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We show that the bounded Borel class of any dense representation ρ : G → PSLnC
is non-zero in degree three bounded cohomology and has maximal semi-norm, for

any discrete group G. When n = 2, the Borel class is equal to the three-dimensional

hyperbolic volume class. Using tools from the theory of Kleinian groups, we show that

the volume class of a dense representation ρ : G → PSL2C is uniformly separated in

semi-norm from any other representation ρ′ : G → PSL2C for which there is a subgroup

H ≤ G on which ρ is still dense but ρ′ is discrete or indiscrete but stabilizes a point,

line, or plane in H3 ∪ ∂H3. We exhibit a family of dense representations of a non-abelian

free group on two letters and a family of discontinuous dense representations of PSL2R,

whose volume classes are linearly independent and satisfy some additional properties;

the cardinality of these families is that of the continuum. We explain how the strategy

employed may be used to produce non-trivial volume classes in higher dimensions,

contingent on the existence of a family of hyperbolic manifolds with certain topological

and geometric properties.

1 Introduction

The bounded cohomology of discrete groups admits an almost entirely algebraic

description, but many bounded classes are most naturally understood in the context

of the geometry of non-positively curved metric spaces. Isometric actions of discrete
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2 J. Farre

groups on quasi-trees and Gromov hyperbolic metric spaces are responsible for pro-

ducing an abundance of non-trivial bounded classes in degree two. Conversely, bounded

cohomology has been used as a tool to understand the space of isometric actions that

a discrete group admits on, say, a non-compact symmetric space X. Broadly, we aim to

understand to what extent bounded cohomology parameterizes such actions, including

those that are not covering actions or that factor through some other group. We narrow

our focus and consider the setting that Isom+(X) = PSLnC, n ≥ 2. In this paper, we will

explain the extent to which bounded cohomology sees the different isometric actions

of a discrete group G with a dense orbit in X. Our investigation relies heavily on the

existence of certain discrete free subgroups of Isom+(H3) = PSL2C. Indeed, we will

study the geometry of a complete hyperbolic three-manifold homeomorphic to a genus 2

handlebody in order to show that many non-conjugate dense representations of G yield

different volume classes in H3
b(G; R).

Immersed locally geodesic tetrahedra in a complete hyperbolic three-manifold

M lift to embedded geodesic tetrahedra in the universal cover H3. We can measure

the (signed) hyperbolic volume of such a tetrahedron, which is bounded above by

v3 = 1.01494.... This rule defines a bounded cocycle, hence a class in the degree 3

bounded cohomology of the manifold.

The bounded cohomology ring is an invariant of the fundamental group π1(M)

[29], and any (other) action ρ : π1(M) → Isom+(H3) yields a bounded class [ρ∗vol3] ∈
H3

b(π1(M); R), which is obtained from a cocycle that measures the volumes of geodesic

tetrahedra with vertices in the orbit ρ(π1(M)).x, where x ∈ H3 ∪ ∂H3.

We say that a representation is geometrically elementary if its image stabilizes

a line, a totally geodesic plane, or an (ideal) point in H3 ∪ ∂H3.

Theorem 1.1 (Theorem 4.6 and Theorem 4.11). If G is a discrete group and ρ : G →
PSL2C is a dense representation, i.e. ρ(G) = PSL2C, then

‖[ρ∗vol3]‖∞ = v3.

In particular [ρ∗vol3] *= 0 ∈ H3
b(G; R). Moreover, if ρ0 : G → PSL2C is any other

representation and there is a subgroup H ≤ G such that ρ(H) = PSL2C, but ρ0 is

geometrically elementary or discrete restricted to H, then

‖[ρ∗vol3] − [ρ∗
0vol3]‖∞ ≥ v3,

and this bound is sharp.
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Borel and Volume Classes 3

We consider in Section 6.3, for a dense representation ρ : F2 → PSL2C, the

collection of ρ-dense subgroups

DS(ρ) = {H ≤f .g. F2 : ρ(H) = PSL2C},

where H ≤f .g. F2 means that H is a finitely generated subgroup of F2. If ρ1, ρ2 ∈
Hom(F2, PSL2C) are conjugate, it is clear that DS(ρ1) = DS(ρ2), while if ρ1 and ρ2 are

dense and DS(ρ1) *= DS(ρ2), then Theorem 1.1 together with Lemma 2.2 implies that

‖[ρ∗
1vol3]−[ρ∗

2vol3]‖∞ ≥ v3. However, we have not been able to construct examples of non-

conjugate dense representations ρ1 and ρ2 such that DS(ρ1) = DS(ρ2). It is possible that

DS(ρ) is a complete invariant of the PSL2C conjugacy class of a dense representation

ρ : F2 → PSL2C; by Theorem 1.1, [ρ∗vol3] would then be a complete invariant of the

PSL2C conjugacy class of a dense ρ; see Section 6.3.

Suppose M is a hyperbolic three-manifold of finite volume and ρ : π1(M) →
PSL2C; the volume of ρ is a numerical invariant that can be obtained by pairing

the bounded fundamental class or volume class [ρ∗vol3] ∈ H3
b(π1(M); R) of the

representation with a (relative) fundamental cycle of M. This numerical invariant has

been studied from this perspective in [5], where Bucher, Burger, and Iozzi show that

when the maximal volume for a representation is achieved, the representation must be

conjugated by an isometry to the lattice embedding π1(M) ↪→ PSL2C. We refer to this

kind of result informally as a volume rigidity result. Theorem 1.1 explains that, for a

dense representation, while the volume of ρ is non-maximal, the volume class of that

representation has maximal semi-norm.

Dunfield [19] proved a volume rigidity theorem for closed hyperbolic three-

manifolds following an observation of Goldman [27] about Gromov and Thurston’s

proof of Mostow’s famous rigidity theorem. Francaviglia [24] and Klaff [33] proved a

volume rigidity theorem for finite volume hyperbolic manifolds, using the notion of

pseudo-developing maps defined in [19]. While Dunfield’s definition of the volume of

a representation via pseudo-developing maps depends on choices, it turns out to be

an invariant of the representation [24,Theorem 1.1]. The interested reader is directed

toward [5] for more history of volume rigidity results.

One advantage of using bounded cohomology to define the volume of a represen-

tation is that no choices are made. We sometimes see that the pullback of a continuous

bounded cohomology class itself can characterize a representation, up to conjugation.

For example, [11,Theorem 3] states that the pullback of the bounded Kähler class is a

complete invariant of continuous actions of a broad class of groups on an irreducible
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4 J. Farre

Hermitian symmetric space that is not of tube type. This result fails miserably when

the Hermitian symmetric space is of tube type. For example, H2 is such a space, and the

bounded Kähler class in H2
cb(PSL2R; R) is a multiple of the two dimensional hyperbolic

volume class (also the Euler class). For any two discrete and faithful representations

ρ, ρ′ : π1(S) → PSL2R of a closed surface group, we have [ρ∗vol2] = ±[ρ′∗vol2]; see,

e.g. [9,Lemme 3.10]. The space of PSL2R-conjugacy classes of discrete and faithful

representations of a closed hyperbolic surface group is a union of two high-dimensional

cells that can each be identified with the Teichmüller space of that surface.

We are most interested in hyperbolic manifolds with infinite volume, and

we work directly with volume classes in bounded cohomology. For example, let S be

a finite type oriented surface with negative Euler characteristic. We say that two

representations ρ1, ρ2 : π1(S) → PSL2C are quasi-isometric if there is a (ρ1, ρ2)-

equivariant quasi-isometry H3 → H3. The following quasi-isometric volume rigidity

theorem sees a combination of both of the phenomena in the previous paragraph.

Theorem 1.2 (Theorem 3.12). There exists a constant ε = ε(S) such that the following

holds. Suppose that ρ0 : π1(S) → PSL2C is a discrete and faithful representation

without parabolic elements, and that [ρ∗
0vol3] *= 0. If ρ : π1(S) → PSL2C is any other

representation without parabolics satisfying

‖[ρ∗
0vol3] − [ρ∗vol3]‖∞ < ε,

then ρ is discrete and faithful, and ρ is quasi-isometric to ρ0. If ρ0 is totally degenerate,

then ρ0 and ρ are conjugate in PSL2C.

Theorem 1.2 is proved by combining Theorem 1.1 with previous work of the

author, the classification of finitely generated marked Kleinian groups, and a theorem

of Soma (Theorem 2.1). We provide a detailed proof of Theorem 1.2 in Section 3.6 after

establishing definitions and some background on the geometry and topology of tame

hyperbolic three-manifolds of infinite volume. We also elaborate on the role of parabolic

cusps and the geometric meaning of the quasi-isometric equivalence relation, therein.

We note that quasi-isometric equivalence of discrete and faithful representations of

finitely generated torsion free Kleinian groups is equivalent to the existence of a volume

preserving bi-Lipschitz homeomorphism of quotient manifolds H3/imρ → H3/imρ0

inducing ρ0 ◦ ρ−1 on fundamental groups.

Recently, Bucher, Burger, and Iozzi proved a volume rigidity result for represen-

tations of finite volume hyperbolic three-manifold groups into PSLnC with respect to

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab078/6236094 by guest on 26 M

ay 2021



Borel and Volume Classes 5

the so-called Borel invariant of a representation, defined in [6]. To do so, they computed

the continuous bounded cohomology H3
cb(PSLnC; R), which is generated by a single class

βn, called the bounded Borel class. They also computed the semi-norm of the bounded

Borel class and how it behaves under various natural inclusions PSLkC ↪→ PSLnC, k ≤ n

(see Section 2.5). The bounded Borel class generalizes hyperbolic volume in the sense

that β2 = [vol3]. Due to the work of [6], most of the argument that proves Theorem 1.1

generalizes to dense representations into PSLnC.

Corollary 1.3 (Theorem 5.1 and Corollary 5.2). Let G be a discrete group and ρ : G →
PSLnC be dense. Then

‖ρ∗βn‖∞ = v3
n(n2 − 1)

6
.

Suppose that ρ0 : G → PSL2C is such that there exists a subgroup H ≤ G such that

ρ(H) = PSLnC and ρ0 is geometrically elementary or discrete and faithful restricted to

H. Then

‖ρ∗βn − (ιk ◦ ρ0)∗βk‖∞ ≥ v3
n(n2 − 1)

6
,

for all k ≥ 2, where ιk : PSL2C → PSLnC is the (unique up to conjugation) irreducible

representation.

Remark 1.4. Compare the hypotheses of the second statements in Theorem 1.1 to those

in the second statement of Corollary 1.3. In Corollary 1.3, we assume that ρ0 is faithful

in addition to being discrete. This is because it is easy to construct somewhat explicit

dense representations of a free group F2 on two letters to PSL2C. From this, we obtain

the additional control needed to remove the extra hypothesis and prove Theorem 1.1;

see Proposition 4.9, Case 2.

We will consider the reduced bounded cohomology H
3
b(G; R) = H3

b(G; R)/Z,

where Z is the subspace of zero-norm bounded cohomology. The reduced space H
3
b(G; R)

is a Banach space with respect to the quotient norm. Our techniques apply to families

of dense representations satisfying some technical condition on subgroups, as in

Theorem 1.1.
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6 J. Farre

Theorem 1.5 (Theorem 4.12). Suppose {ρi : G → PSL2C}N
i=1 are dense representations.

If there are subgroups Hi ≤ G such that ρi(Hi) = PSL2C but ρi|Hj
is geometrically

elementary or discrete for i *= j, then for any a1, ..., aN ∈ R, we have

∥∥∥∥∥

N∑

i=1

ai[ρ
∗
i vol3]

∥∥∥∥∥
∞

≥ max{|ai|} · v3.

Consequently, {[ρ∗
i vol3] : i = 1, 2, ..., N} ⊂ H

3
b(G; R) is a linearly independent set.

In Section 6.1, we construct families of representations that satisfy the hypothe-

ses of Theorem 1.5. More specifically, for a non-abelian free group F2 on two letters and

every θ ∈ (0, 1), we construct a representation ρθ : F2 → PSL2C; any finite rationally

independent set )′ ⊂ (0, 1) yields a family {ρθ }θ∈)′ that satisfies the hypotheses of

Theorem 1.5. In the first line of the following corollary, we invoke the axiom of choice.

Corollary 1.6 (Theorem 6.4). Let ) ⊂ (0, 1) be such that ) ∪ {1} is a basis for R as a

Q-vector space, and let {ρθ }θ∈) be the dense representations constructed in Section 6.1.

The map

) → H
3
b(F2)

θ .→ [ρ∗
θ vol3]

is injective with discrete image, and {[ρ∗
θ vol3] : θ ∈ )} is a linearly independent set. In

particular, dimR〈[ρ∗
θ vol3] : θ ∈ )〉R = #R.

As a further curiosity, we show that the spaces H
3
b(PSL2R; R) and H

3
b(PSL2C; R)

are quite large when we endow PSL2R and PSL2C with the discrete topology. We

construct ‘wild’ field maps σ : C → C that induce homomorphisms ρσ : PSL2R → PSL2C,

which are continuous only if PSL2R is endowed with the discrete topology. If σ is not

the identity or complex conjugation, then σ (R) is dense in C, hence ρσ (PSL2R) is dense

in PSL2C. Indeed, we construct many such σ by extending bijections between tran-

scendence bases of C over Q. We carefully construct a family of dense representations

{ρ′
t : PSL2C → PSL2C}t∈R that restrict to dense representations {ρt : PSL2R → PSL2C}t∈R.

For many free subgroups F2 ≤ PSL2R, ρt(F2) is Schottky, while other free subgroups are

mapped densely by ρt.
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Borel and Volume Classes 7

Corollary 1.7 (Theorem 6.5). There are dense representations {ρ′
t : PSL2C → PSL2C}t∈R

that restrict to dense representations {ρt : PSL2R → PSL2C}t∈R such that {[ρ∗
t vol3] :

t ∈ R} is a linearly independent set in H
3
b(PSL2R; R) and {[ρ′

t
∗vol3] : t ∈ R} is a linearly

independent set in H
3
b(PSL2C; R).

There seems to be quite a bit of flexibility in our construction of wild field

maps σ : C → C; the dimension of the vector space of bounded three-cochains on

PSL2C or PSL2R is 2#R, which is an upper bound on the real dimension of degree 3

reduced bounded cohomology. It certainly seems possible that the dimension of reduced

bounded cohomology for these groups is 2#R; see Question 6.6.

