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We show that the bounded Borel class of any dense representation p : G — PSL,C
is non-zero in degree three bounded cohomology and has maximal semi-norm, for
any discrete group G. When n = 2, the Borel class is equal to the three-dimensional
hyperbolic volume class. Using tools from the theory of Kleinian groups, we show that
the volume class of a dense representation p : G — PSL,C is uniformly separated in
semi-norm from any other representation p’ : G — PSL,C for which there is a subgroup
H < G on which p is still dense but o’ is discrete or indiscrete but stabilizes a point,
line, or plane in H3 U dH?2. We exhibit a family of dense representations of a non-abelian
free group on two letters and a family of discontinuous dense representations of PSL,R,
whose volume classes are linearly independent and satisfy some additional properties;
the cardinality of these families is that of the continuum. We explain how the strategy
employed may be used to produce non-trivial volume classes in higher dimensions,
contingent on the existence of a family of hyperbolic manifolds with certain topological

and geometric properties.

1 Introduction

The bounded cohomology of discrete groups admits an almost entirely algebraic
description, but many bounded classes are most naturally understood in the context

of the geometry of non-positively curved metric spaces. Isometric actions of discrete
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2 J. Farre

groups on quasi-trees and Gromov hyperbolic metric spaces are responsible for pro-
ducing an abundance of non-trivial bounded classes in degree two. Conversely, bounded
cohomology has been used as a tool to understand the space of isometric actions that
a discrete group admits on, say, a non-compact symmetric space X. Broadly, we aim to
understand to what extent bounded cohomology parameterizes such actions, including
those that are not covering actions or that factor through some other group. We narrow
our focus and consider the setting that Isom™*(X) = PSL,C,n > 2. In this paper, we will
explain the extent to which bounded cohomology sees the different isometric actions
of a discrete group G with a dense orbit in X. Our investigation relies heavily on the
existence of certain discrete free subgroups of Isom™(H3) = PSL,C. Indeed, we will
study the geometry of a complete hyperbolic three-manifold homeomorphic to a genus 2
handlebody in order to show that many non-conjugate dense representations of G yield
different volume classes in H%(G; R).

Immersed locally geodesic tetrahedra in a complete hyperbolic three-manifold
M lift to embedded geodesic tetrahedra in the universal cover H®. We can measure
the (signed) hyperbolic volume of such a tetrahedron, which is bounded above by
vy = 1.01494.... This rule defines a bounded cocycle, hence a class in the degree 3
bounded cohomology of the manifold.

The bounded cohomology ring is an invariant of the fundamental group =, (M)
[29], and any (other) action p : 7;(M) — Isom™ (H?3) yields a bounded class [p*vols] €
H% (7, (M); R), which is obtained from a cocycle that measures the volumes of geodesic
tetrahedra with vertices in the orbit p(r; (M)).x, where x € H3 U dH?3.

We say that a representation is geometrically elementary if its image stabilizes

a line, a totally geodesic plane, or an (ideal) point in H® U dH3.

Theorem 1.1 (Theorem 4.6 and Theorem 4.11). If G is a discrete group and p : G —
PSL,C is a dense representation, i.e. p(G) = PSL,C, then

Io*volglll, = V3.

In particular [p*vol;] # 0 € H%(G; R). Moreover, if py : G — PSL,C is any other
representation and there is a subgroup H < G such that p(H) = PSL,C, but p, is

geometrically elementary or discrete restricted to H, then
Ilo*voly] — [pgvolylily, = V3,

and this bound is sharp.
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Borel and Volume Classes 3

We consider in Section 6.3, for a dense representation p : F, — PSL,C, the

collection of p-dense subgroups
DS(p) =1{H =g 4 F, : p(H) = PSL,C},

where H <, F, means that H is a finitely generated subgroup of F,. If p;,p, €
Hom(F,, PSL,C) are conjugate, it is clear that DS(p;) = DS(p,), while if p; and p, are
dense and DS(p;) # DS(p,), then Theorem 1.1 together with Lemma 2.2 implies that
[Ilpjvolsl—Ip;volslll,, = v5. However, we have not been able to construct examples of non-
conjugate dense representations p; and p, such that DS(p;) = DS(p,). It is possible that
DS(p) is a complete invariant of the PSL,C conjugacy class of a dense representation
p : F, — PSL,C; by Theorem 1.1, [p*vol;] would then be a complete invariant of the
PSL,C conjugacy class of a dense p; see Section 6.3.

Suppose M is a hyperbolic three-manifold of finite volume and p : 7;(M) —
PSL,C; the volume of p is a numerical invariant that can be obtained by pairing
the bounded fundamental class or volume class [p*vol;] € H%(NI(M); R) of the
representation with a (relative) fundamental cycle of M. This numerical invariant has
been studied from this perspective in [5], where Bucher, Burger, and Iozzi show that
when the maximal volume for a representation is achieved, the representation must be
conjugated by an isometry to the lattice embedding 7, (M) — PSL,C. We refer to this
kind of result informally as a volume rigidity result. Theorem 1.1 explains that, for a
dense representation, while the volume of p is non-maximal, the volume class of that
representation has maximal semi-norm.

Dunfield [19] proved a volume rigidity theorem for closed hyperbolic three-
manifolds following an observation of Goldman [27] about Gromov and Thurston's
proof of Mostow’s famous rigidity theorem. Francaviglia [24] and Klaff [33] proved a
volume rigidity theorem for finite volume hyperbolic manifolds, using the notion of
pseudo-developing maps defined in [19]. While Dunfield’'s definition of the volume of
a representation via pseudo-developing maps depends on choices, it turns out to be
an invariant of the representation [24,Theorem 1.1]. The interested reader is directed
toward [5] for more history of volume rigidity results.

One advantage of using bounded cohomology to define the volume of a represen-
tation is that no choices are made. We sometimes see that the pullback of a continuous
bounded cohomology class itself can characterize a representation, up to conjugation.
For example, [11,Theorem 3] states that the pullback of the bounded K&hler class is a

complete invariant of continuous actions of a broad class of groups on an irreducible
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4 J. Farre

Hermitian symmetric space that is not of tube type. This result fails miserably when
the Hermitian symmetric space is of tube type. For example, H? is such a space, and the
bounded Kahler class in Hgb(PSLZR; R) is a multiple of the two dimensional hyperbolic
volume class (also the Euler class). For any two discrete and faithful representations
p.p’ 1 m(S) — PSL,R of a closed surface group, we have [p*vol,] = :i:[,o’*volzl; see,
e.g. [9,Lemme 3.10]. The space of PSL,R-conjugacy classes of discrete and faithful
representations of a closed hyperbolic surface group is a union of two high-dimensional
cells that can each be identified with the Teichmiiller space of that surface.

We are most interested in hyperbolic manifolds with infinite volume, and
we work directly with volume classes in bounded cohomology. For example, let S be
a finite type oriented surface with negative Euler characteristic. We say that two
representations p;,p, : 7;(S) — PSL,C are quasi-isometric if there is a (o;,05)-
equivariant quasi-isometry H® — H2. The following quasi-isometric volume rigidity

theorem sees a combination of both of the phenomena in the previous paragraph.

Theorem 1.2 (Theorem 3.12). There exists a constant € = ¢(S) such that the following
holds. Suppose that p, : 7;(S) — PSL,C is a discrete and faithful representation
without parabolic elements, and that [pjvol;] # 0. If p : 7,(S) — PSL,C is any other

representation without parabolics satisfying

Ilpgvols] — [p*volsl|l,, < €,

then p is discrete and faithful, and p is quasi-isometric to p,. If p, is totally degenerate,

then p, and p are conjugate in PSL,C.

Theorem 1.2 is proved by combining Theorem 1.1 with previous work of the
author, the classification of finitely generated marked Kleinian groups, and a theorem
of Soma (Theorem 2.1). We provide a detailed proof of Theorem 1.2 in Section 3.6 after
establishing definitions and some background on the geometry and topology of tame
hyperbolic three-manifolds of infinite volume. We also elaborate on the role of parabolic
cusps and the geometric meaning of the quasi-isometric equivalence relation, therein.
We note that quasi-isometric equivalence of discrete and faithful representations of
finitely generated torsion free Kleinian groups is equivalent to the existence of a volume
preserving bi-Lipschitz homeomorphism of quotient manifolds H®/imp — H3/imp,

~1 on fundamental groups.

inducing pg o p
Recently, Bucher, Burger, and Iozzi proved a volume rigidity result for represen-

tations of finite volume hyperbolic three-manifold groups into PSL,,C with respect to
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Borel and Volume Classes 5

the so-called Borel invariant of a representation, defined in [6]. To do so, they computed
the continuous bounded cohomology Hgb (PSL,,C; R), which is generated by a single class
B, called the bounded Borel class. They also computed the semi-norm of the bounded
Borel class and how it behaves under various natural inclusions PSL,C — PSL,C,k <n
(see Section 2.5). The bounded Borel class generalizes hyperbolic volume in the sense
that B, = [volsl. Due to the work of [6], most of the argument that proves Theorem 1.1

generalizes to dense representations into PSL,C.

Corollary 1.3 (Theorem 5.1 and Corollary 5.2). Let G be a discrete group and p : G —
PSL,,C be dense. Then

nmn?—1)

Suppose that py : G — PSL,C is such that there exists a subgroup H < G such that
p(H) = PSL,,C and p, is geometrically elementary or discrete and faithful restricted to
H. Then

nm?2—1)

10" Br, — (i © P0) Billow = V3 5

’

for all k > 2, where ¢, : PSL,C — PSL,C is the (unique up to conjugation) irreducible

representation.

Remark 1.4. Compare the hypotheses of the second statements in Theorem 1.1 to those
in the second statement of Corollary 1.3. In Corollary 1.3, we assume that p, is faithful
in addition to being discrete. This is because it is easy to construct somewhat explicit
dense representations of a free group F, on two letters to PSL,C. From this, we obtain
the additional control needed to remove the extra hypothesis and prove Theorem 1.1;

see Proposition 4.9, Case 2.

We will consider the reduced bounded cohomology ﬁi(G; R) = H%(G; R)/Z,
where Z is the subspace of zero-norm bounded cohomology. The reduced space ﬁf;(G; R)
is a Banach space with respect to the quotient norm. Our techniques apply to families
of dense representations satisfying some technical condition on subgroups, as in

Theorem 1.1.
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6 J. Farre

Theorem 1.5 (Theorem 4.12). Suppose {p; : G — PSLZ(C}?’:1 are dense representations.
If there are subgroups H; < G such that p;(H;) = PSL,C but Pilm; is geometrically

elementary or discrete for i # j, then for any a,, ..., ay € R, we have

> max{|a;|} - vs.

N
> ajlp;voly]
i=1

e¢]

Consequently, {[pfvolS] :i=1,2,...,N} C ﬁf’)(G; R) is a linearly independent set.

In Section 6.1, we construct families of representations that satisfy the hypothe-
ses of Theorem 1.5. More specifically, for a non-abelian free group F, on two letters and
every 6 € (0,1), we construct a representation p, : F, — PSL,C; any finite rationally
independent set A’ C (0,1) yields a family {py},c, that satisfies the hypotheses of

Theorem 1.5. In the first line of the following corollary, we invoke the axiom of choice.

Corollary 1.6 (Theorem 6.4). Let A C (0,1) be such that A U {1} is a basis for R as a
Q-vector space, and let {p,}sc be the dense representations constructed in Section 6.1.

The map

A — By (F,)

6 — [p;vol,]

is injective with discrete image, and {[pjvol;] : & € A} is a linearly independent set. In

particular, dimg([pjvols] : 0 € A)p = #R.

As a further curiosity, we show that the spaces ﬁi (PSL,R; R) and ﬁi(PSLzC; R)
are quite large when we endow PSL,R and PSL,C with the discrete topology. We
construct ‘wild’ field maps ¢ : C — C that induce homomorphisms p, : PSL,R — PSL,C,
which are continuous only if PSL,R is endowed with the discrete topology. If ¢ is not
the identity or complex conjugation, then o (R) is dense in C, hence p, (PSL,R) is dense
in PSL,C. Indeed, we construct many such o by extending bijections between tran-
scendence bases of C over Q. We carefully construct a family of dense representations
{p; : PSL,C — PSL,C}, . that restrict to dense representations {p; : PSL,R — PSL,C},g.
For many free subgroups F, < PSL,R, p,(F,) is Schottky, while other free subgroups are
mapped densely by p;.
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Borel and Volume Classes 7

Corollary 1.7 (Theorem 6.5). There are dense representations {p; : PSL,C — PSL,C}, p
that restrict to dense representations {p, : PSL,R — PSL,C},.r such that {[p;vol,] :
t € R} is a linearly independent set in ﬁi(PSLzR; R) and {[p;"vols] : t € R} is a linearly
independent set in H, (PSL,C; R).

There seems to be quite a bit of flexibility in our construction of wild field
maps o : C — C; the dimension of the vector space of bounded three-cochains on
PSL,C or PSL,R is 2#®, which is an upper bound on the real dimension of degree 3
reduced bounded cohomology. It certainly seems possible that the dimension of reduced
bounded cohomology for these groups is 2*%; see Question 6.6.

The main line of argument used to prove our theorems is as follows: a densely
embedded group G < PSL,C can approximate the geometry of any finitely generated
Kleinian group, up to a certain scale. More precisely, given a finitely generated Kleinian
group I' = (y;,..., ) < PSL,C, a dense representation p : G — PSL,C, an ¢ > 0, and
a positive integer N, there are g,,..., g, € G such that all words of length at most
N in the p(g;) are in the e¢-neighborhood of corresponding words in the y;. Suppose
H3/T has a submanifold K ¢ M with large volume and small surface area. Assume
that K is equipped with a straight triangulation by geodesic tetrahedra, and that the
triangulation does not have too many triangles on the boundary. Then, we can homotope
the triangulation, so that there is only one vertex and such that we do not lose too much
volume during the homotopy, which is a small miracle of hyperbolic geometry. The edges
of the tetrahedra are now labeled by elements of r; (M), because they are closed, based
loops. This finite triangulation lifts to the universal cover. The idea is now to use our
approximation of words of length at most IV in the y; by words of length at most IV in
the p(g;) to build a chain on G that has almost the same shape as our lifted chain, via
its p-action. In this way, we use the geometry of discrete groups to build chains on our
abstract group G that have large volume and small boundary area, which is enough to
show that [p*vol;] # 0; if in addition, the chains on I" are e-efficient, we can show that
[[p*vols]|| > €. Adapting a construction of Soma [49,Lemma 3.2], we are able to construct
(v3 — e)-efficient chains, for all € > 0; see also Section 4.1 and, in particular, Lemma 4.1
where we recreate Soma's construction.

The preceding paragraph is made precise in Section 2.6 where we record a key
observation of this paper, Proposition 2.8. Our main line of argument is very generally
applicable in the sense that it can be adapted to work in all dimensions, contingent
on the existence of a sequence of hyperbolic n-manifolds with prescribed topological

properties. Proposition 7.2 formalizes this idea to give one of many sufficient conditions
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8 J. Farre

by which one can apply the techniques in this paper in higher dimensions. First, we need
some terminology. The following definition is made in order to highlight the necessary

algebraic and topological ingredients of the proof of Theorem 1.1.

Definition 1.8 (Definition 7.1). Let T be a discrete group, « € H,(I'; R), and K > 0. We
say that « is K-freely approximated if there is an integer m, a homomorphism ¢ : F,, —
', and a chain Z € C,,(F,,; R) such that ¢,(Z) € « and [|3Z]|; < K.

The conclusion of the following proposition may seem surprising, at first.

Proposition 1.9 (Proposition 7.2). Suppose (M;) is a sequence of oriented, closed
hyperbolic n-manifolds with volume tending to infinity. Let [M;] € H, (7, (4;); R) be
the image of the fundamental class of M; under the natural isomorphism H,,(M;; R) —
H, (7, (M;); R).

If there is a K such that [M;] is K-freely approximated for all i, then for any dense

representation p : F, — Isom™ (H"),
[p*vol,] # 0 € H(F,; R).

See also Remark 7.3 for a discussion of the (possible) dimension of Hg(FZ; R), for

even n > 4.

Remark 1.10. For many sequences (M;) of closed hyperbolic surfaces and hyperbolic
3-manifolds with volume tending to infinity, one can produce a bound K depending on
that sequence such that [M;] is K-freely approximated.

However, it is not at all clear if there can be any sequence of hyperbolic n-
manifolds satisfying the hypotheses of the proposition, for n > 4. For example, if it
were true that there is some acylindrically hyperbolic group I' and H}(I'; R) = 0, then
HL‘(FZ;R) = 0, as well [23]. So if there is such an n > 4 and I', then no sequence
of hyperbolic n-manifolds satisfying the topological constraints of the hypotheses of

Proposition 7.2 can exist.

To obtain the uniform separation of certain volume classes, as in Theorem 1.1,
we appeal to the classification theory and structure theory of finitely generated
Kleinian groups, and make extensive use of the Covering Theorem 3.8 and the Tameness
Theorem 3.3, which are now standard tools for studying hyperbolic three-manifolds.

The Ending Lamination Theorem 3.10 also plays an important role and informs our
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Borel and Volume Classes 9

understanding of the geometry of hyperbolic three-manifolds of infinite volume,
generally.

The structure of the paper is as follows. In Section 2, we provide some back-
ground on bounded cohomology, volume classes, and the bounded Borel class. In
Section 2.6, we give a general strategy for approximation and record our key insight
Proposition 2.8.

