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A B S T R A C T   

Floating offshore wind turbines have arisen as a promising option to access massive wind energy resources in 
deep water, where the existing fixed-type offshore wind turbine is no longer practical. However, due to the 
nature of the oceanic environmental conditions, large uncertainties are involved in the aerodynamic/hydrody
namic calculations, which are coupled with those within the structures and materials. This not only threatens its 
reliability but also drastically increases the manufacturing cost of floating offshore wind turbines. To understand 
the uncertainty within the system and properly predict its reliability, first, the uncertainties involved in the 
environments and subsystems need to be defined. Therefore, this paper aims to provide an extensive review of 
the uncertainty models involved in the structural design of floating offshore wind turbines. The presented un
certainties within the structures include those inherent in the material and geometrical/mechanical properties of 
the wind turbine, floating structures, and mooring lines. The uncertainties within hydrodynamics include 
empirical parameters and nonlinearities involved with the hydrodynamics modeling of the floaters. Within the 
environmental loads, the parameter uncertainties as well as the randomness of wind and wave loads are pre
sented. The uncertainties growing over time caused by fatigue, corrosion, and climate hazards are also discussed. 
In addition, the correlation between the random variables, such as the correlation of the wind and wave, is 
presented. Finally, the method of treating those uncertainties is discussed, including the probabilistic model 
which incorporates the uncertainties and the correlations between the random variables, as well as modeling 
errors.   

1. Introduction 

There is a pressing need to shift toward renewable energy resources 
to mitigate the catastrophic climate change effects resulting from the 
increased greenhouse gas (GHG) emissions due to the burning of fossil 
fuels. Among all, wind energy is the fastest-growing renewable source. 
The global cumulative wind energy capacity reached 837 GW in the year 
2022, exhibiting a year-on-year growth of 12% [1], yet wind energy 
contributes to less than 4% of the total energy produced in the United 
States [2]. According to the U.S. Department of Energy, wind energy 
(both onshore and offshore) would contribute to about 35% of the U.S. 
electricity demand (i.e., 404 GW) by 2050, avoiding 12.3 gigatonnes of 
GHG emissions [3]. For a wind turbine to be utilized as an efficient 
renewable energy source, it is necessary to secure continuous and effi
cient energy production. From this point of view, it is essential to locate 
a site that can maintain a constant or higher wind speed for wind power 

generation. Because winds are stronger and steadier at seas than they are 
on land, it is anticipated that offshore wind power installation occupies 
increasing clean energy industry capacity [4]. In addition, offshore 
power generation does not suffer from disadvantages such as space 
availability, noise, and aesthetics. The generation capacity of offshore 
wind turbines (OWTs) in Europe was nearly 22.1 GW by the end of 2019, 
with a projection of 70 GW by the year 2030 [5]. Currently, the offshore 
wind energy market is dominated by stationary (or fixed-type) founda
tions including monopiles, jackets, tripods, and gravity-based [6]. The 
stationary OWTs, however, require sites with relatively shallow water 
depth (usually smaller than 50 m), where sites with abundant wind 
conditions are inevitably limited [7]. In contrast, floating offshore wind 
turbines (FOWTs) with mooring lines and anchors including Tension Leg 
Platform (TLP), spar-buoy, semi-submersible, and barge-type could be 
deployed in deep water (up to 1000 m), generating substantial untapped 
wind energy [7,8]. The world’s first FOWTs (five spar-buoys turbines) 
were installed in Scotland in 2017 [9]. According to the National 
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Renewable Energy Laboratory, the total potential production capacity of 
OWTs is double the United States’ annual power consumption (4000 
TWh per year), where 42% of the potential power might be generated 
from fixed-type turbines and the remaining 58% could come from 
FOWTs. Tapping into this lucrative market of $70 billion by 2030, 
FOWTs are under extensive research and development worldwide. It is 
worth noting that due to technology and cost constraints, FOWTs are 
still in their infancy [4]. It is estimated that FOWTs could only generate 
between 4.0 GW and 5.0 GW of energy in Europe by 2030 [10]. For rapid 
development, a good understanding of inherent engineering challenges 
associated with FOWTs is therefore needed. 

As FOWTs are incrementally deployed to deep waters with an 
increased rotor diameter and tower height, they could inevitably expe
rience more significant dynamic motions and responses throughout the 
course of their service life [11]. The highly nonlinear dynamic motions 
and the response of FOWTs due to the coupled effects of aerodynamics, 

hydrodynamics, mooring dynamics, etc. make their design much more 
complex than onshore and fixed-type OWTs. In the meantime, severe 
environmental conditions (e.g., wave, current, and wind loads) and their 
significant uncertainties in the deeper ocean aggravate the design 
complexity of FOWTs. Also, the effects of fatigue reliability on the FOWT 
structures should not be overlooked [12]. In the period of 2000–2020, 
human errors (e.g., design deficiency and fabrication/construction de
fects) and inadequate safety margins to accommodate uncertainties 
were the main reasons for wind turbine failures [13]. Traditionally, the 
available international design standards and codes consider load factors, 
such as partial safety factors (PSFs) and Load and Resistance Factor 
Design (LRFD), to account for uncertainties in a deterministic manner 
under various loading conditions. However, this design simplification 
using existing LRFD or PSFs may lead to over-design with undesired 
expenses in most cases [14]. Besides, the applicability of PSFs for FOWT 
structures might be questionable because the uncertainties arise from 

Abbreviations and nomenclature: 

GHG Greenhouse Gas 
OWT Offshore Wind Turbine 
FOWT Floating Offshore Wind Turbine 
TLP Tension Leg Platform 
IEC International Electrotechnical Commission 
DNV Det Norske Veritas 
ABS American Bureau of Shipping 
LRFD Load and Resistance Factor Design 
PSF Partial Safety Factor 
PDF Probability Distribution Function 
COV Coefficient of Variation 
σ Standard Deviation 
GM Graphical Method 
MLM Maximum Likelihood Method 
LSM Least Square Method 
EPFM Energy Pattern Factor Method 
MM Moment Method 
MMLM Modified Maximum Likelihood Method 
EM Empirical Method 
EEM Equivalent Energy Method 
EML Empirical Method of Lysen 
EMJ Empirical Method of Justus 
LTF Linear Wave Force Transfer Function 
QTF Quadratic Sum and Difference Wave Force Transfer 

Function 
κ Shape Parameter 
c Scale Parameter 
ɣ Location Parameter 
μ Mean value 
ɣ Shape Parameter for Gamma Distribution 
θ Rate Parameter for Gamma Distribution 
Κ Concentration Parameter for Von Mises Distribution 
I0(Κ) Modified Bessel function 
E[C(t)] Mean Capacity 
D Demand 
σo Initial Standard Deviation 
σ(t) Standard Deviation at Time t 
X Random Vector 
g(X) Limit State Function 
MPP Most Probable Point 
β Reliability Index 
FEA Finite Element Analysis 
SHM Structural Health Monitoring 
CM Condition Monitoring 

WRF Weather Research and Forecasting 
NWS National Weather Service 
NOAA National Oceanic and Atmospheric Administration 
NCEP National Centers for Environmental Prediction 
CFSRR Climate Forecast System Reanalysis Reforecast 
FAST Fatigue, Aerodynamics, Structures, and Turbulent 

Simulation Tool 
IAV Inter-annual Variability 
FD Drag Force 
FI Inertia Force 
K–C Keulegan-Carpenter Number 
Hs Significant Wave Height 
MSL Mean Sea Level 
Tp Wave Peak Period 
T02 Conditional Mean Period 
E Elastic Modulus 
ρ Density 
G Shear Modulus 
ν Poisson’s Ratio 
φ’ Soil Friction Angle Property Variability 
f(Hs) Marginal Distribution of Significant Wave Height 
f(T02|Hs) Distribution of the Mean Zero-crossing Period Conditional 

on Significant Wave Height 
f(Hs,T02) Joint PDF of Significant Wave Height and Mean Wave 

Period 
vz Mean wind speed at various heights 
vz0 Mean wind speed at the height of z0 = 10 m 
α Wind shear exponent 
vz,SS Sub-surface current speeds at a position of z below sea level 
vz,NS Near-surface current speed at a position of z below sea 

level 
FORM First-Order Reliability Method 
IFORM Inverse First-Order Reliability Method 
SORM Second Order Reliability Method 
RSM Response Surface Method 
MCS Monte Carlo Simulation 
MVFOSM Mean Value First Order Second Moment 
EGRA Efficient Global Reliability Analysis 
AK-MCS Active Learning Reliability Method Combining Kriging and 

Monte Carlo Simulation 
ULS Ultimate Limit State 
FLS Fatigue Limit State 
SLS Serviceability Limit State 
ALS Accidental Limit State  
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the continuous cyclic hydrodynamic and aerodynamic loads, resulting in 
nonlinear behaviors [15]. An alternative approach is to design FOWT 
structures considering both aleatory and epistemic uncertainties in 
variables in a stochastic manner with proper types of distribution 
functions. Non-deterministic (probabilistic) structural reliability anal
ysis might be used to properly estimate the target reliability index to be 
integrated into the conventional design codes, achieving certain safety 
levels in terms of fatigue and ultimate failure criteria, in addition to 
inspection/maintenance planning. Yet, the reliability analysis is merely 
referred to in this context [16,17]. Compared with the deterministic 
approach, this method may take into account the random nature of the 
sea state, allowing the identification of the worst conditions which are 
essential for the reliable design of FOWTs. However, very limited studies 
are available that extensively account for FOWT environmental, mate
rial, and geometric stochastic uncertainties [18,19]. Therefore, the 
objective of this work is to summarize and quantify various uncertainties 
involved in the design of FOWTs such as nonlinear environmental 
loadings, turbine blades, turbine material, soil properties, fatigue, etc., 
which significantly affect the FOWT reliability. The findings may be 
used to calibrate the existing load factors or certain loading conditions, 
avoiding their generalization which is a key step to increasing the reli
ability of FOWTs. 

2. Uncertainties & uncertainty models 

Reliable power generation can significantly reduce the cost of energy 
for FOWTs. Nevertheless, there are still many sources of uncertainties in 
the FOWT industry because of the lack of knowledge, the nature of the 
nonlinear dynamic system, lacking measurement capability, etc. Toft 
and Sørensen [20] categorized sources of uncertainties related to wind 
turbine into four groups: 1) physical, 2) model, 3) statistical, and 4) 
measurement uncertainties. Uncertainties in probabilistic modeling can 
be categorized into two types: epistemic uncertainty (reducible) and 
aleatory uncertainty (irreducible). Epistemic uncertainties arise from a 
lack of knowledge, our decision to simplify matters, measurement er
rors, and a small number of observations [21]. Aleatory uncertainties 
are inherent within the nature of the system, which therefore cannot be 
reduced. These uncertainties can often be modeled in the form of 
random variables that express environmental loads (aerodynamic and 
hydrodynamic loads), geometrical and mechanical properties within the 
structures, soil properties, and growing uncertainties over time. To 
improve the reliability, knowledge of the types of probability distribu
tion and characteristic values of the random variables (i.e., how these 
uncertainties propagate through the models) is vital. Non-probabilistic 
uncertainty models, such as fuzzy logic, interval analysis, possibility 
theory, and belief functions, provide an alternative approach to quan
tifying uncertainty, especially in cases where limited or incomplete in
formation is available [22]. These models enable the representation and 
reasoning of uncertainty without relying on explicit probability distri
butions, making them useful tools in addressing epistemic uncertainty in 
complex systems or when dealing with sparse data. It should be noted 
that epistemic uncertainties can be reduced throughout the design 
process, data collection, and measurements. 

This section provides a comprehensive review of various uncertainty 
models and/or variability quantified in existing literatures. In Section 
2.1, we discuss the parameter uncertainties within the environmental 
loads, which will determine the uncertainties of structural demands of 
FOWTs. Section 2.2 presents those uncertainties inherent in the struc
tural capacity of FOWTs, which includes the material and structures. We 
also discuss the uncertainties within the geotechnical properties in 
Section 2.3, which may indirectly impact both of the structural capacity 
and demand of the system. Section 2.4 presents temporal uncertainty 
considerations and Section 2.5 discuss the modeling uncertainties. The 
reliability methods and examples are provided in Sections 3.1 and 3.2, 
respectively, where the structural capacity and demand are combined to 
determine the structural reliability of FOWTs. 

2.1. Environmental load 

The design of FOWTs must account for the various environmental 
loads such as aerodynamic loads on the rotor and tower, the hydrody
namic forces on the mooring system and floating platform, as well as the 
coupling between them. These will determine the structural demands of 
FOWTs. Therefore, an accurate prediction of environmental loads 
including various stochastic wind, wave, and current conditions is crit
ical. This section presents extensive literature of the various research 
that has considered the uncertainties of the environmental loads in the 
development of wind turbines. The summary tables of variabilities and 
uncertainty models are provided over the text and discussions are placed 
at the end of each section. 

It noted that variability and uncertainty are two distinct concepts. 
The term variability pertains to the inherent variation present within the 
modeled physical systems, or the environment being considered, which 
is described by a distributed quantity that encompasses a range of po
tential values. Some literature characterizes this variability as one of the 
aleatory uncertainties which are irreducible. On the other hand, the 
uncertainty represents a possible limitation in any stage or aspect of the 
modeling process arising from a lack of knowledge. This can typically be 
described in the form of a probability distribution, while there are non- 
probabilistic uncertainties discussed in the previous section. In this 
paper, the term “uncertainties” specifically refers to epistemic 
uncertainties. 

2.1.1. Wind 
Wind characteristics are parameters that are used to describe the 

wind such as wind speed and profile, turbulence intensity, dynamic 
wind spectrum, and wind direction. Due to interannual variability and 
inaccurate measurements (e.g., sensor inaccuracy, human error, and 
physical or atmospheric interference), wind characteristics are highly 
uncertain. Prior to a wind turbine project execution, details of these 
stochastic variables (available at the proposed site) must be obtained 
and analyzed for the viability/suitability of the proposed site for the 
turbine design and project. For the design of wind turbines, the long- 
term wind conditions that are dominated by the mean and standard 
deviation of the wind speed, serve as a representation of the wind 
climate. The standard deviation (σ) of annual mean wind speeds to the 
long-term mean value is often used to illustrate the Inter-annual vari
ability (IAV). Therefore, it is often expressed as a percentage of the 
mean. The standard deviation value of IAV is typically assumed as 6% of 
the annual average wind speed [23,24]. This indicates that the 
long-term mean wind speeds annual variability at various ground sites 
are comparable and might reasonably be considered to be a normal 
distribution with σ = 6%. This assumption plays a crucial part in 
assessing the uncertainty in predicting the wind farm. Nevertheless, the 
assumption derives from examining wind speeds at 10 m above the 
ground level [23,25,26], employing data either from a small number of 
in-situ monitoring stations or from reanalysis output of a relatively 
coarse resolution [27]. Pryor et al. [28] developed numerical simula
tions using the Weather Research and Forecasting (WRF) model in order 
to investigate IAVs with the mean wind speed near the typical wind 
turbine hub height. They concluded that the annual mean wind speed 
variability at a height of a typical wind turbine hub in the eastern USA 
was less than a 6% standard deviation. Table 1 summarizes some liter
ature data on the IAV of the wind climates. 

Wind data usually consists of thousands of measurements over an 
extended period (e.g., 20–50 years) for the wind direction and speed. 
Fig. 1(a) through Fig. 1(c) represents a clustered wind direction distri
bution with 12, 32, and 360 direction sectors, respectively, in the north 
sea (80 km away from the Sylt island in Germany) for a period of 8 years 
(2010–2017) [31]. While increasing the number of wind sectors may 
enhance the accuracy of the model, it is important to exercise caution as 
excessive number of sectors can lead to overfitting. Fig. 2 plots the wind 
speed data fitted by a Weibull distribution for a wind direction sector 
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between 225 ◦-255 ◦ using the maximum likelihood estimation method 
[31]. To simulate a wind farm, every sector of the wind direction and the 
corresponding wind speed should be taken into account. It is worth 
noting that in an offshore wind farm, the upstream turbines decelerate 
the incoming wind flow (because of the viscous interaction along the 
blades) and the wake effect is generated which is responsible for the 
wind speed reduction for the subsequent FOWTs. Various models have 
been constructed to consider the wake effect including the Park wake 

model, linearized Reynolds-average Navier-Stokes model, 
Eddy-viscosity wake model, large Eddy simulations, and deep-array 
wake model [32–36]. 