The main line of argument used to prove our theorems is as follows: a densely

embedded group G ≤ PSL2C can approximate the geometry of any finitely generated

Kleinian group, up to a certain scale. More precisely, given a finitely generated Kleinian

group + = 〈γ1, ..., γk〉 ≤ PSL2C, a dense representation ρ : G → PSL2C, an ε > 0, and

a positive integer N, there are g1, ..., gk ∈ G such that all words of length at most

N in the ρ(gi) are in the ε-neighborhood of corresponding words in the γi. Suppose

H3/+ has a submanifold K ⊂ M with large volume and small surface area. Assume

that K is equipped with a straight triangulation by geodesic tetrahedra, and that the

triangulation does not have too many triangles on the boundary. Then, we can homotope

the triangulation, so that there is only one vertex and such that we do not lose too much

volume during the homotopy, which is a small miracle of hyperbolic geometry. The edges

of the tetrahedra are now labeled by elements of π1(M), because they are closed, based

loops. This finite triangulation lifts to the universal cover. The idea is now to use our

approximation of words of length at most N in the γi by words of length at most N in

the ρ(gi) to build a chain on G that has almost the same shape as our lifted chain, via

its ρ-action. In this way, we use the geometry of discrete groups to build chains on our

abstract group G that have large volume and small boundary area, which is enough to

show that [ρ∗vol3] *= 0; if in addition, the chains on + are ε-efficient, we can show that

‖[ρ∗vol3]‖ ≥ ε. Adapting a construction of Soma [49,Lemma 3.2], we are able to construct

(v3 − ε)-efficient chains, for all ε > 0; see also Section 4.1 and, in particular, Lemma 4.1

where we recreate Soma’s construction.

The preceding paragraph is made precise in Section 2.6 where we record a key

observation of this paper, Proposition 2.8. Our main line of argument is very generally

applicable in the sense that it can be adapted to work in all dimensions, contingent

on the existence of a sequence of hyperbolic n-manifolds with prescribed topological

properties. Proposition 7.2 formalizes this idea to give one of many sufficient conditions
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8 J. Farre

by which one can apply the techniques in this paper in higher dimensions. First, we need

some terminology. The following definition is made in order to highlight the necessary

algebraic and topological ingredients of the proof of Theorem 1.1.

Definition 1.8 (Definition 7.1). Let + be a discrete group, α ∈ Hn(+; R), and K > 0. We

say that α is K-freely approximated if there is an integer m, a homomorphism ϕ : Fm →
+, and a chain Z ∈ Cn(Fm; R) such that ϕ∗(Z) ∈ α and ‖∂Z‖1 ≤ K.

The conclusion of the following proposition may seem surprising, at first.

Proposition 1.9 (Proposition 7.2). Suppose (Mi) is a sequence of oriented, closed

hyperbolic n-manifolds with volume tending to infinity. Let [Mi] ∈ Hn(π1(Mi); R) be

the image of the fundamental class of Mi under the natural isomorphism Hn(Mi; R) →
Hn(π1(Mi); R).

If there is a K such that [Mi] is K-freely approximated for all i, then for any dense

representation ρ : F2 → Isom+(Hn),

[ρ∗voln] *= 0 ∈ Hn
b(F2; R).

See also Remark 7.3 for a discussion of the (possible) dimension of Hn
b(F2; R), for

even n ≥ 4.

Remark 1.10. For many sequences (Mi) of closed hyperbolic surfaces and hyperbolic

3-manifolds with volume tending to infinity, one can produce a bound K depending on

that sequence such that [Mi] is K-freely approximated.

However, it is not at all clear if there can be any sequence of hyperbolic n-

manifolds satisfying the hypotheses of the proposition, for n ≥ 4. For example, if it

were true that there is some acylindrically hyperbolic group + and Hn
b(+; R) = 0, then

Hn
b(F2; R) = 0, as well [23]. So if there is such an n ≥ 4 and +, then no sequence

of hyperbolic n-manifolds satisfying the topological constraints of the hypotheses of

Proposition 7.2 can exist.

To obtain the uniform separation of certain volume classes, as in Theorem 1.1,

we appeal to the classification theory and structure theory of finitely generated

Kleinian groups, and make extensive use of the Covering Theorem 3.8 and the Tameness

Theorem 3.3, which are now standard tools for studying hyperbolic three-manifolds.

The Ending Lamination Theorem 3.10 also plays an important role and informs our
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Borel and Volume Classes 9

understanding of the geometry of hyperbolic three-manifolds of infinite volume,

generally.

The structure of the paper is as follows. In Section 2, we provide some back-

ground on bounded cohomology, volume classes, and the bounded Borel class. In

Section 2.6, we give a general strategy for approximation and record our key insight

Proposition 2.8.

In Section 3, we describe the geometry of ends of hyperbolic three-manifolds

and give some context for the three major structural results we need in the sequel. In

Section 3.6, we assume Theorem 1.1 and deduce Theorem 1.2 from previous work of the

author, collected in Theorem 3.11.

In Section 4, we employ our resources coming from the classification theory of

tame hyperbolic three-manifolds to prove Theorem 1.1. In Section 4.1, we recall Soma’s

construction of (v3 − ε)-efficient chains, collect some technical facts, and prove the first

statement of Theorem 1.1. In Section 4.2, we take a rather technical foray into analyzing

infinite index subgroups of discrete and dense representations of a free group F2 on

two letters (Lemma 4.7 and Proposition 4.9). The rest of Theorem 1.1 follows quickly,

thereafter. Then, we generalize Theorem 1.1 to give Theorem 1.5.

In Section 5, we pull back a higher rank formulation of the volume class, known

as the bounded Borel class of a dense representation ρ : + → PSLnC; the argument we

present for n = 2 generalizes to the higher rank setting, after a technical detour, thanks

to [6], and we record the necessary modifications to the proof of Theorem 1.1 to obtain

Corollary 1.3.

Section 6 concerns constructions of certain families of dense representations,

‘applications’ of Theorem 1.5 that produce large subspaces of bounded cohomology,

and questions. In Section 6.1, we construct an uncountable family of non-conjugate

representations, every finite subset of which satisfies the hypotheses of Theorem 1.5.

This shows that the dimension of (reduced) bounded cohomology spanned by the volume

classes for dense representations of a free group is large. Later, we use wild field

embeddings to produce many linearly independent volume classes in degree three

reduced bounded cohomology of PSL2C and PSL2R, endowed with the discrete topology.

We pose some questions that presented themselves to us during this investigation.

Finally, in Section 7, we discuss the problem of understanding the (non-)

triviality of volume classes of dense representations in dimensions n ≥ 4. We also show

that closed hyperbolic surfaces are two-freely approximated; in fact our proof shows

that a closed hyperbolic surface of genus at least two can be ε-freely approximated

for any ε > 0, using covering space theory; note the similarity of Lemma 7.4 with
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10 J. Farre

the standard computation of simplicial volume of closed surfaces of negative Euler

characteristic. The main result of Section 7, Proposition 7.2, is essentially independent

of the more technical work done in Sections 3-6, and so can be read and understood

directly after Section 2.6.

2 Continuous bounded cohomology of groups and spaces

In this section, we establish some preliminaries on bounded cohomology, the volume

class, and the bounded Borel class. In Section 2.6, we introduce the main novel idea of

the paper, Proposition 2.8.

2.1 Continuous bounded cohomology of groups

Let G be a topological group. Then, G acts on the space of continuous functions {Gk → R}
as follows. If g ∈ G and f : Gk → R is continuous, then

g.f (g1, ..., gk) := f (g−1g1, ..., g−1gk).

We define a cochain complex for G by considering the collection of continuous,

G-invariant functions

Cn(G; R) = {f : Gn+1 → R : g.f = f , ∀g ∈ G}.

The homogeneous co-boundary operator δ for the trivial G-action on R is, for

f ∈ Cn(G; R),

δf (g0, ..., gn+1) =
n+1∑

i=0

(−1)if (g0, ..., ĝi, ..., gn+1),

where ĝi means to omit gi, as usual. The co-boundary operator gives the collection

C•(G; R) the structure of a cochain complex. An n-cochain f is bounded if

‖f ‖∞ = sup |f (g0, ..., gn)| < ∞,

where the supremum is taken over all (n + 1)-tuples (g0, ..., gn) ∈ Gn+1. The subspace of

continuous bounded n-cochains is denoted by Cn
b(G; R).

The operator δ : Cn
b(G; R) → Cn+1

b (G; R) is a bounded linear, hence continuous,

operator between Banach spaces with operator norm at most n + 2, so the collection
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Borel and Volume Classes 11

of bounded cochains C•
b(G; R) forms a subcomplex of the ordinary cochain complex.

The cohomology of (C•
b(G; R), δ) is called the continuous bounded cohomology of G, and

we denote it by H•
cb(G; R). The ∞-norm ‖ · ‖∞ descends to a semi-norm on bounded

cohomology, so that if α ∈ H•
cb(G; R),

‖α‖∞ = inf
a∈α

‖a‖∞.

A continuous group homomorphism ϕ : H → G induces a map ϕ∗ : H•
cb(G; R) → H•

cb(H; R)

that is norm non-increasing.

When G is a discrete group, the continuity assumption on cochains is vacuous,

and we write H•
b(G; R) = H•

cb(G; R) to denote its bounded cohomology. Soma has shown

[50] that the pseudo-norm is in general not a norm in degree ≥ 3. We will consider the

quotient H
3
b(G; R) = H3

b(G; R)/Z, where Z ⊂ H3
b(G; R) is the subspace of zero-semi-norm

elements. Then, H
3
b(G; R) is a Banach space with the quotient norm ‖ · ‖∞.

2.2 Norms on chain complexes

Given a connected countable CW-complex X, we define a norm on the singular chain

complex of X as follows. Let 0n = {σ : 1n → X} be the collection of singular n-simplices.

Write a singular chain A ∈ Cn (X; R) as an R-linear combination

A =
∑

ασ σ ,

where each σ ∈ 0n. The 21-norm of A is defined as

‖A‖1 =
∑ ∣∣ασ

∣∣ .

This norm promotes the algebraic chain complex C•(X; R) to a chain complex of normed

linear spaces; the boundary operator is a bounded linear operator. Keeping track of this

additional structure, we can take the topological dual chain complex

(
C•(X; R), ∂, ‖ · ‖1

)∗ =
(
C•

b(X; R), δ, ‖ · ‖∞
)

.

The ∞-norm is naturally dual to the 21-norm, so the dual chain complex consists of

bounded cochains. Define the bounded cohomology H•
b(X; R) as the cohomology of this

complex. Gromov [29] gave an argument, using the theory of multicomplexes, showing

that for reasonable spaces M, the homotopy class of a classifying map M → K(π1(M), 1)
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12 J. Farre

induces an isometric isomorphism H•
b(π1(M); R) → H•

b(M; R). Recently, [22] provided a

thorough treatment of the theory of multicomplexes and gave self contained account

of Gromov’s theorem; they also give other applications to bounded cohomology and

simplicial volume. See also [30] for an approach using normed homological algebra.

For a discrete group G, we will consider the normed chain complex (C•(G; R), ∂,

‖ · ‖1) that defines the homology of G. The collection of n-co-invariants Cn(G; R) of G is

the R-linear span of 0n(G) = {(g0, ..., gn) : gi ∈ G}/ ∼, where ∼ is the equivalence relation

generated by (g0, ..., gn) ∼ (gg0, ..., ggn); we denote an equivalence class by [g0, ..., gn] ∈
0n(G), and we think of [g0, ..., gn] as an n-simplex in the universal cover of a K(G, 1)

for G, defined up to covering transformations, thus defining a simplex in the quotient

K(G, 1). A group chain or n-co-invariant Z ∈ Cn(G; R) is then a sum

Z =
k∑

i=1

ai[g
i
0, ..., gi

n],

where [gi
0, ..., gi

n] *= [gj
0, ..., gj

n] for i *= j. The 21-norm is defined by ‖Z‖1 = ∑k
i=1 |ai|. The

boundary operator ∂ : Cn(G; R) → Cn−1(G; R) is the pre-dual of the co-boundary operator

δ. One thinks of ∂ as the alternating sum of face maps on n-simplices. If f ∈ Cn
b(G; R)

and Z ∈ Cn(G; R), then we have a trivial inequality |f (Z)| ≤ ‖f ‖∞‖Z‖1.

2.3 Isometric chain maps

We will be interested in free marked Kleinian groups ρ : Fd → PSL2C, i.e. Fd is a free

group of rank d and ρ is a discrete and faithful representation. Thus, imρ = + acts

properly discontinuously by orientation preserving isometries on H3, and the space

Mρ = H3/+ of orbits is a complete hyperbolic three-manifold of infinite volume. Call

the orbit projection π : H3 → Mρ . There is a natural subspace of the singular chain

complex C•(Mρ) obtained by straightening. We have an 21-norm non-increasing chain

map [56]

str : C•(Mρ ; R) → C•(Mρ ; R)

defined by homotoping a singular n-simplex σ : 1n → Mρ , relative to its vertex

set, to the unique locally geodesic hyperbolic tetrahedron strσ . We ignore issues of

parameterization, though Thurston provides a natural one in [56,Chapter 6.1]. Then,

Cstr
• (Mρ ; R) denotes the image of str, and if x̄ ∈ Mρ , we denote by Cstr

• (Mρ , {x̄}; R) the
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Borel and Volume Classes 13

subcomplex spanned by the straight simplices whose vertices all map to x̄. We will now

construct a chain map strx̄ : C•(Mρ ; R) → Cstr
• (Mρ , {x̄}; R).

Fix x ∈ π−1(x̄), and let D = {y ∈ H3 : d(x, y) ≤ d(γ (x), y) for allγ ∈ +} be the

Dirichlet fundamental domain for + centered at x; delete a face of D in each face-pair

(F, γ F) to obtain a connected Borel set of representatives for the action of + on H3,

which we still call D. Let σ : 1n → Mρ and choose a lift σ̃ : 1n → H3. The vertices

v0, ..., vn of σ̃ are uniquely labeled by group elements vi = γiyi where γi ∈ +, yi ∈ D.

Define strx̄σ = π(σx(γ0, ..., γn)), where σx(γ0, ..., γn) is the straightening of any simplex

whose ordered vertex set is (γ0x, ..., γnx). The definition is independent of the choice of

lift, because any other lift of σ has vertex set equal to (γ γ0y0, ..., γ γnyn) for some γ ∈ +.

All maps are chain maps and the operator norm satisfies ‖strx̄‖ ≤ 1. This is just because

some simplices in a chain may collapse or cancel after applying strx̄.

Let τ : 1k → Mρ be a straight simplex. We can apply the prism operator to the

straight line homotopy between lifts of τ and strx̄τ to H3. We obtain a chain homotopy

H•
x̄ : Cstr

• (Mρ ; R) → Cstr
•+1(Mρ ; R) between strx̄ and id. That is,

H•−1
x̄ ∂ + ∂H•

x̄ = strx̄ − id.

Compare with [56,Chapter 6.1]. The homotopy space 1k × I is triangulated by the prism

operator using k + 1 simplices of dimension k + 1, so

‖Hk
x̄‖ = k + 1. (1)

If Z ∈ Cstr
n (Mρ , {x̄}; R), then Z defines a chain in Cn(+; R) by linear extension of

the rule

π(σx(γ0, ..., γn)) .→ [γ0, ..., γn].

To see that this map is well-defined, observe that π(σx(γ0, ..., γn)) = π(σx(γ ′
0, ..., γ ′

n))

means that σx(γ0, ..., γn) differs from σx(γ ′
0, ..., γ ′

n) by a deck transformation γ ∈ +; hence,

[γ ′
0, ..., γ ′

n] = [γ γ0, ..., γ γn] = [γ0, ..., γn]. We denote this map by ιx : Cstr
• (Mρ , {x̄}; R) →

C•(+; R).