In Section 3, we describe the geometry of ends of hyperbolic three-manifolds
and give some context for the three major structural results we need in the sequel. In
Section 3.6, we assume Theorem 1.1 and deduce Theorem 1.2 from previous work of the
author, collected in Theorem 3.11.

In Section 4, we employ our resources coming from the classification theory of
tame hyperbolic three-manifolds to prove Theorem 1.1. In Section 4.1, we recall Soma's
construction of (v5 —€)-efficient chains, collect some technical facts, and prove the first
statement of Theorem 1.1. In Section 4.2, we take a rather technical foray into analyzing
infinite index subgroups of discrete and dense representations of a free group F, on
two letters (Lemma 4.7 and Proposition 4.9). The rest of Theorem 1.1 follows quickly,
thereafter. Then, we generalize Theorem 1.1 to give Theorem 1.5.

In Section 5, we pull back a higher rank formulation of the volume class, known
as the bounded Borel class of a dense representation p : I' — PSL,C; the argument we
present for n = 2 generalizes to the higher rank setting, after a technical detour, thanks
to [6], and we record the necessary modifications to the proof of Theorem 1.1 to obtain
Corollary 1.3.

Section 6 concerns constructions of certain families of dense representations,
‘applications’ of Theorem 1.5 that produce large subspaces of bounded cohomology,
and questions. In Section 6.1, we construct an uncountable family of non-conjugate
representations, every finite subset of which satisfies the hypotheses of Theorem 1.5.
This shows that the dimension of (reduced) bounded cohomology spanned by the volume
classes for dense representations of a free group is large. Later, we use wild field
embeddings to produce many linearly independent volume classes in degree three
reduced bounded cohomology of PSL,C and PSL,R, endowed with the discrete topology.
We pose some questions that presented themselves to us during this investigation.

Finally, in Section 7, we discuss the problem of understanding the (non-)
triviality of volume classes of dense representations in dimensions n > 4. We also show
that closed hyperbolic surfaces are two-freely approximated; in fact our proof shows
that a closed hyperbolic surface of genus at least two can be e-freely approximated

for any € > 0, using covering space theory; note the similarity of Lemma 7.4 with
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10 J. Farre

the standard computation of simplicial volume of closed surfaces of negative Euler
characteristic. The main result of Section 7, Proposition 7.2, is essentially independent
of the more technical work done in Sections 3-6, and so can be read and understood

directly after Section 2.6.

2 Continuous bounded cohomology of groups and spaces

In this section, we establish some preliminaries on bounded cohomology, the volume
class, and the bounded Borel class. In Section 2.6, we introduce the main novel idea of

the paper, Proposition 2.8.

2.1 Continuous bounded cohomology of groups

Let G be a topological group. Then, G acts on the space of continuous functions {GF — R}

as follows. If g € G and f : G¥ — R is continuous, then

9fG1, e G) = FG7 G100 9 G00)-

We define a cochain complex for G by considering the collection of continuous,

G-invariant functions
C"GR) ={f: 6" > R:gf=f Ygegl

The homogeneous co-boundary operator § for the trivial G-action on R is, for

feC™G:R),

n+1

8f(go: ---rgn-l,-l) = Z(_l)lf(QOI "'lgil ---:gn+1)r
=0

where g; means to omit g;, as usual. The co-boundary operator gives the collection

C*(G; R) the structure of a cochain complex. An n-cochain f is bounded if

Iflloc = sup [f(go, -1 Gn)| < 0,

where the supremum is taken over all (n + 1)-tuples (gy, ..., g,,) € G"!. The subspace of
continuous bounded n-cochains is denoted by cg(g; R).
The operator § : cg(g; R) — cg“(g; R) is a bounded linear, hence continuous,

operator between Banach spaces with operator norm at most n + 2, so the collection

120z AelN 9z uo 1sonb Aq $609£29/8200BUI/UIWIEBOL 0 L/I0P/S[OILE-00UBAPE/UIWI/WOS"ANO"OILUSPEDE//:SAY WOl PAPEOjUMOC



Borel and Volume Classes 11

of bounded cochains Cj(G;R) forms a subcomplex of the ordinary cochain complex.
The cohomology of (C}(G;R),8) is called the continuous bounded cohomology of G, and
we denote it by HY, (G;R). The co-norm || - |, descends to a semi-norm on bounded

cohomology, so that if « € HY} (G; R),
lalloo = élelof: lallso-

A continuous group homomorphism ¢ : H — G induces a map ¢* : H}; (G; R) — Hg, (H; R)
that is norm non-increasing.

When G is a discrete group, the continuity assumption on cochains is vacuous,
and we write H} (G; R) = Hg, (G; R) to denote its bounded cohomology. Soma has shown
[50] that the pseudo-norm is in general not a norm in degree > 3. We will consider the
quotient ﬁi(G; R) = H}(G;R)/Z, where Z C H}(G;R) is the subspace of zero-semi-norm

—=3 . . .
elements. Then, H (G; R) is a Banach space with the quotient norm || - || .

2.2 Norms on chain complexes

Given a connected countable CW-complex X, we define a norm on the singular chain
complex of X as follows. Let X,, = {0 : A,, — X} be the collection of singular n-simplices.

Write a singular chain A € C,, (X;R) as an R-linear combination

A= Zaao,

where each o € %,,. The ¢;-norm of A is defined as

1Al = D" Je -

This norm promotes the algebraic chain complex C, (X; R) to a chain complex of normed
linear spaces; the boundary operator is a bounded linear operator. Keeping track of this

additional structure, we can take the topological dual chain complex
(CeCGR),B, - 114)" = (CHEGR), S, I - lloo) -

The oco-norm is naturally dual to the ¢,-norm, so the dual chain complex consists of
bounded cochains. Define the bounded cohomology H; (X; R) as the cohomology of this
complex. Gromov [29] gave an argument, using the theory of multicomplexes, showing

that for reasonable spaces M, the homotopy class of a classifying map M — K(w;(M), 1)
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12 J. Farre

induces an isometric isomorphism Hj (r; (M); R) — Hj (M; R). Recently, [22] provided a
thorough treatment of the theory of multicomplexes and gave self contained account
of Gromov's theorem; they also give other applications to bounded cohomology and
simplicial volume. See also [30] for an approach using normed homological algebra.
For a discrete group G, we will consider the normed chain complex (C, (G;R), 3,
|- II;) that defines the homology of G. The collection of n-co-invariants C,,(G; R) of G is
the R-linear span of X, (G) = {(gq, ..., 9,,) : 9; € G}/ ~, where ~ is the equivalence relation
generated by (gq,....9,) ~ (990, --.,99,); we denote an equivalence class by lgg,...,g,] €
%,(G), and we think of [g,...,g,,] as an n-simplex in the universal cover of a K(G, 1)
for G, defined up to covering transformations, thus defining a simplex in the quotient

K(G,1). A group chain or n-co-invariant Z € C,,(G; R) is then a sum

k
Z = Zal[glb! “'rg:«l]r

i=1

where [gé, ...,gil] + [g{), ...,g’,'L] for i # j. The £;-norm is defined by ||Z|; = 21'11 la;|. The
boundary operator d : C,,(G; R) — C,,_;(G; R) is the pre-dual of the co-boundary operator
8. One thinks of 9 as the alternating sum of face maps on n-simplices. If f € C(G;R)
and Z € C,,(G; R), then we have a trivial inequality |f(Z)| < ||fllslIZ]l;.

2.3 Isometric chain maps

We will be interested in free marked Kleinian groups p : F; — PSL,C, i.e. F; is a free
group of rank d and p is a discrete and faithful representation. Thus, imp = I' acts
properly discontinuously by orientation preserving isometries on H2, and the space
M, = H3/T of orbits is a complete hyperbolic three-manifold of infinite volume. Call
the orbit projection 7 : H® — M,. There is a natural subspace of the singular chain
complex C,(M,) obtained by straightening. We have an ¢, -norm non-increasing chain

map [56]
str: C,(M,; R) — C,(M,; R)

defined by homotoping a singular n-simplex o : A, — M, relative to its vertex
set, to the unique locally geodesic hyperbolic tetrahedron stro. We ignore issues of
parameterization, though Thurston provides a natural one in [56,Chapter 6.1]. Then,
Cftr(Mp;]R) denotes the image of str, and if X € M,, we denote by Cf"(Mp, {x}; R) the
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Borel and Volume Classes 13

subcomplex spanned by the straight simplices whose vertices all map to x. We will now
construct a chain map str; : C,(M,; R) — Cftr(Mp, {x}; R).

Fix x € 771(%), and let D = {y € H? : d(x,y) < d(y(x),y) for ally € I'} be the
Dirichlet fundamental domain for I' centered at x; delete a face of D in each face-pair
(F,yF) to obtain a connected Borel set of representatives for the action of I' on H3,
which we still call D. Let o : A, — M, and choose a lift 5 : A, — H3. The vertices
Vg, ...,V of & are uniquely labeled by group elements v; = y,;y; where y; € T',y; € D.
Define stryo = n(o,(yy, ..., ¥,,)), Where o,(yy, ..., ¥,) is the straightening of any simplex
whose ordered vertex set is (yyx, ..., ¥,X). The definition is independent of the choice of
lift, because any other lift of o has vertex set equal to (yy¥q, ..., ¥ ¥, V) for some y € T.
All maps are chain maps and the operator norm satisfies |stry|| < 1. This is just because
some simplices in a chain may collapse or cancel after applying str;.

Let v : Ay — M, be a straight simplex. We can apply the prism operator to the
straight line homotopy between lifts of r and stryt to H®. We obtain a chain homotopy
HY:C3"(M,; R) — Gy (M,; R) between str; and id. That is,

o—1 . .
HZ "0 + 0Hy = str; — id.

Compare with [66,Chapter 6.1]. The homotopy space A; x I is triangulated by the prism

operator using k + 1 simplices of dimension k + 1, so
IHE | =k + 1. (1)

IfZ e Cfltr(Mp, {x};R), then Z defines a chain in G, (I'; R) by linear extension of

the rule

W(UX(J/()/ ceer yn)) = [)/OI ey Vn]

To see that this map is well-defined, observe that 7 (o, (yy, ..., V) = T (03 (Vs i V1))
means that o, (yy, ..., ,,) differs from o, (y;, ..., ) by a deck transformation y € I'; hence,
oo vl = W¥or e ¥¥nl = g, vy]. We denote this map by ¢, : C3" (M, {x};R) —
C,(T;R).

One checks easily that ¢, is an isometric isomorphism of normed chain com-
plexes with their ¢,-norms. Thus, if Z € Cfltr(Mp,{f(};R), then we have [|Z||; = [l (D),
and |3, (2)|l; = |l (8Z)|l; = |18Z],. Conversely, if we have a chain Z € C5'(I"; R), one sees
that 7, (Z.x) = ;' (2) € G;)* (M, {x}; R).
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14 J. Farre
2.4 The volume class

Let x € H® U dH® and consider the function volj : (PSL,C)* — R which assigns to
(gg: ---»g3) the signed hyperbolic volume of the convex hull of the points gyx,...,g;x.
Any geodesic tetrahedron in H® is contained in an ideal geodesic tetrahedron, and
there is an upper bound v; on the volume that is attained by a regular ideal geodesic
tetrahedron. That is, ||vol}||,, = v5. One checks using Stokes’ Theorem that §vol3 = 0, so
that [vol}] € H3, (PSL,C; R). Moreover, for any x, y € H*UdH?, we have [vol}] = [vol}]. This
is because the straight line homotopy between geodesic triangles can be triangulated by

three (partially ideal) tetrahedra using the prism operator, and so
volj — volf = §H, , (2)

where H, , € CIZ)(PSLZ(C; R) measures the volume of the straight line homotopy between

the geodesic triangles (gy, 9;,9,)-x and (gy, 9;,9,).y. In particular, ||H, < 3vy, so that

ylloo
[vol3] = [volg], as claimed; the previous section gives a dual discussionl.]If basepoints are
not relevant, we write [vol;] to denote the class of [vol3].

The continuous bounded cohomology of PSL,C is generated by [vol;], i.e.
Hgb(PSLZ(C; R) = ([vol3])p [12]. In fact, ||[vol,

hyperbolic volume class in dimensions n > 3. If I' is a discrete group and p : I' — PSL,C

lloo = V3; see e.g. [5] for a discussion of the
is a group homomorphism, then [p*vol;] € H%(F; R) is called the bounded fundamental
class of p or the volume class of p. Observe that for any g € PSL,C, we have an equality

at the level of cochains
(gog 1) *vol§* = p*volj,

so that the volume class is an invariant of the PSL,C-conjugacy class of p. It is also
true that [p*vol;] is an invariant of the closure of the action of PSL,C by conjugation,
if T is finitely generated. Indeed, Thurston [57,proof of Proposition 1.1] pointed out
that for non-conjugate representations p and p’ of a finitely generated, discrete group
T into Isom™ (H?), p € PSL,C.p’ implies that both imp and imp’ are virtually abelian. By
Theorem 2.1 or Lemma 2.2 below, the volume classes of such representations are zero.
Hence if T is finitely generated, we obtain a well-defined, equivariant function on the

character variety

Hom(T', PSL,C) /PSL,C — H(T'; R)

with respect to the natural actions of Out(I") on each space.
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Borel and Volume Classes 15

The following theorem of Soma characterizes when a finitely generated Kleinian
representation has non-trivial volume class. See Section 3 for definitions of geometri-
cally finite hyperbolic manifolds and characterizations of ends of geometrically infinite

hyperbolic manifolds.

Theorem 2.1 ([48,Theorem 1]). If I' < PSL,C is a finitely generated Kleinian group of
infinite co-volume without elliptic elements and p : I' — PSL,C is any discrete and

faithful representation, then the following are equivalent:

o [p*volsl=0eH}(T;R)

e |[p*vol, < Vg

11788

e M, is geometrically finite or I is virtually abelian.

Hence, if M, has a geometrically infinite relative end, then [[p*volll,, = v;.
See [49, Lemma 3.2 and Proposition 3.3] for the proof of this fact. We record here an

observation.

Lemma 2.2. Let G be a discrete group. If p : G — PSL,C is indiscrete but not dense,
then p is geometrically elementary and [p*vol;] =0 € H13)(G; R).

Proof. Since p is indiscrete and not dense, H = p(G) < PSL,C is a proper, closed
Lie subgroup. According to [55, Proposition, p. 246], H fixes a point, an ideal point, or
stabilizes a geodesic plane, i.e. H is geometrically elementary.

We claim that p*vol} = 0 for some y € H3 U 9H>. We just need to choose y to
be contained in the invariant point or plane so that every tetrahedron has zero volume.

Since ,o*volg = 0 € [p*vol;], it follows that [p*vol;] = 0. ]

2.5 The bounded Borel class

We will consider a generalization of the hyperbolic volume class g,, € Hgb(PSLnC; R)
called the bounded Borel class, which coincides with the three-dimensional hyperbolic
volume class for n = 2. Using a stability theorem of Monod [43], Bucher, Buger, and
Tozzi [6,Theorem 2] show that (8,,)r = Hgb (PSL,,C; R), for all n > 3, and they compute the
¢,-norm of B,; see Theorem 2.5.

Let #(C™) be the space of complete flags of C". That is, F € #(C") is a sequence
of vector subspaces {0} < F! < ... < F* = C" such that dimC(Fj) =j. We fix F € Z(C")
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16 J. Farre

and consider a Borel measurable PSL,C-invariant function

BE . (PSL,O)* - R (3)

(9gs--193) = B, (go.F,....g3.F)

that satisfies the cocycle condition everywhere, but is not everywhere continuous.
Equation (5), below, provides a useful definition of B, : Z(CM* — R on generic
configurations of flags. The cocycle B,, was defined on generic configurations of
quadruples of flags in [28,Section 2] and extended to non-generic configurations in
[6,Equation (6)].
Continuity. Since Bﬁ is not everywhere continuous, Bﬁ 4 C%(PSLnC; R), the continuous
cochain group from Section 2.1. However, in the appropriate cochain complex that
computes the continuous bounded cohomology of PSL,C, B represents §,,; we prefer to
omit the technical details of the construction of the strong resolution of R by relatively
injective PSL, C-Banach modules in which B, is a cocycle (see [6,Sections 3-7]). Instead it
is convenient to think of [BL] € Hf) (PSL,,C; R), where PSL,,C is given the discrete topology.

More precisely, let PSL,C? denote PSL, C with the discrete topology and let id :
PSL,C° — PSL,C be the identity. Then id is continuous, hence induces a map id* :
He, (PSL,,C; R) — Hgy (PSL,, C%; R). We can work with the class

id*g, = [BL] € H3, (PSL,C% R) = HJ (PSL,,C; R).