Different probability distribution functions (PDFs) were used in the 
literature to fit the wind speed data. Ouarda et al. [37] investigated the 
suitability of one-component parametric distributions. They concluded 
that Generalized Gamma and Kappa distribution functions provided the 
best fit for estimating the wind speed among others. Previous research 
exhibited that Weibull distribution might be utilized to adequately 
represent the wind speed probability distribution for wind energy 
forecasting. International Electrotechnical Commission (IEC) [38] sug
gested using Rayleigh distribution for predicting wind speed data 
analysis and annual energy production. Rayleigh distribution is a 
two-parameter (2-p) Weibull distribution with the shape factor (κ) of 2. 
However, Rayleigh distribution may lead to incorrect results [39]. 
Table 2 summarizes wind component’s variability along with the most 
widely used distributions which include two- or three-parameter dis
tribution functions in the literature. It is noteworthy to acknowledge 
that various studies utilized different equations and methods to derive 
the parameters indicated as P1 to P3 in Table 2. For instance, in Refs. 
[40,41], the 2-parameter Weibull distribution parameters were obtained 
through distinct approaches. In Ref. [40], the Method of Moments was 
employed, while the empirical method of Lysen was utilized in Ref. [41]. 
For comparison purposes, in addition to data related to offshore wind 
turbines (herein, shallow-water for depths less than 60 m [40,42–50] 
and deep-water for depths greater than 60 m [14,48,51–59]), onshore 
wind turbine data is also included [37,40,41,48,60–67]. In order to 
facilitate a direct comparison Fig. 3(a) shows the boxplots of the mean 
wind speed at a height of 10 m (as indicated in the last column of 
Table 2) for deep-water, shallow-water, and on-shore wind turbines. To 
achieve this comparison, it is necessary to extrapolate the mean wind 

Table 1 
Summary of the wind climates inter-annual variability [28].  

Study Descriptor Data type Location No. of 
sites 

Data 
duration 

Assumption Magnitude 

[28] Annual mean wind 
speed (m/s) 

WRF output at 12 by 12 km 
grid cells 

Eastern North 
America 

– 15 years Median & interquantile range 5.20% & 
5.50% 

[26] Observations at 10 m Ireland – 13 years Gaussian distribution 4.40%– 
6.90% 

[25] Spatial composites of 10 m 
observations 

UK – 29 years Gaussian distribution 3.10%– 
7.00% 

[29] NARR interpolated to 80 m – – 36 years Max %increase or %decrease in wind speed 
anomaly from 35-year mean 

5.00%– 
40.0% 

[30] Observations at 10 m Scotland – 13–43 
years 

Dispersion is divided by mean from one year to 
the next year 

10.0%– 
15.0% 

[27] Reanalysis – – 41 years Gaussian distribution 8.00%– 
12.0% 

[23] Observations at 10 m – 30 – Gaussian distribution ~6.00%  

Fig. 1. Wind direction measurements at a 100 m height in the North Sea between 2010 and 2018 clustered in wind direction sectors of (a) 12, (b) 32, and (c) 
360 [31]. 

Fig. 2. Wind direction Weibull distribution in the North Sea between 2010 and 
2018 for the wind direction sector [225◦, 255◦) facing southwest [31]. 
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Table 2 
Uncertainty models of wind characteristics in literature.  

Study Variable Original data Mean wind speed at 
10 m height (m/s) 

Distribution type P1a P2b P3c Reference 
height (m) 

Mean at 
reference height 

COV 

[14] Wind speed (m/s) Normal 12 0.6 – 90 12 & 14 0.05 8.82 & 10.29 
[56] 2-p Weibull 2.66 12.8 – 10 11.4 0.4 11.4 
[59] 2-p Weibull 2.56 11.04 – 10 9.8 0.42 9.8 

Lognormal 2.18 0.48 – 10 2.18 0.22 2.18 
Gamma 5.13 0.52 – 10 9.56 0.45 9.56 

[40]     2-p Weibull 1.98 2.86 – 10 2.79 0.48 2.79 
2 5.5 – 40 5.31 0.49 4.37 
2.01 6.27 – 50 6.05 0.49 4.83 
2.03 7.6 – 70 7.33 0.49 5.58 
2.04 8.25 – 80 7.96 0.49 5.95 
1.94 7.31 – 10 6.48 0.54 6.48 
2.17 9.19 – 40 8.14 0.49 6.70 
2.22 9.56 – 55 8.47 0.48 6.67 
2.24 9.66 – 70 8.56 0.48 6.52 
2.27 10.16 – 80 9 0.47 6.73 

[41] 2-p Weibull − 2.05 3.18 – 20 2.81 0.52 2.55 
2.10 3.77 – 40 3.34 0.5 2.75 
2.11 4.16 – 60 3.73 0.5 2.90 
2.11 4.47 – 80 3.96 0.5 2.96 

[45, 
46] 

3-p Weibull 9.49 2.19 2.28 100 – – – 

[57] – – – – 90 49 – 36.02 
– – – 90 23.2 – 17.06 

[53]  Generalized Extreme 
Value (GEV) 

– – – 10 8.23 0.44 8.23 
– – – 10 7.62 0.46 7.62 
– – – 10 8.28 0.46 8.28 
– – – 10 7.14 0.45 7.14 

[51] 2-p Weibull – – – 10 11.4 – 11.4 
– – – 10 21 – 21 

[48]  2-p Weibull 2.36 6.7 – 10 5.91 0.48 5.91 
2.49 7.81 – 10 6.94 0.43 6.94 
2.45 8.09 – 10 7.18 0.43 7.18 

[67] 3-p Weibull 2.097 5.104 − 1.269 10 4.59 0.51 4.59 
2-p Weibull 1.655 4.195 – 10 3.71 0.63 3.71 

[63]  2-p Weibull 2.5 1.495 – 10 1.32 0.43 1.32 
3-p Weibull 3.499 1.969 − 0.438 10 1.32 0.32 1.32 
Gamma 3.941 0.338 – 10 1.29 0.51 1.29 
Lognormal 0.153 0.592 – 10 2.18 0.48 2.18 

[58]  2-p Weibull 2.12 9.77 – 90 8.64 0.5 6.35 
2.13 9.5 – 90 8.41 0.49 6.18 
2.1 8.38 – 90 7.42 0.5 5.45 

[37] Gamma – – – 10 2.47–4.28 0.53–0.70 2.47–4.28 
– – – 30 3.85 0.52 3.30 
– – – 40 4.06–5.61 0.47–0.50 3.34–4.62 
– – – 50 4.37 0.49 3.49 
– – – 60 5.67 0.48 4.41 
– – – 80 5.8 0.46 4.33 

[54] Maximum Entropy 1.98 9.12 0.9 10 32.02 – 32.02 
[47]  2-p Weibull 1.94 6.89 – 80 6.11 0.52 4.57 

2 5.35 – 80 4.75 0.53 3.55 
2.11 6.33 – 80 5.61 0.5 4.19 

[49] 2-p Weibull 1.92 8.03 – 97.35 7.12 0.55 5.18  
1.94 6.86 – 26.31 6.08 0.54 5.31 

[60] 2-p Weibull 1.08 1.80 – 10 2.32 0.76 2.32  
1.11 1.82 – 10 2.51 0.76 2.51 
0.98 1.23 – 10 1.78 0.764 1.78 
0.96 1.57 – 10 2.18 0.90 2.18 

[55] Lognormal 2.8 0.16 – 10 16.71 0.16 16.71 
2.79 0.17 – 10 16.6 0.17 16.6 
2.79 0.16 – 10 16.42 0.16 16.42 

[64] 2-p Weibull 1.94 8.56 – 10 7.57 0.546 7.57 
2.12 7.77 – 10 6.88 0.496 6.88 
1.74 8.29 – 10 7.39 0.593 7.39 

[65] 2-p Weibull 3.05 11.13 – 10 (Site A) 9.94 0.358 9.94 
2.58 9.21 – 8.18 0.416 8.18  
2.27 7.53 –  6.67 0.467 6.67 
6.62 11.415 – 10 (Site B) 10.65 0.177 10.65 
3.85 9.895 – 11.06 0.29 11.06 
2.665 7.851 – 6.98 0.4 6.98 

[66] 2-p Weibull 2.02 4.81 – 10 4.243 0.53 4.243 
[62] 2-p Weibull 2.55 3.03 – 10 2.7 0.42 2.7 
[43] 2-p Weibull 2.08 10.61 – 83.9 9.29 – 6.9 

(continued on next page) 
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Table 2 (continued ) 

Study Variable Original data Mean wind speed at 
10 m height (m/s) 

Distribution type P1a P2b P3c Reference 
height (m) 

Mean at 
reference height 

COV 

2.04 11.68 – 83.9 10.05 – 7.46 
[45, 

46] 
Wind direction 
(o) 

Von Mises Mixture 0.277 1.02 111 100 – – – 
0.433 2.02 227 100 – – – 
0.29 1.73 324 100 – – – 

[58] – [-0.5:0.12] 0.38–2.62 90 – – – 
– [-0.42:0.27] 0.66–88 90 – – – 
– [-0.02:0.38] 1.08–3.22 90 – – – 

[61] 0.106 2.796 – 10 (Site A) 41.94 – – 
0.577 12.067 – 83.37 – – 
0.189 1.034 –  223.0 – – 
0.074 30.464 – 249.4 – – 
0.359 7.406 – 67.72 – – 
0.510 40.284 – 76.03 – – 
0.079 5.106 – 170.2 – – 
0.029 5.269 – 266.1 – – 
0.024 16.656 – 359.3 – – 
0.366 7.817 – 10 (Site B) 0.000 – – 
0.209 51.813 – 20.46 – – 
0.086 53.947 – 43.43 – – 
0.059 4.928 – 74.43 – – 
0.149 3.386 – 201.2 – – 
0.097 14.489 – 292.8 – – 
0.860 34.416 – 17.13 – – 
0.045 144.385 – 42.80 – – 
0.027 3.002 – 57.52 – – 
0.013 44.976 – 176.5 – – 
0.055 1.163 – 325.0 – – 

[52] Thrust force 
(MN) 

Trunc. Normal 781 
(static) 

78.1 (static) – 70.15 (from 
mudline) 

781 0.1 – 

197 
(fatigue) 

39.4 
(fatigue) 

– 197 0.2 – 

[57] – – – – – 173 0.37 – 
[44] Normal 0.129 0.028 – 17.73 (from 

mudline) 
0.13 0.22 – 

[68] Wind Pressure 
(kPa) 

Gumbel – – – At rotor height 538 0.23 – 

[42] Turbulence 
Intensity (%) 

Weibull & Gamma – – – 10 29.2 (for 2 m/s) – – 
– – – 10 20.4 (for 4 m/s) – – 
– – – 10 17.5 (for 6 m/s) – – 
– – – 10 16 (for 8 m/s) – – 
– – – 10 15.2 (for 10 m/ 

s) 
– – 

– – – 10 14.6 (for 12 m/ 
s) 

– – 

– – – 10 14.2 (for 14 m/ 
s) 

– – 

– – – 10 13.9 (for 16 m/ 
s) 

– – 

– – – 10 13.6 (for 18 m/ 
s) 

– – 

– – – 10 13.4 (for 20 m/ 
s) 

– – 

– – – 10 13.3 (for 22 m/ 
s) 

– – 

– – – 10 13.1 (for 24 m/ 
s) 

– – 

– – – 10 13.0 (for 26 m/ 
s) 

– – 

[50] 3-p Weibull 0.009 0.134 0.534 90 18 (for 16 m/s) 0.18 – 
0.01 0.14 0.484 90 12.4 (for 20 m/ 

s) 
0.124 – 

0.009 0.141 0.565 90 14.4 (for 20 m/ 
s) 

0.144 – 

0.01 0.139 0.638 90 16.5 (for 20 m/ 
s) 

0.165 – 

0.009 0.145 0.59 90 12 (for 24 m/s) 0.12 – 
[68] Lognormal – – – Rotor height 5 0.05 –  

a Parameter 1: shape factor for Weibull distribution, mean for Lognormal distribution, shape parameter for Gamma distribution, weight parameter for Von Mises 
distribution. 

b Parameter 2: scale factor for Weibull distribution, standard deviation for Lognormal distribution, rate parameter for Gamma distribution, concentration parameter 
for Von Mises distribution. 

c Parameter 3: displacement factor in 3-p Weibull distribution. 
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speeds measured at different heights in various studies to a consistent 
height (herein, 10 m). This extrapolation was accomplished using the 
following well-established equation [38]: 

vz = vz0 ×

(
z
z0

)α

(1)  

where vz represents the mean wind speed at various reference heights, 
vz0 is the mean wind speed at the height of z0 = 10 m, and α is the wind 
shear exponent which is commonly accepted as 0.14 [42,43]. The box
plots show minimum and maximum values, first and third quartiles, 
medians, and outliers. It is noteworthy to mention that the exceptionally 
high mean wind speed of 36.0 m/s pertains to storm conditions, spe
cifically followed by the responses to 50-year extreme values according 
to the IEC design standards, North Sea statistics, and Portugal’s coastal 
storm data [57]. Fig. 3(b) and (c) show the boxplots of the coefficients of 
variations (COV; the ratio of the standard deviation to the mean value) 
and standard deviation of the mean wind speed data, respectively. The 
median, minimum and maximum, and first and third quartiles of the 
wind speed COV at deep water exhibited lower values than both shallow 
water and onshore wind turbines, while the standard deviation values 
exhibit different trends. Overall, Fig. 3 indicates stronger and steadier 
winds as turbines are placed farther from the shore. 

Through extensive literature data analysis, it is found that the 2-p 
Weibull distribution is the most prevalent distribution function for 
estimating wind speed [62,66,67]. Nevertheless, in meteorological 
conditions that provide high percentages of null wind speed, a 3-p 
Weibull distribution function is recommended over a 2-p Weibull dis
tribution in general engineering practices in the industry. The suitability 
of a 3-p Weibull distribution and its preference over a 2-p Weibull dis
tribution was also outlined by several studies [69,70]. 