One checks easily that ιx is an isometric isomorphism of normed chain com-

plexes with their 21-norms. Thus, if Z ∈ Cstr
n (Mρ , {x̄}; R), then we have ‖Z‖1 = ‖ιx(Z)‖1

and ‖∂ιx(Z)‖1 = ‖ιx(∂Z)‖1 = ‖∂Z‖1. Conversely, if we have a chain Z ∈ Cstr
n (+; R), one sees

that π∗(Z.x) = ι−1
x (Z) ∈ Cstr

n (Mρ , {x̄}; R).
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14 J. Farre

2.4 The volume class

Let x ∈ H3 ∪ ∂H3 and consider the function volx
3 : (PSL2C)4 → R which assigns to

(g0, ..., g3) the signed hyperbolic volume of the convex hull of the points g0x, ..., g3x.

Any geodesic tetrahedron in H3 is contained in an ideal geodesic tetrahedron, and

there is an upper bound v3 on the volume that is attained by a regular ideal geodesic

tetrahedron. That is, ‖volx
3‖∞ = v3. One checks using Stokes’ Theorem that δvolx

3 = 0, so

that [volx
3] ∈ H3

cb(PSL2C; R). Moreover, for any x, y ∈ H3∪∂H3, we have [volx
3] = [voly

3]. This

is because the straight line homotopy between geodesic triangles can be triangulated by

three (partially ideal) tetrahedra using the prism operator, and so

volx
3 − voly

3 = δHx,y, (2)

where Hx,y ∈ C2
b(PSL2C; R) measures the volume of the straight line homotopy between

the geodesic triangles (g0, g1, g2).x and (g0, g1, g2).y. In particular, ‖Hx,y‖∞ ≤ 3v3, so that

[volx
3] = [voly

3], as claimed; the previous section gives a dual discussion. If basepoints are

not relevant, we write [vol3] to denote the class of [volx
3].

The continuous bounded cohomology of PSL2C is generated by [vol3], i.e.

H3
cb(PSL2C; R) = 〈[vol3]〉R [12]. In fact, ‖[vol3]‖∞ = v3; see e.g. [5] for a discussion of the

hyperbolic volume class in dimensions n ≥ 3. If + is a discrete group and ρ : + → PSL2C
is a group homomorphism, then [ρ∗vol3] ∈ H3

b(+; R) is called the bounded fundamental

class of ρ or the volume class of ρ. Observe that for any g ∈ PSL2C, we have an equality

at the level of cochains

(gρg−1)∗volgx
3 = ρ∗volx

3,

so that the volume class is an invariant of the PSL2C-conjugacy class of ρ. It is also

true that [ρ∗vol3] is an invariant of the closure of the action of PSL2C by conjugation,

if + is finitely generated. Indeed, Thurston [57,proof of Proposition 1.1] pointed out

that for non-conjugate representations ρ and ρ′ of a finitely generated, discrete group

+ into Isom+(H3), ρ ∈ PSL2C.ρ′ implies that both imρ and imρ′ are virtually abelian. By

Theorem 2.1 or Lemma 2.2 below, the volume classes of such representations are zero.

Hence if + is finitely generated, we obtain a well-defined, equivariant function on the

character variety

Hom(+, PSL2C)//PSL2C → H3
b(+; R)

with respect to the natural actions of Out(+) on each space.
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Borel and Volume Classes 15

The following theorem of Soma characterizes when a finitely generated Kleinian

representation has non-trivial volume class. See Section 3 for definitions of geometri-

cally finite hyperbolic manifolds and characterizations of ends of geometrically infinite

hyperbolic manifolds.

Theorem 2.1 ([48,Theorem 1]). If + ≤ PSL2C is a finitely generated Kleinian group of

infinite co-volume without elliptic elements and ρ : + → PSL2C is any discrete and

faithful representation, then the following are equivalent:

• [ρ∗vol3] = 0 ∈ H3
b(+; R)

• ‖[ρ∗vol3]‖∞ < v3

• Mρ is geometrically finite or + is virtually abelian.

Hence, if Mρ has a geometrically infinite relative end, then ‖[ρ∗vol3]‖∞ = v3.

See [49, Lemma 3.2 and Proposition 3.3] for the proof of this fact. We record here an

observation.

Lemma 2.2. Let G be a discrete group. If ρ : G → PSL2C is indiscrete but not dense,

then ρ is geometrically elementary and [ρ∗vol3] = 0 ∈ H3
b(G; R).

Proof. Since ρ is indiscrete and not dense, H = ρ(G) ≤ PSL2C is a proper, closed

Lie subgroup. According to [55, Proposition, p. 246], H fixes a point, an ideal point, or

stabilizes a geodesic plane, i.e. H is geometrically elementary.

We claim that ρ∗voly
3 = 0 for some y ∈ H3 ∪ ∂H3. We just need to choose y to

be contained in the invariant point or plane so that every tetrahedron has zero volume.

Since ρ∗voly
3 = 0 ∈ [ρ∗vol3], it follows that [ρ∗vol3] = 0. !

2.5 The bounded Borel class

We will consider a generalization of the hyperbolic volume class βn ∈ H3
cb(PSLnC; R)

called the bounded Borel class, which coincides with the three-dimensional hyperbolic

volume class for n = 2. Using a stability theorem of Monod [43], Bucher, Buger, and

Iozzi [6,Theorem 2] show that 〈βn〉R = H3
cb(PSLnC; R), for all n ≥ 3, and they compute the

21-norm of βn; see Theorem 2.5.

Let F (Cn) be the space of complete flags of Cn. That is, F ∈ F (Cn) is a sequence

of vector subspaces {0} ≤ F1 ≤ ... ≤ Fn = Cn such that dimC(Fj) = j. We fix F ∈ F (Cn)
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16 J. Farre

and consider a Borel measurable PSLnC-invariant function

BF
n : (PSLnC)4 → R (3)

(g0, ..., g3) .→ Bn(g0.F, ..., g3.F)

that satisfies the cocycle condition everywhere, but is not everywhere continuous.

Equation (5), below, provides a useful definition of Bn : F (Cn)4 → R on generic

configurations of flags. The cocycle Bn was defined on generic configurations of

quadruples of flags in [28,Section 2] and extended to non-generic configurations in

[6,Equation (6)].

Continuity. Since BF
n is not everywhere continuous, BF

n *∈ C3
b(PSLnC; R), the continuous

cochain group from Section 2.1. However, in the appropriate cochain complex that

computes the continuous bounded cohomology of PSLnC, BF
n represents βn; we prefer to

omit the technical details of the construction of the strong resolution of R by relatively

injective PSLnC-Banach modules in which BF
n is a cocycle (see [6,Sections 3-7]). Instead it

is convenient to think of [BF
n] ∈ H3

b(PSLnC; R), where PSLnC is given the discrete topology.

More precisely, let PSLnCδ denote PSLnC with the discrete topology and let id :

PSLnCδ → PSLnC be the identity. Then id is continuous, hence induces a map id∗ :

H•
cb(PSLnC; R) → H•

cb(PSLnCδ; R). We can work with the class

id∗βn = [BF
n] ∈ H3

cb(PSLnCδ; R) = H3
b(PSLnC; R).

Our goal in this section is to describe the main results from [6] and to extract

a continuity property of the cocycle BF
n on non-degenerate generic configurations of

complete flags.

The case n = 2 and the Bloch-Wigner function. Note that F (C2) = CP1 = ∂H3. The

Bloch–Wigner function D : CP1 → R is a variant of the di-logarithm function that

computes the volume of the ideal tetrahedron with ordered vertex set (∞, 0, 1, z) ∈
(CP1)4. If z0, z1, z2 ∈ CP1 are distinct and z3 ∈ CP1 is arbitrary, then there exists a

unique g ∈ PSL2C such that g.(z0, ..., z3) = (∞, 0, 1, g.z3). Then, [z0 : ... : z3] := g.z3 is the

cross ratio of the four-tuple, and

vol(z0, ..., z3) := D([z0 : ... : z3])

is the oriented volume of the ideal geodesic tetrahedron spanned by (z0, ..., z3). When at

least two of z0, ..., z3 coincide, vol(z0, ..., z3) = 0.
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Borel and Volume Classes 17

It is well known that D is real analytic on C \ {0, 1, ∞}, attains its extreme values

at ζ3 = eiπ/3 and ζ̄3, and extends continuously to CP1. However, vol : (CP1)4 → R is

not continuous everywhere. Indeed, consider the sequence zk = (∞, 0, 2−k, 2−kζ3), for

k = 0, 1, ...; the Möbius transformation z .→ 2kz takes zk to z0, hence vol(zk) is constant

(and positive), but the limiting configuration (∞, 0, 0, 0) has 0 volume. For fixed z ∈ CP1,

it is not difficult to see that the map

Bz
2 : (PSL2C)4 → R

(g0, ..., g3) .→ vol(g0.z, ..., g3.z)

is a PSL2C-invariant cocycle. The bounded Borel class is just β2 := [volx
3] ∈

H3
cb(PSL2C; R), where x ∈ H3 is not an ideal point, and it is clear that id∗[volx

3] =
[Bz

2] ∈ H3
b(PSL2C; R) for any x ∈ H3 ∪ ∂H3; see Section 2.4. In Section 6, we show that

H3
b(PSL2C; R) is quite large.

Generic configurations of flags. For convenience, we fix a Hermitian inner product

Cn ⊗ Cn → C, thus identifying a maximal subgroup K ≤ PSLnC preserving this inner

product. Then, K is a maximal compact subgroup isomorphic to PSU(n). Note that PSLnC
acts transitively on F (Cn), so that if we choose also an orthonormal ordered basis

(e1, e2, ..., en), we may identify the stabilizer of the standard flag 〈e1〉 ≤ 〈e1, e2〉 ≤ ... ≤
〈e1, ..., en〉 with the upper triangular group P ≤ PSLnC, and F (Cn) ∼= PSLnC/P.

Given a flag F ∈ F (Cn), using the Gram–Schmidt process and our chosen inner

product, we may find an orthonormal basis (f 1, ..., f n) such that

Fj = 〈f j〉 ⊥ 〈f 1, ..., f j−1〉,

and each f j is uniquely determined up to multiplication by a complex number of norm

1. Call (f 1, ..., f n) an affine representative of F.

Say that (F0, ..., F3) ∈ F (Cn)4 is a generic configuration of flags if whenever

0 ≤ j0, ..., j3 ≤ n − 1 satisfy j0 + ... + j3 = k, then dim〈Fj0
0 , ..., Fj3

3 〉 = min{n, k}; genericity is

an open condition among 4-tuples of flags. Let

M = {(j0, ..., j3) ∈ {0, 1, ..., n − 2}4 : j0 + ... + j3 = n − 2},
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18 J. Farre

so that if (F0, ..., F3) is a generic configuration of flags and (j0, ..., j3) ∈ M, then

dimC
〈Fj0+1

0 , ..., Fj3+1
3 〉

〈Fj0
0 , ..., Fj3

3 〉
= 2. (4)

Moreover, #M = 1
6n(n − 1)(n + 1), and if (j0, ..., j3) ∈ {0, ..., n − 1}4 \ M, then equality (4)

does not hold [6, p. 3147].

Definition of the cocycle on generic configurations. Let F (Cn)(4) ⊂ F (Cn)4 be the

subspace of generic configurations of flags. Let F = (F0, ..., F3) ∈ F (Cn)(4) and J =
(j0, ..., j3) ∈ M. Find also an affine representative (f 1

i , ..., f n
i ) of Fi, for i = 0, ..., 3. The

functions

F .→ VJ(F) := 〈f 1
0 , ..., f j0

0 , ..., f 1
3 , ..., f j3

3 〉 ∈ Grn−2(Cn)

and

F .→ VJ(F)⊥ ∈ Gr2(Cn)

vary continuously in generic configurations F. The orthogonal projection

Cn = VJ(F) ⊕ VJ(F)⊥ → VJ(F)⊥.

coincides with the quotient

Cn → 〈Fj0+1
0 , ..., Fj3+1

3 〉
〈Fj0

0 , ..., Fj3
3 〉

= Cn

VJ(F)
∼= VJ(F)⊥.

Using genericity again, the orthogonal projections of f j0+1
0 , ..., f j3+1

3 to VJ(F)⊥ are non-

zero and pairwise linearly independent. Let

tJ(F) ∈ P(VJ(F)⊥)4 ∼= (CP1)4

be the four-tuple consisting of the projectivizations of the orthogonal projections of

f ji+1
i to VJ(F)⊥. Observe that tJ is independent of our choice of affine representatives of

F0, ..., F3, because the projectivization map only depends on the complex line spanned by

f j
i .
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Borel and Volume Classes 19

Following [28] and [6], we define the PSLnC-invariant function

Bn : F (Cn)(4) → R (5)

F .→
∑

J∈M
vol(tJ(F)).

From the definition, it is clear that

sup
F∈F (Cn)(4)

|Bn(F)| ≤ #M · v3 = (n3 − n)

6
· v3.

By avoiding non-generic configurations of flags, for each J ∈ M, the function

F .→ tJ(F) varies continuously and has image contained in the locus of distinct four-

tuples in (CP1)4. Since vol varies continuously on distinct four-tuples, all summands

in (5) are continuous, and so Bn is continuous with respect to the subspace topology

on F (Cn)(4). We refer the reader to [6, Section 3], which explains how to extend Bn to

a bounded Borel measurable cocycle F (Cn)4 → R. After defining this extension, for a

fixed flag F ∈ F (Cn), equation (3) gives a PSLnC-invariant alternating cocycle BF
n [6,

Corollary 13].

The Veronese embedding. There is a unique irreducible representation ιn : PSL2C →
PSLnC, up to conjugation, and it induces an equivariant map ι̂n : ∂H3 → F (Cn) called

the Veronese embedding.

Let x ∈ ∂H3; the cocycle Bι̂n(x)
n pulls back to a multiple of the volume cocycle volx

3,

which allows us to push constructions in three-dimensional hyperbolic geometry to the

higher rank setting.

Proposition 2.3 ([6, Proposition 21]). For all g0, ..., g3 ∈ PSL2C and J ∈ M,

vol(tJ(ι̂n(g0.x), ..., ι̂n(g3.x))) = vol(g0.x, ..., g3.x),

so that

Bι̂n(x)
n (ιn(g0), ..., ιn(g3)) = n(n2 − 1)

6
volx

3(g0, ..., g3).

In other words, ι∗nBι̂n(x)
n = n(n2−1)

6 volx
3.
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20 J. Farre

The function BF
n is not continuous near non-generic configurations of flags.

However, BF
n satisfies the following continuity property, which is all we need in the

sequel.

Lemma 2.4. Let x ∈ ∂H3 and suppose g0, ..., g3 ∈ PSL2C are such that g0.x, ..., g3.x are

pairwise distinct. Then, there exist open neighborhoods Ui ⊂ PSLnC of ιn(gi) such that

the map

U0 × ... × U3 ⊂ (PSLnC)4 → R

(h0, ..., h3) .→ Bι̂n(x)
n (h0, ..., h3)

is continuous.