Our goal in this section is to describe the main results from [6] and to extract
a continuity property of the cocycle BY on non-degenerate generic configurations of
complete flags.
The case n = 2 and the Bloch-Wigner function. Note that .#(C?) = CP! = 3H3. The
Bloch-Wigner function D : CP! — R is a variant of the di-logarithm function that
computes the volume of the ideal tetrahedron with ordered vertex set (00,0,1,2) €
(CPY%. If z4,2,,2, € CP! are distinct and z; € CP! is arbitrary, then there exists a
unique g € PSL,C such that g.(zg, ..., z3) = (00,0, 1,9.25). Then, [z, : ... : z3] := g.z5 is the

cross ratio of the four-tuple, and
vol(zy, ..., 23) == D(lzy : ... : z3])

is the oriented volume of the ideal geodesic tetrahedron spanned by (z, ..., z3). When at

least two of z, ..., z; coincide, vol(z, ..., z3) = 0.
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Borel and Volume Classes 17

It is well known that D is real analytic on C\ {0, 1, oo}, attains its extreme values
at ¢; = €7/ and ¢;, and extends continuously to CP'. However, vol : (CPH)* — R is
not continuous everywhere. Indeed, consider the sequence z;, = (oo,0,2*k,2*k§3), for
k =0,1,..; the Mébius transformation z > 2¥z takes z; to z,, hence vol(z,) is constant
(and positive), but the limiting configuration (oo, 0,0, 0) has 0 volume. For fixed z € CP!,

it is not difficult to see that the map

B%: (PSL,O)* - R

(9o .-+ g3) +> vol(gy.2, ..., g3.2)

is a PSL,C-invariant cocycle. The bounded Borel class is just g, := [volj] €
H3, (PSL,C;R), where x € H? is not an ideal point, and it is clear that id*[vol}] =
B3] € H%(PSLZ(C; R) for any x € H® U dH?; see Section 2.4. In Section 6, we show that
H}:’; (PSL,C; R) is quite large.
Generic configurations of flags. For convenience, we fix a Hermitian inner product
C" @ C" — C, thus identifying a maximal subgroup K < PSL,C preserving this inner
product. Then, K is a maximal compact subgroup isomorphic to PSU(n). Note that PSL,C
acts transitively on .%#(C"), so that if we choose also an orthonormal ordered basis
(e;,ey,....e,), we may identify the stabilizer of the standard flag (e;) < (e;,e;) < ... <
(ey,...,e,) with the upper triangular group P < PSL,,C, and % (C") = PSL,,C/P.

Given a flag F € .%(C"), using the Gram-Schmidt process and our chosen inner

product, we may find an orthonormal basis (f!, ...,f™) such that

F=(f) L.,

and each f7 is uniquely determined up to multiplication by a complex number of norm
1. Call (f,...,f™) an affine representative of F.

Say that (F,, ..., F;) € Z(C")* is a generic configuration of flags if whenever
0 <Jjg,--rJ3 < n— 1 satisfy j, + ... + j; = k, then dim(FéO, ...,Fé3) = min{n, k}; genericity is

an open condition among 4-tuples of flags. Let

M = {(g, -1 J3) € (0,1,..,m —2)* 1 jo + ... +js =n — 2},
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18 J. Farre

so that if (Fy, ..., F3) is a generic configuration of flags and (j, ...,j3) € M, then
dimg =0 s L 9. (4)

Moreover, #M = %n(n — 1 + 1), and if (g, ....J3) € {0,....,.n — 1) \ M, then equality (4)
does not hold [6, p. 3147].

Definition of the cocycle on generic configurations. Let .#Z(C")® < .Z#(C™)* be the
subspace of generic configurations of flags. Let F = (F,,...,F3) € Z(C")™® and J =
(gr ---+J3) € M. Find also an affine representative (fil,...,fi") of F;, for i = 0,...,,3. The

functions
F i ViE) i= (fd o 00 fL, o ) € Gr,_p(C)
and
F > Vy(E)" € Gry(C™)
vary continuously in generic configurations F. The orthogonal projection
C" = Vy(F) ® Vy(F)" — Vy(E)".
coincides with the quotient

(FOT LR e

Cc" - , , =
(FY, ... F}) Vy@®)

=V

Using genericity again, the orthogonal projections of féOH, ...,féSH to VJ(E)L are non-

zero and pairwise linearly independent. Let
t;(F) € P(Vy(H)H)* = (CPH*

be the four-tuple consisting of the projectivizations of the orthogonal projections of
f{"ﬂ to V;(F)*. Observe that t; is independent of our choice of affine representatives of

Fy, ..., Fy, because the projectivization map only depends on the complex line spanned by

7.
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Borel and Volume Classes 19

Following [28] and [6], we define the PSL,,C-invariant function

B,:.Z(CH® - R (5)
E > > vol(t;(E)).
JeM
From the definition, it is clear that
3 _
sup BB < #M vy = Ty,
FeZ(CH® 6

By avoiding non-generic configurations of flags, for each J € M, the function
F +— t;(F) varies continuously and has image contained in the locus of distinct four-
tuples in (CP')%. Since vol varies continuously on distinct four-tuples, all summands
in (5) are continuous, and so B, is continuous with respect to the subspace topology
on .7 (C")™®. We refer the reader to [6, Section 3], which explains how to extend B,, to
a bounded Borel measurable cocycle .#(C")* — R. After defining this extension, for a
fixed flag F € .#(C"), equation (3) gives a PSL,C-invariant alternating cocycle Bf [6,
Corollary 13].
The Veronese embedding. There is a unique irreducible representation ¢,, : PSL,C —
PSL, C, up to conjugation, and it induces an equivariant map i,, : dH3 — Z(C") called
the Veronese embedding.

Let x € H?; the cocycle Bz,{‘(x) pulls back to a multiple of the volume cocycle vol3,
which allows us to push constructions in three-dimensional hyperbolic geometry to the

higher rank setting.

Proposition 2.3 ([6, Proposition 21]). For all gy, ...,g3 € PSL,C and J € M,

vol(t;(i,,(gg-X), ..., 1,,(g3.%))) = vol(gy.X, ..., g3.X),

so that

(n?—-1)

R n
B;{’(X)(Ln(go),---,ln(gs)) = 6 vol3(go, -1 93)-

h 2
In other words, 5By * = M =DyolX,
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20 J. Farre

The function BE is not continuous near non-generic configurations of flags.
However, B satisfies the following continuity property, which is all we need in the

sequel.

Lemma 2.4. Let x € dH° and suppose gy, ..., g3 € PSL,C are such that g,.x, ..., g;.x are
pairwise distinct. Then, there exist open neighborhoods U; C PSL,,C of ¢, (g;) such that
the map

Uy x ... x Uy C (PSL,0)* — R

(ho, ’h3) = B%(X)(ho, ,hs)

is continuous.

Proof. Since four-tuples of distinct flags in the image of 7,, are in generic position,
we have (0,,(gy-X), ..., 1, (g3-X)) € F(CHPD. Let V C F(C*)™® be an open neighborhood
of (,,(gg-X), .-, 1,(g3.X)), so that V is open in .#(C™)%, as well. Consider the stabilizer P,
of 7,(x), the quotient projection = : PSL,C — PSL,C/P, = #(C"), and the product
7% . (PSL,0)* — Z(CY*. Then, (#%)~1(V) c (PSL,C)* is an open neighborhood of
(t,(gg)s -1 1,(g3)). Products of open sets form a basis for the topology of the product

of spaces, and B,, is continuous on .#(C")®. This completes the proof of the lemma. W

We will need one more important result about the bounded Borel class and its

semi-norm.

Theorem 2.5 ([6, Theorem 2]). For each n > 2, the Borel class f, generates
H3, (PSL,C; R), and its £,,-norm is

nmn? —1)

1Brlloc = Vs—

For the irreducible representation :,, : PSL,C — PSL,C, the pullback satisfies

nn? -1
B = %[vog] € HY (PSL,C; R).

For a discrete group G and representation p : G — PSL,C, the bounded Borel
class of p or the Borel class of p is p*B, € Hgb(G; R). Note that by Theorem 2.5, if
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p : F, — PSL,C is discrete, faithful, and geometrically infinite, then | (:,, 0 p)*B,lloc =

(n?

w Ilp*volslll,, = VgnT_l), where the last equality was by Theorem 2.1.

2.6 An approximation scheme

We now give a criterion for the pullback of a continuous bounded class to be non-zero
and have positive semi-norm in bounded cohomology. We claim no originality for the
following lemma; it is a distillation and abstraction of a standard argument. See [59,
Section 3] and [49, Proposition 3.3].

Lemma 2.6. Let G be a discrete group, G a group, p : G - G a homomorphism, and
[B] € H(G; R). Suppose there exist € > 0 and chains Z; € C,(G;R) for k = 1,2,... such
that

1. 12B@Ol o ¢ forall k
: 1Zx 111 102 !
imi kll _

2. liminf_, AR =0.

Then, [p*B] # 0 € HY(G; R) and [|[p*B]||, > «.

Proof. Givenb € Cﬁ_l (G;R), we need to show that || p*B +8b||,, > €. We have the trivial

inequality
|(0*B + 8b)(Zy)| < |0*B + bl o 1 Z ;.-
By the triangle inequality, we have
|(0*B + 8b)(Zy)| = |p*B(Z)| — [8b(Z)I.
Another application of the trivial inequality yields
18D(Zp)| = |b(0Z)| < 1Bl 10Zl; -

Stringing together the inequalities and dividing through by |Z; ||, we obtain

|(p*B + 8b)(Zy)| - |p*B(Z)| 1D 10Z Il
12511y o Zdh N Zklly
By passing to a subsequence, we assume that lim;_, ””"’sz"””ll = 0, and we see
that for any e > 0, there is a K such that for k > K, we have % > ¢ — e; thus,

lp*B+ 8b| o, > € — e. Since b and e were arbitrary, this implies that ||[[p*B]|| > €. |
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The following lemma is an easy consequence of the continuity of multiplication

and inversion in a topological group G.

Lemma 2.7. Let p,:F; — G be a homomorphism, W C F,; a finite set, and (z},..,z% a
free basis for F;. Given neighborhoods V,, of p,(w) for w € W, there are neighborhoods
U; of py(7') such that if p : F; — G is any homomorphism satisfying p(z') € U; for each
i=1,..,d,then p(w) eV, forallw e W.

Note that in the above lemma, we do not require p to be faithful. For example,
given a homomorphism o' : G — G, and a set {g;, ....gq} C G, therule Z ,o/(gi) defines
a homomorphism p : F; — G. The following proposition is the key insight in this paper.

Proposition 2.8. Let G be a discrete group, G be a topological group, and p : G — G
a homomorphism with dense image. Consider a homomorphism p;, : F; — G and a
continuous cocycle B € c{;(g; R). For any Z € G, (Fz R) and for any € > 0, there exists
Z(e) € C,,(G; R) such that

lpgB(Z) — p*B(Z(€))| < e.

A

Moreover, [Z(e)ll; < 1ZIl; and [3Z(e)ll; < [3Z]],.

Pr‘oof. ‘Write Z = 'Zjﬂil 'aj[vé,....,vil], and choose the representat.ive (id,w{,...,wb €
[Vg,...,vil] so that VV{ = (Vg)*lvg for eachi =1,...,n. Take W = {VV; :i=1,..,nandj =
1,..,M} C Fy, and let {zl,...,zd} be a free basis for F;.

The cocycle B : G""1 — R is continuous, so foreachi =1,...,nandj = 1,..., M,
there are neighborhoods V{ Cc Gof ,OO(VV{) such that if yij € V{, then

IB(id, po(W)), ..., po(Wh)) — Bid, ¥, ..., vb)| < Vi=1,.. M. (6)

€
mr

Given the data py, W C Fy, (!, ...,zd}, and V{, find neighborhoods U; C G of po(zi)
guaranteed to us by Lemma 2.7. Now, p has dense image, so we can find zi € G such that
p(zi) € U, foreachi=1,...,d. Define:, : F; — G by Zl > zi. Then, ,O(LS(VV{)) € V{ for all
wlew.

We write Z(¢) = 1,(Z2) € C,(G;R) for the chain corresponding to Z under this
identification. The map i, is an ¢;-norm non-increasing chain map, so ||Z(¢)|l; < IIZ]|;
and [9Z(e)ll; < 3Z]);.
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Repeated applications of the triangle inequality and (6) give

€

“B(Z) — p*B(Z
logB(Z) — p™B(Z(€))| < 121

121l =€,

which is what we wanted to show. [ |

Remark 2.9. Note that if Z; € C, (F ; R) satisfy [|Z;]l; — oo and Z;(¢) € C,(G;R) are

obtained as in Proposition 2.8, then ||Z; (¢)||; — oo as well.

We will apply Lemma 2.6 and Proposition 2.8 in two settings. In Section 4, we
set G = Isom™*(H®) = PSL,C and [B] = [volj] € H3 (Isom™(H?); R), where x € H®. In
Section 5, we set G = PSL,,C, for n > 2 and consider the cocycle B = Bﬁ : (PSLn(C)4 - R
from Section 2.5 representing the Borel class 8, € Hgb(PSLn(C; R). Later, we consider
hyperbolic volume classes in dimensions four and higher and establish a criterion
that would guarantee that the volume class of a dense representation does not vanish.
Unfortunately, we do not know if the criterion is ever satisfied.

We have already encountered a technical issue: the cocycle Bf is not every-
where continuous. However, Lemma 2.4 provides us with enough continuity. It is
straightforward to modify the proof of Proposition 2.8, using Lemma 2.4, to obtain
the following corollary. Recall that the Veronese embedding i, : dH3 — Z(C") is a
topological embedding that is equivariant with respect to the irreducible representation
(,, : PSL,C — PSL,C.

Corollary 2.10. Let p, : F; — PSL,C be a homomorphism, p : G — PSL,C be dense,
and Z=YM, a;lwl, ..., wil € C3(Fy; R).

If there is a point x € H® such that, for each j = 1,...,M, the four points
po(wé).x,....,po(wé).x C OH3 are pairwise distinct, then for any ¢ > 0, there exists
Z(e) € C43(G; R) such that

|(tn © 00) B ™ @) — p*B® Z(e))] < e.

Moreover, [|Z(e)ll, < IIZll, and [0Z(e)[l; < 10Z]],.

The reader who is interested only in the question of (non-)vanishing of
higher dimensional volume classes can skip directly to Section 7, and in particular

Proposition 7.2, where the ideas from this section are applied.
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3 The structure of tame hyperbolic three-manifolds

In this section, we review the classification theory of finitely generated Kleinian groups.
We use this classification to provide a detailed argument to deduce Theorem 1.2 from
Theorem 1.1 and previous work of the author, building on work of Soma. The presence of
parabolic elements in Kleinian groups significantly complicates the discussion of ends
and end invariants. The only part of the paper in which we need to understand influence
of parabolic cusps is in Lemma 4.7, and is essentially independent of the main line of
argument.

We begin by defining some of the basic objects associated to a marked Kleinian
group, turn to an observation about groups of isometries of non-positively curved
symmetric spaces generated by ‘small’ elements, and discuss the structure of the ends
of complete hyperbolic three-manifolds with infinite volume and finitely generated
fundamental group. We end with the proof of Theorem 1.2, once we have established
these preliminary notions.

A Kleinian group is a discrete subgroup of PSL,C. Let I" be an abstract discrete
group, and suppose p : ' - PSL,C is an injective group homomorphism with discrete
image, i.e. p is discrete and faithful. We call p a Kleinian representation or a marked
Kleinian group. We will be most interested in the case that I' is a non-abelian free
group or the fundamental group of a closed oriented surface of genus at least two; we
will always assume that I" is torsion free, however, if I is finitely generated and admits
a Kleinian representation, then I'" is virtually torsion free, by Selberg’s Lemma.

We spend some time providing statements and context for the structure and
classification theorems that we use in the sequel. Namely, the Tameness Theorem
(Theorem 3.3), the Covering Theorem (Theorem 3.8), and the Ending Lamination Theorem
(Theorem 3.10) for finitely generated marked Kleinian groups. In order to state these
theorems, we discuss families of hyperbolic surfaces, called simplicial hyperbolic
surfaces, that exit the geometrically infinite ends of hyperbolic three-manifolds. We
use properties of simplicial hyperbolic surfaces again in Section 4.1.

Given p : I' - PSL,C as above, the space M, = H?3/imp of orbits is a complete
hyperbolic three-manifold. Since H? is contractible, M, is a classifying space for I', and
p induces a homotopy class of maps K(I',1) — M, that labels the homotopy classes of
loops in M. If T" is a closed surface group or a free group, then we can take K(I", 1) to be

a closed surface or a three-dimensional handlebody, respectively.
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3.1 The Margulis Lemma

Let G be a semi-simple Lie group of non-compact type, let K be a maximal compact
subgroup, and X = G/K the associated Riemannian symmetric space. In this paper, we
will be most interested in G = PSL,C and G = Isom+(]HId) for n,d > 2. Then, X = H3
when n = 2 or d = 3. Following Thurston [56,Lemma 5.10.1], the following is known to
hyperbolic geometers as “The Margulis Lemma,” although it is perhaps more accurate
to refer to it as the “Kazhdan-Margulis Theorem” [31,Theorem 4.53].

Lemma 3.1 (The Margulis Lemma). Given G and X as above, there is a number pu =
w(X) > 0 such that the following holds. If I" = (y;,...,¥;) < G is a discrete group, and
there is a point x € X such that d(x,y;.x) < u for each i = 1,...,k, then I' is virtually

nilpotent.

For the rest of this section, we will only be interested in the case that G = PSL,C
and X = H3. In this setting, the largest number Uy = w(H?®) for which Lemma 3.1 holds
is called the three-dimensional Margulis constant. Any discrete virtually nilpotent
subgroup I' < PSL,C is virtually isomorphic to 1,Z or Z2.