The most common methods for determining the Weibull parameters 
include the maximum likelihood method (MLM), graphical method 
(GM), and least square method (LSM). Yaniktepe et al. [60] studied the 
wind properties and potential energy production in Osmaniye (east of 
the Mediterranean Sea), Turkey. They employed Rayleigh and 2-p 
Weibull distributions for 44 months wind speed data collected fro 
2008 to 2011. The graphical method was used for determining the 
Weibull parameters (k and c). Altunkaynak et al. [64] employed 
perturbation theory to formulate wind power expectations and statisti
cal parameters (coefficient of variation and standard deviation), which 
followed a Weibull distribution. Keyhani et al. [66] assessed the po
tential of wind energy using the wind speed statistical data in Tehran, 
Iran, for a period of eleven years (1995–2005). Weibull shape and scale 
parameters were obtained on a yearly basis. Other techniques for esti
mating Weibull parameters were also compared for the wind data in 
Brazil and Pakistan [41,65]. Costa Rocha et al. [65] used the wind speed 
data of two cities in the northeast of Brazil from 2004 to 2006 in order to 
assess the effectiveness of seven numerical techniques in determining 
Weibull parameters: 1) maximum likelihood method (MLM), 2) modi
fied maximum likelihood method (MMLM), 3) graphical method (GM), 

4) moment method (MM), 5) energy pattern factor method (EPFM), 6) 
equivalent energy method (EEM), and 7) empirical method (EM). They 
concluded that the EEM was the most efficient method, while GM and 
EPFM were the least efficient techniques for fitting the wind speed data 
using Weibull distribution. In another study, Saeed et al. [41] used two 
years (2016–2018) of wind speed data at four different heights from sea 
level to assess the wind energy potential in North of Pakistan. Six nu
merical methods including Empirical method of Justus (EMJ), Empirical 
method of Lysen (EML), modified maximum likelihood method 
(MMLM), Graphical method (GM), Method of Moments (MoM), and 
Energy pattern factor method (EPFM) were used for determining the 
Weibull parameters. Among these methods, MMLM was the most effi
cient technique, while the GM was the least effective to fit the wind data. 
In another comprehensive study, the 2-p Weibull distribution exhibited 
the best fit, performing better than some of the 3-p distribution functions 
such as the 3-p Lognormal and the Generalized Extreme Value [37]. On 
the other hand, Pobocikova et al. [63] reported that 3-p Weibull dis
tribution fits the wind speed data best, and 2-p Weibull distribution is 
the second best distribution function compared to the 2-p Gamma and 
2-p Lognormal distributions. 

The standard deviation of turbulence intensity significantly affects 
the wind excitation spectrum more than the horizontal average wind 
speed does. Therefore, when evaluating the safety of FOWTs under 
horizontal random excitation, the standard deviation of turbulence in
tensity must be considered. To obtain the wind load distribution, design 
wind, and turbulence intensity were used and a 1-h thrust force to the 
hub was estimated [44]. The Kaimal spectrum was used to find the 
turbulent wind. Horn and Jensen [71] considered the wind component’s 
phase angle as a stochastic variable with a normal distribution. To 
reduce the computational burden, the environmental contour method is 
widely used for long-term design loads of FOWT [72,73]. To this end, 
the marginal distribution of the environment is required to construct the 
environmental contour. While this study acknowledges the existence of 
numerous contour methods, it is beyond the scope of the current work to 
provide an in-depth analysis of these techniques. For a comprehensive 
understanding and thorough comparisons of various environmental 
contour techniques, Haselsteiner et al. [74] offers a detailed examina
tion, providing valuable insights and analyses. Li and Zhang [59] 
compared the three most prevalent parametric distributions for envi
ronmental parameters (Gamma, Lognormal, and Weibull distributions). 
They used MLE to obtain the distribution parameters, where the best fit 
was recognized by having the highest log-likelihood value. They re
ported that the Weibull distribution with the largest log-likelihood value 
was suitable for wind speed [59]. In a study conducted by Carta et al. 
[61] data on wind direction from several stations in the Canary Islands 
(Spain) was used. The distribution of directional wind speed was rep
resented by a finite mixture of Von Mises probability density function. 
They suggested using a mixture of two Von Mises probability functions 
for the Canary Islands. The authors found that the maximum number (N) 
of probability densities exceeding 6 exhibited a dramatic decrease in the 
suitability of the distribution function. 

Fig. 3. Boxplots for different wind turbine types: (a) mean wind speed, (b) mean wind speed coefficient of variation, (c) mean wind speed standard deviation.  
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In general, the wind speeds, directions, and turbulence intensities are 
found to be inherent uncertainties that significantly impact the reli
ability of FOWT structures. The uncertainty models representing these 
parameters in Table 2 present the COV level between 0.2 and 0.7 with a 
median of 0.43 for the wind speed in deep water, and COV between 0.2 
and 0.4 with a median of 0.24 in shallow water. The most of literature 
provides 2-p & 3-p Weibull distribution as the best representation of the 
model based on the data. However, in the stage of reliability analyses of 
FOWT, it is also recommended to use the Lognormal distribution due to 
its simplicity. The wind direction can be considered as a variability 
instead of an uncertainty. Therefore, it is reasonable that COVs are not 
reported as commonly as wind speed. However, if uncertainties are to be 
modeled, one can also refer to an industrial standard where ±15◦ of 
variation is recommended to consider based on the given direction [75]. 
The turbulence intensities can be considered as variability or un
certainties depending on the purpose of the study. 

2.1.2. Wave 
Although both FOWTs and fixed-type OWTs are subject to significant 

wave-induced motions, the non-stationary structural properties of 
FOWTs are largely affected by the uncertainties of the wave excitations. 
The undulatory phenomena of wind-induced waves disturb the surface 
of the sea. They are produced by wind friction at the sea-atmosphere 
interface (wind sea) and spread over long distances (swell) by being 
transformed through various mechanisms. These transformations in 
deep water are due to the white capping and viscosity effect of energy 
dissipation, wind energy addition, and energy transmission to short 
frequencies. Therefore, wind growth, white capping, and quadruplets 
are the most dominant processes. Waves with small amplitudes of deep 
water can be expressed relatively simply and accurately at the sea sur
face height or elevation. The wave’s field is better described by the sea 
state using statistical parameters such as peak period, peak enhance
ment factor, and significant wave height. The parameters of the model 
for wind sea waves (young waves) are dependent on the wind speed 
duration, wind speed phasing, and fetch length. Also, it is recommended 
that a normal distribution could be used to describe the relative direc
tion between the young waves and wind [14,46]. 

The uncertainties in hydrodynamic parameters (e.g., drag coeffi
cient) associated with wave modeling make it difficult to accurately 
predict the response of FOWTs. Taylor et al. [19] and Ruzzo et al. [76] 
introduced constrained quasi-deterministic wave models to consider the 
random nature of the oceanic waves. To predict the hydrodynamic loads 
due to waves and floater motions, a hybrid analysis method is widely 
used which is combining 3D diffraction/radiation theory and the 
semi-empirical formula Morison equation [77,78]. For diffraction 
dominant floating structure members, hydrodynamic loads such as ra
diation damping, added mass, quadratic sum and difference wave force 
transfer function (QTFs), and linear wave force transfer function (LTFs) 
are estimated by using 3D diffraction/radiation theory, and viscous 
loads are obtained using the Morison equation. On the other hand, hy
drodynamic forces on the slender members of a floating structure are 
estimated by the Morison equation. 

In the Morison equation, hydrodynamic forces consist of two com
ponents: drag force (FD) which is attributed to the inertia force (FI), and 
water particle velocity as a result of the water particle acceleration. The 
drag coefficient in the Morison equation is characterized by the 
Keulegan-Carpenter (K–C) number and Reynolds number. In general 
engineering practices in the industry, a constant drag coefficient is used 
for the analysis. Therefore, there are limitations to analyzing drag 
loading in random sea states. According to previous research [79–82], 
uncertainties inherent in Morison’s equation are crucially important and 
cannot be neglected. In addition, 3D diffraction theory has been devel
oped up to 2nd-order accuracy. To overcome theoretical limitations, 
Computational Fluid Dynamics (CFD) simulations and scaled model 
tests are widely used for extracting highly non-linear hydrodynamic 
loads. However, CFD simulations are still too expensive to replace the 

conventional design analysis tools, and the scaled model tests have 
inherent scale effects. Therefore, there are uncertainties and limitations 
in calculating highly non-linear waves and motions-induced loading on 
the floating structure. 

Some researchers recommended environmental parameters like peak 
period and significant wave height with their relevant probability dis
tribution to be considered for the reliability analysis of FOWT [11,45, 
59]. Also, the influence of wave load on the reliability assessment of 
wind turbines with appropriate distribution and limit state functions has 
been taken into account as stochastic parameters in the design process 
[44,52]. The wave uncertainty can also be expressed as a distribution 
combined with Lognormal and Weibull distributions [83] for fatigue 
evaluation. To limit the number of random variables in an irregular sea, 
wave amplitudes can often be defined as a deterministic variable [71], 
while it can also be modeled as a random variable with Rayleigh dis
tribution. The phase angles can be modeled with uniform or normal 
distribution. Table 3 summarizes wave component variabilities. 

In addition, the presence of abnormal waves, such as solitary waves, 
freak waves, and wave groups, poses significant challenges for FOWTs 
[89,90]. These waves can lead to structural damage, reduced opera
tional lifespan, and increased fatigue. Advanced modeling and fore
casting systems are being developed to better understand and predict 
these waves, enabling engineers to enhance turbine design and opera
tional strategies. Ongoing research focuses on improving turbine sur
vivability through optimized structural design, adaptive control 
systems, and real-time monitoring [91–93]. Mitigating uncertainties 
related to abnormal waves enhances turbine performance, safety, and 
the growth of offshore wind energy. 

The responses of FOWTs cannot be estimated by a single met-ocean 
parameter. Consequently, various models have been proposed to fit the 
joint distribution of significant wave height (Hs) and conditional mean 
period (T02). For accurate estimation of the long-term probability of sea 
state occurrences, it is critical to have a continuous dataset and fit it with 
an appropriate probabilistic model. Typically, joint probability theorem 
is employed for the conditional modeling using Eq. (2). 

f (Hs,T02) = f (Hs) × f
(
T02|Hs

)
(2)  

where f(Hs) is the marginal distribution of significant wave height, 
f(T02|Hs) is the distribution of the mean zero-crossing period conditional 
on significant wave height, and f(Hs,T02) denotes the joint PDF of the 
mean wave period and significant wave height. The joint distribution in 
Eq. (2) can be obtained using both peak and mean wave periods. It 
should be noted that wind-wave parameter correlations play a key role 
in determining the joint probability distribution. A multivariate distri
bution or copula function can be used for the joint modeling of wave 
parameters and wind speed to capture their correlations [94,95]. By 
incorporating wind speed into the conditional modeling, f(Hs,T02) can 
be expanded to a multivariate distribution by introducing wind speed as 
an additional variable. The Weibull distribution function is employed to 
fit the marginal significant wave height data [11,96–100]. The accuracy 
of the extrapolated wave height using the environmental contour 
method is dependent on the quality and length of the data. When using 
calibrated hindcast predictive models, the statistical, model, and mea
surement errors introduce uncertainties within the design conditions 
[101]. The wave period is often modeled using the Lognormal distri
bution function. The mean (μ) and standard deviation (σ) of the 
Lognormal distribution are employed for wave period prediction and is 
formulated in Eq. (3) and Eq. (4), respectively [11]. 

μt(Hs) = a1 + a2Hs
a3 (3)  

σt(Hs) = b1 + b2eb3Hs (4) 

FOWTs’ heave natural period is in the wave frequency range, which 
is influenced by the uncertainties in the wave-breaking phenomenon. 
The wave-breaking limit depends on the physical and environmental 
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characteristics [101]. Raed et al. [11] estimated the uncertainties of a 
semi-submersible platform, compatible with the environmental condi
tion of the northern part of the North Sea. Log-normal and Weibull 
distributions were used to fit the recommended conditional distribution 
of the mean zero up-crossing period and the marginal distribution of the 
significant wave height [88]. They employed an alternative approach 
utilizing Monte Carlo simulations of the joint environmental model for 
establishing the environmental contour lines in the original space [88]. 
The 3-parameter Weibull and Lognormal distributions were used to 
model the marginal significant wave height and the conditional distri
bution of the mean wave period, respectively. Although the proposed 
method produced similar findings as conventional inverse first-order 
reliability method (IFORM), it arguably had two advantages: 1) result
ing contours allowed for easier interpretation in the original space, and 
2) the proposed approach did not require a joint parametric model to 
account for the environmental parameters. 

Dong et al. [87] employed bivariate Maximum Entropy (ME) distri
bution for both significant wave height and corresponding peak period. 
According to the maximum entropy theory, over the set of probability 
distributions, the probability model that maximizes entropy is the best 
for describing data [102]. It is the most unbiased estimate based on the 
available information and is as noncommittal as possible regarding 
missing information. Maximum Entropy distribution can be used to 
predict the marginal PDF of the significant wave height. 

In general, the uncertainties of the significant wave heights and the 
periods are identified as those impacts the structural reliability of 
FOWTs. The most typical probability distribution for the significant 
wave height is found to be Weibull distribution. In addition, other dis
tributions such as Lognormal and Gumbel distributions are used. For the 
simplicity of the structural reliability calculation of FOWTs, we identi
fied Lognormal distribution as a practical option. The COV levels be
tween 0.1 and 0.5 are found with a median of 0.2, i.e., 20% of the 

Table 3 
Uncertainty models for wave properties at both shallow and deep-water sites.  

Study Variable Distribution P1a P2b P3c Mean COV 

[14]d Significant wave height (m) Normal 8.52 0.43 – 8.52 0.05 
[84] 3-p Weibull 2.26 2.77 0.03 2.44 0.47 
[59]d Gamma 5.54 1.8 – 3.08 0.24 

2-p Weibull 2.47 3.48 – 3.09 0.43 
Lognormal – – – 1.03 0.43 

[45,46] 3-p Weibull 1.56 1.43 − 0.09 – – 
3-p Weibull 0.64 1.32 0.33 – – 

[51] Gumbel – – – 15.6 – 
– – – 9.5 –                  

[85] Normal 2 0.25 – 2 0.13 
[86]d 3-p Weibull 1.46 0.87 0.26 1.04 0.57 

Lognormal − 0.09 0.49 – 1.04 0.57 
[87]d Lognormal – – – 3.48 0.59 
[88] 3-p Weibull 0.89 1.47 2.77 – – 
[55]d 3-p Weibull 1.47 2.46 4 6.23 0.25 

1.42 2.36 4 6.15 0.25 
1.21 2.08 4 5.95 0.27 

[83] 2-p Weibull – – – 2.7 0.26 
– – – 2.7 0.1 
– – – 2.7 0.08 

[83] 2-p Weibull 2 4.58 – 4.06 0.53 
1.25 2.03 – 1.9 0.8 

[14]d Wave period (s) Normal 12.45 0.62 – 12.5 0.05 
[84] Lognormal 2.07 0.39 – 2.07 0.19 
[59]d Lognormal 2.37 0.24 – 2.37 0.1 

Gamma 18.4 1.68 – 10.9 0.23 
2-p Weibull 4.34 11.93 – 10.9 0.26 

[45,46] Lognormal – – – 1.61 0.22 
[51] Lognormal – – – 2.03 0.14 

Gumbel – – – 11.06 – 
– – – 6.93 – 

[58] Gamma 0.63–167 0.03–0.30 – 21–556.6 0.07 
0.78–126 0.04–0.52 – 19.5–242 0.09 
1.22–116 0.03–0.16 – 40.6–725 0.09 

[86]d Lognormal 1.69 0.19 – 5.53 0.2 
3-p Weibull 2.51 2.9 2.96 5.53 0.2 

[87]d Lognormal – – – 10.5 0.24 
[88] Lognormal 2.26 0.54 – 2.54 0.05 
[55]d Lognormal 11.5 1.37 – 11.5 0.12 

11.5 1.26 – 11.5 0.11 
11.2 1.34 – 11.2 0.12 

[83] Lognormal 21.7 – – 21.7 N/A 
5.81 – – 5.81 N/A 

[45,46] Relative wave-wind direction Trunc. Normal – – – 0.24 71.8 
[85] Mean sea level (m) Normal 31 3.5 – 31 0.11  

a Parameter 1: shape factor for Weibull distribution, mean for Lognormal distribution, shape parameter for Gamma distribution, α parameter for Maximum entropy 
distribution. 

b Parameter 2: scale factor for Weibull distribution, standard deviation for Lognormal distribution, rate parameter for Gamma distribution, β parameter for 
Maximum entropy distribution. 

c Parameter 3: displacement factor in 3-p Weibull distribution and ζ parameter for Maximum entropy distribution. 
d Correlation between wind and significant wave height was studied. 

M. Ramezani et al.                                                                                                                                                                                                                             



Renewable and Sustainable Energy Reviews 185 (2023) 113610

10

uncertainties. Similarly, the median value of the uncertainties in the 
wave periods is estimated to be approximately 15%. 