Proof. Since four-tuples of distinct flags in the image of ι̂n are in generic position,

we have (ι̂n(g0.x), ..., ι̂n(g3.x)) ∈ F (Cn)(4). Let V ⊂ F (Cn)(4) be an open neighborhood

of (ι̂n(g0.x), ..., ι̂n(g3.x)), so that V is open in F (Cn)4, as well. Consider the stabilizer Px

of ι̂n(x), the quotient projection π : PSLnC → PSLnC/Px
∼= F (Cn), and the product

π4 : (PSLnC)4 → F (Cn)4. Then, (π4)−1(V) ⊂ (PSLnC)4 is an open neighborhood of

(ιn(g0), ..., ιn(g3)). Products of open sets form a basis for the topology of the product

of spaces, and Bn is continuous on F (Cn)(4). This completes the proof of the lemma. !

We will need one more important result about the bounded Borel class and its

semi-norm.

Theorem 2.5 ([6, Theorem 2]). For each n ≥ 2, the Borel class βn generates

H3
cb(PSLnC; R), and its 2∞-norm is

‖βn‖∞ = v3
n(n2 − 1)

6
.

For the irreducible representation ιn : PSL2C → PSLnC, the pullback satisfies

ι∗nβn = n(n2 − 1)

6
[vol3] ∈ H3

cb(PSL2C; R).

For a discrete group G and representation ρ : G → PSLnC, the bounded Borel

class of ρ or the Borel class of ρ is ρ∗βn ∈ H3
cb(G; R). Note that by Theorem 2.5, if
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Borel and Volume Classes 21

ρ : F2 → PSL2C is discrete, faithful, and geometrically infinite, then ‖(ιn ◦ ρ)∗βn‖∞ =
n(n2−1)

6 ‖[ρ∗vol3]‖∞ = v3
n(n2−1)

6 , where the last equality was by Theorem 2.1.

2.6 An approximation scheme

We now give a criterion for the pullback of a continuous bounded class to be non-zero

and have positive semi-norm in bounded cohomology. We claim no originality for the

following lemma; it is a distillation and abstraction of a standard argument. See [59,

Section 3] and [49, Proposition 3.3].

Lemma 2.6. Let G be a discrete group, G a group, ρ : G → G a homomorphism, and

[B] ∈ Hn
b(G; R). Suppose there exist ε > 0 and chains Zk ∈ Cn(G; R) for k = 1, 2, ... such

that

1. |ρ∗B(Zk)|
‖Zk‖1

> ε for all k,

2. lim infk→∞
‖∂Zk‖1
‖Zk‖1

= 0.

Then, [ρ∗B] *= 0 ∈ Hn
b(G; R) and ‖[ρ∗B]‖∞ ≥ ε.

Proof. Given b ∈ Cn−1
b (G; R), we need to show that ‖ρ∗B + δb‖∞ > ε. We have the trivial

inequality

|(ρ∗B + δb)(Zk)| ≤ ‖ρ∗B + δb‖∞‖Zk‖1.

By the triangle inequality, we have

|(ρ∗B + δb)(Zk)| ≥ |ρ∗B(Zk)| − |δb(Zk)|.

Another application of the trivial inequality yields

|δb(Zk)| = |b(∂Zk)| ≤ ‖b‖∞‖∂Zk‖1.

Stringing together the inequalities and dividing through by ‖Zk‖1, we obtain

|(ρ∗B + δb)(Zk)|
‖Zk‖1

≥ |ρ∗B(Zk)|
‖Zk‖1

− ‖b‖∞
‖∂Zk‖1

‖Zk‖1
.

By passing to a subsequence, we assume that limk→∞
‖∂Zk‖1
‖Zk‖1

= 0, and we see

that for any e > 0, there is a K such that for k ≥ K, we have |(ρ∗B+δb)(Zk)|
‖Zk‖1

> ε − e; thus,

‖ρ∗B + δb‖∞ > ε − e. Since b and e were arbitrary, this implies that ‖[ρ∗B]‖ ≥ ε. !
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22 J. Farre

The following lemma is an easy consequence of the continuity of multiplication

and inversion in a topological group G.

Lemma 2.7. Let ρ0 : Fd → G be a homomorphism, W ⊂ Fd a finite set, and {z1, ..., zd} a

free basis for Fd. Given neighborhoods Vw of ρ0(w) for w ∈ W, there are neighborhoods

Ui of ρ0(zi) such that if ρ : Fd → G is any homomorphism satisfying ρ(zi) ∈ Ui for each

i = 1, ..., d, then ρ(w) ∈ Vw, for all w ∈ W.

Note that in the above lemma, we do not require ρ to be faithful. For example,

given a homomorphism ρ′ : G → G, and a set {g1, ..., gd} ⊂ G, the rule zi .→ ρ′(gi) defines

a homomorphism ρ : Fd → G. The following proposition is the key insight in this paper.

Proposition 2.8. Let G be a discrete group, G be a topological group, and ρ : G → G
a homomorphism with dense image. Consider a homomorphism ρ0 : Fd → G and a

continuous cocycle B ∈ Cn
b(G; R). For any Z ∈ Cn(Fd; R) and for any ε > 0, there exists

Z(ε) ∈ Cn(G; R) such that

|ρ∗
0B(Z) − ρ∗B(Z(ε))| < ε.

Moreover, ‖Z(ε)‖1 ≤ ‖Z‖1 and ‖∂Z(ε)‖1 ≤ ‖∂Z‖1.

Proof. Write Z = ∑M
j=1 aj[v

j
0, ..., vj

n], and choose the representative (id, wj
1, ..., wj

n) ∈
[vj

0, ..., vj
n] so that wj

i = (vj
0)−1vj

i for each i = 1, ..., n. Take W = {wj
i : i = 1, ..., n andj =

1, ..., M} ⊂ Fd, and let {z1, ..., zd} be a free basis for Fd.

The cocycle B : Gn+1 → R is continuous, so for each i = 1, ..., n and j = 1, ..., M,

there are neighborhoods Vj
i ⊂ G of ρ0(wj

i) such that if γ
j
i ∈ Vj

i , then

|B(id, ρ0(wj
1), ..., ρ0(wj

n)) − B(id, γ j
1, ..., γ j

n)| <
ε

‖Z‖1
, ∀j = 1, ..., M. (6)

Given the data ρ0, W ⊂ Fd, {z1, ..., zd}, and Vj
i , find neighborhoods Ui ⊂ G of ρ0(zi)

guaranteed to us by Lemma 2.7. Now, ρ has dense image, so we can find zi
ε ∈ G such that

ρ(zi
ε) ∈ Ui for each i = 1, ..., d. Define ιε : Fd → G by zi .→ zi

ε . Then, ρ(ιε(w
j
i)) ∈ Vj

i for all

wj
i ∈ W.

We write Z(ε) = ιε∗(Z) ∈ Cn(G; R) for the chain corresponding to Z under this

identification. The map iε∗ is an 21-norm non-increasing chain map, so ‖Z(ε)‖1 ≤ ‖Z‖1

and ‖∂Z(ε)‖1 ≤ ‖∂Z‖1.
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Borel and Volume Classes 23

Repeated applications of the triangle inequality and (6) give

|ρ∗
0B(Z) − ρ∗B(Z(ε))| <

ε

‖Z‖1
‖Z‖1 = ε,

which is what we wanted to show. !

Remark 2.9. Note that if Zk ∈ Cn(Fd; R) satisfy ‖Zk‖1 → ∞ and Zk(ε) ∈ Cn(G; R) are

obtained as in Proposition 2.8, then ‖Zk(ε)‖1 → ∞ as well.

We will apply Lemma 2.6 and Proposition 2.8 in two settings. In Section 4, we

set G = Isom+(H3) = PSL2C and [B] = [volx
3] ∈ H3

cb(Isom+(H3); R), where x ∈ H3. In

Section 5, we set G = PSLnC, for n ≥ 2 and consider the cocycle B = BF
n : (PSLnC)4 → R

from Section 2.5 representing the Borel class βn ∈ H3
cb(PSLnC; R). Later, we consider

hyperbolic volume classes in dimensions four and higher and establish a criterion

that would guarantee that the volume class of a dense representation does not vanish.

Unfortunately, we do not know if the criterion is ever satisfied.

We have already encountered a technical issue: the cocycle BF
n is not every-

where continuous. However, Lemma 2.4 provides us with enough continuity. It is

straightforward to modify the proof of Proposition 2.8, using Lemma 2.4, to obtain

the following corollary. Recall that the Veronese embedding ι̂n : ∂H3 → F (Cn) is a

topological embedding that is equivariant with respect to the irreducible representation

ιn : PSL2C → PSLnC.

Corollary 2.10. Let ρ0 : Fd → PSL2C be a homomorphism, ρ : G → PSLnC be dense,

and Z = ∑M
j=1 ai[w

j
0, ..., wj

3] ∈ C3(Fd; R).

If there is a point x ∈ H3 such that, for each j = 1, ..., M, the four points

ρ0(wj
0).x, ...., ρ0(wj

3).x ⊂ ∂H3 are pairwise distinct, then for any ε > 0, there exists

Z(ε) ∈ C3(G; R) such that

|(ιn ◦ ρ0)∗Bι̂n(x)
n (Z) − ρ∗Bι̂n(x)

n (Z(ε))| < ε.

Moreover, ‖Z(ε)‖1 ≤ ‖Z‖1 and ‖∂Z(ε)‖1 ≤ ‖∂Z‖1.

The reader who is interested only in the question of (non-)vanishing of

higher dimensional volume classes can skip directly to Section 7, and in particular

Proposition 7.2, where the ideas from this section are applied.
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24 J. Farre

3 The structure of tame hyperbolic three-manifolds

In this section, we review the classification theory of finitely generated Kleinian groups.

We use this classification to provide a detailed argument to deduce Theorem 1.2 from

Theorem 1.1 and previous work of the author, building on work of Soma. The presence of

parabolic elements in Kleinian groups significantly complicates the discussion of ends

and end invariants. The only part of the paper in which we need to understand influence

of parabolic cusps is in Lemma 4.7, and is essentially independent of the main line of

argument.

We begin by defining some of the basic objects associated to a marked Kleinian

group, turn to an observation about groups of isometries of non-positively curved

symmetric spaces generated by ‘small’ elements, and discuss the structure of the ends

of complete hyperbolic three-manifolds with infinite volume and finitely generated

fundamental group. We end with the proof of Theorem 1.2, once we have established

these preliminary notions.

A Kleinian group is a discrete subgroup of PSL2C. Let + be an abstract discrete

group, and suppose ρ : + → PSL2C is an injective group homomorphism with discrete

image, i.e. ρ is discrete and faithful. We call ρ a Kleinian representation or a marked

Kleinian group. We will be most interested in the case that + is a non-abelian free

group or the fundamental group of a closed oriented surface of genus at least two; we

will always assume that + is torsion free, however, if + is finitely generated and admits

a Kleinian representation, then + is virtually torsion free, by Selberg’s Lemma.

We spend some time providing statements and context for the structure and

classification theorems that we use in the sequel. Namely, the Tameness Theorem

(Theorem 3.3), the Covering Theorem (Theorem 3.8), and the Ending Lamination Theorem

(Theorem 3.10) for finitely generated marked Kleinian groups. In order to state these

theorems, we discuss families of hyperbolic surfaces, called simplicial hyperbolic

surfaces, that exit the geometrically infinite ends of hyperbolic three-manifolds. We

use properties of simplicial hyperbolic surfaces again in Section 4.1.

Given ρ : + → PSL2C as above, the space Mρ = H3/imρ of orbits is a complete

hyperbolic three-manifold. Since H3 is contractible, Mρ is a classifying space for +, and

ρ induces a homotopy class of maps K(+, 1) → Mρ that labels the homotopy classes of

loops in Mρ . If + is a closed surface group or a free group, then we can take K(+, 1) to be

a closed surface or a three-dimensional handlebody, respectively.
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3.1 The Margulis Lemma

Let G be a semi-simple Lie group of non-compact type, let K be a maximal compact

subgroup, and X = G/K the associated Riemannian symmetric space. In this paper, we

will be most interested in G = PSLnC and G = Isom+(Hd) for n, d ≥ 2. Then, X = H3

when n = 2 or d = 3. Following Thurston [56,Lemma 5.10.1], the following is known to

hyperbolic geometers as “The Margulis Lemma,” although it is perhaps more accurate

to refer to it as the “Kazhdan–Margulis Theorem” [31,Theorem 4.53].

Lemma 3.1 (The Margulis Lemma). Given G and X as above, there is a number µ =
µ(X) > 0 such that the following holds. If + = 〈γ1, ..., γk〉 ≤ G is a discrete group, and

there is a point x ∈ X such that d(x, γi.x) ≤ µ for each i = 1, ..., k, then + is virtually

nilpotent.

For the rest of this section, we will only be interested in the case that G = PSL2C
and X = H3. In this setting, the largest number µ3 = µ(H3) for which Lemma 3.1 holds

is called the three-dimensional Margulis constant. Any discrete virtually nilpotent

subgroup + ≤ PSL2C is virtually isomorphic to 1, Z or Z2.

Thurston [56, Corollary 5.10.2] pointed out that a hyperbolic manifold admits a

thick–thin decomposition as a consequence of Lemma 3.1. Given a complete hyperbolic

n-manifold M and ε > 0, let

M≥ε = {x ∈ M : the ball of radius ε centered at x is embedded in M},

be the thick part of M and M<ε = M \ M≥ε the thin part. In general, the injectivity

radius injx(M) is the supremum of the radii of balls centered at x that embed into M.

A hyperbolic manifold M is said to have bounded geometry if there is a positive lower

bound to injx(M), which is independent of x.

Corollary 3.2 (Thick–Thin Decomposition). Every component of M<µ3 is either

• the quotient of a horoball by a group of parabolic isometries that is free

abelian of rank 1 or 2, or

• the r neighborhood of a closed geodesic in M, where r ≥ 0.

The pre-compact components of M<µ3 are called Margulis tubes. The horoball

quotients are called rank-1 or rank-2 parabolic cusps, accordingly.
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26 J. Farre

3.2 Relative ends and tameness

Fix a Kleinian representation ρ : + → PSL2C, where + is finitely generated and torsion

free. Let Qρ denote the union of parabolic cusps in M<µ3
ρ , and let M◦

ρ = Mρ \ Qρ . The

set Pρ = ∂M◦
ρ is called the parabolic locus and consists of a finite number of tori and

open annuli corresponding to the frontiers of the rank-2 and rank-1 parabolic cusps,

respectively. McCullough has shown [37] that there is a relative compact core Kρ ⊂ M◦
ρ ,

a co-dimension 0 compact submanifold such that the inclusion Kρ ↪→ Mρ is a homotopy

equivalence, ∂Kρ contains all toroidal components of Pρ , and ∂Kρ meets each annular

component in a compact annulus. We let P◦
ρ = Kρ ∩ Pρ , so that P◦

ρ ↪→ ∂M◦
ρ is a homotopy

equivalence.

Given a relative compact core Kρ ⊂ Mρ , the ends Eρ of M◦
ρ are in one-to-one

correspondence with the components of ∂Kρ \ P◦
ρ , which are oriented surfaces of finite

type and negative Euler characteristic. The elements of Eρ are called relative ends of Mρ ;

for each component R ⊂ ∂Kρ \ P◦
ρ , the component ER of M◦

ρ \ Kρ whose closure contains

R is a neighborhood of the relative end [ER] ∈ Eρ .