Thurston [56, Corollary 5.10.2] pointed out that a hyperbolic manifold admits a
thick-thin decomposition as a consequence of Lemma 3.1. Given a complete hyperbolic

n-manifold M and € > 0, let

“¢ = {x € M : the ball of radius € centered at x is embedded in M},

be the thick part of M and M~¢ = M \ M=¢ the thin part. In general, the injectivity
radius inj, (M) is the supremum of the radii of balls centered at x that embed into M.
A hyperbolic manifold M is said to have bounded geometry if there is a positive lower

bound to inj, (M), which is independent of x.

Corollary 3.2 (Thick-Thin Decomposition). Every component of M<#3 is either

e the quotient of a horoball by a group of parabolic isometries that is free
abelian of rank 1 or 2, or

e the rneighborhood of a closed geodesic in M, where r > 0.

The pre-compact components of M~<#3 are called Margulis tubes. The horoball

quotients are called rank-1 or rank-2 parabolic cusps, accordingly.
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3.2 Relative ends and tameness

Fix a Kleinian representation p : I' — PSL,C, where T" is finitely generated and torsion
free. Let Q, denote the union of parabolic cusps in M;", and let M; = M,\ Q,. The
set P, = M is called the parabolic locus and consists of a finite number of tori and
open annuli corresponding to the frontiers of the rank-2 and rank-1 parabolic cusps,
respectively. McCullough has shown [37] that there is a relative compact core K,, C Mp,
a co-dimension 0 compact submanifold such that the inclusion K, < M, is a homotopy
equivalence, BKp contains all toroidal components of Pp, and 8Kp meets each annular
component in a compact annulus. We let P; = K, N P,, so that P; < dM, is a homotopy
equivalence.

Given a relative compact core K, c M, the ends Sp of M; are in one-to-one
correspondence with the components of dK, \ P;, which are oriented surfaces of finite
type and negative Euler characteristic. The elements of £, are called relative ends of M ;
for each component R C 9K, \ P;, the component Eg of M \ K, whose closure contains
R is a neighborhood of the relative end [Eg] € £,.

The following theorem is known as the Tameness Theorem, and has been proved
independently by Agol [1, Section 6 and Theorem 10.2] and Calegari-Gabai [18, Theorem
7.3] building on important partial results of Marden, Thurston, Bonahon, Canary, Souto,
and many others. The statement of the tameness theorem that we include here can be
found in [47, Section 4.2].

Theorem 3.3 (The Tameness Theorem). There is a relative compact core K, C M, such
that for each component R of 0K, \ P¢, the closure of Eg is homeomorphic to R x [0, 0c0).
Moreover, M, is homeomorphic to intK,, and M, is homeomorphic to the complement in
K, of 9K, \ PS.

If K, C M, is a relative compact core such that the complement of K, in M7
consists of product neighborhoods of ends, as in Theorem 3.3, say that K, is a standard
relative compact core. A compression body B is an oriented, compact, irreducible three-

manifold which has a distinguished boundary component d,,,B whose fundamental

ext

group surjects onto w;(B); 9,,,B is called the exterior boundary of B. If the exterior

ext

boundary of B is incompressible, then B is homeomorphic to the trivial interval bundle

over d,,,B. If B is not a trivial interval bundle, the exterior boundary is the unique

ext
compressible component of dB. The compression body B is a handlebody if and only
if 0B=9

ox:B, Which is true if and only if 7, (B) is a free group; see [562, Section 2.5].
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Theorem 3.4 ([13,Theorem 2.1]). Let S be a component of 9K,,. There is a compression
body By C K, whose exterior boundary is S such that inclusion Bg <> K, induces an

injection 7, (Bg) <> m;(K,) = m;(M,), and Bg is unique up to isotopy.

The submanifold Bg is called the characteristic compression body neighbor-
hood of S for K, see also [40,Theorem 1.1.1], where characteristic compression body
neighborhoods are called incompressible neighborhoods. If a component of dK, is
incompressible, then the characteristic compression body neighborhood corresponding
to that component is just a collar neighborhood. Furthermore, the covering space
corresponding to that surface group is a trivial R bundle over that surface by Bonahon's
Tameness Theorem [14,Théoréme A]. The following corollary is our main application of

the Tameness Theorem 3.3.

Corollary 3.56. IfT isafree group of rank k < oo, p : I' - PSL,C is discrete and faithful
and K, is a standard compact core for M, then there is a homeomorphism f : H; — K,
where H,, is a closed handlebody of genus k and f, = p on fundamental groups. There are
homotopically essential and distinct simple closed curves vy, ..., v,, C 0H; with disjoint
representatives such that f({v,,...,v,,}) are the core curves of the annuli P; C 9K, and

m < 3(k — 1). Finally, Mp is homeomorphic to the interior of ;.

Proof. We are guaranteed the existence of a standard compact core K, from Theorem
3.3. Then m; (K,) = Fy, because K, is homotopy equivalent to M,, which has fundamental
group isomorphic to I' = F;. So the characteristic compression body neighborhood of
0K, in K, is a handlebody of genus k, which has only one boundary component; hence,
K, is a handlebody of genus k. We can thus find f : #; — K, inducing p on fundamental
groups. There are at most 3(k—1) homotopically essential, distinct, simple closed curves
in a surface of genus k bounding a closed handlebody of genus k. The identification
of f({vy,..,v,}) with the core curves of P is immediate from Theorem 3.3, as is the

statement that M, is homeomorphic to the interior of ;. |

Remark 3.6. The homeomorphism f is not unique, nor are the curves v,...,v,,, even
up to isotopy. However, given any two homeomorphisms f : H;, — K, and M~ K,

inducing p on fundamental groups, there is a homeomorphism ¢ : 3H; — 987%; that

extends to a homeomorphism @ : #; — #; such that f o ® is homotopic to f'. If v}, ..., v,
are the curves corresponding to f’ : H; — M, from Corollary 3.5, then ¢ ({v;}) is isotopic

in 9H, to {v;}. See [47, Section 4.2].

120z AelN 9z uo 1sonb Aq $609£29/8200BUI/UIWIEBOL 0 L/I0P/S[OILE-00UBAPE/UIWI/WOS"ANO"OILUSPEDE//:SAY WOl PAPEOjUMOC



28 J. Farre

Given a component R of 0K, \ Py, let Modo(R,Kp \Pp) < Mod(R) be the group
of homotopy classes of orientation preserving self homeomorphisms of R which extend
to homeomorphisms of K, homotopic to the identity on K. If R is incompressible, then
ModO(R,Kp \ Pp) is trivial. For a component S of 0K ,, define Mod(S, K, similarly.

3.3 Structure of ends and invariants

Let p : T — PSL,C be a discrete and faithful representation of a finitely generated
group I' without torsion, as above. The limit set A, C OH?® is the set of accumulation
points of (imp).x for some (any) x € dH®. The complement Q, = OH \ A, is called
the domain of discontinuity, and imp acts properly discontinuously as a group of
conformal automorphisms of 9H* preserving 2,. Then, M, = H3 U Q,/imp is a three-
manifold with boundary ©2,/imp that is a disjoint union of Riemann surfaces with finite
hyperbolic area. The convex core CC(M,) C M, is the quotient of the convex hull of A
by imp.

Let K, be a standard relative compact core for M,. Say that a relative end [Eg] €
&, is geometrically finite if Ep meets CC(M,)) in a set of finite volume; we also say that
the corresponding boundary component R C dK, \ P, is geometrically finite. Call [Eg]
(or R) geometrically infinite otherwise. If R is geometrically finite, then the complement
Ep \CC(M,) has flaring geometry; the metric on Eg \ CC(M,) = R x (0, 00) is isotopic to a
metric that is bi-Lipschitz equivalent to the metric cosh?(t)dx? + dt?, where dx? is the
intrinsic path metric on the component of dCC(M,,) corresponding to R.

Suppose R is geometrically finite; then the inclusion R — Ejp, is isotopic, through
level surfaces of the product Eg, into M , and defines a point in a quotient of the
Teichmiller space v(R) € 7 (R)/Mody(R, K, \ P;). The equivalence class v(R) is the end
invariant of [Eg].

We would like to give a description of geometrically infinite ends; to motivate
Definition 3.7, we start with an example. Let S be a closed, oriented surface of
negative Euler characteristic, and ¢ : S — S be a pseudo-Anosov homeomorphism.
The equivalence relation generated by (x,t) ~ (¢(x),t + 1) defines a normal covering
projection 7 : S x R — N, onto the mapping torus N, of ¢ with infinite cyclic deck
group. Thurston's Hyperbolization Theorem [57, Theorem 0.2] states that the mapping
torus N, has a complete hyperbolic metric; thus, so does the Riemannian covering
space 7 : S x R — N, which gives rise to a discrete and faithful representation
p : 7 (S) — PSL,C. We assume that the Riemannian covering = : M, — N, is a local

isometry. Let y, be a simple closed curve in S x {0} C M,. Then 7(y,) has a unique
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geodesic representative m(y;)* in its homotopy class. Each component of the preimage
n‘l(n(yo)*) = {¥"};ez, corresponds to a translate of the geodesic representative yj of y,
in M, by an element of the deck group of 7. Since the action of a generator of the deck
group induces ¢ on level surfaces, the curve y;* is homotopic to y; = ¢'(yy) C S x {0}.
In particular, the two ends of M, in this example are geometrically infinite, because
CC(M,) contains all closed geodesics, and {y;"};c; C CC(M,) is not a compact set, but {y;"}
exits both ends of M,,.

Although we will not discuss measured geodesic laminations in detail, we note
also that the curves {y;},., limit, as projective measured laminations, to the projective
class of a measured geodesic lamination that is fixed by ¢, and similarly in the opposite

direction.

Definition 3.7. With notation as above, a relative end Eg of M, is called simply
degenerate or degenerate if there is a sequence of closed geodesics {y;'};c.y C Eg that

exit compact subsets of Ez and which are homotopic in E to simple curves y; C R.

By [18, Theorem 7.2], if R is not geometrically finite, then Ep is simply
degenerate. Given a Riemannian metric g of finite area and pinched negative curvature,
a geodesic lamination A C R is a closed set foliated by complete g-geodesics. Bonahon
[14] showed that if {);} and {y,} are any two sequences of closed geodesics in M, exiting

Eg, then the geometric intersection

/
i( i yi,)—)O,asi—>oo.

Here, {,(y) denotes the length on (R, g) of the unique closed geodesic in the homotopy
class of y. By Thurston's theory of measured geodesic laminations [56, Chapter 8], there
is a geodesic lamination Ay such that ¥i/ty(y;) converges in measure to a measured
geodesic lamination whose support is Ag. It is known ([14, 16, 56]) that 1z is compactly
supported, minimal, and filling, i.e. the complement of Ay in R consists of a collection
of ideal polygons with geodesic boundary and once punctured polygons, and no leaf
of Ap is isolated. A compactly supported, minimal and filling geodesic lamination is
called an ending lamination for R, and the set of ending laminations, given a topology
by unmeasuring, defines a space £L(R) of ending laminations supported by R. See
[34] to see why the topology on £L£(R) given by unmeasuring is the natural one, from
the perspective of Kleinian groups. See [25] for a precise definition of the topology of

EL(R) and an investigation of its connectivity properties. For any two negatively curved
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Riemannian structures on R, the spaces of geodesic ending laminations are canonically
homeomorphic. The ending lamination A5 € Eﬁ(R)/ModO(R,Kp \P,) is the end invariant
v(R) of the degenerate end [Eg].

The following theorem of Thurston [56] and Canary [17, Corollary B] states that
the only way that ‘new’ geometrically infinite relative ends can appear in the total space
of a Riemannian covering of complete hyperbolic three-manifolds of infinite volume
are as finite covers of ‘old’ geometrically infinite relative ends. All other ends are

geometrically finite.

Theorem 3.8 (The Covering Theorem). Let p : I' — PSL,C be a torsion free finitely
generated marked Kleinian group such that M, has infinite volume, and let i : [ > I be

inclusion of a finitely generated subgroup. Then either

(@) M,

; is geometrically finite, i.e. all relative ends of M,

; are geometrically

finite, or
(b) For every simply degenerate end of M;Oi, there is a neighborhood Ej of that
end and a neighborhood Eg of a simply degenerate end of M7 such that the

covering projection M,,; — M, restricts to a finite sheeted covering E; — Eg.

We may assume that E and Ex are both products, so that the covering E; — Eg

induces a finite sheeted covering R — R of surfaces.

3.4 Simplicial hyperbolic surfaces

One way to study the geometry of simply degenerate ends of hyperbolic 3three-
manifolds is to ‘probe’ them with negatively curved surfaces. A triangulation T of a
closed surface S, is a three-tuple 7 = (V, A, T); V is a finite set of vertices, A is a maximal
simple arc system, and T is a union of oriented two-simplices with embedded interiors
in S that are compatible with ¥V and A; the sum of simplices in T is required to represent
the fundamental class of S. With this definition, a triangulation 7 is not necessarily
associated to the geometric realization of a simplicial complex, e.g. 7 may only have the
structure of a A-complex.

The following definitions are essentially due to Bonahon [14]; we make some
modifications to allow for the possibility that a relative compact core for M, has
compressible boundary components. Namely, we will be interested in the case that
p i Fp — PSL,C is discrete and faithful and without parabolics, so that M, is the

interior of a genus k handlebody, by Corollary 3.5. There is only one component S of
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the boundary of a standard relative compact core for M,,. In what follows, we encourage
the reader to keep in mind this example with E = Eg, a product neighborhood of the end
of M,. See also [17,Section 4].

Let E C M, be a codimension zero submanifold homeomorphic to a product
S x R where S is a closed oriented surface of genus at least two. A simplicial pre-
hyperbolic surface is a pair (f,7) where f : S — E is a m;-injective continuous map;
T is a triangulation of S, so that for each ¢ € A, imf oo CE is an M,-local geodesic
segment, and for each 2two-simplex 7z of 7, imf o C E is M,-geodesically immersed.
A simplicial pre-hyperbolic surface is a simplicial hyperbolic surface if the cone angle
about each vertex in the intrinsic metric g on S induced by f is at least 2. By a lemma of
Ahlfors [2], there is a unique hyperbolic metric g on S in the conformal class of g, such
that the identity (S,g9) — (S,gy) is 1-Lipschitz. Thus, geometric bounds on hyperbolic
surfaces translate to geometric bounds for simplicial hyperbolic surfaces, further giving
us geometric estimates on E, since the composition mapping S — E — M, is 1-Lipschitz.

From a pre-simplicial hyperbolic surface (f : S — E,7) with one vertex, we can
often construct a simplicial hyperbolic surface (g : S — E,7) homotopic within E to f
as follows. Since 7 has only one vertex v, every arc « € A maps to a locally geodesic
loop based at f(v); the image is not necessarily smooth at f(v). Suppose there is an arc
o € A such that the geodesic representative f(«)* of f(«) in M, is contained in E, as
is (the projection of) the straight line homopty between (appropriate lifts of) f(«) and
f(a)*. There is a new map g : S — E homotopic to f obtained by ‘dragging’ all arcs
along the image of v under the straight line homotopy between f(¢) and f(«)* and re-
straightening all 1- and 2-simplices in the image relative to g(v). As long as the straight
line homotopy between f and g is contained in E, then (g, 7") is a simplicial hyperbolic
surface. Indeed, we now just need to check that the cone angle about v is at least 2. But,
this follows from the fact that g(v) lies on a smooth geodesic subsegment of g(«) = f(a)*;
the intersection of g(S) with a small sphere about g(v) is a piecewise spherical geodesic
loop passing through antipodal points, hence the cone angle in the metric induced by g
about v is at least 27 [17, Lemma 4.2].

We will make use of the following result for simplicial hyperbolic surfaces, due
to Bonahon [14].

Lemma 3.9 (Bounded Diameter Lemma). For any compact set K C M, there is a
compact set K’ C M, such that if f : S — E C M, is a simplicial hyperbolic surface
and imf N K # @, then imf c K'. The diameter of f(S) is bounded above by a constant
that depends only on the topology of S and the injectivity radius of M, in K.
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Suppose p : Fy — PSL,C is discrete and faithful without parabolics and M, has
a geometrically infinite end Eg, where S is closed. Then using also our characterization
of geometrically infinite ends of a hyperbolic three-manifold as those that have a
sequence {y;"} of closed geodesics exiting the end Eg of M, homotopic to simple curves
in S x {0}, we can construct an infinite sequence of ‘well spaced’ simplicial hyperbolic
surfaces exiting Eg. Choose points v; € y;*, and let A; be a maximal system of based
loops containing y; C S x {0}, cutting S into triangles. For large enough i, the straight
line homotopy between A; and the corresponding locally geodesic loops based at v; is
contained in an open neighborhood of Eg [16], thus we can ‘hang’ simplicial hyperbolic
surfaces f; : S — Eg from the geodesics y;*, as above. Since {y;"} exit all compact subsets
of Eg to [Eg], by Lemma 3.9, we can pass to a subsequence so that imf; has empty

intersection with imfj, ifi #j.

3.5 The Ending Lamination Theorem

We continue with our notation from before; p : ' — PSL,C is a torsion free finitely
generated marked Kleinian group, and K, is a standard relative compact core for M,. We
summarize how to collect the end invariants v. Let Sy, ..., Sy be the components of 0K,
with negative Euler characteristic; they are closed surfaces that inherit the boundary
orientation from K ,. The annular components of P; have core curves that are identified
with homotopically distinct, essential simple closed curves v(P}) C US;. Then for each
component R C 9K, \ P, we record a piece of data; if R is geometrically finite, then
v(R) € 7 (R)/Mody(R, K, \ P) is an equivalence class of conformal structure at infinity.
If R is geometrically infinite, then v(R) € EL(R)/Mod,(R, K, \ P;) is the corresponding
equivalence class of ending lamination. To p, we associate all of these data v(p).