2.1.3. Current 
The movement of water from one location to another is referred to as 

an oceanic current. Tidal currents are caused by astronomical forces and 
coexist with the tide’s rise and fall in the sea level. The direct impact of 
the wind’s shear stress on the water’s surface produces wind-generated 
currents which are typically found in the upper layer of a body of water. 
The mean speed of a typical ocean current ranges from 0.2 m/s to 0.6 m/ 
s, and the maximum speed ranges between 1.1 m/s and 2.7 m/s, 
depending on the location of the site [103]. Currents would add viscous 
loads on FOWTs. In addition, the presence of current affects the wave 
loads through the transformation of the wave shapes due to the 
wave-current interactions [104]. The wave-current interactions might 
change the FOWTs responses, and therefore must be considered. When 
the directions of the current and wave are opposite, the wavelength 
becomes shorter, and the wave height increases, leading to the forma
tion of steeper waves [104]. The wave height could occasionally reach 
more than 30 m in height, which can severely damage FOWTs [90]. 
Conversely, when current and wave follow the same direction, wave
length becomes longer and wave height reduces, resulting in the for
mation of shallower waves. Qu et al. [90] studied the impact of 
wave-current interaction on the dynamic responses of a Spar-type 
FOWT, called the doppler effect. They reported that the opposite cur
rent increased and the following current decreased the peak value of the 
wave spectrum. However, the met-ocean data delivered to the designer 
already includes the interaction effects as the instruments cannot mea
sure current and wave separately. 

Like wind speed, the current speed also fluctuates in space and time. 
The timescale and length of current speed variations, however, are much 
greater than that of the wind speed [105]. Thus, currents might be 
characterized as a function of the vertical coordinate in space and a 
constant velocity in time [106]. Fig. 4(a) illustrates the recorded ocean 
current speed measurements obtained from the Su-ao anchor station in 
Taiwan, specifically at a depth of 30 m below sea level [107]. To 
distinguish between sub-surface and near-surface components of the 
currents, the measured values of current speed and direction may be 
converted as follows [38]: 

vz,SS = v0m,SS

(
d − z

z

)1/7

(5)  

vz,NS =

⎧
⎪⎨

⎪⎩

v0m,NS

(
20m − z

20m

)

for z ≤ 0

0 for z > 0
(6)  

where vz,SS and vz,NS denote sub-surface and near-surface current speeds 
at a position of z below sea level, and d represents the ocean depth. In the 
study conducted by Hübler et al. [42], sub-surface and near-surface 

current speed profiles were plotted using Eq. (5) and Eq. (6). These 
profiles were specifically generated for a water depth of 25 m, with the 
normalization of current speeds (i.e., v0m,SS = v0m,NS = 1), as depicted in 
Fig. 4(b). 

In order to better understand the hydrodynamic performances of 
FOWTs, particularly the interaction of wave-current-structure, a moored 
platform in regular wave and uniform current was taken into consider
ation [108]. It was found that the current had considerable effects on 
low-frequency motions and the mean wave-drift forces. Most direct 
time-domain second-order models disregard the effects of forward speed 
or current. Nevertheless, the offshore sites’ current speeds might be 
non-negligible, particularly in FOWT applications with small 
cross-section dimensions. Hydrodynamic forces caused by waves and 
currents, such as viscous force and inertia, are critical in the design of 
FOWTs, and dynamic response evaluations are necessary for the specific 
design of load cases in accordance with design standards and recom
mendations to ensure that FOWTs have sufficient stability and structural 
strength [109]. Therefore, the safety of mooring lines relies on an ac
curate estimate of the current load on the floating platform. To model 
the nonlinear random wave groups with a superimposed current, Nava 
et al. [89] developed a second-order quasi-deterministic theory. Qu et al. 
[90] developed a more effective phase modulation algorithm consid
ering the randomness of the wave groups with high efficiency. They then 
analyzed the effect of current on the wave energy spectrum taking into 
account various current velocities for determining the dynamic re
sponses of a spar-type FOWT. Their analysis provided insights into the 
wave-current interaction mechanism for identifying extreme wave 
conditions in Gaussian seas which is critical for the analysis for the 
design of FOWTs. 

2.1.4. Correlation between the environmental loads 
The current practices (e.g., IEC 61400-3 [110]) necessitates the 

utilization of joint wind speed and wave height distributions, rather than 
independent sets of wind and wave information. Generally, the sets of 
waves are calculated from wind information prior to the analysis. For 
instance, significant wave height and period at the peak of the spectrum 
of a fully developed sea were estimated using the Pierson-Moskowitz 
spectrum [111] or JONSWAP (Joint North Sea Wave Observation 
Project) spectrum [112]. Since the correlation between the environ
mental loads may significantly affect the results, the proper correlation 
needs to be modeled in the estimation of reliability. The correlation 
between the wind and wave loads and other random variables will be 
modeled in this task to be used in the reliability analysis. To investigate 
this correlation, we suggest utilizing the sets of long-term global 
wind/wave databases such as a) Buoy data sets from National Data Buoy 
Center, National Oceanic and Atmospheric Administration (NOAA), 
National Weather Service (NWS), b) Model data sets from National 
Centers for Environmental Prediction (NCEP), NOAA, Environmental 
Modeling Center, and c) NCEP Climate Forecast System Reanalysis 
Reforecast (CFSRR) 30-year homogeneous data set. 

Fig. 4. (a) Sample sub-surface current speed distribution in Taiwan, (b) sub-surface and near-surface current speed profiles in the North Sea [42,107].  
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The intricate interaction between the environmental loads makes 
predicting the dynamic response of FOWT challenging. The simulation 
length of fixed-type and land-based wind turbines is 10 min as specified 
by the design standard IEC 61400-3 [110]. However, a 10-min simula
tion length is too short to capture extreme hydrodynamic loads on 
fixed-type OWTs in random sea states. Therefore, a 3-h simulation 
length is suggested to capture the extreme wave loads induced by 
random sea states. Haid et al. [113] analyzed the simulation length ef
fect of FOWT using the nonlinear aero-hydro-servo-elastic simulation 
tool (FAST: Fatigue, Aerodynamics, Structures, and Turbulent). They 
reported that at a constant total simulation time, the length of the wind 
file did not affect the dependence of the aerodynamically induced load 
on the simulation length. The supporting platform of a FOWT must 
accommodate six-DOF motion because of the integrated random wind 
and wave loads, which complicates the random cyclic loads acting on 
the structural components (e.g., the tower base) compared to fixed-type 
or onshore wind turbines. These cyclic loads might lead to unanticipated 
fatigue damage to a FOWT. According to the research conducted by 
Chen and Basu [114], FOWT tower and cable responses are significantly 
affected by the current and wave-current interactions. The wave-current 
interaction is expected to have a more significant effect in nonlinear 
waves of large amplitude. Joint wind and wave distribution must be 
estimated prior to obtaining accurate fatigue damage in real environ
mental situations. The marginal PDF of the mean wind speed which 
follows a 2-p Weibull distribution, the conditional PDF of the significant 
wave height, and the joint probability density function of the mean wind 
speed, the peak spectral period, and significant wave height have been 
considered [51,115,116]. Stewart et al. [58,117] conducted extensive 
analyses where they constructed long-term joint probability distribu
tions using probability distribution functions. These distributions were 
then utilized to create three representative sites for the United States: 1) 
East Coast, 2) West Coast, and 3) Gulf of Mexico. By combining the 
respective probability distributions, they effectively captured the sta
tistical characteristics of wind and wave conditions at specific locations. 
Fig. 5 presents the correlation between the mean wind speed and the 
significant wave height for multiple locations within the aforemen
tioned sites. This correlation analysis provides valuable insights into the 
variations and patterns that exist across different geographical regions. 

Montes et al. [55] employed Gaussian copula (Nataf model) to establish 
the joint probability distribution of environmental loads at three distinct 
sites in the Bay of Campeche located in the Gulf of Mexico. The water 
depth considered ranged from 500 m to 1500 m. The corresponding 
correlation coefficients were determined using maximum likelihood 
estimation (MLE). The average correlation coefficient between signifi
cant wave height and wave period was found to be 0.71 for the studied 
sites. Similarly, the average correlation coefficient between wind speed 
and significant wave height was determined to be 0.79. In contrast, the 
average correlation coefficient between wind speed and wave period 
was observed to be relatively lower, specifically 0.25. 

2.2. Uncertainties within materials and structures 

A FOWT structure consists of a tower, wind turbine blades, and a 
floating platform. The floating platform is moored to the seabed to 
prevent drift motions. This enables FOWTs to operate in a variety of 
seabed soil conditions and water depths [118]. FOWTs are subject to 
both hydrodynamic and aerodynamic loads. Hydrodynamic loads arise 
from the actions of waves, currents, and floater motions on the floating 
platform. Aerodynamic loads arise from the action of wind and weather 
on the turbine blades, nacelle, and tower. Together these loads interact 
with each other through the turbine tower to the floating platform 
connection, and through mooring connections to the foundation. This 
section presents the uncertainies involved in the materials and struc
tures of these components listed above. The uncertainties presented in 
this section impact the uncertainties of the structural capacity and 
therefore on the structural reliability of FOWTs. 

Based on contemporary design practices, wind turbines are generally 
designed for material factors that are expected to maintain target reli
ability levels. Traditionally, the load-carrying capacity would be calcu
lated using deterministic equations provided in the design codes and 
standards. Nevertheless, significant variations in the load-bearing ca
pacity could be observed due to the variations in the material properties 
[119]. Okpokparoro [14] reported that consideration of the un
certainties of material and geometric uncertainties has increased the 
probability of FOWT failure by up to 39%. 

2.2.1. Turbine blade 
Past research exhibits that the blade system’s risks would result in 

more considerable financial losses and downtime. The blade, which has 
a typical slender structure, is the crucial part of the wind turbine for 
capturing wind energy. As the blade’s length increases, the wind turbine 
generates more power. General Electric (GE) researchers designed the 
most powerful FOWT (12 MW) which was 260 m tall with a rotor 
diameter of 220 m. This turbine is capable of generating 67 GWh of 
electricity per year, enough to power 16,000 households [120]. How
ever, under extreme environment loads, larger blades are prone to easy 
vibration, their anti-fatigue property would significantly reduce, and 
they are more likely to break [50]. Chou et al. [121] reported that the 
main damage types of blades under extreme environmental conditions 
were cracking in front/rear flanges and envelope delamination. Blades 
at OWTs and FOWTs are composed of Fiber Reinforced Composites 
(FRP). This material is usually composed of fiber and matrix materials 
using compounding technology. The mean stress for composite mate
rials could significantly affect the fatigue properties [68]. Material 
properties are known to be the primary source of uncertainty in blade 
elements. Geometrical size and local defects affect the load-carrying 
capacity of the blade such that the weakest link model must be regar
ded once a small local defect appears on a blade. The variables con
cerned with the material and geometry (herein, thickness of the 
laminate) of blades are assumed to follow a normal distribution 
although other distribution functions including Weibull, Lognormal, etc. 
might also be used [68]. Gonzaga et al. [122] assumed a normal dis
tribution for density, elastic, and shear moduli of blades in all directions. 
Suzuki et al. [123] proposed a novel phenomenological fatigue model 

Fig. 5. Mean wind speed and significant wave height for different locations at 
three generic sites in the United States [58,117]. 
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based on stiffness degradation for predicting the service life of glass 
fiber-reinforced plastics (GFRPs) subjected to random oceanic current 
loads. A Weibull cumulative density function was used to take into 
consideration a shift in failure modes and associated changes in the rate 
of damage accumulation. Also, the initial strength and the probability 
distributions of residual strengths were described by 3-p Weibull dis
tributions [124]. 

The existing models of material uncertainties inherent in turbine 
blades are tabulated in Table 4. All material properties including blade 
thickness, density, young’s modulus, shear modulus, and Poisson’s ratio 
are assumed to follow a normal distribution. 

2.2.2. Turbine tower 
Similarly, the material uncertainties considered in the modeling of 

wind turbine tower components are represented in Table 5. Young’s 
modulus, yield stress, and density of structural steel used in turbine 
towers are considered to be modeled as random variables for reliability 
assessment [14,52,68,130]. In the reliability analysis of FOWTs, tower 
failure is associated with strong winds, large waves, and typhoons [130]. 
Buckling is one of the limit states of offshore wind turbines resulting 
from the slenderness of towers [131]. The local buckling failure mode of 
towers was also considered by Sørensen and Toft [68]. Tower bending 
natural frequency changes due to the floater mass and stiffness, and 
rotor 3P frequency could excite the turbine’s 1st bending mode which 
might cause fatigue damage to the blade and tower. Therefore, un
certainties in tower, blade, and floater coupled responses must be 
considered. 

2.2.3. Mooring line 
Mooring systems are sets of lines that connect the floating structure 

to the seabed. Mooring lines in FOWTs are used to keep the floater in a 
certain area (watch circle) in the presence of environmental loads. A 
FOWT mooring system must be designed taking into account multiple 
factors including the stability of an often-lightweight platform, appli
cation to relatively shallower water depths, and cost. In deep waters, the 
dynamic response of a floating platform withstands wave frequency 
forces, leaving low-frequency drift forces to be handled by the mooring 
system [133]. Many FOWT concepts involve light displacement plat
forms that are moored in shallow water and exposed to severe storms 
with high-speed winds. Large wind- and wave-induced motions on 
FOWT platforms might cause shock loadings on the mooring lines. The 
mooring lines’ tension is closely associated with the surge, sway, and 
yaw motions [90]. Mooring lines are available in three distinctive ge
ometries. Catenary, semi-taut, and taut-leg mooring lines are composed 
of steel cables, anchor-chains, or synthetic fiber chains and/or wire 
components. Table 6 summarizes uncertainty models considered in the 
structural reliability analysis of mooring line components in offshore 
wind turbines. 

In summary, the material property uncertainties associated with 
turbine blades, towers, and mooring lines in FOWT structures exhibit 
varying degrees of uncertainty. Turbine blades are characterized by 
moderate to high levels of uncertainty, with COV values ranging from 
0.02 to 0.25. Towers display moderate uncertainty, with COV values 
ranging from 0.05 to 0.1. Mooring lines demonstrate relatively lower to 
moderate levels of uncertainty, with COV values ranging from 0.02 to 
0.07. Normal distribution is found to be the most widely used proba
bility distribution for the uncertainty modeling of FOWT material 
properties. However, alternative distributions such as Lognormal and 
Gumbel distributions might also be used depending on the desired level 
of simplicity and accuracy in the reliability analysis. 

2.3. Geotechnical Uncertainties 

The foundation design of FOWTs presents some uncertainties such as 
scour phenomena due to the erosion of the seabed near the foundation 
caused by waves and currents acting together, soil-structure interaction 

Table 4 
Considered material and thickness uncertainties of wind turbine blades.  