The following theorem is known as the Tameness Theorem, and has been proved

independently by Agol [1, Section 6 and Theorem 10.2] and Calegari–Gabai [18, Theorem

7.3] building on important partial results of Marden, Thurston, Bonahon, Canary, Souto,

and many others. The statement of the tameness theorem that we include here can be

found in [47, Section 4.2].

Theorem 3.3 (The Tameness Theorem). There is a relative compact core Kρ ⊂ M◦
ρ such

that for each component R of ∂Kρ \ P◦
ρ , the closure of ER is homeomorphic to R × [0, ∞).

Moreover, Mρ is homeomorphic to intKρ , and M◦
ρ is homeomorphic to the complement in

Kρ of ∂Kρ \ P◦
ρ .

If Kρ ⊂ Mρ is a relative compact core such that the complement of Kρ in M◦
ρ

consists of product neighborhoods of ends, as in Theorem 3.3, say that Kρ is a standard

relative compact core. A compression body B is an oriented, compact, irreducible three-

manifold which has a distinguished boundary component ∂extB whose fundamental

group surjects onto π1(B); ∂extB is called the exterior boundary of B. If the exterior

boundary of B is incompressible, then B is homeomorphic to the trivial interval bundle

over ∂extB. If B is not a trivial interval bundle, the exterior boundary is the unique

compressible component of ∂B. The compression body B is a handlebody if and only

if ∂B = ∂extB, which is true if and only if π1(B) is a free group; see [52, Section 2.5].
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Borel and Volume Classes 27

Theorem 3.4 ([13,Theorem 2.1]). Let S be a component of ∂Kρ . There is a compression

body BS ⊂ Kρ whose exterior boundary is S such that inclusion BS ↪→ Kρ induces an

injection π1(BS) ↪→ π1(Kρ) = π1(Mρ), and BS is unique up to isotopy.

The submanifold BS is called the characteristic compression body neighbor-

hood of S for Kρ ; see also [40,Theorem 1.1.1], where characteristic compression body

neighborhoods are called incompressible neighborhoods. If a component of ∂Kρ is

incompressible, then the characteristic compression body neighborhood corresponding

to that component is just a collar neighborhood. Furthermore, the covering space

corresponding to that surface group is a trivial R bundle over that surface by Bonahon’s

Tameness Theorem [14,Théorème A]. The following corollary is our main application of

the Tameness Theorem 3.3.

Corollary 3.5. If + is a free group of rank k < ∞, ρ : + → PSL2C is discrete and faithful

and Kρ is a standard compact core for Mρ , then there is a homeomorphism f : Hk → Kρ ,

where Hk is a closed handlebody of genus k and f∗ = ρ on fundamental groups. There are

homotopically essential and distinct simple closed curves ν1, ..., νm ⊂ ∂Hk with disjoint

representatives such that f ({ν1, ..., νm}) are the core curves of the annuli P◦
ρ ⊂ ∂Kρ , and

m ≤ 3(k − 1). Finally, Mρ is homeomorphic to the interior of Hk.

Proof. We are guaranteed the existence of a standard compact core Kρ from Theorem

3.3. Then π1(Kρ) ∼= Fk, because Kρ is homotopy equivalent to Mρ , which has fundamental

group isomorphic to + = Fk. So the characteristic compression body neighborhood of

∂Kρ in Kρ is a handlebody of genus k, which has only one boundary component; hence,

Kρ is a handlebody of genus k. We can thus find f : Hk → Kρ inducing ρ on fundamental

groups. There are at most 3(k−1) homotopically essential, distinct, simple closed curves

in a surface of genus k bounding a closed handlebody of genus k. The identification

of f ({ν1, .., νm}) with the core curves of P◦
ρ is immediate from Theorem 3.3, as is the

statement that Mρ is homeomorphic to the interior of Hk. !

Remark 3.6. The homeomorphism f is not unique, nor are the curves ν1, ..., νm, even

up to isotopy. However, given any two homeomorphisms f : Hk → Kρ and f ′ : Hk → Kρ

inducing ρ on fundamental groups, there is a homeomorphism φ : ∂Hk → ∂Hk that

extends to a homeomorphism 7 : Hk → Hk such that f ◦7 is homotopic to f ′. If ν′
1, ..., ν′

m

are the curves corresponding to f ′ : Hk → Mρ from Corollary 3.5, then φ({νi}) is isotopic

in ∂Hk to {ν′
i}. See [47, Section 4.2].
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28 J. Farre

Given a component R of ∂Kρ \ P◦
ρ , let Mod0(R, Kρ \ P◦

ρ) ≤ Mod(R) be the group

of homotopy classes of orientation preserving self homeomorphisms of R which extend

to homeomorphisms of Kρ homotopic to the identity on Kρ . If R is incompressible, then

Mod0(R, Kρ \ P◦
ρ) is trivial. For a component S of ∂Kρ , define Mod0(S, Kρ) similarly.

3.3 Structure of ends and invariants

Let ρ : + → PSL2C be a discrete and faithful representation of a finitely generated

group + without torsion, as above. The limit set )ρ ⊂ ∂H3 is the set of accumulation

points of (imρ).x for some (any) x ∈ ∂H3. The complement 8ρ = ∂H3 \ )ρ is called

the domain of discontinuity, and imρ acts properly discontinuously as a group of

conformal automorphisms of ∂H3 preserving 8ρ . Then, Mρ = H3 ∪ 8ρ/imρ is a three-

manifold with boundary 8ρ/imρ that is a disjoint union of Riemann surfaces with finite

hyperbolic area. The convex core CC(Mρ) ⊂ Mρ is the quotient of the convex hull of )ρ

by imρ.

Let Kρ be a standard relative compact core for Mρ . Say that a relative end [ER] ∈
Eρ is geometrically finite if ER meets CC(Mρ) in a set of finite volume; we also say that

the corresponding boundary component R ⊂ ∂Kρ \ P◦
ρ is geometrically finite. Call [ER]

(or R) geometrically infinite otherwise. If R is geometrically finite, then the complement

ER \ CC(Mρ) has f laring geometry; the metric on ER \ CC(Mρ) ∼= R × (0, ∞) is isotopic to a

metric that is bi-Lipschitz equivalent to the metric cosh2(t)dx2 + dt2, where dx2 is the

intrinsic path metric on the component of ∂CC(Mρ) corresponding to R.

Suppose R is geometrically finite; then the inclusion R ↪→ ER is isotopic, through

level surfaces of the product ER, into ∂Mρ and defines a point in a quotient of the

Teichmüller space ν(R) ∈ T (R)/Mod0(R, Kρ \ P◦
ρ). The equivalence class ν(R) is the end

invariant of [ER].

We would like to give a description of geometrically infinite ends; to motivate

Definition 3.7, we start with an example. Let S be a closed, oriented surface of

negative Euler characteristic, and ϕ : S → S be a pseudo-Anosov homeomorphism.

The equivalence relation generated by (x, t) ∼ (ϕ(x), t + 1) defines a normal covering

projection π : S × R → Nϕ onto the mapping torus Nϕ of ϕ with infinite cyclic deck

group. Thurston’s Hyperbolization Theorem [57, Theorem 0.2] states that the mapping

torus Nϕ has a complete hyperbolic metric; thus, so does the Riemannian covering

space π : S × R → Nϕ , which gives rise to a discrete and faithful representation

ρ : π1(S) → PSL2C. We assume that the Riemannian covering π : Mρ → Nϕ is a local

isometry. Let γ0 be a simple closed curve in S × {0} ⊂ Mρ . Then π(γ0) has a unique
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Borel and Volume Classes 29

geodesic representative π(γ0)∗ in its homotopy class. Each component of the preimage

π−1(π(γ0)∗) = {γ ∗
i }i∈Z corresponds to a translate of the geodesic representative γ ∗

0 of γ0

in Mρ by an element of the deck group of π . Since the action of a generator of the deck

group induces ϕ on level surfaces, the curve γ ∗
i is homotopic to γi = ϕi(γ0) ⊂ S × {0}.

In particular, the two ends of Mρ in this example are geometrically infinite, because

CC(Mρ) contains all closed geodesics, and {γ ∗
i }i∈Z ⊂ CC(Mρ) is not a compact set, but {γ ∗

i }
exits both ends of Mρ .

Although we will not discuss measured geodesic laminations in detail, we note

also that the curves {γi}i>0 limit, as projective measured laminations, to the projective

class of a measured geodesic lamination that is fixed by ϕ, and similarly in the opposite

direction.

Definition 3.7. With notation as above, a relative end ER of Mρ is called simply

degenerate or degenerate if there is a sequence of closed geodesics {γ ∗
i }i∈N ⊂ ER that

exit compact subsets of ER and which are homotopic in ER to simple curves γi ⊂ R.

By [18, Theorem 7.2], if R is not geometrically finite, then ER is simply

degenerate. Given a Riemannian metric g of finite area and pinched negative curvature,

a geodesic lamination λ ⊂ R is a closed set foliated by complete g-geodesics. Bonahon

[14] showed that if {γi} and {γ ′
i } are any two sequences of closed geodesics in Mρ exiting

ER, then the geometric intersection

i

(
γi

2g(γi)
,

γ ′
i

2g(γ ′
i )

)

→ 0, asi → ∞.

Here, 2g(γ ) denotes the length on (R, g) of the unique closed geodesic in the homotopy

class of γ . By Thurston’s theory of measured geodesic laminations [56, Chapter 8], there

is a geodesic lamination λR such that γi/2g(γi) converges in measure to a measured

geodesic lamination whose support is λR. It is known ([14, 16, 56]) that λR is compactly

supported, minimal, and filling, i.e. the complement of λR in R consists of a collection

of ideal polygons with geodesic boundary and once punctured polygons, and no leaf

of λR is isolated. A compactly supported, minimal and filling geodesic lamination is

called an ending lamination for R, and the set of ending laminations, given a topology

by unmeasuring, defines a space EL(R) of ending laminations supported by R. See

[34] to see why the topology on EL(R) given by unmeasuring is the natural one, from

the perspective of Kleinian groups. See [25] for a precise definition of the topology of

EL(R) and an investigation of its connectivity properties. For any two negatively curved
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30 J. Farre

Riemannian structures on R, the spaces of geodesic ending laminations are canonically

homeomorphic. The ending lamination λR ∈ EL(R)/Mod0(R, Kρ \P◦
ρ) is the end invariant

ν(R) of the degenerate end [ER].

The following theorem of Thurston [56] and Canary [17, Corollary B] states that

the only way that ‘new’ geometrically infinite relative ends can appear in the total space

of a Riemannian covering of complete hyperbolic three-manifolds of infinite volume

are as finite covers of ‘old’ geometrically infinite relative ends. All other ends are

geometrically finite.

Theorem 3.8 (The Covering Theorem). Let ρ : + → PSL2C be a torsion free finitely

generated marked Kleinian group such that Mρ has infinite volume, and let i : +̂ → + be

inclusion of a finitely generated subgroup. Then either

(a) Mρ◦i is geometrically finite, i.e. all relative ends of Mρ◦i are geometrically

finite, or

(b) For every simply degenerate end of M◦
ρ◦i, there is a neighborhood ER̂ of that

end and a neighborhood ER of a simply degenerate end of M◦
ρ such that the

covering projection Mρ◦i → Mρ restricts to a finite sheeted covering ER̂ → ER.

We may assume that ER̂ and ER are both products, so that the covering ER̂ → ER

induces a finite sheeted covering R̂ → R of surfaces.

3.4 Simplicial hyperbolic surfaces

One way to study the geometry of simply degenerate ends of hyperbolic 3three-

manifolds is to ‘probe’ them with negatively curved surfaces. A triangulation T of a

closed surface S, is a three-tuple T = (V, A, T); V is a finite set of vertices, A is a maximal

simple arc system, and T is a union of oriented two-simplices with embedded interiors

in S that are compatible with V and A; the sum of simplices in T is required to represent

the fundamental class of S. With this definition, a triangulation T is not necessarily

associated to the geometric realization of a simplicial complex, e.g. T may only have the

structure of a 1-complex.

The following definitions are essentially due to Bonahon [14]; we make some

modifications to allow for the possibility that a relative compact core for Mρ has

compressible boundary components. Namely, we will be interested in the case that

ρ : Fk → PSL2C is discrete and faithful and without parabolics, so that Mρ is the

interior of a genus k handlebody, by Corollary 3.5. There is only one component S of
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Borel and Volume Classes 31

the boundary of a standard relative compact core for Mρ . In what follows, we encourage

the reader to keep in mind this example with E = ES, a product neighborhood of the end

of Mρ . See also [17,Section 4].

Let E ⊂ Mρ be a codimension zero submanifold homeomorphic to a product

S × R where S is a closed oriented surface of genus at least two. A simplicial pre-

hyperbolic surface is a pair (f , T ) where f : S → E is a π1-injective continuous map;

T is a triangulation of S, so that for each α ∈ A, imf ◦ α ⊂ E is an Mρ-local geodesic

segment, and for each 2two-simplex τ of T , imf ◦ τ ⊂ E is Mρ-geodesically immersed.

A simplicial pre-hyperbolic surface is a simplicial hyperbolic surface if the cone angle

about each vertex in the intrinsic metric gf on S induced by f is at least 2π . By a lemma of

Ahlfors [2], there is a unique hyperbolic metric g on S in the conformal class of gf such

that the identity (S, g) → (S, gf ) is 1-Lipschitz. Thus, geometric bounds on hyperbolic

surfaces translate to geometric bounds for simplicial hyperbolic surfaces, further giving

us geometric estimates on E, since the composition mapping S → E → Mρ is 1-Lipschitz.

From a pre-simplicial hyperbolic surface (f : S → E, T ) with one vertex, we can

often construct a simplicial hyperbolic surface (g : S → E, T ) homotopic within E to f

as follows. Since T has only one vertex v, every arc α ∈ A maps to a locally geodesic

loop based at f (v); the image is not necessarily smooth at f (v). Suppose there is an arc

α ∈ A such that the geodesic representative f (α)∗ of f (α) in Mρ is contained in E, as

is (the projection of) the straight line homopty between (appropriate lifts of) f (α) and

f (α)∗. There is a new map g : S → E homotopic to f obtained by ‘dragging’ all arcs

along the image of v under the straight line homotopy between f (α) and f (α)∗ and re-

straightening all 1- and 2-simplices in the image relative to g(v). As long as the straight

line homotopy between f and g is contained in E, then (g, T ) is a simplicial hyperbolic

surface. Indeed, we now just need to check that the cone angle about v is at least 2π . But,

this follows from the fact that g(v) lies on a smooth geodesic subsegment of g(α) = f (α)∗;

the intersection of g(S) with a small sphere about g(v) is a piecewise spherical geodesic

loop passing through antipodal points, hence the cone angle in the metric induced by g

about v is at least 2π [17, Lemma 4.2].

We will make use of the following result for simplicial hyperbolic surfaces, due

to Bonahon [14].