The motto of the Ending Lamination Theorem is, 'the topology and geometry
at infinity determine the metric.” The Ending Lamination Theorem is a classification
theorem for finitely generated Kleinian groups; it helps answer many of the questions
about the behavior of hyperbolic three-manifolds, their deformations spaces, and

limiting behavior.

Theorem 3.10 (The Ending Lamination Theorem). Let I' be a finitely generated non-
abelian group without torsion, let p, o’ : ' - PSL,C be marked Kleinian groups, and let
K,CMjandK, C M, be standard relative compact cores.

If there is a homeomorphism ¢ : K,\P, - K, \P;, such that ¢, = p’ o p~! and
¢ (w(p)) = v(p), then ¢ extends to a homeomorphism & : M, — M, that is isotopic to
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1

an isometry inducing p’ o p~' on fundamental groups. Equivalently, there is a g € PSL,C

such that gog™! = p/.
In other words, if the topological type of M, and M/, agree and so do the relative
end invariants, then M, is isometric to M, in the homotopy class of the classifying map

determined by p’ o p~ L.

We owe the reader attributions and references. The final ingredients to prove
Theorem 3.10 were given by Brock-Canary-Minsky [8, Ending Lamination Theorem for
Incompressible Ends], and in a follow up paper [7] that carries out the details needed to
modify the proof when M, has compressible ends, using Canary’s Branched Cover Trick
[16], as outlined in [8, Section 1.2]. For Kleinian surface groups, Minsky built a model
manifold M, from a list of end invariants v out of blocks and tubes. He also constructed
a Lipschitz map (with Lipschitz constant depending only on the topology of the surface)
M, — M, where M is a hyperbolic manifold with end invariants v [39, Extended Model
Theorem]. The geometry and arrangement of the tubes in the model manifold M, is
extracted from a hierarchy of tight geodesics and careful analysis of the geometry of
Harvey's complex of curves carried out by Masur-Minsky in [41, 42]. The Lipschitz model
map was then promoted to a bi-Lipschitz model map that extends to a conformal map
at infinity [8,Bi-Lipschitz Model Theorem]. So, if M, and M, have the homotopy type
of a finite type surface (with a parabolicity condition on the boundary curves of the
surface) and they have the same end invariants, as seen from some reference surface,
then there is a bi-Lipschitz homeomorphism between them, compatible with markings,
that extends to a conformal map at infinity; by Sullivan’s Rigidity Theorem [54], the
bi-Lipschitz mapping is homotopic to an isometry.

If all of the relative ends of M, are simply degenerate, we say that M, is totally
degenerate. The Ending Lamination Theorem 3.10 implies that the marked isometry
type of a totally degenerate manifold M, is completely determined by the topology of
a standard relative compact core and list of ending laminations.

The general statement for the Ending Lamination Theorem (including the
case that there are compressible relative ends) is made possible by the Tameness
Theorem 3.3. One studies the covering spaces associated to the relative ends of a given
manifold M, builds models of the ends from the end invariants, and assembles the pieces
to obtain a bi-Lipschitz model for M. All of this builds on the important contributions
of Thurston, Ahlfors, Bers, Marden, Maskit, Sullivan, Bonahon, Otal, O'shika, and many
others. Soma [51] has recently given an alternate strategy using methods from bounded

cohomology and volume rigidity.

120z AelN 9z uo 1sonb Aq $609£29/8200BUI/UIWIEBOL 0 L/I0P/S[OILE-00UBAPE/UIWI/WOS"ANO"OILUSPEDE//:SAY WOl PAPEOjUMOC



34 J. Farre
3.6 Quasi-isometric classification of marked Kleinian surfaces and free groups

For constants M > 1 and A > 0, an (M, A)-quasi-isometry f : X — Y between metric

spaces is a map that satisfies
1
MdX(X'X/) —A S dY(f(X)rf(X/)) S MdX(XIX/) +A

for all x,x’ € X. Thurston defined the quasi-isometric topology on the space of
hyperbolic manifolds with a given homotopy type in [57, Section 1]; say that two discrete
and faithful representations p;, p, : I' = PSL,C of a finitely generated non-elementary
group I' are quasi-isometric, and write p; ~4; p,, if there are M and A as above and a
(py, py)-equivariant (M, A)-quasi-isometry H® — HZ3. An equivariant quasi-isometry of
representations extends to an equivariant quasi-conformal map at infinity, where the
quasi-isometry constants give control on the quasi-conformal constant of the map at
infinity.

A weaker version of the implication ‘(1) = (3)" in the following theorem was
given by Soma [49, Theorem AJ]; in that paper, all manifolds are homotopy equivalent
to a closed surface, have bounded geometry, and two degenerate ends. The number €
in Soma's [49, Theorem A] depends on the lower bound ¢’ for the injectivity radius of
the manifolds involved and ¢ goes to zero with €. In particular, the techniques that
prove [49, Theorem A] do not apply to manifolds with unbounded geometry. Part of the
novelty of Theorem 3.11 is that our techniques are equally amenable to manifolds with
unbounded geometry, a topologically generic set at the boundary of the deformation
space of hyperbolic metrics, and our constant ¢ is uniform over all metrics; it only

depends on the homotopy type of the manifolds M, but not their geometry.

Theorem 3.11 ([20, 21]). Let S be an orientable hyperbolic surface of finite type. There
is a constant € = €(S) > 0 such that if p;, p, : 7,;(S) — PSL,C are discrete and faithful
with no parabolic elements, then the following are equivalent.

L. |llpjvols] — [p3volsl|l,, < €

2. [pjvols]l = [psvols]

3. Py ~qi P2
Moreover, if M, has a geometrically infinite end and p5 : 7;(S) — PSL,C is an arbitrary

representation satisfying ||[p}vols] — [p3volsl||,, < €, then p; is faithful.
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Proof of Theorem 3.11. Let ¢ < min{e’/2,v;}, where ¢ is as in [20, Theorem 1.2] and
only depends on the topology of S. The last statement is [20, Theorem 1.3], which states
that p4 is faithful.

Condition (2) implies condition (1), trivially. Now we show that (3) implies
(2). We need the classical fact that an equivariant quasi-isometry extends to an
equivariant quasi-conformal homeomorphism at infinity (see, e.g. [56, Corollary 5.9.6]).
This quasi-conformal homeomorphism extends to a volume preserving bi-Lipschitz
diffeomorphism M, — M, inducing p, o ,ol‘1 on fundamental groups; see [38, Appendix
B], [4, Theorem 5.6], or [21, Theorem 3.1], where those results are summarized. We can
apply [21, Corollary 3.6] or the proof of [21, Theorem 3.2] to see that [p]vol;] = [p;vol,].

Finally, we show that (1) implies (3). With ¢ as in the first paragraph, [20,
Theorem 1.2] states that the geometrically infinite end invariants of M, must be the
same as the geometrically infinite end invariants of M, . If M, is totally degenerate,
then v(p;) = v(p,). By the Ending Lamination Theorem 3.10, p, is conjugate, hence quasi-
isometric, to p,.

So, we now assume that at least one end of M,, is geometrically finite. If 7, (S) is
free, then by Corollary 3.5, M, and M, are handlebodies of the same genus, and since
imp; has no parabolic elements, there is only one relative end of Mpi' fori = 1,2. For
geometrically finite hyperbolic manifolds with no parabolic cusps, CC(M,) is a standard
compact core for M, ; we may find a bi-Lipschitz homeomorphism ¢ : intCC(M,,) —
intCC(M,),) inducing pyo0p; ! on fundamental groups. The neighborhood E; = M 5 \CC(M,)
of the end of M, is a product S’ x (0, c0), where S’ is a closed surface of genus equal to the
rank of 7, (S), and its metric is bi-Lipschitz equivalent to cosh? (t)dXi2 + dt?, where dx;
is the induced path metric on dCC(M,,). Thus, ¢ extends to a homeomorphism mapping
level surfaces of E; to level surfaces of E, with respect to the aforementioned product
structure on E;. Since the path metrics on dCC(M,,) are bi-Lipschitz equivalent to each
other and CCM,)) and CC(M,,) are compact, the map ¢ : M, - M, is a bi-Lipschitz
homeomorphism that lifts to an equivariant bi-Lipschitz homeomorphism H® — H?.
Thus, p; ~g;. Pa-

If S is closed then Mpi = S x R by Bonahon's Tameness Theorem [14, Théorem
A] and since imp; contains no parabolics, standard compact cores for M, are of the
form S x [0,1], for each i = 1,2. There are two possibilities for the geometry of the
ends of M, If M o has no geometrically infinite ends, then the same is true for M p-
A similar argument to the previous paragraph produces an equivariant bi-Lipschitz
mapping H® — H®, and so p, ~,; p,. The last possibility is that M, each has one

degenerate end and one geometrically finite end. In this case, the convex cores of M, are
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neighborhoods of their degenerate ends, and [8, Bi-Lipschitz Model Theorem] supplies
us with a bi-Lipschitz homeomorphism ¢ : cC(M,) — CC(M,,) inducing p, o p1_1 on
fundamental groups. Again, we extend ¢ to a bi-Lipschitz homeomorphism M, — M,
mapping flaring level surfaces to flaring level surfaces in the complement of the convex

core. The conclusion of the theorem follows, as in the previous cases. [ |

There are geometrically finite representations of a closed surface S of genus
g > 2 that are not quasi-isometric to each other. For example, take pants decompositions
o and B of a closed surface S with no common curves. There is a unique conjugacy
class p : m;(S) — PSL,C such that the quotient manifold M, has 6g — 6 rank-1 cusps.
K, is a trivial interval bundle over S, with two boundary components ST and S™. The
components of P are annular subsurfaces of S* and S~ with core curves « C S* and
B C S™; each complementary component of 9K, \ P; is homeomorphic to a three-times
punctured sphere. The only simple closed curves on three times punctured spheres are
parallel to the punctures and do not have geodesic representatives in a finite area
metric of non-positive curvature, so there are no ending laminations, being limits of
geodesic simple closed curves, on a three times punctured sphere. Every relative end
of this example is geometrically finite. In fact, since the Teichmiiller space of a three
times punctured sphere is a point, every relative end is isometric to every other relative
end in this example. The volume class vanishes by Theorem 2.1, but p is not quasi-
isometric to any Fuchsian representation. Thus, the assumption that representations
have no parabolic elements cannot be dropped in Theorem 3.11.

Now we prove Theorem 1.2, assuming Theorem 1.1, which is the last ingredient

for our quasi-isometric volume rigidity result.

Theorem 3.12. There exists a constant € = €(S) such that the following holds. Suppose
that py : 7;(S) — PSL,C is a discrete and faithful representation without parabolic
elements, and that [pgvols] # 0. If p : 7, (S) — PSL,C is any other representation without

parabolics satisfying

Ilpgvolsl — [p*volslll,, <€,

then p is discrete and faithful, and p is quasi-isometric to p,. If p, is totally degenerate,

then p, and p are conjugate in PSL,C.
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Proof. Choose ¢ as in Theorem 3.11. Then p, is discrete, faithful, and [,o(’)kvol3] # 0,
so we can apply Theorem 2.1 to see that ||[pgvolslll,, = v3, and M, has a geometrically
infinite end. We can apply the last statement of Theorem 3.11 to deduce that p is faithful.

By Theorem 1.1, since p, is discrete and |[pjvols] — [p*volslll, < € < v3, p
cannot have dense image. The triangle inequality gives ||[p*vol5]|| > v3 — € > 0. Thus,
[p*vol;] # 0 and so p has discrete image by Lemma 2.2. Now that we know that p is
discrete and faithful, we can apply the main body of Theorem 3.11 to see that p ~,; p,.
This concludes the proof of the first statement of the theorem.

IfM 0 is totally degenerate, then all of the end invariants of M Y and M 0 coincide.
By the Ending Lamination Theorem 3.10, p, is conjugate to p in PSL,C, as in the proof
of Theorem 3.11. u

4 Volume classes of dense representations

We will prove our main theorems for the three-dimensional volume class in this
section by building efficient chains from a geometrically infinite Kleinian free group
I' = (a,b) < PSL,C that contains no parabolics. Then, we will approximate the shape of
those chains using a dense representation. Call a n-chain Z e-efficient or just efficient
if % > ¢. We recall Soma'’s construction of efficient chains in a hyperbolic manifold
H3/ T, where I' is any finitely generated, torsion free, infinite co-volume, geometrically
infinite Kleinian group I' < PSL,C. Then, we use tools from Section 2.3 to turn these
efficient chains into efficient three-chains with only one vertex, which then define
chains on I'. If we have a dense representation p : G — PSL,C, we can approximate a
and b by sequences a,, = p(x,,) and b,, = p(y,,) for suitably chosen x,,,y,, € G. The shape
of the chain on I' with large volume and small boundary area can be approximated by
chains on the groups (a,,, b,,). The chains in the approximates have essentially the same
volume as the chains which came from the manifold H3/ T, as in Section 2.6.

We have a natural way to collapse a straightened singular three-chain in H®I’
with many vertices onto a chain with only one vertex. We lose some volume during
this collapsing process, but the loss of volume is controlled in terms of the ¢;-norm of
the boundary of the original chain, which is uniformly bounded. We need to prove a
number of technical facts about these one-vertex chains that rely on geometrical facts
concerning hyperbolic three-manifolds. This allows us to show that the volume class of

any dense representation has maximal semi-norm.
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Then, we prove some auxiliary results about certain subgroups of Kleinian
groups to show that certain volume classes are separated in semi-norm, as announced

in Theorem 1.1 and Theorem 1.5.

4.1 Constructing efficient chains

There are several chain complexes in which a three-chain Z could live, e.g. in a group
I or a quotient manifold H?/T, and vol; should be interpreted in whichever context it
makes sense. In what follows, we show that for chains Z whose boundary has small ¢, -
norm, it is not so important where we compute the volume; this is most of the content
of Proposition 4.2.

In [20], we constructed sequences of three-chains on geometrically infinite genus
g handlebodies with large volume and small boundary area. These chains were €g-
efficient, where €g >0 depends only on the topology of the handlebody (but not on its
geometry), and for which the boundary surfaces of the chains were well controlled. In
fact, they were simplicial hyperbolic surfaces; see Section 3.4. Soma [48, 49] constructed
(v4 — €)-efficient chains, for any € > 0, but the boundaries of his chains are not well
controlled and grow wilder as the efficiency constant gets closer to v;.

We will revisit Soma’s construction of efficient chains for a geometrically
infinite manifold with free fundamental group to extract a technical feature that we
require in the proof of Lemma 5.4. Soma’s chains are constructed via ‘smearing,’ as
in Thurston’s construction of efficient (measure) cycles representing the fundamental
class of a closed hyperbolic manifold [56, Chapter 6].

We will follow [49, Section 3]; note that although Soma requires that I' be
isomorphic to a closed surface group, [49, Lemma 3.2] only depends on the topological
and geometrical structure of a geometrically infinite end of a topologically tame
hyperbolic three-manifold. See the proof of [48, Theorem 1] for further comments.

For the rest of this section, fix a discrete, faithful, and geometrically infinite
representation pg : F; — PSL,C with no parabolic elements, and let I'y denote imp,. Let
T H > ]I-]13/F0 = M, be the covering projection. It will be convenient to assume
that M, = H3/T, has bounded geometry' . By Corollary 3.5, M, is homeomorphic

to a handlebody %, of genus d. There is a standard compact core K, that is also a

1 Generically, a simply degenerate end of a complete hyperbolic three-manifold homeomorphic to a
handlebody without parabolics has a sequence of closed geodesics with length tending to zero. However,
bounded geometry geometrically infinite handlebodies arise, for example, as geometric limits of closed
hyperbolic three-manifolds with bounded Heegaard genus and gluing data represented by powers of a pseudo-
Anosov homeomorphism going to infinity; see [46].
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handlebody, and E = M, \ K, is a neighborhood of the end of M, that is simply
degenerate; its closure is homeomorphic to S x [0, 00), where S is an oriented surface
of genus d.

Find a sequence {(f,, : S — E, 7,,)} of simplicial hyperbolic surfaces, homotopic
to the inclusion S — S x {0}, with X,, = im(f,,) exiting E toward [E]. The maps f,, are
not embeddings, but E \ X,, consists of some compact components and a non-compact
component E,, € [E]. Pass to a subsequence such that {X,,} are pairwise disjoint (see the
discussion following the Bounded Diameter Lemma 3.9) and E,, D E,, if m < n. Also let
L,, , denote the closure of E,, \ E,, which is a compact set.

Let 0 : A; — H?® be a non-degenerate straight simplex; abusing notation we
ignore the parameterization of the map and identify o with its image in H® or even
its ordered vertex set. In each straight simplex, there exists a unique inscribed ball,
meeting each face in a point. Let center(c) € H® denote the center of this inscribed ball.

We describe a Borel measure smearo on the space of locally straight three-simplices
S (M) = HH*/T,

in M, . If o is a straight simplex in H?3, then 7 (c) denotes the corresponding element of
S (M)
Consider the Haar measure u on PSL,C normalized so that, for any x € H® and

any Borel measurable set K c H?,
n({g € PSL,C : g.x € K C H3}) = Vol(K),

the hyperbolic volume of K. Then, u descends to a measure (with the same name) on
I'y\PSL,C. Finally, we define smearc as follows: for a Borel measurable set K C y(Mpo),

we define
smearo (K) = u({g € I'y\PSL,C : m(g.0) € K}).
Also to K C M,  we associate the set of simplices

S (K) ={n(g.0) € Y(MPO) : w(center(g.o0)) € K},
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so that
smearo (.7, (K)) = Vol(K).