Study Material Variable Distribution Mean COV 

[122] Bi-directional 
glass fiber 
laminate 

Biaxial Young’s 
modulus (E11) 

Normal 
(Gaussian) 

NPa 0.04 

Biaxial Young’s 
modulus (E22) 

0.04 

Biaxial Young’s 
modulus (E33) 

0.04 

Biaxial density 
(ρ) 

0.006 

Biaxial shear 
modulus (G12) 

0.03 

Biaxial shear 
modulus (G13) 

0.03 

Biaxial shear 
modulus (G23) 

0.03 

Biaxial blade 
thickness (t) 

0.02 

Unidirectional 
glass fiber 
laminate 

Uniaxial 
Young’s 
modulus (E11) 

0.03 

Uniaxial 
Young’s 
modulus (E22) 

0.05 

Uniaxial 
Young’s 
modulus (E33) 

0.05 

Uniaxial 
density (ρ) 

0.006 

Uniaxial shear 
modulus (G12) 

0.03 

Uniaxial shear 
modulus (G13) 

0.03 

Uniaxial shear 
modulus (G23) 

0.03 

Uniaxial blade 
thickness (t) 

0.03 

[125] Unidirectional 
(UD) layer 

E1 (GPa) 39.04 0.0264 
E2 (GPa) 14.08 0.0231 
G12 (GPa) 4.24 0.0234 
Poisson’s ratio 
(v12) 

0.291 0.0934 

Structural foam E (GPa) 75.00 0.12 
G (GPa) 20.00 0.05 
Poisson’s ratio 
(v) 

0.42 0.1071 

[126] Composite 
hydrokinetic 
material 

Young’s 
modulus (E11) 
[GPa] 

45.6 0.02 

Young’s 
modulus (E22 & 
E33) [GPa] 

16.2 0.02 

Shear modulus 
(G12 & G13) 
[GPa] 

5.83 0.02 

Shear modulus 
(G23) [GPa] 

5.786 0.02 

[127] E-glass fiber Longitudinal 
modulus (E11) 
[GPa] 

74 0.25 

Transverse 
modulus (E22 & 
E33) [GPa] 

74 0.20 

In-plane shear 
modulus (G12) 
[GPa] 

30.80 0.25 

Transverse 
shear modulus 
(G13 & G23) 
[GPa] 

30.80 0.20 

Major Poisson’s 
ratio (v12) 

0.20 0.05 

Minor Poisson’s 
ratio (v13 & v23) 

0.23 0.044 

MY750 Epoxy Elastic modulus 
(GPa) 

3.35 0.25 

(continued on next page) 
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(such as the interaction between mooring lines, anchors, and the 
seabed), soil properties, etc. The methods for soil modeling could be 
mainly classified into the p-y and finite element analysis (FEA) methods. 
The p-y method where the soil is modeled using distributed equivalent 
springs is widely used for reliability analysis of OWTs because of the 
computational efficiency. Nevertheless, the p-y method is incapable of 
accurately capturing the soil behavior [5]. To overcome this issue, FEA 
can be used to model the soil. In the FEA, the soil material is normally 
based on either Mohr-Coulomb or Drucker-Prager models, where the soil 
is generally represented using 3D brick elements. Through extensive 
literature data analysis on the reliability assessment of FOWTs, it was 
observed that soil characteristic is one of the most crucial factors 
considered in recent publications. Previous studies highlighted the need 
for additional research by investigating the impact of foundation 
configuration and site parameters on the natural frequency. Ziegler et al. 
[85] provided better insight into fatigue loads’ sensitivity to varying site 
conditions such as soil properties. In their study, the soil was modeled 
using distributed linear springs via the p-y method. The soil stiffness 
obtained from a nominal p-y curve was scaled with a constant factor 
over the entire depth to represent the soil variations. Soil properties 

Table 4 (continued ) 

Study Material Variable Distribution Mean COV 

Poisson’s ratio 0.35 0.057 
Shear modulus 
(GPa) 

1.24 0.2 

[128] E-glass/epoxy 
laminate 
(unidirectional) 

Density (g/ 
cm3) 

Normal 
(Gaussian) 

1.97 – 

Longitudinal 
modulus (E1) 
[GPa] 

41 – 

Transverse in- 
plane modulus 
(E2) [GPa] 

10.4 – 

In-plane shear 
modulus (G12) 
[GPa] 

4.3 – 

In-plane 
Poisson’s ratio 
(v12) 

0.28 – 

Longitudinal 
tensile strength 
(MPa) 

1140 – 

Transverse 
tensile strength 
(MPa) 

39 – 

Longitudinal 
compressive 
strength (MPa) 

620 – 

Transverse 
compressive 
strength (MPa) 

128 – 

In-plane shear 
strength (MPa) 

89 – 

E-glass/epoxy 
laminate (biaxial) 

Density (g/ 
cm3) 

1.90 – 

Longitudinal 
modulus (E1) 
[GPa] 

24.5 – 

Transverse in- 
plane modulus 
(E2) [GPa] 

23.8 – 

In-plane shear 
modulus (G12) 
[GPa] 

4.7 – 

In-plane 
Poisson’s ratio 
(v12) 

0.11 – 

Longitudinal 
tensile strength 
(MPa) 

433 – 

Transverse 
tensile strength 
(MPa) 

386 – 

Longitudinal 
compressive 
strength (MPa) 

377 – 

Transverse 
compressive 
strength (MPa) 

335 – 

In-plane shear 
strength (MPa) 

84 – 

Structural foam Density (g/ 
cm3) 

0.25 – 

In-plane 
modulus (E1) 
[GPa] 

240 – 

In-plane 
modulus (E2) 
[GPa] 

230 – 

In-plane shear 
modulus (G12) 
[GPa] 

115 – 

Longitudinal 
tensile strength 
(MPa) 

7.2 – 

Transverse 
tensile strength 
(MPa) 

7.2 –  

Table 4 (continued ) 

Study Material Variable Distribution Mean COV 

Longitudinal 
compressive 
strength (MPa) 

4.6 – 

Transverse 
compressive 
strength (MPa) 

4.6 – 

In-plane shear 
strength (MPa) 

5.0 – 

[129] Various 
piezoelectric 
materials 

Blade root 
stress for 
material I 
(MPa) 

– 20.70 73.00b 

Blade root 
stress for 
material II 
(MPa) 

13.30 47.00b 

Blade root 
stress for 
material II 
(MPa) 

10.60 38.00b 

Blade root 
stress for 
material VI 
(MPa) 

10.20 33.00b 

Flapwise of 
blade tip for 
material I (m) 

1.00 2.48b 

Flapwise of 
blade tip for 
material II (m) 

0.94 2.37b 

Flapwise of 
blade tip for 
material II (m) 

0.92 2.29b 

Flapwise of 
blade tip for 
material VI (m) 

0.92 2.25b 

Edgewise of 
blade tip for 
material I (m) 

0.03 0.20b 

Edgewise of 
blade tip for 
material II (m) 

0.03 0.19b 

Edgewise of 
blade tip for 
material II (m) 

0.04 0.18b 

Edgewise of 
blade tip for 
material VI (m) 

0.03 0.18b  

a Not published in the article. 
b Maximum values. 
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generally contained high uncertainties due to difficulties in measure
ments. In contrast, the water depth was precisely known. Zhao et al. [50] 
developed a dynamic analysis system of the FOWT employing a beam on 
a nonlinear Winkler foundation model to investigate the feasibility of 
soft-soft and soft-stiff design approaches, taking the soil geometric size 
and stiffness into account that affected the dynamic response in clay. 

Soil properties have received the least attention in a probabilistic 
context among the main factors affecting wind turbines, yet they are 
vital in determining FOWT systems’ response. Although some standards 
let engineers apply probability-based approaches, the current design 
practice treats the uncertainty in offshore soil conditions in a deter
ministic manner. Carswell et al. [138] described how uncertainty in 
subsea soil’s mechanical properties could contribute to significant un
certainty in wind turbines’ response to offshore loads. The main sources 
of soil property uncertainty at potential FOWT locations are the high 
cost and logistical issues of conducting detailed soil sampling, as well as 
measuring the in-situ soil properties. Due to the calculation simplifica
tions, the normal (or Gaussian) probability distribution is frequently 
employed to partially model the variability in soil properties. However, 
non-Gaussian distributions might also be helpful because numerous soil 
properties are skewed or are bounded by ranges. Concerning soil 
properties with lower bounds, Lognormal distributions are commonly 
employed. DNV also recommends using the beta distribution for soil 
properties with lower and upper bounds where mean and standard de
viation are known. Carswell et al. [138] used a beta distribution model 
for the soil friction angle property variability (φ’) due to the flexibility of 
the distribution shape which made it possible to analyze different dis
tribution skews in a way that the Lognormal distribution was not 
capable of. Mardfekri et al. [139] developed a probabilistic model for 
estimating the moment, shear, and deformation demands of the support 
structure in OWTs. They used FEA to generate virtual experimental data 
to calibrate the unknown model parameters. The developed probabi
listic model could accurately capture the nonlinear soil-structure inter
action, statistical uncertainty, and model errors. 

In addition, time-varying waves and currents in an offshore envi
ronment make the scour problem more complex than the structures in 
the river. The scour phenomenon may significantly affect the stiffness, 
fatigue reliability, and natural frequency of FOWT support structures 
[140]. Many studies on scouring phenomena in offshore wind farms 
proposed methods to predict and characterize maximum scour depth 
and surrounding scour extension. Using the p-y method, the scour 
phenomenon could be modeled by removing the relevant springs [141]. 
When using FEA, the scour might be represented by changing the soil’s 

geometrical shape [142]. Breusers et al. [143] described the maximum 
scour depth subject to steady-state current conditions. Sumer [144] 
developed a new method for determining the scour depth subjected to 
only the wave effect. However, this phenomenon has never been defined 
as a formula or uncertainty of the combined wave and current 
conditions. 

Besides, many offshore sites are made up of sandy silts or loose silty 
sands, making them prone to liquefaction [145]. In high seismicity re
gions, soil liquefaction might impose design risks and engineering 
challenges on the dynamic response of FOWTs due to the strong ground 
motions. Yet, research considering the impact of seismic liquefaction on 
FOWTs is very limited. According to ISO 19901-835 4, geotechnical 
conditions for the anchors must be considered in seismically active re
gions to assess the potential for liquefaction and dynamic soil properties 
[146]. Patra et al. [145] investigated the seismic response of a monopile 
OWT subjected to sand liquefaction under combined seismic and oper
ational loads. They reported that in the case of a small earthquake or 
seismic event (peak acceleration of 0.1 g–0.2 g), wind and wave loads 
dominated over seismic load, while in the event of a large earthquake 
(peak acceleration of 0.3 g–0.4 g), seismic load prevails over wind and 

Table 5 
Considered material uncertainties of wind turbine towers.  

Study Material Variable Distribution Mean COV 

[14] Structural 
steel 

Young’s modulus 
(GPa) 

Normal 210.0 0.05 
[52] Normal 210.0 0.10 
[101] Lognormal 210.0 0.03 
[68] Lognormal 210.0 0.02 
[14] Yield stress (MPa) Lognormal 355.0 0.05 
[101] Lognormal 414.0 0.05 
[68] Lognormal 240.0 0.05 
[101] Shear modulus 

(GPa) 
– 80.8 – 

[101] Bending moment 
(MPa) 

Gumbel 165.9 0.02 

[14] Density (kg/m3) Normal 8500.0 0.05 
Tower base 
thickness (m) 

Normal 0.027 0.03 

Tower base 
outside diameter 
(m) 

Normal 6.5 0.03 

[52, 
132] 

Poisson’s ratio – 0.28–0.30 – 

[14] Tower base 
thickness (m) 

Normal 0.03 0.03  

Table 6 
Considered material uncertainties of mooring lines.  

Study Material Variablea Distribution Mean COV 

[14] Catenary Breaking load 
(MN) 

Lognormal 6.65 0.05 

[134] Tension (Line 1) 
(kN) 

Weibull 3000–6000 – 

Tension (Line 2) 
(kN) 

Weibull 3000–6000 – 

Tension (Line 3) 
(kN) 

Weibull 500–1500 – 

[135] Minimum 
breaking load 
(kN) 

Normal 13000 0.03–0.07 

[55] Minimum 
breaking load in 
site 1 (t) 

Normal 1394 0.021 

[135] Taut-leg Minimum 
breaking load 
(kN) 

Normal 19000 0.03–0.07 

[55] Minimum 
breaking load in 
site 2 (t) 

Normal 1204 0.023 

Minimum 
breaking load in 
site 3 (t) 

Normal 1933.1 0.023 

Chain Minimum 
breaking load in 
site 1 (t) 

Normal 1423 0.05 

Minimum 
breaking load in 
site 2 (t) 

Normal 1213 0.05 

Minimum 
breaking load in 
site 3 (t) 

Normal 2018 0.05 

Polyester Minimum 
breaking load in 
site 1 (t) 

Normal 1560 0.05 

Minimum 
breaking load in 
site 2 (t) 

Normal 1296 0.05 

Minimum 
breaking load in 
site 3 (t) 

Normal 2052 0.05 

[136] Chain 
link 

Strength of 
chain link 

Lognormal 1.2 0.05 

Steel 
wire 

Strength of steel 
wire 

Lognormal 1.16 0.05 

[137] Catenary Breaking load 
capacity (kN) 

Lognormal 7334 0.05  

a For the comprehensive definition of the variables, it is referred to the cited 
literature. 
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wave loads. This implies the need for a proper combination of wave, 
wind, and seismic loads for the seismic design of OWTs. Zhang et al. 
[147] performed dynamic analyses of a 10 MW OWT under 
earthquake-induced liquefaction subjected to combined wave, wind, 
and seismic loadings. They reported that the liquefaction was aggra
vated under the combined wind and seismic loadings, while liquefaction 
was not significantly affected by the wave loading. Table 7 summarizes 
the soil conditions and dynamic response uncertainties. Table 7 sum
marizes the soil conditions and dynamic response uncertainties. 

In the context of FOWT design, soil material properties uncertainty, 
such as soil unit weight, Young’s modulus, Poisson’s ratio, and cohesion, 
are commonly represented using the Normal distribution. The uncer
tainty associated with soil friction angle is often modeled using the Beta 
distribution, with COV values ranging from 0.05 to 0.20. Furthermore, 
uncertainties stemming from terrain roughness, landscape topography, 
lift and drag coefficients, and load-effect computations under external 
loads contribute to the overall uncertainty, with COV values typically 
ranging from 0.05 to 0.15, as reported in the literature. To accurately 
characterize the soil conditions, we emphasize the importance of con
ducting comprehensive geotechnical investigations, including soil 
testing and analysis. By incorporating geotechnical uncertainty consid
erations into the design process, FOWTs can be engineered to withstand 
diverse environmental conditions and operate reliably throughout their 
intended service life. 

2.4. Growing uncertainties over time 

Growing uncertainties over its lifecycle can significantly affect the 
reliability of FOWT. We identify this as an area of critical research need. 
The sources of this type of uncertainty can be from the natural change of 
the material properties due to deterioration or fatigue and from the shift 
of environmental loads such as winds and waves. This also can be caused 
by the amendment of the current method of estimation or the re
strictions following our improved knowledge. 

The current practice to estimate the environmental loads are a simple 
statistical extrapolation. Although extrapolation techniques are gener
ally well established onshore, this concept provides very limited and 
unrealistic information in the application of offshore environments due 
to the large uncertainties involved in offshore environments. Agarwal 
and Manuel [149] applied a probabilistic approach to predict the 
extreme wave load. Young et al. [150] investigates global changes in 
oceanic wave height and wind speed using data from calibrated and 
verified satellite altimeter collected over a 23-year period. However, 
growing uncertainty throughout its lifetime has not been investigated 
nor considered in previous research, while the influence of the growing 
uncertainties on FOWT reliability is significant. 

Fig. 6 presents the effect of the time-variant uncertainties on struc
tural reliabilities. Fig. 6(a) shows the reliability neglecting the time- 
dependent variance, while Fig. 6(b) exhibits the reliability considering 
the growing uncertainties over time. The cross-hatching area indicates 
the reliability of the system where time-variant uncertainty significantly 
changes its estimation. As shown in Fig. 6, neglecting the uncertainties 
growing over time might lead to a significant error in the estimation of 
the life-cycle reliabilities. 

As discussed above, failure modes associated with wind turbine 
structures include several time-dependent phenomena that are impor
tant for their design. To investigate the time-varying uncertainties of 
ocean environmental loads, we suggest analyzing the sets of long-term 
global wind/wave database: a) Buoy data sets from National Data 
Buoy Center, NWS, NOAA, b) Model data sets from Environmental 
Modeling Center, NCEP, NOAA., and c) NCEP CFSRR 30-year homoge
neous data set. This section discusses the effect of corrosion, multi- 
hazard environment, as well as fatigue damage caused by the ocean 
environment, resulting in the material’s degradation, which ultimately 
affects its resistance. To assess fatigue loads for FOWTs, it is crucial to 
comprehensively account for a range of site-specific environmental 

Table 7 
Summary of offshore soil conditions and dynamic response uncertainties.  

