces were employed to express the distribution parameters of the
maximum dynamic tension as well as the mean mooring line tension as
functions of the environmental parameters. Because sea waves are
considered a Gaussian process, and the mooring lines’ dynamic tension
is mainly governed by the first-order response, the dynamic tension was
considered to be approximately Gaussian. Then, the developed nested
reliability formulation was used to calibrate the partial safety factors for
ULS with a target reliability index of 4.4. It was found that assuming
significant wave height and peak period as random variables and current
velocity and wind speed as deterministic variables resulted in similar
safety factors with only a 2% overestimation in reliability indices
compared with the full model.

3.2.4. Corrosion and deterioration

Andrawus and Mackay [199] developed a predictive maintenance
strategy based on a risk assessment method for corrosion resistance and
protective coating of offshore wind turbine blades. The risk was deter-
mined as the product of the likelihood of occurrence (characterized by
the coating history factor) and the failure consequences of the turbine
blade (represented by the sum of the total cost of material, labor, access,
and production losses). Dong et al. [200] conducted a reliability analysis
of OWTs considering the effects of corrosion and inspection. They used a
2-p Weibull distribution to fit the statistical distribution of hot-spot
stress ranges subjected to combined wind and sea states environ-
mental conditions. The fracture mechanics of crack growth caused by
corrosion were used in the reliability analysis. The main sources of un-
certainty were identified and quantified based on the inspection quality
in terms of the crack detection probability curves. In addition,
corrosion-induced geometry and material degradation effects on the
reliability analysis were investigated, and the reliability index sensi-
tivity on stochastic variables was evaluated. Shittu et al. [201] also
assessed the reliability of OWT support structures under pitting
corrosion-fatigue using probabilistic models. The first order reliability
method (FORM) was employed to estimate the reliability index of
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components. It was found that the structure became unsafe at the age of
18 years, before reaching a typical service life of OWTs. Also, the results
revealed that the pits’ aspect ratio at critical size had a substantial
impact on the structural reliability.

3.2.5. Multi-hazard environment

Tarp-Johansen et al. [202] studied the structural reliability of
offshore wind turbines in the Philippines exposed to severe typhoon
hazards. They derived the safety factors to be applied to characteristic
loads based on 50-year extreme 10-min mean wind speeds. They re-
ported that to achieve a similar reliability index using FORM analysis,
different design wind load specifications should be considered for re-
gions with and without typhoon hazards. This is due to the fact that the
reliability of turbine structures under extreme wind loads is affected by
the wind coefficient of variation. Although there was some uncertainty
regarding the assumptions used to determine the proper distribution of
extreme wind speeds due to typhoons, a partial safety factor of 1.7
exhibited the best estimate. Rose et al. [203] developed a probabilistic
framework to predict the number of OWTs in a wind farm that could be
damaged when subjected to hurricanes in four locations in the Gulf coast
and Atlantic waters of the United States. The order of the riskiest loca-
tions to install OWTs was as follows: 1) Galveston County, TX, 2) Dare
County, NC, 3) Atlantic County, NJ, and 4) Dukes County, MA. The re-
sults indicated that almost half of the OWTs would be destroyed during
the wind farm’s 20-year service life at the riskiest location. More spe-
cifically, the Monte Carlo simulation revealed that up to 6% of the tur-
bine towers would buckle subjected to a category 2 (wind speed > 45.0
m/s) hurricane, while a category 3 (wind speed > 50.0 m/s) hurricane
could buckle 46% of the turbine towers. The tower buckling was a
function of the frequency of hurricane occurrence and its intensity. More
turbine towers would buckle at higher intensity hurricanes, yet they
occur less frequently.

Mardfekri and Gardoni [204] proposed a probabilistic model to
investigate the structural damage of 5 MW OWTs under extreme wind
and seismic hazards. Virtual experimental data was generated using FEA
to develop the probabilistic models using a Bayesian approach for esti-
mating moment and shear demands and fragility of support structures.
They assessed the annual failure probabilities for two identical OWTs at
two different locations: 1) California Coast prone to high seismic region,
and 2) Gulf of Mexico of the Texas Coast subjected to hurricanes. A
higher risk of failure was found for OWTs installed on the California
Coast due to high seismicity. Katsanos et al. [205] examined the struc-
tural performance of OWTs under a multi-hazard environment (earth-
quake excitations, wind, and wave loads) using nonlinear time-domain
analysis. They employed advanced aero-servo-elastic code to model
various parts of the turbine. They reported that wind turbine reliability
and tower dynamic response were significantly influenced by the
earthquake excitations. More specifically, fragility analysis revealed that
even at low-to-moderate seismic excitations, the highly tuned and sen-
sitive equipment that is commonly located at the nacelle was prone to
significant damage. Further studies are necessary to develop reliable
models considering the environmental and climate change hazards of
FOWTs.