Fix a geodesic plane H? c H? and let r : H® — H?® be reflection in H?, so that the

simplex r o o is isometric to o with the opposite orientation. Define
1
z(o) = z(smeara — smearroo).

By restricting the support of z(0) to .7, (Lg ), we obtain a family of Borel measures z (o)

with total variation [z (0)|l = Vol(Lg ;) and
/ voly(o’) dzy(o) (o) = volz(0)Vol(Lg g). (7)
S (M,

In Thurston’s smooth measure homology theory, each z,(c) defines a measure
chain, i.e. a signed measure on the space of smooth singular simplices satisfying a
local finiteness condition. A straight singular chain Z =  ag;0; € C]Sctr(Mpo) defines
a smooth measure chain > a;$,, where §, is the Dirac measure supported on . This
correspondence induces a continuous chain map with respect to the topology induced
by the ¢,- and the total variation norms, respectively. In fact, singular homology and
smooth measure homology are isometrically isomorphic with respect to the ¢;- and total

variation semi-norms [36, Theorem 1.2].

Lemma 4.1 ([49, Lemma 3.2]). Given d, there exists a constant K; > 0 depending only
the topology of the surface S; = 9K, , such that for every ¢ > 0, there is a sequence
Vi € C;tr(Mpo; R) such that the following properties hold:

1 [vols (V)|
o vkl

2. |0V |l; <Ky, for all k, and
3. |volg (V)| — oo.

> vy —e forallk,

Proof. Sketch of proof We consider the regular simplex o, with edge lengths t > 0
and the Borel measures {z,(o})}7-, on S (M,,). We know that |vol;(o,) — v4| decreases
exponentially in ¢ [56, Theorem 6.4.1], but we only need the fact that for ¢ large enough,
voly(0,) > vy —€/2.

For the appropriate definition of the boundary of a measure chain, we have

19z (o) | < K4, where K; only depends on the topology of the surface S; = 9K, . Indeed,
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consider a simplex r(g.0;) with center(x(g.0;)) € Ly ; but far from 9L, . Let 7 be a face of
o, and let r, be reflection through the plane containing r; r; is conjugate to r in PSL,C.

A computation shows that
dys(center(g.r, o 0;), center(g.o;)) < 2. (8)

Thus center(z(g.r, o o;)) is far from 9dLy;. The faces corresponding to t coming
from n(g.0;) and the reflected copy match and cancel after applying 9 to z.(o;). If
center(w(g.o;)) is close to dLgyy, then n(g.r, o 0;) may not be in the support of z(o,).
However, 71(g.r; 0 0y) € S0, (N(dLg ). Thus supp(dzg(o;)) is contained in the set of
locally straight triangles which are faces of tetrahedra with centers in N, (dLg); we
conclude that [0z (o) < Vol(Nz(aLoyk)) [49, Proof of Lemma 3.2]. Using the fact that
the induced metric on X; has curvature everywhere at most —1, we can find a universal
constant V > 0 such that Vol(Nz(aLolk)) <V-1x(Sy| =K, (see, for example, [48, Proof of
Theorem 1]).

To each measure chain z(o,), we will associate a straight 3-chain Vi ¢
Cgtr(MpO;]R). For t large enough, every 1/t-ball in M, is embedded, because we have
assumed that M, has bounded geometry. Find a maximal (1/¢)-separated collection of
points {p{}*, c M,
of the closure of each cell has zero three-dimensional Lebesgue measure, and each cell

and let {Uit} be the Voronoi cells generated by {pf}. The boundary

is connected, simply connected, precompact, and has a distinguished point pﬁ € Uit.
For each k, there is a finite subset of {Uit} that meet any simplex in the support of
zy(o,), because Ly is compact, so that for each w(g.o;) with center in Lj;, we have

n(g.0;) C Ny(Lg ). So, only finitely many terms in the sum
Vi=> z0)({n(go): g0l € UL x .. x ULY - w(0 B, ... pL)) € C§ (M, ; R),  (9)

are non-zero. The sum (9) ranges over all sets of the form f]fo X e X f]l.t3 where f]fj is
a lift of Uitj , and o(x,y,z w) denotes the straight simplex in H*® with ordered vertex
set (x,y,z, w). The correspondence given by (9) actually defines a norm non-increasing
chain map between smooth measure chains and straight chains. In particular, ||8V,g||1 <
9z (o)l = Kg.

For large t, the cells Uf have very small diameter, so we can ensure that

[voly (o (D}, ..., },)) — vol(0,))| < €/2 and voly(o,) > vz — €/2. (10)
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For p-almost every g € PSL,C, the vertices of n(g.0;) € suppz,(o,) all lie in the
interior of cells Uito, Uits. The Voronoi cells {U}} form a measurable partition of M P

from which it follows that

IVEN, = llzi(opll. (11)

By construction, [zg(o,)|| = Vol(Lgy), and Vol(Ly ;) — oo as k — oo, because UpLg, =
E, € [EL
Finally, from (10), (11), and (7), we obtain

volg(VE) > || Vi, (v — €),

if t is large enough; set V; = V}. [ ]

Proposition 4.2. For every positive integer d > 2, there is a constant K; > 0 depending
only on the topology of S; = 0K, with the following properties. For every € > 0, there

exists a sequence of chains Z; € C3(F;; R) such that for any x € H®:

(i) legvols @l vy — ¢, for all k, and

1Zx Ny
(ii) [0Z,ll; < Ky, for all k, and
. 37
(iii) [|Zgll; — oo and lim;_, ”HZkk”H11 =0.

Proof. Choose a point X € M, , and construct the chain map stry : C,(M,
CStr(M
. o

we have a chain homotopy Hg between str; and id, such that ||H5’§|| =k + 1; see (1). Since

R) —

{x}; R) from Section 2.3; recall that the operator norm satisfies ||strz|| < 1 and

07

0’

voly is a bounded cocycle on the straight chains V; € C§* (M 1o R) provided by Lemma

o
4.1, we have

[voly(strg Vi — Vi)l = [volg(HZ8Vy)| < [[volg|l o IHZ0 V|,

Using property (2) and the fact that ||H§|| = 3, we get

[voly(stry Vy — V)| < 3vy - K.
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Apply the map (,00*)_1 oty : Cftr(Mp {x}; R) > C,(T'y;R) - C,(Fy R) to obtain a

O 4
sequence

Zy = (Pgy) " * 0 Ly (strg V)

so that pjvol3(Z,) = volji,(strz(V})). Since (py,)~! o, is an isometric chain map and

Istrzll < 1, we have ||Z;]l; < [[Vill; and [18Z;|l; < 10V|l; < K, establishing property (2).
Since |vol; (V)| — oo as k — oo, it follows that |pjvol3(Z;)| — oo, as well. From

this, we see that || Vi ||; and ||Z;]l; tend to oo, from which we obtain property (3). Using

the triangle inequality, for k large enough, we have

*vol} (Z
vy e < VOB
12k Il
which establishes property (1) after reindexing. |

Qualitatively, o, has extremely long and thin spikes; the spikes of n(o;) wander
circuitously around M, and are generically recurrent to any compact set in the limit as

t — o0.

Lemma 4.3. In the statement of Proposition 4.2, we may take x € 9H® such that

e (1) holds for all k;

e if for each k, we write

My . .
Z = > MW, . Wi e C(F 4B,
j=1

then, for each j = 1,..., M, the points pO(ng).X,...,pO(Wé'k).X € 9H3 are

pairwise distinct.
Proof. From Section 2.4, for any point y € H® U dH? and for any Z € C5(Fy; R),
lpgvol}(Z) — pgvol}(2)| < [|0Z]|,3vs.

Using the triangle inequality and the fact that 9Z; is bounded for all k, we can choose
x € 9H® so that (1) holds, after reindexing.
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The group F, is countable, so there are countably many attracting and repelling
fixed points of non-trivial elements of imp,. Choose x € dH?® that is not one of these
fixed points. Then for each k > 1 and j = 1, ..., My, if Wé’k, Vlfg'k are pairwise distinct,
then pO(Wé’k).X, ...,po(wg’k).x € 9H?® are pairwise distinct. Thus, we just need to show
no simplex in Z, is degenerate. For this, we revisit the construction of Soma’s chains
from Lemma 4.1. Fix x € H?® and let D ¢ H® be the Dirichlet fundamental domain for
Iy centered at x. By definition of ¢, : Cftr(MpO,{)_(};R) — C,(I'y;R) from Section 2.3, it
is enough to show, given k, that if ¢ is large enough, then every pair of vertices of any
simplex (o (p;,, --- D;,)) appearing in equation (10) defining V,i lie in distinct translates
of D. By invariance and without loss of generality, it is enough to show that if ¢ is large
enough, then no pair of vertices are both in D.

Suppose not. Recall that D is convex being the intersection of countably many
half-spaces, so that if two vertices of a straight simplex o lie in D, then an edge of o lies
in D. Thus, for a fixed positive integer k, and any n, there is a ¢, > n and simplex o,
appearing in the sum V,i” with a lift o,, whose geodesic edge y,, = ¢™([0, 1]) is contained
in D. By construction, the center of o,, is contained in Ly, C E, which is a compact set.
Pass to a subsequence so that center(o,,) — y € M,, . Then, the lift y of y in D is distance
at most 2 from y,,, since the midpoint of a geodesic edge of a straight regular simplex
passes close to its center (see Equation (8)). Passing to a further subsequence, the Arzela—
Ascoli Theorem guarantees that the geodesic maps y,, converge to a bi-infinite geodesic
y. Since y,, is contained in D, y C D.

The locally geodesic projection y of y to M, cannot return to any compact set
in M 0 in forward or reverse time, by definition of D. Thus, each end of y must exits the
only end [E] of M, . In fact, the two ends of y are necessarily asymptotic in H3. Indeed, by
Lemma 3.9 every surface in the sequence {X,} of simplicial hyperbolic surfaces exiting
E has uniformly bounded diameter in M, because we assumed that M, has bounded
geometry. This means that 7 ~!(X,,) N D has uniformly bounded diameter. Since each X,,
is separating in M, n_l(Xn) N D separates D. From this we conclude, that there is an
N such that for all n > N, each end of y must meet n_l(Xn) N D. Thus, each end of y
meets the same collection of uniformly bounded diameter subsets of H® as they tend to
infinity. But bi-infinite geodesics have distinct endpoints at infinity. We have reached a
contradiction, and we conclude that for each k, there is a t; large enough such that no
tetrahedron in the Z; that we construct from V,i’“ via Proposition 4.2 is degenerate. This

completes the proof of the lemma. |
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Remark 4.4. One of the anonymous referees suggested that we could avoid the proof

of Lemma 4.3 by instead appealing to [35, Lemma 2.5].

We would like to use our approximation scheme from Section 2.6 to transfer this

information to our dense representation.

Proposition 4.5. Let G be a discrete group and fix x € H® UdH3. If p : G — PSL,C is

dense, then for every ¢ > 0, there is a sequence of chains D; € C;(G; R) satisfying

|p*vol3 (Dy)| _
(I) Wll”d; ”VS €, for all k, and
1 kIl __
(ID limy_, o S5 = 0.

Proof. Apply Proposition 4.2 to obtain Z; € C5(F4; R) that satisfy the conclusions (1),
(2), and (3). For each k, we can now apply Proposition 2.8 to obtain Z; (1) € C5(G; R) such
that

|0*vol5(Z (1) — pivoli(Zy)] < 1,

1Z(Dly < 1Z¢ll, and [|8Z,(1)]l; < 18Zll; < Kg. Note that ||Z,(1)| tends to oo, because

IZ; || does; see Remark 2.9. By property (1) and the above approximation, we have

lp*vol3 (Z ()] lpgvolzZpl 1 -
IZely 12l I1Z (Dl

V3_€,

for large enough k, because ||Z;(1)||; tends to oco. Since [3Z,(1)||; stays bounded,

; 19Zxk (D1 _ —

We can now prove the first part of Theorem 1.1.

Theorem 4.6. If G is a discrete group and p : G — PSL,C is dense, then [p*vol;] # 0 €
H}(G;R) and [[p*vol,]|l,, = V3.

Proof. The chains D; from Proposition 4.5 satisfy the hypotheses of Lemma 2.6, so
that ||[p*vollll,, > V3 — €. But € > 0 was arbitrary, so ||[[p*volsl||,, > V5. On the other

hand, [[[p*vols]|, < lIlvolylil,, = vs. m
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4.2 Separation of volume classes in semi-norm

For a finitely generated Kleinian group, the Covering Theorem 3.8 suggests that ‘most’
infinite index subgroups are geometrically finite. We know that the volume classes for
geometrically finite classes are trivial by Soma’s Theorem 2.1. The following technical
lemma makes repeated use of the Tameness Theorem 3.3 and the Covering Theorem 3.8.

Let X be a space and p : X — X be a covering space. A map f : ¥ — X is an
elevation of amap f : Y — X if Y is connected and q : ¥ — Y is a minimal covering such

that p of' = f o q. We sometimes identify an elevation with its image in X.

Lemma 4.7. Suppose p : F, — PSL,C is discrete and faithful. There is a finite index
subgroup H < F, such that for any H < H, isomorphic to a free group of rank 2, p oi is

geometrically finite with infinite co-volume, where i : H—> F, denotes inclusion.

Proof. By Corollary 3.5, there is a standard compact core K, of M, and a homeo-
morphism f : H, — K, inducing p on fundamental groups. The collection of core
curves v = {v,...,,v,} C dH, of f‘l(P;’) consists of at most 3 homotopically essential
distinct disjoint simple closed curves. The inclusion 3%, — #, induces a surjection
Ly (0H,y) — m(H,) = F,. We abuse notation and write (v) < m;(d#,) to denote the
conjugacy classes of the cyclic subgroups corresponding to the components of v. The
F,-conjugacy classes of (({(v)) are non-trivial and pairwise distinct, as they correspond
to the distinct parabolic cusps of M,,.

Note that if P; has three components, then v is a pants decomposition of
dH,, hence p is maximally cusped hence every relative end is geometrically finite.
Therefore, since M, has no geometrically infinite relative ends, the Covering Theorem
3.8 guarantees that p restricts to a geometrically finite representation on any subgroup
H<F,.

Now, we assume that M, does have at least one geometrically infinite relative
end. If P7 is empty, then M, has exactly one geometrically infinite end E = M, \ K,. We
claim that for any proper subgroup H < F, of rank 2, poi: H — PSL,C is geometrically

finite. As above, K,,; is homeomorphic to a closed handlebody 7—22 of genus 2 with

i
boundary 87:{2. If M,,; does have a geometrically infinite relative end [E], the Covering
Theorem 3.8 supplies us with a finite sheeted cover E — E that defines a finite sheeted
cover Y — 07,, where ¥ c 9H, is a homotopically essential subsurface. The only
possibility is that ¥ = 9H,, and that ¥ — 87{, is degree one, hence H maps onto F,. This

is a contradiction to the assumption that H is a proper subgroup of F,,and so poiis
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geometrically finite. Thus, we may take H to be any proper, finite index subgroup of F,,
so that any rank 2 free subgroup H < H has infinite index in H, by Euler characteristic
considerations. In this case, p o i is geometrically finite, as desired.

The remaining case to consider is that P; has either 1 or 2 components. For a
based loop « € 7;(97,) representing a component of v, write ((«) = w,, € F,. Since free
groups are residually finite [53], there is a finite index normal subgroup H < F, such
that {w, : « C v} C F, \ H. Since H is normal, no conjugate of w, lies in H. In terms

of our notation from before, (((v)) C F, \ H. The covering M,, — M, has finite degree

H
[F, : H] < oo and M, is homeomorphic to the interior of a closed handlebody #; of
genus k = [F, : H] + 1. Moreover, M,, — M, extends to a covering H; — H, of closed
handlebodies restricting to a finite cover 9%; — 97{,; the geometrically infinite relative
ends of M, are elevations of the geometrically infinite relative ends of M,,.

By construction of H, no conjugate of « lifts to 3H,, so any elevation ¥ C p~1(v)
covers a component of v with degree at least two. Thus, if Y is any component of 9H, \ v,
and Y ¢ p~1(Y) is an elevation, then p restricts to a cover ¥ — Y and further restricts
to a cover 3Y — 3V of degree at least two on every component of 3V. If Y is a one-
holed torus or three-holed sphere, and ¥ — Y is a degree 2 covering, then ¥ can only
be a four-holed sphere or a torus with two holes. In either case, there is a boundary
component of ¥ which maps homeomorphically onto a boundary component of Y. Thus,
our construction requires that the degree of ¥ — Y must be at least three; equivalently,
|x(Y)| > 3. If Y is a two-holed torus or four-holed sphere, then |x(Y)| > 2|x(Y)| > 4. In
particular, |x(Y)| > 3, for any component ¥ C dH \p ().