Study Variablesa Soil depth 
& layer 

Distribution Mean COV 

[44] Soil effective unit 
weight (kN/m3) 

Layer 1 Normal 16.0 0.05 
Layer 2 Normal 17.0 0.05 
Layer 3 Normal 18.0 0.05 

Internal friction 
angle of sand (◦) 

Layer 1 Beta 33.0 0.08 
Layer 2 Beta 35.0 0.07 
Layer 3 Beta 37.0 0.05 

[85] Soil factor Normal 1.00 0.20 
[50] Young’s modulus 

(MPa) 
12 m Normal 31.5 – 
12.2 m Normal 20.0 – 
13.3 m Normal 33.0 – 
14.1 m Normal 39.0 – 

Poisson’s ratio 12 m Normal 0.35 – 
12.2 m Normal 0.30 – 
13.3 m Normal 0.23 – 
14.1 m Normal 0.25 – 

Cohesion (kPa) 12 m Normal 4.40 – 
12.2 m Normal 4.70 – 
13.3 m Normal 10.8 – 
14.1 m Normal 5.20 – 

Friction angle (◦) 12 m Normal 33.5 – 
12.2 m Normal 33.2 – 
13.3 m Normal 29.1 – 
14.1 m Normal 33.0 – 

[138] Soil friction angle 
property variability 
(φ’)  

Beta N/A 0.05–0.10 
Beta N/A 0.10–0.15 
Beta N/A 0.15–0.20 

[52] Unit weight (kN/ 
m3) 

Sandy 
soil/loose 

– 10 – 

Unit weight (kN/ 
m3) 

Sandy 
soil/ 
medium 

– 10 – 

Unit weight (kN/ 
m3) 

Sandy 
soil/dense 

– 10 – 

Young’s modulus 
(MPa) 

Sandy 
soil/loose 

– 30 – 

Young’s modulus 
(MPa) 

Sandy 
soil/ 
medium 

– 50 – 

Young’s modulus 
(MPa) 

Sandy 
soil/dense 

– 80 – 

Angle of friction (◦) Sandy 
soil/loose 

– 33 – 

Angle of friction (◦) Sandy 
soil/ 
medium 

– 35 – 

Angle of friction (◦) Sandy 
soil/dense 

– 38.5 – 

Cohesion (kPa) Sandy 
soil/loose 

– 50 – 

Cohesion (kPa) Sandy 
soil/ 
medium 

– 50 – 

Cohesion (kPa) Sandy 
soil/dense 

– 50 – 

Yield stress (kPa) Sandy 
soil/loose 

– 59.2 – 

Yield stress (kPa) Sandy 
soil/ 
medium 

– 58.5 – 

Yield stress (kPa) Sandy 
soil/dense 

– 57.0 – 

Friction Coefficient Sandy 
soil/loose 

– 0.40 – 

Friction Coefficient Sandy 
soil/ 
medium 

– 0.43 – 

Friction Coefficient Sandy 
soil/dense 

– 0.48 – 

[148] Effective unit weight – – – 0.1 
Friction angle – – – 0.1 
Coefficient of lateral 
earth pressure 

– – – 0.7–1.0 

Poisson’s ratio – – – 0.4–0.5 

(continued on next page) 
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conditions throughout the system’s expected lifespan. This includes 
wind direction, wind speed, turbulence intensity, wind shear, wave di
rection, wave height, wave period, wind-wave misalignment, yawed 
inflow, current direction, current speed, as well as factors like ice and 
marine growth [152]. Compared to fixed-type offshore wind turbines, 
FOWTs are more sensitive to variations in environmental conditions, 
necessitating the consideration of a larger number of conditions with 
higher resolution. Specifically, the importance of wave period and 
directionality becomes more significant in fatigue load analysis for 
FOWTs. 

Hübler et al. [153] conducted an assessment of long-term environ
mental conditions for fixed-type OWTs by employing various models to 
predict changes in wind speed and air temperature, while considering 
associated uncertainties. These predictions were then used to forecast 
the environmental conditions experienced by FINO3 which is a meteo
rological tower (meteorological mast or met mast) throughout its life
span. The study highlighted that the expected changes in fatigue 
damages over the tower’s lifetime were relatively small compared to 
other sources of uncertainty in fatigue damage calculations. Further
more, the analysis indicated shifts in the air density and wind speed 
distributions, resulting in an increased likelihood of extreme wind 
speeds. Consequently, slightly higher wave heights were observed 
compared to scenarios with constant wind speeds. It was observed that 
fatigue loads would experience a slight increase (below 5%) due to the 
anticipated effects of rising wind speeds and air temperatures over the 
next 25 years. They reported that considering the larger uncertainties in 
lifetime calculations, the inclusion of climate change effects in current 
lifetime calculations for OWTs or FOWTs is deemed unnecessary. 
Nonetheless, this may change if lifetime calculations become more ac
curate or if climate change intensifies. 

Grabemann et al. [154] used the WAM wave model and analyzed a 
30-year period from 2071 to 2100 to investigate the potential future 
changes in mean and extreme wave conditions in the North Sea due to 
anthropogenic climate change. They employed an ensemble of wind 
field data sets from four climate change scenarios driven by two global 
circulation models. The results showed that the long-term 99th 
percentile wind speed and significant wave height in the North Sea could 

increase by up to 7% and 18% respectively. Variations in climate change 
patterns were observed among the scenarios and model combinations, 
with higher uncertainties in the northern part of the North Sea. The 
findings indicated a moderate rise in extreme wind speeds and wave 
conditions in the eastern region of the North Sea by the end of the 21st 
century, emphasizing the need for appropriate planning and adaptation 
measures for coastal and offshore activities. The study also revealed that 
extreme wave heights could potentially increase by around 0.25 m–0.35 
m (5–8% of present values) in the southern and eastern North Sea under 
global warming conditions. The northern part of the North Sea exhibited 
the highest uncertainties in the climate change signals, with uncertainty 
ranges of up to 0.6 m–0.7 m for extreme wave heights south of the 
Norwegian coast and up to 0.9 m/s for extreme wind speeds off the 
Danish coast. Conversely, the southwestern part of the model domain, 
towards the English Channel, showed the smallest model-related un
certainties of approximately 0.1 m for extreme wave height and 0.2 m/s 
to 0.4 m/s for extreme wind speed. 

Recent research using global wind data from in-situ stations has 
revealed that the global decline in average surface wind speed, known as 
global terrestrial stilling, has reversed since around 2010 [155]. This 
recovery in wind speeds is attributed to internal decadal 
ocean-atmosphere oscillations, suggesting a continued rise for the next 
decade with potential future declines. This positive trend supports the 
expansion of wind power as a renewable energy source, offering envi
ronmental benefits and opportunities for large-scale and efficient wind 
power generation systems, particularly in mid-latitude countries. The 
analysis also indicated a 17 ± 2% increase in potential wind energy and 
a 2.5% boost in the wind power capacity factor in the United States. 

2.4.1. Corrosion and deterioration 
The main disadvantages of FOWTs are the difficulty of access and 

harsher environmental conditions such as higher humidity leading to 
corrosion and oxidation. This significantly increases operation and 
maintenance costs. To optimize the maintenance costs, extensive 
experimental data is needed to assess the reliability of structures using 
probabilistic approaches. Also, defining the proper distribution types as 
well as quantifying the mean and standard deviation values is vital to 
achieving accurate reliability analysis [5]. To this end, obtaining data 
from condition monitoring (CM) and structural health monitoring 
(SHM) could be used to provide valuable information concerning the 
condition of FOWTs over a long project’s service life. 

Steel chains in mooring lines that are in contact with seawater un
dergo corrosion, degrading their physical and mechanical properties due 
to section loss. Reduction in the material thickness due to corrosion 
could also make it vulnerable to buckling and fatigue crack nucleation 
and propagation, leading to the structure’s failure [52]. The severity of 
this section loss depends on the water type, part of the mooring line 
involved (e.g., bottom, catenary, and splash zone), and inspection type 
[9]. Dong et al. [156] studied the impact of a salt fog environment on the 

Table 7 (continued ) 

Study Variablesa Soil depth 
& layer 

Distribution Mean COV 

Shear modulus of 
elasticity 

– – – × or ÷ 5 

Initial modulus of 
subgrade reaction 

– – – × or ÷ 2 

Position of 
characteristic soil 
layer transition 

– – – ±1 m  

a For the comprehensive definition of the variables, it is referred to the cited 
literature. 

Fig. 6. Effects of the time-variant uncertainty on structural reliability: (a) considering a constant variance, and (b) considering a time-dependent variance. (E[C(t)]: 
mean capacity, D: given demand, σo: initial standard deviation, and σ(t): standard deviation at the time t) [151]. 
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structural damage of offshore wind turbine blades. The pitted blade 
surface formed by the milling and pumping of sand blown by the wind 
was found to be the incentive. Also, ultraviolet radiation and water 
molecule diffusion were found to be the main reasons for blade 
degradation. 

2.4.2. Multi-hazard environment 
FOWTs are characterized as towering structures, meaning a slight 

pitch motion of the support platform might result in large displacements 
of the turbine rotor. Thus, it is vital to evaluate their dynamic response 
subjected to extreme sea states. Extreme wind conditions are defined 
with regard to air density in conjunction with wind events. The peak 
wind speeds and wind shear events caused by storms, extremely rapid 
changes in wind direction and speed (wind gusts), and extreme turbu
lence are examples of extreme wind conditions [157]. Wind direction 
and speed fluctuate at different scales in space and time. For wind loads 
simulation, the period of particular interest ranges from several days to a 
few seconds [158]. There high-frequency oscillations (i.e., small-scale 
and short-term fluctuations in wind speed) and low-frequency oscilla
tions (long-term wind statistics) exhibit a spectral gap that shows the 
low energy content in these ranges. Subsequently, when a stationary 
stochastic process is assumed, the error is minimized, and the wind can 
be represented separately for the lower-frequency and the 
higher-frequency ranges [158]. FOWTs are subjected to climate change 
hazards such as hurricanes (central and eastern North Pacific Ocean), 
and typhoons (northwest Pacific Ocean; usually east Asia). Failures of 
OWTs due to typhoons are regularly reported. For example, typhoon 
Usagi struck the Honghaiwan wind farm located in Coastal Shanwei City 
in China and knocked out 17 out of 25 offshore wind turbines, resulting 
in a loss of $16 million to the wind farm [159]. In addition, FOWTs are 
exposed to potential earthquake hazards. Seismic events influence the 
FOWT structures differently based on the station-keeping arrangements. 
In the case of catenary lines, earthquake motions may lead to dynamic 
mooring line tension loading which is a critical factor for the 
station-keeping system, while its effect on the turbine and floater is 
minimal. Concerning taut systems, however, the seismic motion might 
be transferred directly to the floater [146]. Therefore, developing 
advanced reliability models considering these environmental and 
climate change hazards is vital. 

2.4.3. Fatigue 
FOWTs undergo significant environmental cyclic loads. Therefore, 

their design is generally dominated by fatigue limit state [160]. For 
structural integrity over a long period of operation, the fatigue effects of 
these coupled loads can be critical to the design of floating wind plat
forms. Areas of fatigue concern include the turbine tower to hull 
connection, the connection of the mooring to the floating foundation, 
and possibly the anchor connection. This can also be at any primary 
structural connections such as between any columns and pontoons, 
columns, and deck connections, or between upper and lower girder 
connections depending on the foundation design. Welding connections 
are particularly known to be vulnerable connections under fatigue. The 
methods for fatigue analysis to assess fatigue reliability could be cate
gorized into two main classes S–N curve and fracture mechanics 
methods [161,162]. The crack growth data of an initial flaw is necessary 
for the fracture mechanics approach, while the S–N curve method which 
assumes constant amplitude stress cycles requires the S–N fatigue test 
data to generate S–N curves using statistical analyses such as maximum 
likelihood and least square methods [5]. The parameters associated with 
the fracture mechanics and S–N methods are dependent on the envi
ronmental condition, material types, and the utilization of corrosion 
protection. 

Fatigue loads, in current engineering practices, are generally evalu
ated through extensive time-domain simulations of different load cases. 
Because of a variety of environmental loads (e.g., wave direction, wave 
height, current, and wind) a full fatigue limit state (FLS) analysis might 

become computationally expensive. Therefore, efforts have been made 
to propose simplified methods for quick frequency domain load analysis 
[85,163,164]. 

In addition, FOWTs face potential failure cases and accidents 
including ship collisions, ice-related issues, and fire incidents [165]. To 
mitigate these risks, robust collision avoidance systems, anti-icing 
measures, and fire detection and suppression systems are essential. 
Comprehensive risk assessment, proactive maintenance, and continuous 
monitoring are crucial for ensuring the safety and reliability of FOWTs. 
The industry is continuously learning and evolving regulations and 
standards to enhance the resilience and integrity of these structures. 

2.5. Modeling uncertainties 

Another important type of uncertainty is modeling uncertainty 
which is typically associated with our lack of describability of the system 
or the modeling assumption for the sake of simplicity. The modeling 
uncertainties can be addressed by a simple addition of a certain model 
standard deviation. The most common type of distributions for the 
modeling uncertainties are either Normal or Lognormal distribution [20, 
166], although Lognormal distribution is more commonly used due to 
the mathematical limitation which bounds above zero (0). Modeling 
uncertainties in their study included modeling of exposure, assessment 
of lift and drag coefficient, and the computation of load-effects under 
external loads. Modeling uncertainties that have been applied to the 
model and statistical parameters of FOWTs are presented in Table 8. 

3. Reliability analyses 

3.1. Available reliability methods 

Limit state function (LSF) represents the failure status for various 
failure modes of the systems. The LSF is formulated such that the 
negative value of LSF represents the failure. In structural reliability, it is 
generally expressed concerning stress, strain, displacement, and modal 
frequency [5]. 

Structural reliability can be expressed in terms of either the proba
bility of failure or the reliability index. The probability of failure rep
resents the probability of the LSF at the negative value. The analyses can 
be performed at various levels: from the conditional probability of 
failure given the extreme events at the components lever, i.e., for spe
cific element designs (univariate), to the probability of system failure 
considering the failure scenarios over the lifetime (multivariate and 
time-variant). These probabilities of failures, Pf , can also be converted in 
the form of the reliability index, β, with a simple expression as follows 
β = − Φ− 1(Pf ), where Φ indicates the normal distribution function 
[171–173]. As expressed, a higher reliability index indicates a lower 
probability of failure. In addition, the exponential function within Φ 
enables the reliability index to emphasize the reliabilities within the 
range of our interest, i.e., the probabilities of the failure close to 0. For 
instance, the probability of failures of 1.0E-4 and 1.0E-5 can be con
verted into the reliability index of 3.72 and 4.26 respectively, which 
increased scale allows us to emphasize the different levels of risks. DNV 
2016 [174], specify the target reliability index of FOWT support struc
tures is usually considered 3.72 equivalent to a failure probability of 
0.0001. 