Lemma 3.9 (Bounded Diameter Lemma). For any compact set K ⊂ Mρ , there is a

compact set K′ ⊂ Mρ such that if f : S → E ⊂ Mρ is a simplicial hyperbolic surface

and imf ∩ K *= ∅, then imf ⊂ K′. The diameter of f (S) is bounded above by a constant

that depends only on the topology of S and the injectivity radius of Mρ in K′.
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32 J. Farre

Suppose ρ : Fk → PSL2C is discrete and faithful without parabolics and Mρ has

a geometrically infinite end ES, where S is closed. Then using also our characterization

of geometrically infinite ends of a hyperbolic three-manifold as those that have a

sequence {γ ∗
i } of closed geodesics exiting the end ES of Mρ homotopic to simple curves

in S × {0}, we can construct an infinite sequence of ‘well spaced’ simplicial hyperbolic

surfaces exiting ES. Choose points vi ∈ γ ∗
i , and let Ai be a maximal system of based

loops containing γi ⊂ S × {0}, cutting S into triangles. For large enough i, the straight

line homotopy between Ai and the corresponding locally geodesic loops based at vi is

contained in an open neighborhood of ES [16], thus we can ‘hang’ simplicial hyperbolic

surfaces fi : S → ES from the geodesics γ ∗
i , as above. Since {γ ∗

i } exit all compact subsets

of ES to [ES], by Lemma 3.9, we can pass to a subsequence so that imfi has empty

intersection with imfj, if i *= j.

3.5 The Ending Lamination Theorem

We continue with our notation from before; ρ : + → PSL2C is a torsion free finitely

generated marked Kleinian group, and Kρ is a standard relative compact core for Mρ . We

summarize how to collect the end invariants ν. Let S1, ..., Sk be the components of ∂Kρ

with negative Euler characteristic; they are closed surfaces that inherit the boundary

orientation from Kρ . The annular components of P◦
ρ have core curves that are identified

with homotopically distinct, essential simple closed curves ν(P◦
ρ) ⊂ 9Si. Then for each

component R ⊂ ∂Kρ \ P◦
ρ we record a piece of data; if R is geometrically finite, then

ν(R) ∈ T (R)/Mod0(R, Kρ \ P◦
ρ) is an equivalence class of conformal structure at infinity.

If R is geometrically infinite, then ν(R) ∈ EL(R)/Mod0(R, Kρ \ P◦
ρ) is the corresponding

equivalence class of ending lamination. To ρ, we associate all of these data ν(ρ).

The motto of the Ending Lamination Theorem is, ’the topology and geometry

at infinity determine the metric.’ The Ending Lamination Theorem is a classification

theorem for finitely generated Kleinian groups; it helps answer many of the questions

about the behavior of hyperbolic three-manifolds, their deformations spaces, and

limiting behavior.

Theorem 3.10 (The Ending Lamination Theorem). Let + be a finitely generated non-

abelian group without torsion, let ρ, ρ′ : + → PSL2C be marked Kleinian groups, and let

Kρ ⊂ M◦
ρ and Kρ′ ⊂ M◦

ρ′ be standard relative compact cores.

If there is a homeomorphism φ : Kρ \ P◦
ρ → Kρ′ \ P◦

ρ′ such that φ∗ = ρ′ ◦ ρ−1 and

φ(ν(ρ)) = ν(ρ′), then φ extends to a homeomorphism 7 : Mρ → Mρ′ that is isotopic to
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an isometry inducing ρ′ ◦ρ−1 on fundamental groups. Equivalently, there is a g ∈ PSL2C
such that gρg−1 = ρ′.

In other words, if the topological type of Mρ and Mρ′ agree and so do the relative

end invariants, then Mρ is isometric to Mρ′ in the homotopy class of the classifying map

determined by ρ′ ◦ ρ−1.

We owe the reader attributions and references. The final ingredients to prove

Theorem 3.10 were given by Brock–Canary–Minsky [8, Ending Lamination Theorem for

Incompressible Ends], and in a follow up paper [7] that carries out the details needed to

modify the proof when Mρ has compressible ends, using Canary’s Branched Cover Trick

[16], as outlined in [8, Section 1.2]. For Kleinian surface groups, Minsky built a model

manifold Mν from a list of end invariants ν out of blocks and tubes. He also constructed

a Lipschitz map (with Lipschitz constant depending only on the topology of the surface)

Mν → M, where M is a hyperbolic manifold with end invariants ν [39, Extended Model

Theorem]. The geometry and arrangement of the tubes in the model manifold Mν is

extracted from a hierarchy of tight geodesics and careful analysis of the geometry of

Harvey’s complex of curves carried out by Masur–Minsky in [41, 42]. The Lipschitz model

map was then promoted to a bi-Lipschitz model map that extends to a conformal map

at infinity [8,Bi-Lipschitz Model Theorem]. So, if Mρ and Mρ′ have the homotopy type

of a finite type surface (with a parabolicity condition on the boundary curves of the

surface) and they have the same end invariants, as seen from some reference surface,

then there is a bi-Lipschitz homeomorphism between them, compatible with markings,

that extends to a conformal map at infinity; by Sullivan’s Rigidity Theorem [54], the

bi-Lipschitz mapping is homotopic to an isometry.

If all of the relative ends of Mρ are simply degenerate, we say that Mρ is totally

degenerate. The Ending Lamination Theorem 3.10 implies that the marked isometry

type of a totally degenerate manifold Mρ is completely determined by the topology of

a standard relative compact core and list of ending laminations.

The general statement for the Ending Lamination Theorem (including the

case that there are compressible relative ends) is made possible by the Tameness

Theorem 3.3. One studies the covering spaces associated to the relative ends of a given

manifold M, builds models of the ends from the end invariants, and assembles the pieces

to obtain a bi-Lipschitz model for M. All of this builds on the important contributions

of Thurston, Ahlfors, Bers, Marden, Maskit, Sullivan, Bonahon, Otal, O’shika, and many

others. Soma [51] has recently given an alternate strategy using methods from bounded

cohomology and volume rigidity.
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3.6 Quasi-isometric classification of marked Kleinian surfaces and free groups

For constants M ≥ 1 and A ≥ 0, an (M, A)-quasi-isometry f : X → Y between metric

spaces is a map that satisfies

1
M

dX(x, x′) − A ≤ dY(f (x), f (x′)) ≤ MdX(x, x′) + A

for all x, x′ ∈ X. Thurston defined the quasi-isometric topology on the space of

hyperbolic manifolds with a given homotopy type in [57, Section 1]; say that two discrete

and faithful representations ρ1, ρ2 : + → PSL2C of a finitely generated non-elementary

group + are quasi-isometric, and write ρ1 ∼q.i ρ2, if there are M and A as above and a

(ρ1, ρ2)-equivariant (M, A)-quasi-isometry H3 → H3. An equivariant quasi-isometry of

representations extends to an equivariant quasi-conformal map at infinity, where the

quasi-isometry constants give control on the quasi-conformal constant of the map at

infinity.

A weaker version of the implication ‘(1) ⇒ (3)’ in the following theorem was

given by Soma [49, Theorem A]; in that paper, all manifolds are homotopy equivalent

to a closed surface, have bounded geometry, and two degenerate ends. The number ε

in Soma’s [49, Theorem A] depends on the lower bound ε′ for the injectivity radius of

the manifolds involved and ε goes to zero with ε′. In particular, the techniques that

prove [49, Theorem A] do not apply to manifolds with unbounded geometry. Part of the

novelty of Theorem 3.11 is that our techniques are equally amenable to manifolds with

unbounded geometry, a topologically generic set at the boundary of the deformation

space of hyperbolic metrics, and our constant ε is uniform over all metrics; it only

depends on the homotopy type of the manifolds Mρi
but not their geometry.

Theorem 3.11 ([20, 21]). Let S be an orientable hyperbolic surface of finite type. There

is a constant ε = ε(S) > 0 such that if ρ1, ρ2 : π1(S) → PSL2C are discrete and faithful

with no parabolic elements, then the following are equivalent.

1. ‖[ρ∗
1vol3] − [ρ∗

2vol3]‖∞ < ε

2. [ρ∗
1vol3] = [ρ∗

2vol3]

3. ρ1 ∼q.i. ρ2.

Moreover, if Mρ1
has a geometrically infinite end and ρ3 : π1(S) → PSL2C is an arbitrary

representation satisfying ‖[ρ∗
1vol3] − [ρ∗

3vol3]‖∞ < ε, then ρ3 is faithful.
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Proof of Theorem 3.11. Let ε < min{ε′/2, v3}, where ε′ is as in [20, Theorem 1.2] and

only depends on the topology of S. The last statement is [20, Theorem 1.3], which states

that ρ3 is faithful.

Condition (2) implies condition (1), trivially. Now we show that (3) implies

(2). We need the classical fact that an equivariant quasi-isometry extends to an

equivariant quasi-conformal homeomorphism at infinity (see, e.g. [56, Corollary 5.9.6]).

This quasi-conformal homeomorphism extends to a volume preserving bi-Lipschitz

diffeomorphism Mρ1
→ Mρ2

inducing ρ2 ◦ ρ−1
1 on fundamental groups; see [38, Appendix

B], [4, Theorem 5.6], or [21, Theorem 3.1], where those results are summarized. We can

apply [21, Corollary 3.6] or the proof of [21, Theorem 3.2] to see that [ρ∗
1vol3] = [ρ∗

2vol3].

Finally, we show that (1) implies (3). With ε as in the first paragraph, [20,

Theorem 1.2] states that the geometrically infinite end invariants of Mρ1
must be the

same as the geometrically infinite end invariants of Mρ2
. If Mρ1

is totally degenerate,

then ν(ρ1) = ν(ρ2). By the Ending Lamination Theorem 3.10, ρ1 is conjugate, hence quasi-

isometric, to ρ2.

So, we now assume that at least one end of Mρ1
is geometrically finite. If π1(S) is

free, then by Corollary 3.5, Mρ1
and Mρ2

are handlebodies of the same genus, and since

imρi has no parabolic elements, there is only one relative end of Mρi
, for i = 1, 2. For

geometrically finite hyperbolic manifolds with no parabolic cusps, CC(Mρi
) is a standard

compact core for Mρi
; we may find a bi-Lipschitz homeomorphism φ : intCC(Mρ1

) →
intCC(Mρ2

) inducing ρ2◦ρ−1
1 on fundamental groups. The neighborhood Ei = Mρi

\CC(Mρi
)

of the end of Mρi
is a product S′×(0, ∞), where S′ is a closed surface of genus equal to the

rank of π1(S), and its metric is bi-Lipschitz equivalent to cosh2(t)dx2
i + dt2, where dxi

is the induced path metric on ∂CC(Mρi
). Thus, φ extends to a homeomorphism mapping

level surfaces of E1 to level surfaces of E2 with respect to the aforementioned product

structure on Ei. Since the path metrics on ∂CC(Mρi
) are bi-Lipschitz equivalent to each

other and CC(Mρ1
) and CC(Mρ2

) are compact, the map φ : Mρ1
→ Mρ2

is a bi-Lipschitz

homeomorphism that lifts to an equivariant bi-Lipschitz homeomorphism H3 → H3.

Thus, ρ1 ∼q.i. ρ2.

If S is closed then Mρi
∼= S × R by Bonahon’s Tameness Theorem [14, Théorèm

A] and since imρi contains no parabolics, standard compact cores for Mρi
are of the

form S × [0, 1], for each i = 1, 2. There are two possibilities for the geometry of the

ends of Mρi
. If Mρ1

has no geometrically infinite ends, then the same is true for Mρ2
.

A similar argument to the previous paragraph produces an equivariant bi-Lipschitz

mapping H3 → H3, and so ρ1 ∼q.i ρ2. The last possibility is that Mρi
each has one

degenerate end and one geometrically finite end. In this case, the convex cores of Mρi
are
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neighborhoods of their degenerate ends, and [8, Bi-Lipschitz Model Theorem] supplies

us with a bi-Lipschitz homeomorphism φ : CC(Mρ1
) → CC(Mρ2

) inducing ρ2 ◦ ρ−1
1 on

fundamental groups. Again, we extend φ to a bi-Lipschitz homeomorphism Mρ1
→ Mρ2

mapping flaring level surfaces to flaring level surfaces in the complement of the convex

core. The conclusion of the theorem follows, as in the previous cases. !

There are geometrically finite representations of a closed surface S of genus

g ≥ 2 that are not quasi-isometric to each other. For example, take pants decompositions

α and β of a closed surface S with no common curves. There is a unique conjugacy

class ρ : π1(S) → PSL2C such that the quotient manifold Mρ has 6g − 6 rank-1 cusps.

Kρ is a trivial interval bundle over S, with two boundary components S+ and S−. The

components of P◦
ρ are annular subsurfaces of S+ and S− with core curves α ⊂ S+ and

β ⊂ S−; each complementary component of ∂Kρ \ P◦
ρ is homeomorphic to a three-times

punctured sphere. The only simple closed curves on three times punctured spheres are

parallel to the punctures and do not have geodesic representatives in a finite area

metric of non-positive curvature, so there are no ending laminations, being limits of

geodesic simple closed curves, on a three times punctured sphere. Every relative end

of this example is geometrically finite. In fact, since the Teichmüller space of a three

times punctured sphere is a point, every relative end is isometric to every other relative

end in this example. The volume class vanishes by Theorem 2.1, but ρ is not quasi-

isometric to any Fuchsian representation. Thus, the assumption that representations

have no parabolic elements cannot be dropped in Theorem 3.11.

Now we prove Theorem 1.2, assuming Theorem 1.1, which is the last ingredient

for our quasi-isometric volume rigidity result.

Theorem 3.12. There exists a constant ε = ε(S) such that the following holds. Suppose

that ρ0 : π1(S) → PSL2C is a discrete and faithful representation without parabolic

elements, and that [ρ∗
0vol3] *= 0. If ρ : π1(S) → PSL2C is any other representation without

parabolics satisfying

‖[ρ∗
0vol3] − [ρ∗vol3]‖∞ < ε,

then ρ is discrete and faithful, and ρ is quasi-isometric to ρ0. If ρ0 is totally degenerate,

then ρ0 and ρ are conjugate in PSL2C.
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Proof. Choose ε as in Theorem 3.11. Then ρ0 is discrete, faithful, and [ρ∗
0vol3] *= 0,

so we can apply Theorem 2.1 to see that ‖[ρ∗
0vol3]‖∞ = v3, and Mρ0

has a geometrically

infinite end. We can apply the last statement of Theorem 3.11 to deduce that ρ is faithful.

By Theorem 1.1, since ρ0 is discrete and ‖[ρ∗
0vol3] − [ρ∗vol3]‖∞ < ε < v3, ρ

cannot have dense image. The triangle inequality gives ‖[ρ∗vol3]‖ > v3 − ε > 0. Thus,

[ρ∗vol3] *= 0 and so ρ has discrete image by Lemma 2.2. Now that we know that ρ is

discrete and faithful, we can apply the main body of Theorem 3.11 to see that ρ ∼q.i. ρ0.

This concludes the proof of the first statement of the theorem.