Finally, if H < H is free of rank 2, then H is a proper subgroup of H. We apply

ol

Corollary 3.5 once more to see that M, ; is the interior of a closed genus 2 handlebody
Hy. If Mpoi has a geometrically infinite relative end E, then E = Y x [0, 00), where Y is an
essential subsurface of a genus 2 surface. In particular, either Y is closed or |[x (V)| < 2.
By Euler characteristic considerations, Y cannot cover any component ¥ C dH \p ().
Therefore, by the Covering Theorem 3.8, M,,,; has no geometrically infinite ends. This

completes the proof of the lemma. "

We would like to showcase the utility of Lemma 4.7 by finding rank 2 free
subgroups of F, on which one representation is dense and another is geometrically
finite or geometrically elementary. We are thankful to one of the anonymous referees

for pointing out a useful observation.

Observation 4.8. Let G be a connected topological group, G < G be a dense subgroup,

and suppose H < G has finite index. Then, H is dense in G.
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Proof. Since H has finite index in G = G, the left cosets {gH : g € G} form a finite
partition of G, so that H is open, being the complement of a finite union of closed sets.

Then H is an open, closed, and non-empty subset of a connected space G; thus, H=¢n1

Proposition 4.9. Let p : F, — PSL,C be dense and faithful and suppose p; : F, —
PSL,C is discrete. Then, there is a free rank 2 subgroup i : H — F, such that poi is a
dense representation and pg o i is either geometrically elementary or discrete, faithful,

and geometrically finite. In particular,
Il(p 0 1)*vol3lllo = v5 andl(py o i)*vols] = 0 € H} (H; R).

Proof. We break the proof into two cases:
Case 1. Assume that p is faithful. By Lemma 4.7, there is a finite index subgroup H < F,
such that for any subgroup H < H, which is free of rank 2, Pp o I is geometrically finite,

wherei: H - H — F, is inclusion. By Observation 1, p(H) = PSL,C. According to [10,

Theorem 1.1], there is a free subgroup H < H of rank 2 such that p(H) = PSL,C. Applying
Lemma 4.7, py o i is geometrically finite. Thus [(py o ©)*vol;] = 0, by Soma’s Theorem 2.1,
while Theorem 4.6 gives ||[(p o I)*volsl||,, = V3.

Case 2. Assume that pj is not faithful, and let K = ker py. Then K < F, is a free group of
rank at least 2 (perhaps infinite rank). Since p is faithful, p(K) is not virtually abelian.
It follows, e.g. from [45, Lemma 2.3], that either there is an a € K such that p(a) is
loxodromic or p(K) fixes a point in H2.

For sake of contradiction, suppose p(K) fixes a point in H3. Since K is normal
in F,, the set of points fixed by p(K) is a non-empty p(F,)-invariant subset of HZ2. But p
is dense, so the closure is all of H3. This can only happen if p(K) = {1}. However, p is
faithful and K is non-trivial, which is a contradiction. Thus p(K) does not have a global
fixed point.

A loxodromic element y € PSL,C stabilizes a geodesic axis(y) ¢ H3, and acts
as a 'screw motion’ of complex length t(y) = ¢ + i along axis(y). That is, £ € R is
the translation length of y, which is realized along axis(y), and 6 € R/2nZ represents
rotation around axis(y).

We have an a € K such that p(a) is loxodromic. Let y € H® be a point on
axis(p(a)) C H3, and let ¢ > 0 be much smaller than the three-dimensional Margulis

constant u4. Using density of p, we can find b € F, such that

e p(b) is loxodromic,
o |t(p(a)) —t(pb)| <k,
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e 1(p(b)) is not real,

e the attracting and repelling fixed points of p(a) and p(b) at infinity are
pairwise distinct, and

e axis(p(b)) is within distance ¢/10 of axis(p(a)) in a 2|t (p(a))|-neighborhood
of y.

Let H = (a, b); our goal is to show that ,o(IEI) is dense in PSL,C. Taking z = p(a).y, the
above conditions imply that p(ab~!).z and p(ab—2a).z are both closer than w3 to z. Let
H' = (ab™!,ab~2a); by the Margulis Lemma 3.1, p(H') < PSL,C is either indiscrete or
virtually abelian. Since p is faithful and H’ is free, p(H’) is free, hence not virtually

abelian. So p(H’) is a closed Lie subgroup of PSL,C with positive dimension that is not

virtually abelian, and since H > H’, p(H) has the same property. Moreover, the endpoints

of the axes of p(a) and p(b) at infinity are pairwise distinct, so p(fI) does not stabilize an

ideal point, and p(H) is not conjugate into PSL,R, since the complex translation length
of p(b) is not real. By Lemma 2.2, p|4 is dense.

By construction, p, (H) is cyclic, hence geometrically elementary. We conclude as
in Case 1, supplementing Soma’s Theorem 2.1 with the proof of Lemma 2.2 in case ,oO(I:I)

has torsion, say. u

Remark 4.10. The argument given in Case 2 also proves the proposition in Case 1; we
will use the argument from Case 1 in the next section. Proposition 4.9 is an improvement
of a result in a previous draft of this manuscript, and strengthens our main theorems

from that version.

Our first main theorem now follows quite easily. We only need to observe
that restrictions to subgroups induce semi-norm non-increasing maps in bounded
cohomology. The first step in the proof of the following is a reduction; we use [10,
Theorem 1.1] to find a free subgroup of rank 2 of H, densely embedding into PSL,C

via p.

Theorem 4.11. Suppose p : G — PSL,C is a dense representation of a discrete group
G.If py : G - PSL,C is any other representation and there is a subgroup H < G such
that p(H) = PSL,C, but p, is geometrically elementary or discrete restricted to H, then

Proof. By [10, Theorem 1.1], there is a free subgroup F, < H such that p is dense

and faithful on F,. Moreover, p, is still geometrically elementary or discrete on F, < H,
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because these properties pass to subgroups, as we have seen. If p, is geometrically
elementary, the volume class of p, vanishes when restricted to this F,, by the proof of
Lemma 2.2, so we set H = F, and let i : H - F, — G denote inclusion. Otherwise,
we apply Proposition 4.9 to obtain a free rank 2 subgroup i : H > F, — G where
(o o i)*volsl|l, = V5 and [(py o ©)*vols] = 0.

Since i* : H} (G;R) — H} (H;R) is norm non-increasing, we have

vs = [ll(p 0 i)*vol3]l,
= ||[(p o] l)*VOl3] - [(,00 o I/)*V013]||oo
= ||[i*([p*volz] — [pgvols])l o

< l[p*vol] — [pgvolsl|l -
This is what we wanted to show. [ |

If we are more careful, we can obtain the following generalization without too

much extra work.

Theorem 4.12. Suppose {p; : G — PSLZ(C}?’=l is a collection of dense representations of
a discrete group G such that for every i = 1, 2, ..., N there is a subgroup ¢; : H; — G such
that p;(H;) = PSL,C, and p; o (; : H; — PSL,C is geometrically elementary or discrete for

i #j. Then for any q,, ...,ay € R, we have

> max{|a;|} - v3.

N
Z a;lp;vols]
i=1

o
Consequently, {[p]vol3]} C ﬁi(G; R) is a linearly independent discrete set.

Proof. For convenience, we assume that |a;| = max{|q;|}. First of all, by [10] we may
assume that H; = F, and that p, |y, is faithful. We inductively define a nested family of

rank 2 subgroups
V) (2) 1 _
HW =<..<H"” <H;"=H

by successively applying Proposition 4.9. The result is that p; | 70 is dense and faithful
1

for all i. Additionally, for each j > 2, denote inclusion by LY) : HY) — G so that for
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ic{2,..N)}

[(p; 0 ()*voly] = 0 € H3(HY; R).

As in Theorem 4.11, the operator L(lN)* : H%(HiN);IR) — H%(G; R) is norm non-

increasing. Applying Theorem 4.6, we see

lay] - vs = |a;l(o; 0 L(IN))*V013]H
o0

N
= |la,(p; o L(IN))*VOIS] + Z a;l(p; o L(IN))*V013]
i=2

o0
N
i=1 00
N
< |2 alpfvolsl|
i=1 00
as promised. |

5 Borel classes of dense representations

In this section, we show that pullbacks of the Borel class under dense representations
have maximal semi-norm. Since the structure of discrete subgroups I' < PSL,,C is not
well understood, we cannot give a simple criterion for the differences of pullbacks of
Borel classes to be separated in semi-norm for arbitrary representations. Recall that
there is a unique conjugacy class of irreducible representations :,, : PSL,C — PSL,C.
We will work with a dense representation p : G — PSL,C and another representation
py : G — PSL, C that factors through PSL,C via t,,. We can then use tools developed in
previous sections and 3three-dimensional hyperbolic geometry to give some criteria for
which pullbacks to G of the bounded Borel class are separated in semi-norm.

It would be interesting to investigate whether maximality of the semi-norm of
the pullback of the Borel class under discrete and faithful representations p : 7;(S) —
PSL,,C can serve as a profitable definition for ‘geometrical infiniteness,” where S is an
orientable surface of finite type. In fact, this paper grew out of an attempt to initiate

such an investigation.
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Theorem 5.1. Let G be a discrete group and p : G — PSL,,C be dense. Then,

nmn? —1)

0" Brlloc = V3 6

The following will be immediate from the proof of Theorem 5.1 and Theorem 4.11.

Corollary 5.2. Let G be a discrete group and p : G — PSL,,C be dense. Suppose also
that py : G — PSL,C is such that there exists a subgroup H < G such that p(H) = PSL,,C

and p, is geometrically elementary or discrete and faithful restricted to H. Then,

nmn?—1)

10 Bp — (tr © Po) Billoo = V3 e

for all k > 2.

Proof. We apply [10, Theorem 1.1] to obtain F, < H such that p|g, is faithful and dense.
The argument in Proposition 4.9 (Case 1) provides us with a rank 2 subgroupi: H — F,
such that p o i is dense and faithful, while [(p, o 1)*vols] = 0. Then, (1 0 pg 0 D)*B; = 0
for all k > 2, by Theorem 2.5, but |(p o ©)*8,
is semi-norm non-increasing on bounded cohomology, the corollary follows (as in the
proof of Theorem 4.11). n

2
loo = ng by Theorem 5.1. Since i*

Note that in the previous section, we obtain stronger results; in Corollary 5.2, we
have made the additional assumption that p, is faithful, in addition to being discrete
on H. This is because the structure of positive dimensional Lie subgroups of PSL,C is
particularly simple (see the proof of Case 2, Proposition 4.9). We believe that with more

work, it should be possible to upgrade the results in this section.

Remark 5.3. Another easy consequence of Theorem 5.1 and the triangle inequality is
thatif p; : G - PSL,,C and p, : G — PSL;C are both dense, then

nmn? —1) B k(k*—1)
6 6 '

107 Bn — P2Bxll = V3

We begin proving Theorem 5.1 by finding a sequence of efficient chains on which
the Borel class evaluates to a large number with controlled boundary. These chains come

from hyperbolic geometry, together with the explicit description of the cocycle BE given
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by [6] (see Proposition 2.3) and the explicit formula for the semi-norm of the pullback

under the irreducible representation ¢,, : PSL,C — PSL, C; see Theorem 2.5.

Lemma 5.4. If G is a discrete group and p : G — PSL,,C is dense, then for every ¢ > 0,
there is a y € .#(C") and a sequence of chains D; € C4(G; R) such that

*pY 2
1. Bl (y, )2 =D for all k, and

1Dk ll1 0Dz
3 kIl __
2. ].lmk_)oo Dl — 0.

Proof. As in the proof of Proposition 4.5, fix a geometrically infinite discrete and
faithful representation p, : F, — PSL,C with no parabolic elements, take ¢ > 0 and
apply Proposition 4.2. We now have K, > 0 and Z; € C;(F,; R) that satisfy conditions
(1), (2), and (3) of the conclusion of Proposition 4.2. By Lemma 4.3, we may assume that
x € 9H? for the conclusion (1), and no ideal simplex in (0o.Z)-x is degenerate. Recall that
the irreducible representation :,, induces an equivariant continuous map of boundaries

~

i, 1 dH® — Z(C"). Take y = {,,(x), so that by equivariance of {,,, we have i,,(py,(Z;).x) =

n

(t, © pg)«(Zy).y. By Proposition 2.3, t;By = @Vol’g. Thus,

nmn? —1)

(1 © Po)*BR(Z)) = 5

pivol}(Zy).

Since no simplex is degenerate, thanks to Lemma 4.3, we can apply Corollary 2.10 for
each k to obtain Z; (1) € C5(G; R) such that

|p*BY(Z; (1)) — (1, © po)*Bh(Zp)| < 1.

As in the proof of Proposition 4.5, the two conclusions now follow with D, = Z;(1). H

Proof of Theorem 5.1. The chains from Lemma 5.4 satisfy the hypotheses of Lemma
2.6. Thus, [|p*B,lls = (V5 — e)w, for all € > 0. By Theorem 2.5, |[p*8,llo < sz,

which yields the desired equality. |

6 Constructions, examples, and questions

We now give some applications of the work that we have done to show that subspaces
of bounded cohomology spanned by the pullback of volume classes can be quite large.

We also pose some questions.
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6.1 Constructing incompatible representations

We will construct a family of representations {p, : F, — PSL,C : 6 € A} such that, given
any finite subset {pg,, ..., oy, }, there are subgroups H; < F, such that m = PSL,C,
but Py, |Hj is discrete, faithful, and convex co-compact, i.e. ’09i|Hj is a marked Schottky
group group for i # j. Marked Schottky groups are, in particular, geometrically finite,
so we can apply Theorem 4.12 to show that the volume classes of these representations
are linearly independent in reduced bounded cohomology. Furthermore, the set A has
cardinality that of the continuum. The construction of dense representations in this
section shares some features with the construction found in [26,Appendix Al.

We start with a loxodromic element a € PSL,C such that the complex translation
length 7(a) of a has translational part r and non-zero rotational part strictly between
0 and 7/8. In particular, a is not conjugate into PSL,R. Find an elliptic element b(9)
with rotation angle 270, where 6 € R/Z is irrational and with fixed line meeting axis(a)
orthogonally in a point x. For infinitely many values n, axis(b(6)"ab(#)™") makes a very

small angle with axis(a) at x.

Lemma 6.1. Letr > 0 be given. There is a threshold t, € (0,1/2) such that if no €
(=79, 79) mod 1, then (a, b(0)*ab(9)~ ") is dense in PSL,C.

Proof. For any 7 € (0, 1), axis(b(t)ab(r)~!) = b(r)axis(a), and axis(a) N b(r)axis(a) =
{x}, since the fixed line of b(r) meets axis(a) at x. Using hyperbolic trigonometry, there
is a 1y = 1y(r) such that if -7y < 7 < 7y mod 1, then in an (r 4 1)-neighborhood of x,
the Hausdorff distance between axis(a) and b(r)axis(a) is at most 4. Specifically, take
75 € (0,1) such that ZSinh*I(sin(ano) sinh(r 4+ 1)) < u. Suppose —1j < v < 1y mod 1,
and for convenience, write b for b(t).

Then d(ax,bab™'x) < pg, because d(x,ax) = d(x,bab~'x) = r < r + 1. This

1x,x) < j15. Set ¢ = bab~!; by the

means that d(ba b~ lax, x) < uy. Similarly, d(bab—la~

Margulis Lemma 3.1, the group (¢ !a,ca™!) is indiscrete if it is not virtually abelian.

We will show that (¢™'a, ca™!) contains a free subgroup, so it is not virtually abelian.
An element y € PSL,C is loxodromic if and only if the trace of a lift of y to SL,C

is not in the interval [—2, 2]. Trace identities give

tr(c_la) = tr(ac_l) = tr(ca_l).
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By construction, a and ¢ can be represented by matrices
et(@/2 0 cos(2rt) —sin2nt)\ /[ e’ @/? 0
a= and ¢ =
( 0 ef(@/z) (sin(2nr) cos(277) )( 0 ef<“>/2)
cos(2rt) sin(2wt)

(— sin(27 1) COS(ZT[‘L’))‘
Explicit computation with matrices shows that as long as the rotational part of t(a)
is not an integer multiple of = and b is not rotation by 0 or = (i.e. t # 0,1/2), then
the imaginary part of tr(c 'a) = tr(ca™!) is different from 0. Thus, our assumptions
guarantee that both ¢ !a and ca~! are loxodromic. The traces are equal, so the complex
translation lengths are equal. This means that if axis(c~!a) = axis(ca™!), then c~!a and
ca~! are either equal or inverse to one another. Inspection shows that c"la.x # ca~!.x,
if the rotational part of 7(a) is small enough (less than /8, for example). If c"la =
(ca~')~1, then ¢ commutes with a, which only happens if b is rotation by 0 or 7.

So, the axes of c~!a and ca™! are different. If the axes are asymptotic, then again
since (¢ 'a) = t(ca™'), the product cla(ca=!)~! = ¢ 'a?c™! stabilizes a horosphere,
hence has trace equal to £2. Another explicit computation shows that the imaginary
part of the tr(c " 'a?c™!) vanishes only when b is rotation by 0 or = or the rotational part
of t(a) is an integer multiple of /8. We have assumed that the rotational part of t(a)
is non-zero and less than 7/8, so the set of fixed points of c~'a and ca™! at infinity are
distinct. By the Ping-Pong Lemma, for large enough k, ((c"'a)¥, (ca=1)¥) is a Schottky
group. In particular, (¢ 'a,ca™!) contains a free subgroup, and so it is indiscrete. Thus,
(a,bab™!) is indiscrete, because (c"'a,ca™!) < (a, bab™1).