To estimate the probability of failure, the failures are first defined in 
the form of the LSF, gk(X,θ), for each potential failure mode k, where X 
represents the vector of the random variables discussed in this paper and 
θ represents a vector of statistical variables that can be obtained from the 
observations to improve our knowledge. LSF is expressed as gk(X, θ) =

Ck(X, θ) − Dk(X, θ) where Ck(X, θ) represents the capacity model, such as 
a strength or drift, and Dk(X, θ) represents the demand model, such as 
the required strength from the environmental loads. The models can be 
defined for the structural component level corresponding to the failure 
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mode k. The probability of failure for k-th failure mode is defined as Pf =

P(gk(X, θ)< 0) = P(Ck(X, θ)< Dk(X, θ)) [175]. The probability of system 
failure is defined as the logical union of the probabilities of failures 

corresponding to each failure mode, expressed as P
[

⋃

k
{gk(X, θ)< 0}

⃒
⃒
⃒
⃒X,

θ
]

. General form of the time-variant structural capacity Ck(t,X(t), θ) and 

demand models Dk(t,X(t), θ) are introduced by Choe et al. [176,177] for 
the first time to estimate the time-variant structural reliability with an 
example of corrosion of steel elements within concrete structures. The 
growing uncertainties, θ(t), for the structural components are intro
duced and discussed with an example of the fragility of concrete bridge 
column problems [151]. DNV 2016 [174] presents four types of LSF: 1) 
ultimate limit state (ULS) to resist plastic collapse, 2) fatigue limit state 
(FLS) to resist cyclic loads, 3) serviceability limit state (SLS) to resist 
excessive deflection, vibration, and buckling, and 4) accidental limit 
state (ALS) to resist infrequent loads such as earthquake and explosion. 
The main failure modes of FOWTs could be classified as plastic collapse, 
fatigue, excessive deflections, vibration, and buckling [5]. 

Generally, typical methods of structural reliability estimation can be 
categorized into two main groups 1) sampling (or simulation) methods 
and 2) approximation methods. A general idea of the sampling method 
such as Monte Carlo simulation (MCS) is to generate an acceptable 
number of the most probable samples to observe the actual uncertainties 
of the system. MCS is the foundation for sampling methods where the 

failure probability could be evaluated via both explicit and implicit 
performance functions. MCS performs repetitive simulation processes 
via random sampling of input variables to calculate the accurate prob
ability of failures [178]. Nevertheless, MCS is computationally expen
sive especially when dealing with complex problems with implicit 
performance functions and/or low failure probabilities. To improve the 
efficiency, other sampling methods such as importance sampling [179], 
adaptive sampling, Latin hypercube sampling [180], subset simulation 
[181], and directional simulation [182] have been proposed. Markov 
Chain Monte Carlo (MCMC) [183] is one of the widely-used sampling 
methods and was proposed for sample methods that enable us to 
approximate the statistical properties of the system. 

The approximation methods, on the other hand, use a local 
approximation of the limit state function to evaluate the probability of 
failure through various methods such as the First-Order Reliability 
Method (FORM), Second-Order Reliability Method (SORM), First-Order 
Second Moment (MVFOSM or FOSM), Response Surface Method (RSM), 
etc. The MVFOSM method estimates the mean and variance of the 
response to calculate the reliability index (β) via the first-order Taylor 
series approximation of the response and its derivatives at the random 
input variables’ mean values [184]. The MVFOSM method leads to 
inaccurate estimations when the performance function is nonlinear, and 
the input random variables do not follow Normal distribution (i.e., they 
are non-Gaussian). To overcome these limitations, design point-based 
methods (FORM and SORM) can be utilized to assess the limit state 
function at the design point (also called the most probable point (MPP) 
or β-point) in the standard normal space. FORM uses the first-order 
Taylor expansion (linear) of the limit state function in the standard 
normal space, while SORM employs the second-order Taylor expansion 
(parabolic) to estimate the limit state space at the design point [185]. 

Generally, the approximation methods predict the probability of 
failure quite accurately. However, if the limit state is multimodal 
(multiple MPPs) or its surface is greatly non-flat, they may fail in solving 
the problem. Although RSM could work, it might not provide accurate 
approximations. In such cases, global reliability methods such as AK- 
MCS (Active learning reliability method combining Kriging and Monte 
Carlo simulation) and EGRA (efficient global reliability analysis) can be 
used [186,187]. Global reliability methods estimate the performance 
function using a Gaussian process (or Kriging model) which can model 
the nonlinear limit state function sufficiently, and then employ sampling 
methods to estimate the probability of failure using surrogate models 
that significantly reduce the computational cost. 

3.2. Review of existing uncertainty analyses 

There are several efforts made for the uncertainty modeling for the 
structural reliability of fixed-type offshore wind turbines considering 
limited uncertainties on wind turbine structures or environmental loads 
[139,149,188,189]. However, very few studies are available on struc
tural reliability that accounts for the uncertainties that existed in 
floating structures, mooring lines, and hydrodynamics. This section 
describes uncertainty models related to offshore wind turbines’ struc
tural components and systems. Furthermore, reliability analyses con
cerning growing uncertainties over time are presented. 

3.2.1. Turbine blades 
The methods for improving the reliability of giant wind turbine 

blades have been investigated by many researchers. Nevertheless, the 
floating offshore wind turbine’s risk assessment is yet insufficient due to 
the lack of experimental data. When their foundation is subjected to 6- 
DOF motions under wind, wave, and current loadings, the blade’s un
steadiness worsens and the blades exhibit higher peak loads and fatigue 
damage compared to the onshore and fixed-type OWTs [190]. 

Liu et al. [129] conducted a reliability analysis for the blades of the 
FOWTs. The structure failures of the blade could be attributed to three 
scenarios: 1) fatigue damage, 2) serious damage and breakage accidents, 

Table 8 
Modeling uncertainties used in FOWT.  

Study Variablea Distribution Mean COV 

[14] Yield model uncertainty Lognormal 1 0.05 
Exposure (terrain) Lognormal 1 0.1 
Structural dynamics Lognormal 1 0.05 
Aerodynamic parameters Lognormal 1 0.1 
Hydrodynamic parameters Lognormal 1 0.1 
Load effect computation Normal 1 0.03 

[167, 
168] 

Loading for mooring lines Lognormal 1 0.17 
Material properties for mooring lines Lognormal 1 0.03 

[20] Mean wind speed Gumbel 1 0.23 
Load carrying capacity Lognormal 1 0.05 
Limited wind data Lognormal 1 0.10 
Dynamic response Lognormal 1 0.05 
Exposure Lognormal 1 0.20 
Lift and drag coefficients Gumbel 1 0.10 
Stress calculation Lognormal 1 0.03 

[68] Exposure (terrain) Lognormal 1 0.2 
Climate statistics Lognormal 1 0.1 
Structural dynamics Lognormal 1 0.1 
Shape factor/model scale Gumbel 1 0.1 
Stress evaluation Lognormal 1 0.03 
Scale effect for yield stress Lognormal 1 0.05 
Scale effect for Young’s modulus Lognormal 1 0.02 
Critical load capacity Lognormal 1 0.1 

[169] Dynamic response including 
uncertainty in eigenfrequencies and 
damping ratios, Xdyn 

Lognormal 1.00 0.05 

Terrain roughness and landscape 
topography, Xexp 

Lognormal 1.00 0.15 

Lift and drag coefficients, Xaero Gumbel 1.00 0.10 
Computation of the load-effects given 
external load, Xstr 

Lognormal 1.00 0.03 

[170] Linear damage accumulation Lognormal 1 0.30 
Blade Elements Weibull 1 0.05 
Uncertainty in full-scale tests Weibull 1 0.05 
Structural dynamics Lognormal 1 0.05 
Exposure Lognormal 1 0.2 
Climate statistics Lognormal 1 0.1 
Shape factors Gumbel 1 0.1 
Stress evaluation Lognormal 1 0.03 
Simulation statistics Normal 1 0.05 
Rainflow counting Lognormal 1 0.02  

a For the comprehensive definition of the variables, it is referred to the cited 
literature. 
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and 3) general deficiencies. It was assumed that the fatigue limit state 
followed a normal distribution, while the blade root stress followed the 
Lognormal distribution. The displacement amplitude of a blade tip was 
dealt with as normal distribution. The blade tip flap-wise motion’s 
amplitude almost followed a normal distribution. It was concluded that 
the probability of failure of blades supported by floating foundations 
was higher than that of a fixed-type foundation. 

Gonzaga et al. [122] used Monte Carlo simulation to characterize 
and propagate uncertainties in a blade structural model. 

3.2.2. Floating structures 
The sources of uncertainties inherent to the floating structures 

include potential high power output fluctuation towing to motions, 
potential instability by blade pitch control, and increased inertia loading 
from motions [191]. Due to the observation of significant dynamic ef
fects in floating structures, the simulation of wave elevation and envi
ronmental loads requires consideration of randomness and uncertainties 
[83]. To predict the long-term design loads of OWTs with minimum 
computational effort, Karmakar et al. [72] took advantage of the envi
ronmental contour method. The floating structure’s shape is one of the 
main aspects affecting the shape parameter in Weibull distribution 
describing wave-induced loadings [192]. Zhao and Dong [193] per
formed a structural reliability analysis of floating platforms using 
response-based and environmental contour methods. The floater offset 
was found to be one of the most significant criteria for the reliability 
assessment of the floating structure. The existence of system failure 
modes with non-structural nature and strong interaction between 
structural and non-structural component failures are considered as main 
obstacles to the proper application of structural reliability methods on 
floating structures [194]. 

3.2.3. Mooring lines 
Based on an R3 chain grade of DNVGL–OS–E301 [195], assuming the 

breaking load of the mooring line as a Lognormal distribution, the 
reliability of the FOWT placed at a water depth of 320 m was evaluated 
[14], and robust reliability analysis of FOWT was presented. Hsu et al. 
[134] proposed a composite Weibull probability distribution for the 
dynamic tension of the mooring line that took snap events into account. 
When snap events are not taken into account, the maximum tension on 
FOWT mooring systems might be underestimated. It was found that 
models simulated using Weibull distribution underestimated the upper 
tail of the dynamic tension which includes snap events. When the 
probability of shock load incidence is greater, the developed composite 
Weibull distribution model may provide a good starting point for pre
dicting extreme dynamic tensions of the mooring system. Generally, for 
rare events with high peak responses, the Gumbel distribution out
performs in extracting extreme responses. 

Horte et al. [136] performed structural reliability analysis in order to 
calibrate a design equation for FOWT mooring lines in their ultimate 
limit state. The calibration was done based on six test scenarios for 
mooring systems in water depths ranging from 70 m to 2000 m. Several 
studies have been done on traditional catenary mooring systems that 
include wire and/or chain components. It was assumed that the strength 
of chain link and steel wire mooring lines were distributed using a 
Lognormal function. It should be noted that in current engineering 
practices, conventional catenary mooring system is not used in deep 
water (>500 m) where the chain-wire-chain system (semi-taut mooring) 
and chain-polyester-chain (taut mooring) system are considered more 
efficient solutions. Hou et al. [196] also assumed a Lognormal distri
bution function to model the allowable strength of mooring lines. Liu 
et al. [197] performed a reliability analysis of mooring lines of FOWTs 
using Teaching Learning Based Optimization (TLBO) algorithm. The 
variables included in the limit state function of mooring systems were 
defined to be axial tension and breaking strength, where both followed a 
normal distribution. The average breaking tensile strength of three 
mooring lines was 13,583 kN with a standard deviation of around 

2717.0 kN. 
Zhao et al. [198] proposed a method based on a Bayesian network 

inference-artificial neural network to evaluate the reliability of mooring 
lines subjected to extreme environmental conditions. Since Bayesian 
inference requires a large database in order to estimate a reasonable 
posterior probability, the artificial neural network was used for nu
merical data simulations to improve computational efficiency. Then, the 
failure probability of mooring lines in a semi-submersible floating 
platform was evaluated based on the allowable breaking strength as a 
limit state function. The failure model of the mooring system was 
simulated using the Bernoulli distribution. The probability of failure 
exhibited a significant increase at higher extreme wave heights. In 
another study, Rendon et al. [135] investigated the reliability index and 
predictive reliability of mooring lines subjected to extreme metocean 
conditions taking into account the impacts of parameter uncertainty. A 
first-order analytical formulation was developed to account for the un
certainty in parameters for maximum breaking and dynamic tension 
resistance of mooring lines. The breaking resistance of mooring lines 
was assumed to have a known mean value and its standard deviation 
was uncertain. Also, the maximum dynamic tension of mooring lines 
was modeled as a stationary Gaussian process since the random vari
ables were functions of the peak spectral period and the significant wave 
height. The predictive reliability and probability of failure were insen
sitive to parameter uncertainty in probability distribution of mooring 
lines breaking resistance, while they were quite sensitive to the statis
tical uncertainty in the probability distribution of dynamic tension 
loading. In addition, considerable discrepancies were observed between 
the mean and predictive reliability indices. 

Montes et al. [55] formulated a nested reliability analysis of the 
mooring line’s ultimate limit state (ULS) considering the uncertainty in 
the mooring line’s maximum dynamic tensions, which was evaluated 
conditionally on the uncertain environmental variables. Response sur
faces were employed to express the distribution parameters of the 
maximum dynamic tension as well as the mean mooring line tension as 
functions of the environmental parameters. Because sea waves are 
considered a Gaussian process, and the mooring lines’ dynamic tension 
is mainly governed by the first-order response, the dynamic tension was 
considered to be approximately Gaussian. Then, the developed nested 
reliability formulation was used to calibrate the partial safety factors for 
ULS with a target reliability index of 4.4. It was found that assuming 
significant wave height and peak period as random variables and current 
velocity and wind speed as deterministic variables resulted in similar 
safety factors with only a 2% overestimation in reliability indices 
compared with the full model. 

3.2.4. Corrosion and deterioration 
Andrawus and Mackay [199] developed a predictive maintenance 

strategy based on a risk assessment method for corrosion resistance and 
protective coating of offshore wind turbine blades. The risk was deter
mined as the product of the likelihood of occurrence (characterized by 
the coating history factor) and the failure consequences of the turbine 
blade (represented by the sum of the total cost of material, labor, access, 
and production losses). Dong et al. [200] conducted a reliability analysis 
of OWTs considering the effects of corrosion and inspection. They used a 
2-p Weibull distribution to fit the statistical distribution of hot-spot 
stress ranges subjected to combined wind and sea states environ
mental conditions. The fracture mechanics of crack growth caused by 
corrosion were used in the reliability analysis. The main sources of un
certainty were identified and quantified based on the inspection quality 
in terms of the crack detection probability curves. In addition, 
corrosion-induced geometry and material degradation effects on the 
reliability analysis were investigated, and the reliability index sensi
tivity on stochastic variables was evaluated. Shittu et al. [201] also 
assessed the reliability of OWT support structures under pitting 
corrosion-fatigue using probabilistic models. The first order reliability 
method (FORM) was employed to estimate the reliability index of 
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components. It was found that the structure became unsafe at the age of 
18 years, before reaching a typical service life of OWTs. Also, the results 
revealed that the pits’ aspect ratio at critical size had a substantial 
impact on the structural reliability. 

3.2.5. Multi-hazard environment 
Tarp-Johansen et al. [202] studied the structural reliability of 

offshore wind turbines in the Philippines exposed to severe typhoon 
hazards. They derived the safety factors to be applied to characteristic 
loads based on 50-year extreme 10-min mean wind speeds. They re
ported that to achieve a similar reliability index using FORM analysis, 
different design wind load specifications should be considered for re
gions with and without typhoon hazards. This is due to the fact that the 
reliability of turbine structures under extreme wind loads is affected by 
the wind coefficient of variation. Although there was some uncertainty 
regarding the assumptions used to determine the proper distribution of 
extreme wind speeds due to typhoons, a partial safety factor of 1.7 
exhibited the best estimate. Rose et al. [203] developed a probabilistic 
framework to predict the number of OWTs in a wind farm that could be 
damaged when subjected to hurricanes in four locations in the Gulf coast 
and Atlantic waters of the United States. The order of the riskiest loca
tions to install OWTs was as follows: 1) Galveston County, TX, 2) Dare 
County, NC, 3) Atlantic County, NJ, and 4) Dukes County, MA. The re
sults indicated that almost half of the OWTs would be destroyed during 
the wind farm’s 20-year service life at the riskiest location. More spe
cifically, the Monte Carlo simulation revealed that up to 6% of the tur
bine towers would buckle subjected to a category 2 (wind speed ≥ 45.0 
m/s) hurricane, while a category 3 (wind speed ≥ 50.0 m/s) hurricane 
could buckle 46% of the turbine towers. The tower buckling was a 
function of the frequency of hurricane occurrence and its intensity. More 
turbine towers would buckle at higher intensity hurricanes, yet they 
occur less frequently. 