3.2.6. Fatigue

Velarde et al. [206] conducted a fatigue reliability analysis for a
large monopile 10 MW OWT. The results indicated that potential reso-
nant responses and wave-induced fatigue load could have substantial
effects on the fatigue damage which was evaluated by Miner’s rules
using the S-N curve method. They recommended a reliability-based
calibration of fatigue design factor of greater than or equal to three
using the FORM. In addition, the sensitivity of the fatigue reliability was
quantified against various stochastic input variables. Vahdatirad et al.
[207] proposed a probabilistic-based Monte Carlo simulation and finite
element model to perform reliability analyses of gravity-based OWTs
regarding their bearing capacity. The results were then used to fine-tune
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a deterministic-based design code, leading to a 20% saving in materials
for the concrete foundation at a similar annual target reliability level.
Morato and Sriramula [208] performed structural reliability analysis of
OWTs using a Kriging surrogate model to estimate the load-effect using
aero-elastic simulations. Thereafter, they calibrated available partial
safety factors (PSFs) using probabilistic models. The results indicated
that a PSF of 1.31 was required for the target reliability index of 3.09,
confirming that PSFs from the IEC 61400-3 were adequate. Also, very
low failure probabilities were achieved for most sever design cases. Horn
and Leira [45] carried out a fatigue reliability assessment for a monopile
OWT with its availability modeled as a random variable which reduced
the failure probability and increased its operational lifetime. Environ-
mental parameters such as wind, wind sea, tide, and swell with corre-
sponding directional statistics were considered. They used normal and
3-p Weibull distributions truncated at +90° to model the wave heights
and relative wind-wave direction, respectively. The results exhibited
around a 10% increase in the operational lifetime in the case of
employing a beta-distributed availability model of 94% with a standard
deviation of 4 instead of using a deterministic availability of 90%. In
another study, Horn and Jenson [71] improved the accuracy of fatigue
estimations using combined FORM and Monte Carlo simulations (MCS).
Dong et al. [200] used fracture mechanics method to predict the fatigue
reliability of a fixed jacket OWT taking into account the impacts of
corrosion and inspection. They used a 2-p Weibull to fit the long-term
statistical distribution of stress at hot-spots. The results indicated a
decrease in the reliability index in the case of corrosion and material
degradation. The reliability index exhibited a considerable sensitivity to
detectable cracks than initial crack sizes. The reliability index of 0.4-0.5
could be achieved if applied the proper inspection and repair strategy.

To date, very limited research has been performed on the fatigue
reliability assessment of FOWTs. Li and Zhang [209] developed a
probabilistic accumulated long-term assessment of fatigue integrating
canonical vine (C-vine) copula and surrogate models on a FOWT
(spar-type) under realistic environmental conditions. Two surrogate
models (artificial neural network and Kriging model) were used to
model the nonlinear load mapping relationship for predicting short-term
fatigue damage in critical areas. Then, sensitivity analyses were per-
formed to study the relative significance of six wave and wind-related
environmental loads on the short-term fatigue damages at three crit-
ical locations of mooring lines: 1) fairlead, 2) tower base, and 3) tower
top. The results indicated that short-term fatigue damage was remark-
ably sensitive to variations in the mean wind speed and direction.
Thereafter, short-term fatigue damage uncertainties were incorporated
into a probabilistic fatigue model using the Monte Carlo simulations to
predict long-term fatigue damages. It was found that mooring lines that
were arranged in the direction of the dominant wave were prone to
fatigue damage. Also, locations along the direction of the dominant
wave at the base and top of the turbine tower were most vulnerable to
long-term fatigue damage. In addition, the influence of wind on
long-term fatigue damages was more significant at the tower top than at
the tower base. In another study, Li and Zhang [59] predicted the
long-term design loads for a FOWT (spar-type). The multivariate
dependence structure of six wave and wind-related environmental pa-
rameters that affected the dynamic responses was assessed using the
C-vine copula model that was integrated into the environmental contour
methodology. To evaluate the long-term (50-year) design loads and
taking into account the response uncertainty, extreme value distribu-
tions for extreme short-term responses were obtained using several dy-
namic simulations. The results indicated that 300 environmental
conditions were sufficient for accurate predictions. Also, it was found
that the response uncertainty significantly affected the long-term design
loads.