Finally, (a,bab™!) does not fix an ideal point, nor does it stabilize a plane,

since the rotational part of v(a) is non-trivial. By the proof of Lemma 2.2, (a, bab™!) is

dense. [ |

There are also infinitely many values of n such that axis(a) is nearly orthogonal
to b(P)"axis(a). The following is immediate from the Ping-Pong Lemma and another
direct computation in H? c H?.

1+cos(/8)
T—cos(%/8)’

(1/8,3/8) mod 1, then (a,b(®)"*ab() ") is a Schottky group of rank 2.

Lemma 6.2. Forr > if the translational part of t(a) is at least r and n6

14-cos(/8)

1—cos(7/8) and t €

Now fix a € PSL,C with translation length r + it, with r >
(0,7/8).
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56 J. Farre

Lemma 6.3. Let {#;,...,0y} C (0,1) be a rationally independent set of irrational
numbers, F, = (z,z,), and let py, : F, — PSL,C be defined by p,(z;) = a and
ps,(23) = b(6;). There are integers n,,..., ny such that H; := (z),2,'z,z, ") satisfies

pg;(H;) < PSL,C is dense but Po;|a; is a marked Schottky group.

Proof. Since {6;} is a rationally independent set of irrational numbers, the self
homeomorphism of the N-torus © : (R/Z)N — (R/Z)Y defined by (x,....xy) — (x; +
01,...., Xy + 6y) is topologically minimal, i.e. every orbit is dense. Let 7, be the threshold
from Lemma 6.1, and let D = (—7y,79) C R/Z and F = (1/8,3/8) C R/Z. For each i, let
p; : (R/Z)N — R/Z be projection onto the ith factor and take U; ¢ (R/Z)Y to be the
product of D's and F's where p;(U;) = D and p;(U;) = F, if i # j. By minimality of ©, there
is an n; such that ©"(0) € U;. By Lemma 6.1, py, (H;) = PSL,C, and Pg;|g; + Hi — PSL,C is

discrete, faithful, and convex co-compact for i # j, by Lemma 6.2. [ |

Using the axiom of choice, we can find a basis A L {1} for R as a Q-vector space.
We may assume that A C (0,1). For each 6 € A we have the representation p, : F, —
PSL,C defined as in Lemma 6.3.

Theorem 6.4. The map

A — By (F,)

0 — [pyvol,]

is injective with discrete image. Moreover, {[pjvol;] : 6 € A} is a linearly independent
set, and #A = #R.

Proof. Any finite subset {0;,...,6y} C A is rationally independent. By Lemma 6.3, the
collection {p, : i = 1,..., N} satisfies the hypotheses of Theorem 4.12. This shows that
{[pjvolsl: 0 € A} C ﬁi(FZ) is linearly independent and discrete. Injectivity follows from

linear independence. |

6.2 On the spaces Hy(PSLyR; R) and Hy (PSL,C; R)

As a further application of Theorem 4.12, we will show that both ﬁi(PSLZR; R) and
ﬁi (PSL,C; R) have dimension at least #R. We remind the reader that we are computing
bounded cohomology of discrete groups, i.e. PSL,R and PSL,C are endowed with

the discrete topology. The key is to use the axiom of choice to find ‘wild’ field
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automorphisms of C that induce embeddings PSL,R — PSL,C and PSL,C — PSL,C;
these embeddings would be highly discontinuous when these groups are considered

with their standard smooth topologies.

Theorem 6.5. The real dimension of the degree three reduced bounded cohomology
of PSL,R and PSL,C is at least #R. More specifically, there are dense representations
{p; : PSL,R — PSL,C},.r such that {[p/vol;] : t € R} is a linearly independent set
in ﬁi(PSLZR; R). The family {p,} are the restrictions of representations {p; : PSL,C —
PSL,C}, thus {[pé*vols] : t € R} is a linearly independent set in ﬁi(PSLz(C; R).

Proof. Let Hom(R,C) denote the set of injective homomorphisms of fields o

R — C. Every field mapping takes polynomial identities with rational coefficients to
polynomial identities with rational coefficients, hence induces a group homomorphism
p, : PSL,R — PSL,C. It is not hard to see that if 0 (R) C R, then o is order preserving,
hence o restricts to the identity mapping on R, i.e. ¢ is trivial [58,Theorem 3]. In fact, if
o € Hom(R, C) is not trivial, then o (R\ Q) is dense in C [58,Theorem 4]. Hence p, (PSL,R)
is dense in PSL,C for non-trivial 0. By Theorem 4.6, |[p}vol;l||l,, = v for all non-trivial
o € Hom(R, C).

Next, we will produce a family of non-trivial field maps o(tf) € Hom(R,C)
indexed by a set with cardinality that of the continuum, which we assume is R for
simplicity. The field maps o (¢) induce dense representations p; = p, ) : PSL,R — PSL,C.
Finite subsets will satisfy the hypotheses of Theorem 4.12, but in fact any subset will
satisfy the hypotheses of Theorem 4.12.

Let «, 8 € C, and consider

-1 _ p-1
x(@) =(“ 0 ) andy (8) =((’3 SR z)ePSLZC.
0 ol B-B"H/2 B+p1/2

We consider the group

H, ;= (x(@),y(8)) < PSL,C.
Geometrically, as long as |«|, |8] # 1, then the two generators are loxodromic with axes
that meet orthogonally in a point, hence are contained in a hyperbolic plane. If |«| and | 8|
are large enough, by playing Ping-Pong, we see that H, 4 is Schottky, hence geometrically

finite. If |a|, |B| < ug, then H, 4 is dense in PSL,C as long as at least one of « or g has
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argument not a multiple of 7 /2, essentially by an easier argument than found in the
proof of Lemma 6.1.

Since C is algebraic over Q(R) = R, there is a transcendence basis T C R for C
over Q [44, Theorem 19.14]. Let a,b € C\ RU iR be Q-linearly independent, algebraic
numbers with magnitude smaller than u;. By the Lindemann-Weierstrass Theorem
[3,Theorem 1.4], {e%, eP}is an algebraically independent set. Since Q({z € C : |z| > 100}) =
C is algebraic over C, we may find a transcendence basis T’ for C over Q such that
{e%, e’} c T' C {|z| > 100} U {e?, eP} [44, Theorem 19.14]. Two transcendence bases for C
over Q have the same cardinality, that of the continuum. The algebraic closures of Q(T)
and Q(T") are both C, so if # : T — T’ is a bijection, then there is a field isomorphism
o, : C — C extending x, by the Isomorphism Extension Theorem.

Find a partition T = A u B, with #4 = #B and bijections R - A and R — B
denoted ¢t — «, and t — p;, respectively. Now, for each real number ¢, we extend the
assignment o, — e® and g, — e’ to a bijection 7(t) : T — T'. We thus induce a field
isomorphism o (t) = o, : C — C that restricts to a field map R — C with the same
name. We obtain, for each ¢ € R, a homomorphism p, = p, ) : PSL,R — PSL,C and also
p, : PSL,C — PSL,C.

By construction, p,(x(;)) = x(e?) and p,(y(8,)) = y(eb), so that pi(Hy, g,) = Hea ob
is dense in PSL,C, by our choice of a and b. For s # t, we see that the group
p:((x(ets), ¥(By))) is Schottky, because o,(c), 0,(8) € {|z] > 100}. Thus every subset of
representations of {p, : PSL,R — PSL,C : t € R} satisfies the hypotheses of Theorem
4.12. As in the proof of Theorem 6.4, {[p;vol;] : t € R} is a linearly independent subset of
H, (PSL,R; R). u

2#R asis the

The cardinality of the set of functions from a continuum to itself is
set of bounded functions. Thus, dimp Hf) (PSL,K; R) < 2*R where K = C or R. The set of
field mappings R — C or C — C has cardinality 2#R.

Question 6.6. Let K € {R,C}. Is dimRﬁi(PSLZK; R) = 2*R? Assuming the axiom of
choice, does the set of field embeddings C — C define an injective map with discrete
and linearly independent image to H]?;(PSLZK; R) by pulling back the standard volume
class? Without the axiom of choice, what is the dimension of dimy HJ (PSL,K; R)? Do

pullbacks of volume classes span all of H%(PSLZK; R)?
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6.3 On the collection of p-dense subgroups

Let G be a discrete group and suppose p : G — PSL,R is dense. Define the set DS(p) of
p-dense subgroups by

DS(p) = {H <s, G: p(H) = PSL,R},

where H <, G means that H is a finitely generated subgroup of G. The following fact
may seem surprising, at first. An outline of the proof was communicated to the author
by Yair Minsky.

Fact 6.7. Let p;,p, : F, — PSL,R be dense. If DS(p;) = DS(p,), then p; is conjugate to
Py in PSL,yR.

The proof of Fact 6.7 uses the fact that dense representations into PSL,R contain
elliptic elements, since (0,2) C R is open in the image of the absolute value of the trace
function. Generically, dense representations F, — PSL,C do not contain any elliptics.
Due to the fractal nature of the boundary of Schottky space, one might expect an answer
to the following to be more involved.

Question 6.8. Let p;,p, : F, — PSL,C be dense. If DS(p;) = DS(p,), then is p;
necessarily conjugate to p, in PSL,C?

If Question 6.8 has an affirmative answer, then the volume class of (the con-
jugacy class of) a dense representation is distinguished and separated in semi-norm
from every other such class, by Theorem 1.1 and Lemma 2.2. We note however, that
Question 6.8 may have a negative answer, and all conjugacy classes of dense represen-
tations can still be separated in semi-norm, because there was a tremendous amount
of freedom in our choice of discrete and faithful representation used to define chains
on F, in Lemma 4.1 and Proposition 4.5. Otherwise, given p, : F, - PSL,C, it would be
interesting to understand the set of representations that are not conjugate to p, but that
have the same volume class in bounded cohomology. We expect that nothing interesting

happens, however.

Conjecture 6.9. For a dense representation p : F, — PSL,C, if p’ : F, — PSL,C is any

other representation such that
[[p*voll — [p"*vol]|| < v,

then p’ is conjugate to p.
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7 Higher and lower dimensional volume classes

For even n > 4, it is known that there is an ¢, > 0 such that the Cheeger constant of
H"/p(H) is at least ¢, when H is a free group of finite rank, a closed surface group
of genus at least two, or a finite volume hyperbolic 3three-manifold group and p is
discrete and faithful [15]. Vanishing of the Cheeger constant is equivalent to the non-
vanishing of the n-dimensional volume class of a discrete and faithful representation
p : H— Isom™ (H") [32], so we cannot hope to prove that a dense representation p : F, —
Isom™ (H") has non-zero volume class by approximating chains built from a discrete
and faithful representation p, : F, — Isom™ (H").

In this section, we give a criterion to ensure that a dense representation p : F, —
Isom™ (H") has non-vanishing n-dimensional volume class. We stress, however, that we
do not know if our criterion is ever satisfied for n > 4. We recall a definition from the

introduction.

Definition 7.1. Let I" be a discrete group, « € H,(I'; R), and K > 0. We say that « is
K-freely approximated if there is an integer m > 2, a homomorphism ¢ : F,, — I', and a
chain Z € G,,(F,,; R) such that ¢,(Z2) € « and [|3Z]; < K.

The conclusions of the following proposition should now feel somewhat believ-
able. The proof more or less follows directly from the definitions and an application of

the approximation scheme introduced in Section 2.6.

Proposition 7.2. Let n > 2 and suppose (M;) is a sequence of closed and oriented
hyperbolic n-manifolds with volume tending to infinity. Let [M;] € H, (7, (;); R) be
the image of the fundamental class of M; under the natural isomorphism H,(M;; R) —
H,, (7, (M;); R).

If there is a K > 0 such that [M;] is K-freely approximated for all i, then for any

dense representation p : F, — Isom™ (HM),

[p*vol,] # 0 € H} (Fy; R).

Proof. By definition of K-free approximation, there are maps ¢; : F,, — m;(M;) and
chains Z; € C,(Fy,;R) such that ¢, (Z;) € [M;] and [0Z;]; < K. Let p; : m(M;) —
Isom™ (H") be a hyperbolization of M;; consider p; o ¢; : F

m; Isom™ (H"). Since
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¢;,(Z;) € IM;], for any x € H", we have

(lg; (ZP], [p}vol%]) = dvol = vol(M;) — oo.
M;

Indeed,
vol(My) = (9;,(Zy), p; voly) = (Z;, (p; 0 ¢;)*VOLy).
By Proposition 2.8, there is a chain Z;(1) € C,,(F,; R) such that
|0*vol%(Z;(1)] > vol(M;) — 1,

1Z;(D)ll, < 11Z]l,, and |dZ;(Dl, < [0Z;]l, < K. If b € G '(F,; R) is such that b = p*vol%,
then

lp*voly (Z;(1))| = |b(3Z;(1))].

But then

vol(M;) — 1

1Dl > X

for every i. The right hand side goes to infinity with i, so b is not bounded. Thus,
[p*vol;] # 0 € H} (Fy; R). [

Remark 7.3. Suppose that one can find a sequence of n-manifolds (M;) satisfying
the hypotheses of Proposition 7.2. If one is able to construct dense representations {p, :
F, — Isom™ (H™")},., by analogy with those defined in Section 6.1, then for even integers
n > 4, dimp HY(F); R) = #R. Indeed, assume we have a finite collection {01 ++1 Py, }
and subgroups ¢ : Hy — F, such that Pa; (Hy,) is dense if k = j, and a Schottky group
otherwise. Then, [(pﬂk ) Lj)*voln] =0 ¢ Hﬁ(HQj;R) by the combination of [32] and [15],
as long as k # j. We can then apply a slight modification of the proof of Theorem 6.4;
we would only be able to prove linear independence of volume classes of these dense
representations in H}! (F,; R) but not necessarily in the reduced space. It seems that such
representations {p, : F, — Isom™(H")},., should not be too difficult to construct by

hand, as we have done for n = 3.
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The above criterion is just an example of how to apply Proposition 2.8 to show
that some bounded classes may be non-trivial, with the necessary auxiliary information.
There are notions of straight chains with bounded volume in complex hyperbolic space;
the statement of the proposition can be modified appropriately. Also, the manifolds
(M;) may be chosen to be non-compact with finite volume; the relevant feature is that
the fundamental group of a cross section of a cusp is amenable. Many additional
modifications can be made, and the reader is encouraged to make them.

We would like to convince the reader that free approximation of fundamental
classes of manifolds is not an entirely contrived concept; although we admit that it may

be a low dimensional phenomenon.

Lemma 7.4. Let X be a closed and oriented hyperbolic surface of genus g > 2. Then

[X] is 2two-freely approximated.

Proof. Sketch of proof There is a nice one-vertex triangulation of a hyperbolic
surface; see Figure 1. We can find a base point X in X and a standard generating set
{a,, by, ..., ag, bg} for 7, (X, X) < PSL,R such that the union of the geodesic representatives
of the a;'s and b;’s based at x is embedded. Cutting X open along these arcs produces a
convex identification 4g-gon with geodesic sides that can be embedded in the hyperbolic
plane with vertex set contained in the preimage of X under the covering projection. By
choosing a vertex x € H? of this 4g-gon, we can join every vertex not adjacent to x with
a geodesic segment. This process triangulates the identification polygon and defines a
chain V € C,(r; (X); R) that represents [X]; we have ||V|; = 4g — 2. Let x;,¥;, i Xgi Vg be
a free basis for Fpq. We define a homomorphsim ¢ : Fpg = m1(X) given by ¢(x;) = a; and
ey = bj-

There is a chain Z € C,(Fy4; R) such that ¢,(Z) = V and such that | Z|l; = V],
and ||dZ||; = 2; Z is obtained by replacing words in {a;, b;} with the corresponding words
spelled with {x;,y;}. Topologically, the quotient of Z by the identifications induced by
Fy,

of X after removing the interior of the based geodesic b,. The boundary of this complex

is a two-dimensional CW-complex that is obtained by taking the metric completion

consists of two one-cells. [ |

Take any sequence (X,) of closed hyperbolic surfaces with genus g tending to

oc. By Lemma 7.4, [X,] is two-freely approximated for all g. In the sketch of the proof of

Area(Xy) _ 4m(g—1)

WL = 4g-2 -efficient. Combined with Lemma 2.6, we

Lemma 7.4, the chains V, are

obtain the following.

120z AelN 9z uo 1sonb Aq $609£29/8200BUI/UIWIEBOL 0 L/I0P/S[OILE-00UBAPE/UIWI/WOS"ANO"OILUSPEDE//:SAY WOl PAPEOjUMOC



Borel and Volume Classes 63

17, s, bilbg.a -

Fig. 1. Left: X cut along a standard generating set and a nice one-vertex locally geodesic
triangulation of X. Right: Using Fpg, the polygon on the left does not quite close up to form a
closed surface, because yg # H?Zl [x;, y;lyg € Foqg.

Corollary 7.5. If p:F, - PSL,R is a dense representation, then ||[p*vol,]||,, = 7.

Corollary 7.5 is obtained easily from the sophisticated theory of computing
bounded cohomology via boundary maps; see, e.g. [11,Section 4.3]. However, we empha-

size that our hands on approach leads to a completely elementary and geometric proof.

Remark 7.6. For any closed hyperbolic three-manifold M, there is a sequence of covers
M, — M such that [M] is K-freely approximated for all d; the constant X is a function
of the genus of a certain immersed 7, -injective surface in M, that of a virtual fiber. The

proof, which we omit, relies on the positive resolution of the Virtual Fibering Conjecture.
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