Mardfekri and Gardoni [204] proposed a probabilistic model to 
investigate the structural damage of 5 MW OWTs under extreme wind 
and seismic hazards. Virtual experimental data was generated using FEA 
to develop the probabilistic models using a Bayesian approach for esti
mating moment and shear demands and fragility of support structures. 
They assessed the annual failure probabilities for two identical OWTs at 
two different locations: 1) California Coast prone to high seismic region, 
and 2) Gulf of Mexico of the Texas Coast subjected to hurricanes. A 
higher risk of failure was found for OWTs installed on the California 
Coast due to high seismicity. Katsanos et al. [205] examined the struc
tural performance of OWTs under a multi-hazard environment (earth
quake excitations, wind, and wave loads) using nonlinear time-domain 
analysis. They employed advanced aero-servo-elastic code to model 
various parts of the turbine. They reported that wind turbine reliability 
and tower dynamic response were significantly influenced by the 
earthquake excitations. More specifically, fragility analysis revealed that 
even at low-to-moderate seismic excitations, the highly tuned and sen
sitive equipment that is commonly located at the nacelle was prone to 
significant damage. Further studies are necessary to develop reliable 
models considering the environmental and climate change hazards of 
FOWTs. 

3.2.6. Fatigue 
Velarde et al. [206] conducted a fatigue reliability analysis for a 

large monopile 10 MW OWT. The results indicated that potential reso
nant responses and wave-induced fatigue load could have substantial 
effects on the fatigue damage which was evaluated by Miner’s rules 
using the S–N curve method. They recommended a reliability-based 
calibration of fatigue design factor of greater than or equal to three 
using the FORM. In addition, the sensitivity of the fatigue reliability was 
quantified against various stochastic input variables. Vahdatirad et al. 
[207] proposed a probabilistic-based Monte Carlo simulation and finite 
element model to perform reliability analyses of gravity-based OWTs 
regarding their bearing capacity. The results were then used to fine-tune 

a deterministic-based design code, leading to a 20% saving in materials 
for the concrete foundation at a similar annual target reliability level. 
Morato and Sriramula [208] performed structural reliability analysis of 
OWTs using a Kriging surrogate model to estimate the load-effect using 
aero-elastic simulations. Thereafter, they calibrated available partial 
safety factors (PSFs) using probabilistic models. The results indicated 
that a PSF of 1.31 was required for the target reliability index of 3.09, 
confirming that PSFs from the IEC 61400-3 were adequate. Also, very 
low failure probabilities were achieved for most sever design cases. Horn 
and Leira [45] carried out a fatigue reliability assessment for a monopile 
OWT with its availability modeled as a random variable which reduced 
the failure probability and increased its operational lifetime. Environ
mental parameters such as wind, wind sea, tide, and swell with corre
sponding directional statistics were considered. They used normal and 
3-p Weibull distributions truncated at ±90◦ to model the wave heights 
and relative wind-wave direction, respectively. The results exhibited 
around a 10% increase in the operational lifetime in the case of 
employing a beta-distributed availability model of 94% with a standard 
deviation of 4 instead of using a deterministic availability of 90%. In 
another study, Horn and Jenson [71] improved the accuracy of fatigue 
estimations using combined FORM and Monte Carlo simulations (MCS). 
Dong et al. [200] used fracture mechanics method to predict the fatigue 
reliability of a fixed jacket OWT taking into account the impacts of 
corrosion and inspection. They used a 2-p Weibull to fit the long-term 
statistical distribution of stress at hot-spots. The results indicated a 
decrease in the reliability index in the case of corrosion and material 
degradation. The reliability index exhibited a considerable sensitivity to 
detectable cracks than initial crack sizes. The reliability index of 0.4–0.5 
could be achieved if applied the proper inspection and repair strategy. 

To date, very limited research has been performed on the fatigue 
reliability assessment of FOWTs. Li and Zhang [209] developed a 
probabilistic accumulated long-term assessment of fatigue integrating 
canonical vine (C-vine) copula and surrogate models on a FOWT 
(spar-type) under realistic environmental conditions. Two surrogate 
models (artificial neural network and Kriging model) were used to 
model the nonlinear load mapping relationship for predicting short-term 
fatigue damage in critical areas. Then, sensitivity analyses were per
formed to study the relative significance of six wave and wind-related 
environmental loads on the short-term fatigue damages at three crit
ical locations of mooring lines: 1) fairlead, 2) tower base, and 3) tower 
top. The results indicated that short-term fatigue damage was remark
ably sensitive to variations in the mean wind speed and direction. 
Thereafter, short-term fatigue damage uncertainties were incorporated 
into a probabilistic fatigue model using the Monte Carlo simulations to 
predict long-term fatigue damages. It was found that mooring lines that 
were arranged in the direction of the dominant wave were prone to 
fatigue damage. Also, locations along the direction of the dominant 
wave at the base and top of the turbine tower were most vulnerable to 
long-term fatigue damage. In addition, the influence of wind on 
long-term fatigue damages was more significant at the tower top than at 
the tower base. In another study, Li and Zhang [59] predicted the 
long-term design loads for a FOWT (spar-type). The multivariate 
dependence structure of six wave and wind-related environmental pa
rameters that affected the dynamic responses was assessed using the 
C-vine copula model that was integrated into the environmental contour 
methodology. To evaluate the long-term (50-year) design loads and 
taking into account the response uncertainty, extreme value distribu
tions for extreme short-term responses were obtained using several dy
namic simulations. The results indicated that 300 environmental 
conditions were sufficient for accurate predictions. Also, it was found 
that the response uncertainty significantly affected the long-term design 
loads. 

Ziegler et al. [85] developed a computational model to efficiently 
evaluate the fatigue damage subjected to wave loads using 
frequency-domain analysis. This model provided better insights into the 
sensitivity of fatigue loads to various environmental parameters such as 
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significant wave height, mean sea level, and wave peak period. The 
frequency-domain analysis, however, is not widely accepted by classi
fication societies (such as the American Bureau of Shipping (ABS), Det 
Norske Veritas (DNV), etc.). Chen and Basu [114] studied the impacts of 
current load and its interaction with wave load on the fatigue of a FOWT 
having a spar-type platform. They concluded that the current had a 
significant impact on the turbine tower responses and the mooring lines’ 
mean tensions due to the static offset. When ignoring the wave-current 
interaction, the fatigue life of mooring lines was overestimated. Li et al. 
[51] investigated the short-term fatigue damages of a 5 MW FOWT 
(spar-type) at the tower base. Realistic environmental conditions were 
taken into account to evaluate the structural stresses and loads at the 
base of the turbine tower. They concluded that fatigue damages induced 
by the wave were larger than those induced by the wind loads. In the 
case of a fatigue load, it was confirmed that it exhibited more sensitivity 
to the counting method of cyclic loads, but not to the simulation length 
[113]. 

The correlation between strength and stiffness degradation was 
studied by Gao and Yuan [210] who presented a probability model 
representing FRP material’s stiffness degradation of a turbine blade. 
According to their research, the FRP stiffness degradation exhibited a 
substantial influence on its reliability and fatigue life. Generally, the 
full-scale level and the element level (which includes local defects and 
size effects) exhibit similar model and statistical uncertainties. 

To consider the model and statistical uncertainties, Weibull distri
bution was employed by Toft and Sørensen [170] to model both 
full-scale (Xfull) and element-scale (Xelem) uncertainties. The accumu
lated damage is usually modeled using a Lognormal distribution to 
prevent negative values of Miner’s rule [20]. A Weibull distribution can 
adequately approximate the long-term distribution of wave-induced 
loading. A Weibull distribution on material strength in fatigue may 
describe the time to crack initiation [211]. An exponential distribution 
exhibits sufficient approximation for the long-term distribution of 
wave-induced loads. An exponential distribution can also describe the 
likelihood of crack detection [192]. Fatigue lives of materials are 
generally modeled by 2-p Weibull distribution [193]. 

Müller et al. [152] employed Monte Carlo-based sampling proced
ures based on Sobol’ sequences to address the large variation in envi
ronmental conditions for FOWTs. This approach allowed for efficient 
coverage of the design space and faster convergence with fewer simu
lations. The analysis focused on the DTU 10 MW reference turbine, using 
statistical properties of wind speed, wave height, and wave period from 
Gulf of Maine (USA) measurements. The study demonstrated that 
approximately 200 simulations were adequate to achieve less than 10% 
uncertainty in lifetime fatigue damage-equivalent loading. These find
ings provide valuable insights into quantifying uncertainties based on 
the number of simulations, facilitating the definition of safety factors. 
Designers can now choose between a fast approach with fewer simula
tions and larger safety factors or a detailed approach with more simu
lations and smaller safety factors. 

4. Conclusions and Future Prospects 

It is expected that wind power will soon become one of the primary 
electricity generators, with colossal floating offshore wind turbines 
(FOWTs) outperforming the industry. Nevertheless, FOWTs are sub
jected to large structural vibrations due to the coupled effects of aero
dynamic and hydrodynamic loads, leading to more frequent failures 
than fixed-type offshore wind turbines. Therefore, a reliable design of 
FOWTs considering various sources of uncertainty is the key to struc
tural integrity and serviceability, as well as reducing the cost of energy. 
Traditional design approaches that consider partial safety factors and 
load factors to deterministically accommodate these uncertainties using 
discrete values may lead to either over-designed or under-designed 
practices. Recognizing this issue, the current review first identifies and 
presents various sources of uncertainty that might be related to 

stochastic variables including uncertainties in environmental loads (e.g., 
the randomness of the wave and wind loads), material properties of the 
structural components, as well as growing uncertainties over time such 
as corrosion and fatigue effects. Then, appropriate statistical distribu
tions for each investigated stochastic variable are discussed to improve 
the reliability of FOWT systems. These input uncertainties could then be 
incorporated within probabilistic models to predict the uncertain out
puts of the correlations between the stochastic variables as well as model 
error. The probabilistic design approach might be further studied to 
establish a basis for the quantification of uncertainty in ultimate design 
conditions through reliability analysis, providing insight into FOWTs’ 
performance as well as their maintenance requirement. The following 
conclusions are made.  

• Uncertainties in environmental loads: the structural design of FOWTs 
must account for aerodynamic and hydrodynamic systems. The 
coupling of uncertainties between them, in addition to the coupling 
of the dynamic systems, is a critical component in the estimation of 
the structural reliability of the FOWT system. To do so, an accurate 
prediction of each uncertainty model, such as stochastic wave, cur
rent, and wind loads, is crucial to building confidence in the design 
process. These uncertainty models should reflect both the un
certainties inherent within the nature of the system (aleatory, irre
ducible) and those sourced from our lack of knowledge(epistemic, 
reducible) including measurement and modeling errors. The 
Gamma, Lognormal, and Weibull distributions are three widely used 
probability distribution functions for modeling environmental loads 
such as winds and waves. Based on extensive literature data analysis, 
it is found that the Weibull distribution is a well-accepted repre
sentation of the wind speed, while the Gamma distribution is mostly 
used for the wave height and period. The probability of failure could 
significantly be underestimated if environmental load uncertainties 
are not considered. 

• Uncertainties in structures, materials, manufacturing, and con
struction: to reduce the overall uncertainty of FOWTs, safety mea
sures such as inspection, quality control, and condition monitoring 
might be applied during their manufacturing and operation. Litera
ture shows up to 39% of underestimation of the probability of failure 
due to neglecting the uncertainties of material and geometric un
certainties. This threatens the safety of the FOWT systems.  

• Geotechnical Uncertainties: soil properties exhibit high uncertainty 
due to the logistical issues of conducting detailed soil sampling at 
FOWT locations. In addition, time-varying oceanic currents and 
waves make the scour problem more complicated than fixed-type 
offshore wind turbines. This can significantly affect the stiffness, 
fatigue reliability, and natural frequency of FOWT support struc
tures. Yet, soil property is one of the least investigated parameters in 
a probabilistic manner. Because of the computational efficiency, 
Gaussian probability distribution is generally applied to partially 
model the variabilities in soil properties. Similarly, the p-y method is 
widely used for the structural reliability analysis of FOWTs. How
ever, the p-y method is incapable of precisely capturing the soil 
behavior. Finite element analysis could be used to accurately model 
the soil. 

• Growing uncertainties over time: the failure mode of FOWT struc
tures can be governed by several time-dependent phenomena 
including fatigue and corrosion damages, leading to the material’s 
degradation which ultimately degrades the FOWT structure resis
tance. Literature shows the importance of the growing uncertainties 
over a lifetime. Currently, the increasing uncertainties are not taken 
into account in the prevailing practice. Instead, the long-term envi
ronmental loads and fatigue reliability are commonly assessed 
without accounting for the changing nature of uncertainties over 
time. The research area is recognized for its lack of existing knowl
edge and the need for improvement. 
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Future Prospects.  

• To assess the reliability of FOWT structures through probabilistic 
approaches, extensive experimental data is required. Therefore, 
further numerical and experimental studies are needed for the risk 
assessment of FOWTs. Besides, since probabilistic models using a 
Bayesian approach require a large database for accurate estimation 
of the posterior probability, a combination of machine learning and 
Bayesian inference might be studied in future reliability research. 

• Extreme oceanic environments and difficulty of access are consid
ered two main disadvantages of FOWTs, resulting in a significant 
increase in operation and maintenance costs. Therefore, the appli
cation of condition monitoring (CM) and structural health moni
toring (SHM) might be further investigated to improve safety by 
providing insights into the condition of FOWT structures. This may 
optimize the inspection intervals over FOWTs’ typical service life of 
20–50 years which significantly reduces the economic losses due to 

lower turbine downtime. In addition, data obtained from SHM and 
CM might be integrated with reliability assessment to achieve target 
reliability indices. 
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Appendix  

Probability distribution Function Equation 

Normal probability distribution function 

f(x) =
1
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Lognormal probability distribution function 
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2-parameter Weibull probability distribution function 
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3-parameter Weibull probability distribution function 
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Gumbel probability distribution function 
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Gamma probability distribution function 
f(x) =

θk

Γ(k)
× xk− 1e− θx 

Generalized extreme value distribution function 

f(x) =
1
c

[(
1 + k

(x − γ
c

))
− 1
k

]k+1

× e
− (1+k(

x − γ
c

)

)

− 1
k 

Von Mises distribution function 
f(x) =

eΚ cos (x− μ)

2πI0(Κ)

μ: mean value, σ: standard deviation, γ: location parameter; c: scale parameter, k: shape parameter, Γ(): Gamma 
function, θ: rate parameter, Κ: concentration parameter, I0(Κ): modified Bessel function. 

References 

[1] Global Wind Report. Drishti IAS. 2022. https://www.drishtiias.com/daily-news-a 
nalysis/global-wind-report-2022. [Accessed 6 December 2022]. 

[2] U.S. Energy Information Administration. Monthly energy review – April 2022. 
2022. 

[3] Wiser R, Lantz E, Mai T, Zayas J, DeMeo E, Eugeni E, et al. Wind vision: a new era 
for wind power in the United States. Elsevier; 2015. 

[4] Eriksen R, Engel D, Haugen U, Hodne T, Hovem L, Alvik S, et al. Energy 
Transition Outlook 2021: technology Progress report. 2021. 

[5] Wang L, Kolios A, Liu X, Venetsanos D, Rui C. Reliability of offshore wind turbine 
support structures: a state-of-the-art review. Renew Sustain Energy Rev 2022; 
161:112250. 

[6] Jiang Z. Installation of offshore wind turbines: a technical review. Renew Sustain 
Energy Rev 2021;139:110576. 
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