If Mρ0
is totally degenerate, then all of the end invariants of Mρ and Mρ0

coincide.

By the Ending Lamination Theorem 3.10, ρ0 is conjugate to ρ in PSL2C, as in the proof

of Theorem 3.11. !

4 Volume classes of dense representations

We will prove our main theorems for the three-dimensional volume class in this

section by building efficient chains from a geometrically infinite Kleinian free group

+ = 〈a, b〉 ≤ PSL2C that contains no parabolics. Then, we will approximate the shape of

those chains using a dense representation. Call a n-chain Z ε-efficient or just efficient

if |voln(Z)|
‖Z‖1

> ε. We recall Soma’s construction of efficient chains in a hyperbolic manifold

H3/+, where + is any finitely generated, torsion free, infinite co-volume, geometrically

infinite Kleinian group + ≤ PSL2C. Then, we use tools from Section 2.3 to turn these

efficient chains into efficient three-chains with only one vertex, which then define

chains on +. If we have a dense representation ρ : G → PSL2C, we can approximate a

and b by sequences an = ρ(xn) and bn = ρ(yn) for suitably chosen xn, yn ∈ G. The shape

of the chain on + with large volume and small boundary area can be approximated by

chains on the groups 〈an, bn〉. The chains in the approximates have essentially the same

volume as the chains which came from the manifold H3/+, as in Section 2.6.

We have a natural way to collapse a straightened singular three-chain in H3+

with many vertices onto a chain with only one vertex. We lose some volume during

this collapsing process, but the loss of volume is controlled in terms of the 21-norm of

the boundary of the original chain, which is uniformly bounded. We need to prove a

number of technical facts about these one-vertex chains that rely on geometrical facts

concerning hyperbolic three-manifolds. This allows us to show that the volume class of

any dense representation has maximal semi-norm.
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Then, we prove some auxiliary results about certain subgroups of Kleinian

groups to show that certain volume classes are separated in semi-norm, as announced

in Theorem 1.1 and Theorem 1.5.

4.1 Constructing efficient chains

There are several chain complexes in which a three-chain Z could live, e.g. in a group

+ or a quotient manifold H3/+, and vol3 should be interpreted in whichever context it

makes sense. In what follows, we show that for chains Z whose boundary has small 21-

norm, it is not so important where we compute the volume; this is most of the content

of Proposition 4.2.

In [20], we constructed sequences of three-chains on geometrically infinite genus

g handlebodies with large volume and small boundary area. These chains were εg-

efficient, where εg > 0 depends only on the topology of the handlebody (but not on its

geometry), and for which the boundary surfaces of the chains were well controlled. In

fact, they were simplicial hyperbolic surfaces; see Section 3.4. Soma [48, 49] constructed

(v3 − ε)-efficient chains, for any ε > 0, but the boundaries of his chains are not well

controlled and grow wilder as the efficiency constant gets closer to v3.

We will revisit Soma’s construction of efficient chains for a geometrically

infinite manifold with free fundamental group to extract a technical feature that we

require in the proof of Lemma 5.4. Soma’s chains are constructed via ‘smearing,’ as

in Thurston’s construction of efficient (measure) cycles representing the fundamental

class of a closed hyperbolic manifold [56, Chapter 6].

We will follow [49, Section 3]; note that although Soma requires that + be

isomorphic to a closed surface group, [49, Lemma 3.2] only depends on the topological

and geometrical structure of a geometrically infinite end of a topologically tame

hyperbolic three-manifold. See the proof of [48, Theorem 1] for further comments.

For the rest of this section, fix a discrete, faithful, and geometrically infinite

representation ρ0 : Fd → PSL2C with no parabolic elements, and let +0 denote imρ0. Let

π : H3 → H3/+0 = Mρ0
be the covering projection. It will be convenient to assume

that Mρ0
= H3/+0 has bounded geometry1 . By Corollary 3.5, Mρ0

is homeomorphic

to a handlebody Hd of genus d. There is a standard compact core Kρ0
that is also a

1 Generically, a simply degenerate end of a complete hyperbolic three-manifold homeomorphic to a
handlebody without parabolics has a sequence of closed geodesics with length tending to zero. However,
bounded geometry geometrically infinite handlebodies arise, for example, as geometric limits of closed
hyperbolic three-manifolds with bounded Heegaard genus and gluing data represented by powers of a pseudo-
Anosov homeomorphism going to infinity; see [46].
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handlebody, and E = Mρ0
\ Kρ0

is a neighborhood of the end of Mρ0
that is simply

degenerate; its closure is homeomorphic to S × [0, ∞), where S is an oriented surface

of genus d.

Find a sequence {(fn : S → E, Tn)} of simplicial hyperbolic surfaces, homotopic

to the inclusion S ↪→ S × {0}, with Xn = im(fn) exiting E toward [E]. The maps fn are

not embeddings, but E \ Xn consists of some compact components and a non-compact

component En ∈ [E]. Pass to a subsequence such that {Xn} are pairwise disjoint (see the

discussion following the Bounded Diameter Lemma 3.9) and Em ⊃ En if m < n. Also let

Lm,n denote the closure of Em \ En, which is a compact set.

Let σ : 13 → H3 be a non-degenerate straight simplex; abusing notation we

ignore the parameterization of the map and identify σ with its image in H3 or even

its ordered vertex set. In each straight simplex, there exists a unique inscribed ball,

meeting each face in a point. Let center(σ ) ∈ H3 denote the center of this inscribed ball.

We describe a Borel measure smearσ on the space of locally straight three-simplices

S (Mρ0
) = (H3)4/+0

in Mρ0
. If σ is a straight simplex in H3, then π(σ ) denotes the corresponding element of

S (Mρ0
).

Consider the Haar measure µ on PSL2C normalized so that, for any x ∈ H3 and

any Borel measurable set K ⊂ H3,

µ({g ∈ PSL2C : g.x ∈ K ⊂ H3}) = Vol(K),

the hyperbolic volume of K. Then, µ descends to a measure (with the same name) on

+0\PSL2C. Finally, we define smearσ as follows: for a Borel measurable set K ⊂ S (Mρ0
),

we define

smearσ (K) = µ({ḡ ∈ +0\PSL2C : π(g.σ ) ∈ K}).

Also to K ⊂ Mρ0
we associate the set of simplices

Sσ (K) = {π(g.σ ) ∈ S (Mρ0
) : π(center(g.σ )) ∈ K},
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so that

smearσ (Sσ (K)) = Vol(K).

Fix a geodesic plane H2 ⊂ H3 and let r : H3 → H3 be reflection in H2, so that the

simplex r ◦ σ is isometric to σ with the opposite orientation. Define

z(σ ) = 1
2

(smearσ − smearr ◦ σ ).

By restricting the support of z(σ ) to Sσ (L0,k), we obtain a family of Borel measures zk(σ )

with total variation ‖zk(σ )‖ = Vol(L0,k) and

∫

S (Mρ0 )
vol3(σ ′) dzk(σ )(σ ′) = vol3(σ )Vol(L0,k). (7)

In Thurston’s smooth measure homology theory, each zk(σ ) defines a measure

chain, i.e. a signed measure on the space of smooth singular simplices satisfying a

local finiteness condition. A straight singular chain Z = ∑
aiσi ∈ Cstr

k (Mρ0
) defines

a smooth measure chain
∑

aiδσi
, where δτ is the Dirac measure supported on τ . This

correspondence induces a continuous chain map with respect to the topology induced

by the 21- and the total variation norms, respectively. In fact, singular homology and

smooth measure homology are isometrically isomorphic with respect to the 21- and total

variation semi-norms [36, Theorem 1.2].

Lemma 4.1 ([49, Lemma 3.2]). Given d, there exists a constant Kd > 0 depending only

the topology of the surface Sd
∼= ∂Kρ0

, such that for every ε > 0, there is a sequence

Vk ∈ Cstr
3 (Mρ0

; R) such that the following properties hold:

1. |vol3(Vk)|
‖Vk‖1

> v3 − ε for all k,

2. ‖∂Vk‖1 ≤ Kd, for all k, and

3. |vol3(Vk)| → ∞.

Proof. Sketch of proof We consider the regular simplex σt with edge lengths t >> 0

and the Borel measures {zk(σt)}∞k=1 on S (Mρ0
). We know that |vol3(σt) − v3| decreases

exponentially in t [56, Theorem 6.4.1], but we only need the fact that for t large enough,

vol3(σt) > v3 − ε/2.

For the appropriate definition of the boundary of a measure chain, we have

‖∂zk(σt)‖ ≤ Kd, where Kd only depends on the topology of the surface Sd
∼= ∂Kρ0

. Indeed,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab078/6236094 by guest on 26 M

ay 2021



Borel and Volume Classes 41

consider a simplex π(g.σt) with center(π(g.σt)) ∈ L0,k but far from ∂L0,k. Let τ be a face of

σt and let rτ be reflection through the plane containing τ ; rτ is conjugate to r in PSL2C.

A computation shows that

dH3(center(g.rτ ◦ σt), center(g.σt)) < 2. (8)

Thus center(π(g.rτ ◦ σt)) is far from ∂L0,k. The faces corresponding to τ coming

from π(g.σt) and the reflected copy match and cancel after applying ∂ to zk(σt). If

center(π(g.σt)) is close to ∂L0,k, then π(g.rτ ◦ σt) may not be in the support of zk(σt).

However, π(g.rτ ◦ σt) ∈ Sr◦σt
(N2(∂L0,k)). Thus supp(∂zk(σt)) is contained in the set of

locally straight triangles which are faces of tetrahedra with centers in N2(∂L0,k); we

conclude that ‖∂zk(σt)‖ ≤ Vol(N2(∂L0,k)) [49, Proof of Lemma 3.2]. Using the fact that

the induced metric on Xk has curvature everywhere at most −1, we can find a universal

constant V > 0 such that Vol(N2(∂L0,k)) ≤ V · |χ(Sd)| = Kd (see, for example, [48, Proof of

Theorem 1]).

To each measure chain zk(σt), we will associate a straight 3-chain Vt
k ∈

Cstr
3 (Mρ0

; R). For t large enough, every 1/t-ball in Mρ0
is embedded, because we have

assumed that Mρ0
has bounded geometry. Find a maximal (1/t)-separated collection of

points {pt
i}∞i=1 ⊂ Mρ0

, and let {Ut
i } be the Voronoi cells generated by {pt

i}. The boundary

of the closure of each cell has zero three-dimensional Lebesgue measure, and each cell

is connected, simply connected, precompact, and has a distinguished point pt
i ∈ Ut

i .

For each k, there is a finite subset of {Ut
i } that meet any simplex in the support of

zk(σt), because L0,k is compact, so that for each π(g.σt) with center in L0,k, we have

π(g.σt) ⊂ Nt(L0,k). So, only finitely many terms in the sum

Vt
k :=

∑
zk(σt)({π(g.σt) : g.σ (0)

t ∈ Ũt
i0 × ... × Ũt

i3}) · π(σ (p̃t
i0 , ..., p̃t

i3)) ∈ Cstr
3 (Mρ0

; R), (9)

are non-zero. The sum (9) ranges over all sets of the form Ũt
i0

× ... × Ũt
i3

where Ũt
ij

is

a lift of Ut
ij

, and σ (x, y, z, w) denotes the straight simplex in H3 with ordered vertex

set (x, y, z, w). The correspondence given by (9) actually defines a norm non-increasing

chain map between smooth measure chains and straight chains. In particular, ‖∂Vt
k‖1 ≤

‖∂zk(σt)‖ ≤ Kd.

For large t, the cells Ut
i have very small diameter, so we can ensure that

|vol3(σ (p̃t
i0 , ..., p̃t

i3)) − vol3(σt))| < ε/2 and vol3(σt) ≥ v3 − ε/2. (10)
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For µ-almost every g ∈ PSL2C, the vertices of π(g.σt) ∈ suppzk(σt) all lie in the

interior of cells Ut
i0

, ..., Ut
i3

. The Voronoi cells {Ut
i } form a measurable partition of Mρ0

,

from which it follows that

‖Vt
k‖1 = ‖zk(σt)‖. (11)

By construction, ‖zk(σt)‖ = Vol(L0,k), and Vol(L0,k) → ∞ as k → ∞, because ∪kL0,k =
E0 ∈ [E].

Finally, from (10), (11), and (7), we obtain

vol3(Vt
k) ≥ ‖Vt

k‖1(v3 − ε),

if t is large enough; set Vk = Vt
k. !

Proposition 4.2. For every positive integer d ≥ 2, there is a constant Kd > 0 depending

only on the topology of Sd
∼= ∂Kρ0

with the following properties. For every ε > 0, there

exists a sequence of chains Zk ∈ C3(Fd; R) such that for any x ∈ H3:

(i) |ρ∗
0volx3(Zk)|
‖Zk‖1

> v3 − ε, for all k, and

(ii) ‖∂Zk‖1 ≤ Kd, for all k, and

(iii) ‖Zk‖1 → ∞ and limk→∞
‖∂Zk‖1
‖Zk‖1

= 0.

Proof. Choose a point x̄ ∈ Mρ0
, and construct the chain map strx̄ : C•(Mρ0

; R) →
Cstr

• (Mρ0
, {x̄}; R) from Section 2.3; recall that the operator norm satisfies ‖strx̄‖ ≤ 1 and

we have a chain homotopy H•
x̄ between strx̄ and id, such that ‖Hk

x̄‖ = k + 1; see (1). Since

vol3 is a bounded cocycle on the straight chains Vk ∈ Cstr
3 (Mρ0

; R) provided by Lemma

4.1, we have

|vol3(strx̄Vk − Vk)| = |vol3(H2
x̄∂Vk)| ≤ ‖vol3‖∞‖H2

x̄∂Vk‖1.

Using property (2) and the fact that ‖H2
x̄‖ = 3, we get

|vol3(strx̄Vk − Vk)| ≤ 3v3 · Kd.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab078/6236094 by guest on 26 M

ay 2021



Borel and Volume Classes 43

Apply the map (ρ0∗)
−1 ◦ ιx : Cstr

• (Mρ0
, {x̄}; R) → C•(+0; R) → C•(Fd; R) to obtain a

sequence

Zk = (ρ0∗)
−1 ◦ ιx(strx̄Vk)

so that ρ∗
0volx

3(Zk) = volx
3ιx(strx̄(Vk)). Since (ρ0∗)

−1 ◦ ιx is an isometric chain map and

‖strx̄‖ ≤ 1, we have ‖Zk‖1 ≤ ‖Vk‖1 and ‖∂Zk‖1 ≤ ‖∂Vk‖1 ≤ Kd, establishing property (2).

Since |vol3(Vk)| → ∞ as k → ∞, it follows that |ρ∗
0volx

3(Zk)| → ∞, as well. From

this, we see that ‖Vk‖1 and ‖Zk‖1 tend to ∞, from which we obtain property (3). Using

the triangle inequality, for k large enough, we have

v3 − ε <
|ρ∗

0volx
3(Zk)|

‖Zk‖1
,

which establishes property (1) after reindexing. !

Qualitatively, σt has extremely long and thin spikes; the spikes of π(σt) wander

circuitously around Mρ0
and are generically recurrent to any compact set in the limit as

t → ∞.