Ziegler et al. [85] developed a computational model to efficiently
evaluate the fatigue damage subjected to wave loads using
frequency-domain analysis. This model provided better insights into the
sensitivity of fatigue loads to various environmental parameters such as
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significant wave height, mean sea level, and wave peak period. The
frequency-domain analysis, however, is not widely accepted by classi-
fication societies (such as the American Bureau of Shipping (ABS), Det
Norske Veritas (DNV), etc.). Chen and Basu [114] studied the impacts of
current load and its interaction with wave load on the fatigue of a FOWT
having a spar-type platform. They concluded that the current had a
significant impact on the turbine tower responses and the mooring lines’
mean tensions due to the static offset. When ignoring the wave-current
interaction, the fatigue life of mooring lines was overestimated. Li et al.
[51] investigated the short-term fatigue damages of a 5 MW FOWT
(spar-type) at the tower base. Realistic environmental conditions were
taken into account to evaluate the structural stresses and loads at the
base of the turbine tower. They concluded that fatigue damages induced
by the wave were larger than those induced by the wind loads. In the
case of a fatigue load, it was confirmed that it exhibited more sensitivity
to the counting method of cyclic loads, but not to the simulation length
[113].

The correlation between strength and stiffness degradation was
studied by Gao and Yuan [210] who presented a probability model
representing FRP material’s stiffness degradation of a turbine blade.
According to their research, the FRP stiffness degradation exhibited a
substantial influence on its reliability and fatigue life. Generally, the
full-scale level and the element level (which includes local defects and
size effects) exhibit similar model and statistical uncertainties.

To consider the model and statistical uncertainties, Weibull distri-
bution was employed by Toft and Sgrensen [170] to model both
full-scale (Xpy) and element-scale (Xer) uncertainties. The accumu-
lated damage is usually modeled using a Lognormal distribution to
prevent negative values of Miner’s rule [20]. A Weibull distribution can
adequately approximate the long-term distribution of wave-induced
loading. A Weibull distribution on material strength in fatigue may
describe the time to crack initiation [211]. An exponential distribution
exhibits sufficient approximation for the long-term distribution of
wave-induced loads. An exponential distribution can also describe the
likelihood of crack detection [192]. Fatigue lives of materials are
generally modeled by 2-p Weibull distribution [193].

Miiller et al. [152] employed Monte Carlo-based sampling proced-
ures based on Sobol’ sequences to address the large variation in envi-
ronmental conditions for FOWTs. This approach allowed for efficient
coverage of the design space and faster convergence with fewer simu-
lations. The analysis focused on the DTU 10 MW reference turbine, using
statistical properties of wind speed, wave height, and wave period from
Gulf of Maine (USA) measurements. The study demonstrated that
approximately 200 simulations were adequate to achieve less than 10%
uncertainty in lifetime fatigue damage-equivalent loading. These find-
ings provide valuable insights into quantifying uncertainties based on
the number of simulations, facilitating the definition of safety factors.
Designers can now choose between a fast approach with fewer simula-
tions and larger safety factors or a detailed approach with more simu-
lations and smaller safety factors.

4. Conclusions and Future Prospects

It is expected that wind power will soon become one of the primary
electricity generators, with colossal floating offshore wind turbines
(FOWTs) outperforming the industry. Nevertheless, FOWTs are sub-
jected to large structural vibrations due to the coupled effects of aero-
dynamic and hydrodynamic loads, leading to more frequent failures
than fixed-type offshore wind turbines. Therefore, a reliable design of
FOWTs considering various sources of uncertainty is the key to struc-
tural integrity and serviceability, as well as reducing the cost of energy.
Traditional design approaches that consider partial safety factors and
load factors to deterministically accommodate these uncertainties using
discrete values may lead to either over-designed or under-designed
practices. Recognizing this issue, the current review first identifies and
presents various sources of uncertainty that might be related to
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stochastic variables including uncertainties in environmental loads (e.g.,
the randomness of the wave and wind loads), material properties of the
structural components, as well as growing uncertainties over time such
as corrosion and fatigue effects. Then, appropriate statistical distribu-
tions for each investigated stochastic variable are discussed to improve
the reliability of FOWT systems. These input uncertainties could then be
incorporated within probabilistic models to predict the uncertain out-
puts of the correlations between the stochastic variables as well as model
error. The probabilistic design approach might be further studied to
establish a basis for the quantification of uncertainty in ultimate design
conditions through reliability analysis, providing insight into FOWTSs’
performance as well as their maintenance requirement. The following
conclusions are made.

e Uncertainties in environmental loads: the structural design of FOWTs
must account for aerodynamic and hydrodynamic systems. The
coupling of uncertainties between them, in addition to the coupling
of the dynamic systems, is a critical component in the estimation of
the structural reliability of the FOWT system. To do so, an accurate
prediction of each uncertainty model, such as stochastic wave, cur-
rent, and wind loads, is crucial to building confidence in the design
process. These uncertainty models should reflect both the un-
certainties inherent within the nature of the system (aleatory, irre-
ducible) and those sourced from our lack of knowledge(epistemic,
reducible) including measurement and modeling errors. The
Gamma, Lognormal, and Weibull distributions are three widely used
probability distribution functions for modeling environmental loads
such as winds and waves. Based on extensive literature data analysis,
it is found that the Weibull distribution is a well-accepted repre-
sentation of the wind speed, while the Gamma distribution is mostly
used for the wave height and period. The probability of failure could
significantly be underestimated if environmental load uncertainties
are not considered.
Uncertainties in structures, materials, manufacturing, and con-
struction: to reduce the overall uncertainty of FOWTs, safety mea-
sures such as inspection, quality control, and condition monitoring
might be applied during their manufacturing and operation. Litera-
ture shows up to 39% of underestimation of the probability of failure
due to neglecting the uncertainties of material and geometric un-
certainties. This threatens the safety of the FOWT systems.
Geotechnical Uncertainties: soil properties exhibit high uncertainty
due to the logistical issues of conducting detailed soil sampling at
FOWT locations. In addition, time-varying oceanic currents and
waves make the scour problem more complicated than fixed-type
offshore wind turbines. This can significantly affect the stiffness,
fatigue reliability, and natural frequency of FOWT support struc-
tures. Yet, soil property is one of the least investigated parameters in
a probabilistic manner. Because of the computational efficiency,
Gaussian probability distribution is generally applied to partially
model the variabilities in soil properties. Similarly, the p-y method is
widely used for the structural reliability analysis of FOWTs. How-
ever, the p-y method is incapable of precisely capturing the soil
behavior. Finite element analysis could be used to accurately model
the soil.

e Growing uncertainties over time: the failure mode of FOWT struc-
tures can be governed by several time-dependent phenomena
including fatigue and corrosion damages, leading to the material’s
degradation which ultimately degrades the FOWT structure resis-
tance. Literature shows the importance of the growing uncertainties
over a lifetime. Currently, the increasing uncertainties are not taken
into account in the prevailing practice. Instead, the long-term envi-
ronmental loads and fatigue reliability are commonly assessed
without accounting for the changing nature of uncertainties over
time. The research area is recognized for its lack of existing knowl-
edge and the need for improvement.
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Future Prospects.
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lower turbine downtime. In addition, data obtained from SHM and
CM might be integrated with reliability assessment to achieve target

e To assess the reliability of FOWT structures through probabilistic reliability indices.
approaches, extensive experimental data is required. Therefore,
further numerical and experimental studies are needed for the risk Declaration of competing interest
assessment of FOWTSs. Besides, since probabilistic models using a
Bayesian approach require a large database for accurate estimation The authors declare there are no competing finacial interests. The
of the posterior probability, a combination of machine learning and financial support of the work is listed under Acknowledgements.
Bayesian inference might be studied in future reliability research.
e Extreme oceanic environments and difficulty of access are consid- Data availability
ered two main disadvantages of FOWTs, resulting in a significant
increase in operation and maintenance costs. Therefore, the appli- No data was used for the research described in the article.
cation of condition monitoring (CM) and structural health moni-
toring (SHM) might be further investigated to improve safety by Acknowledgments
providing insights into the condition of FOWT structures. This may
optimize the inspection intervals over FOWTSs’ typical service life of This work was supported by the National Science Foundation of the
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