Lemma 4.3. In the statement of Proposition 4.2, we may take x ∈ ∂H3 such that

• (1) holds for all k;

• if for each k, we write

Zk =
Mk∑

j=1

aj,k[wj,k
0 , ..., wj,k

3 ] ∈ C3(Fd; R),

then, for each j = 1, ..., Mk, the points ρ0(wj,k
0 ).x, ..., ρ0(wj,k

3 ).x ∈ ∂H3 are

pairwise distinct.

Proof. From Section 2.4, for any point y ∈ H3 ∪ ∂H3 and for any Z ∈ C3(Fd; R),

|ρ∗
0volx

3(Z) − ρ∗
0voly

3(Z)| ≤ ‖∂Z‖13v3.

Using the triangle inequality and the fact that ∂Zk is bounded for all k, we can choose

x ∈ ∂H3 so that (1) holds, after reindexing.
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44 J. Farre

The group Fd is countable, so there are countably many attracting and repelling

fixed points of non-trivial elements of imρ0. Choose x ∈ ∂H3 that is not one of these

fixed points. Then for each k ≥ 1 and j = 1, ..., Mk, if wj,k
0 , ..., wj,k

3 are pairwise distinct,

then ρ0(wj,k
0 ).x, ..., ρ0(wj,k

3 ).x ∈ ∂H3 are pairwise distinct. Thus, we just need to show

no simplex in Zk is degenerate. For this, we revisit the construction of Soma’s chains

from Lemma 4.1. Fix x ∈ H3 and let D ⊂ H3 be the Dirichlet fundamental domain for

+0 centered at x. By definition of ιx : Cstr
• (Mρ0

, {x̄}; R) → C•(+0; R) from Section 2.3, it

is enough to show, given k, that if t is large enough, then every pair of vertices of any

simplex π(σ (p̃i0 , ..., p̃i3)) appearing in equation (10) defining Vt
k lie in distinct translates

of D. By invariance and without loss of generality, it is enough to show that if t is large

enough, then no pair of vertices are both in D.

Suppose not. Recall that D is convex being the intersection of countably many

half-spaces, so that if two vertices of a straight simplex σ lie in D, then an edge of σ lies

in D. Thus, for a fixed positive integer k, and any n, there is a tn ≥ n and simplex σn

appearing in the sum Vtn
k with a lift σ̃n whose geodesic edge γn = σ̃n([0, 1]) is contained

in D. By construction, the center of σn is contained in L0,k ⊂ E, which is a compact set.

Pass to a subsequence so that center(σn) → y ∈ Mρ0
. Then, the lift ỹ of y in D is distance

at most 2 from γn, since the midpoint of a geodesic edge of a straight regular simplex

passes close to its center (see Equation (8)). Passing to a further subsequence, the Arzelà–

Ascoli Theorem guarantees that the geodesic maps γn converge to a bi-infinite geodesic

γ . Since γn is contained in D, γ ⊂ D.

The locally geodesic projection γ̄ of γ to Mρ0
cannot return to any compact set

in Mρ0
in forward or reverse time, by definition of D. Thus, each end of γ̄ must exits the

only end [E] of Mρ0
. In fact, the two ends of γ are necessarily asymptotic in H3. Indeed, by

Lemma 3.9 every surface in the sequence {Xn} of simplicial hyperbolic surfaces exiting

E has uniformly bounded diameter in Mρ0
, because we assumed that Mρ0

has bounded

geometry. This means that π−1(Xn) ∩ D has uniformly bounded diameter. Since each Xn

is separating in Mρ0
, π−1(Xn) ∩ D separates D. From this we conclude, that there is an

N such that for all n ≥ N, each end of γ must meet π−1(Xn) ∩ D. Thus, each end of γ

meets the same collection of uniformly bounded diameter subsets of H3 as they tend to

infinity. But bi-infinite geodesics have distinct endpoints at infinity. We have reached a

contradiction, and we conclude that for each k, there is a tk large enough such that no

tetrahedron in the Zk that we construct from Vtk
k via Proposition 4.2 is degenerate. This

completes the proof of the lemma. !
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Remark 4.4. One of the anonymous referees suggested that we could avoid the proof

of Lemma 4.3 by instead appealing to [35, Lemma 2.5].

We would like to use our approximation scheme from Section 2.6 to transfer this

information to our dense representation.

Proposition 4.5. Let G be a discrete group and fix x ∈ H3 ∪ ∂H3. If ρ : G → PSL2C is

dense, then for every ε > 0, there is a sequence of chains Dk ∈ C3(G; R) satisfying

(I) |ρ∗volx3(Dk)|
‖Dk‖1

> v3 − ε, for all k, and

(II) limk→∞
‖∂Dk‖1
‖Dk‖1

= 0.

Proof. Apply Proposition 4.2 to obtain Zk ∈ C3(Fd; R) that satisfy the conclusions (1),

(2), and (3). For each k, we can now apply Proposition 2.8 to obtain Zk(1) ∈ C3(G; R) such

that

|ρ∗volx
3(Zk(1)) − ρ∗

0volx
3(Zk)| < 1,

‖Zk(1)‖1 ≤ ‖Zk‖, and ‖∂Zk(1)‖1 ≤ ‖∂Zk‖1 ≤ Kd. Note that ‖Zk(1)‖ tends to ∞, because

‖Zk‖ does; see Remark 2.9. By property (1) and the above approximation, we have

|ρ∗volx
3(Zk(1))|

‖Zk(1)‖1
≥ |ρ∗

0volx
3(Zk)|

‖Zk‖ − 1
‖Zk(1)‖ > v3 − ε,

for large enough k, because ‖Zk(1)‖1 tends to ∞. Since ‖∂Zk(1)‖1 stays bounded,

limk→∞
‖∂Zk(1)‖1
‖Zk(1)‖1

= 0. Take Dk = Zk(1). !

We can now prove the first part of Theorem 1.1.

Theorem 4.6. If G is a discrete group and ρ : G → PSL2C is dense, then [ρ∗vol3] *= 0 ∈
H3

b(G; R) and ‖[ρ∗vol3]‖∞ = v3.

Proof. The chains Dk from Proposition 4.5 satisfy the hypotheses of Lemma 2.6, so

that ‖[ρ∗vol3]‖∞ ≥ v3 − ε. But ε > 0 was arbitrary, so ‖[ρ∗vol3]‖∞ ≥ v3. On the other

hand, ‖[ρ∗vol3]‖∞ ≤ ‖[vol3]‖∞ = v3. !
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4.2 Separation of volume classes in semi-norm

For a finitely generated Kleinian group, the Covering Theorem 3.8 suggests that ‘most’

infinite index subgroups are geometrically finite. We know that the volume classes for

geometrically finite classes are trivial by Soma’s Theorem 2.1. The following technical

lemma makes repeated use of the Tameness Theorem 3.3 and the Covering Theorem 3.8.

Let X be a space and p : X̂ → X be a covering space. A map f̂ : Ŷ → X̂ is an

elevation of a map f : Y → X if Ŷ is connected and q : Ŷ → Y is a minimal covering such

that p ◦ f̂ = f ◦ q. We sometimes identify an elevation with its image in X̂.

Lemma 4.7. Suppose ρ : F2 → PSL2C is discrete and faithful. There is a finite index

subgroup H ≤ F2 such that for any Ĥ ≤ H, isomorphic to a free group of rank 2, ρ ◦ i is

geometrically finite with infinite co-volume, where i : Ĥ → F2 denotes inclusion.

Proof. By Corollary 3.5, there is a standard compact core Kρ of Mρ and a homeo-

morphism f : H2 → Kρ inducing ρ on fundamental groups. The collection of core

curves ν = {ν1, ..., νm} ⊂ ∂H2 of f −1(P◦
ρ) consists of at most 3 homotopically essential

distinct disjoint simple closed curves. The inclusion ∂H2 → H2 induces a surjection

ι : π1(∂H2) → π1(H2) = F2. We abuse notation and write 〈ν〉 ≤ π1(∂H2) to denote the

conjugacy classes of the cyclic subgroups corresponding to the components of ν. The

F2-conjugacy classes of ι(〈ν〉) are non-trivial and pairwise distinct, as they correspond

to the distinct parabolic cusps of Mρ .

Note that if P◦
ρ has three components, then ν is a pants decomposition of

∂H2, hence ρ is maximally cusped hence every relative end is geometrically finite.

Therefore, since Mρ has no geometrically infinite relative ends, the Covering Theorem

3.8 guarantees that ρ restricts to a geometrically finite representation on any subgroup

Ĥ ≤ F2.

Now, we assume that Mρ does have at least one geometrically infinite relative

end. If P◦
ρ is empty, then Mρ has exactly one geometrically infinite end E = Mρ \ Kρ . We

claim that for any proper subgroup Ĥ ≤ F2 of rank 2, ρ ◦ i : Ĥ → PSL2C is geometrically

finite. As above, Kρ◦i is homeomorphic to a closed handlebody Ĥ2 of genus 2 with

boundary ∂Ĥ2. If Mρ◦i does have a geometrically infinite relative end [Ê], the Covering

Theorem 3.8 supplies us with a finite sheeted cover Ê → E that defines a finite sheeted

cover Ŷ → ∂H2, where Ŷ ⊂ ∂Ĥ2 is a homotopically essential subsurface. The only

possibility is that Ŷ = ∂Ĥ2, and that Ŷ → ∂H2 is degree one, hence Ĥ maps onto F2. This

is a contradiction to the assumption that Ĥ is a proper subgroup of F2, and so ρ ◦ i is
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geometrically finite. Thus, we may take H to be any proper, finite index subgroup of F2,

so that any rank 2 free subgroup Ĥ ≤ H has infinite index in H, by Euler characteristic

considerations. In this case, ρ ◦ i is geometrically finite, as desired.

The remaining case to consider is that P◦
ρ has either 1 or 2 components. For a

based loop α ∈ π1(∂H2) representing a component of ν, write ι(α) = wα ∈ F2. Since free

groups are residually finite [53], there is a finite index normal subgroup H < F2 such

that {wα : α ⊂ ν} ⊂ F2 \ H. Since H is normal, no conjugate of wα lies in H. In terms

of our notation from before, ι(〈ν〉) ⊂ F2 \ H. The covering Mρ|H → Mρ has finite degree

[F2 : H] < ∞ and Mρ|H is homeomorphic to the interior of a closed handlebody Hk of

genus k = [F2 : H] + 1. Moreover, Mρ|H → Mρ extends to a covering Hk → H2 of closed

handlebodies restricting to a finite cover ∂Hk → ∂H2; the geometrically infinite relative

ends of Mρ|H are elevations of the geometrically infinite relative ends of Mρ .

By construction of H, no conjugate of α lifts to ∂Hk, so any elevation ν̃ ⊂ p−1(ν)

covers a component of ν with degree at least two. Thus, if Y is any component of ∂H2 \ν,

and Ỹ ⊂ p−1(Y) is an elevation, then p restricts to a cover Ỹ → Y and further restricts

to a cover ∂Ỹ → ∂Y of degree at least two on every component of ∂Ỹ. If Y is a one-

holed torus or three-holed sphere, and Ỹ → Y is a degree 2 covering, then Ỹ can only

be a four-holed sphere or a torus with two holes. In either case, there is a boundary

component of Ỹ which maps homeomorphically onto a boundary component of Y. Thus,

our construction requires that the degree of Ỹ → Y must be at least three; equivalently,

|χ(Ỹ)| ≥ 3. If Y is a two-holed torus or four-holed sphere, then |χ(Ỹ)| ≥ 2|χ(Y)| ≥ 4. In

particular, |χ(Ỹ)| ≥ 3, for any component Ỹ ⊂ ∂Hk \ p−1(ν).

Finally, if Ĥ ≤ H is free of rank 2, then Ĥ is a proper subgroup of H. We apply

Corollary 3.5 once more to see that Mρ◦i is the interior of a closed genus 2 handlebody

Ĥ2. If Mρ◦i has a geometrically infinite relative end Ê, then Ê ∼= Ŷ × [0, ∞), where Ŷ is an

essential subsurface of a genus 2 surface. In particular, either Ŷ is closed or |χ(Ŷ)| ≤ 2.

By Euler characteristic considerations, Ŷ cannot cover any component Ỹ ⊂ ∂Hk \p−1(ν).

Therefore, by the Covering Theorem 3.8, Mρ◦i has no geometrically infinite ends. This

completes the proof of the lemma.
!

We would like to showcase the utility of Lemma 4.7 by finding rank 2 free

subgroups of F2 on which one representation is dense and another is geometrically

finite or geometrically elementary. We are thankful to one of the anonymous referees

for pointing out a useful observation.

Observation 4.8. Let G be a connected topological group, G ≤ G be a dense subgroup,

and suppose H ≤ G has finite index. Then, H is dense in G.
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Proof. Since H has finite index in G = G, the left cosets {gH : g ∈ G} form a finite

partition of G, so that H is open, being the complement of a finite union of closed sets.

Then H is an open, closed, and non-empty subset of a connected space G; thus, H = G.!

Proposition 4.9. Let ρ : F2 → PSL2C be dense and faithful and suppose ρ0 : F2 →
PSL2C is discrete. Then, there is a free rank 2 subgroup i : Ĥ → F2 such that ρ ◦ i is a

dense representation and ρ0 ◦ i is either geometrically elementary or discrete, faithful,

and geometrically finite. In particular,

‖[(ρ ◦ i)∗vol3]‖∞ = v3 and[(ρ0 ◦ i)∗vol3] = 0 ∈ H3
b(Ĥ; R).

Proof. We break the proof into two cases:

Case 1. Assume that ρ0 is faithful. By Lemma 4.7, there is a finite index subgroup H < F2

such that for any subgroup Ĥ ≤ H, which is free of rank 2, ρ0 ◦ i is geometrically finite,

where i : Ĥ → H → F2 is inclusion. By Observation 1, ρ(H) = PSL2C. According to [10,

Theorem 1.1], there is a free subgroup Ĥ ≤ H of rank 2 such that ρ(Ĥ) = PSL2C. Applying

Lemma 4.7, ρ0 ◦ i is geometrically finite. Thus [(ρ0 ◦ i)∗vol3] = 0, by Soma’s Theorem 2.1,

while Theorem 4.6 gives ‖[(ρ ◦ i)∗vol3]‖∞ = v3.

Case 2. Assume that ρ0 is not faithful, and let K = ker ρ0. Then K < F2 is a free group of

rank at least 2 (perhaps infinite rank). Since ρ is faithful, ρ(K) is not virtually abelian.

It follows, e.g. from [45, Lemma 2.3], that either there is an a ∈ K such that ρ(a) is

loxodromic or ρ(K) fixes a point in H3.

For sake of contradiction, suppose ρ(K) fixes a point in H3. Since K is normal

in F2, the set of points fixed by ρ(K) is a non-empty ρ(F2)-invariant subset of H3. But ρ

is dense, so the closure is all of H3. This can only happen if ρ(K) = {1}. However, ρ is

faithful and K is non-trivial, which is a contradiction. Thus ρ(K) does not have a global

fixed point.

A loxodromic element γ ∈ PSL2C stabilizes a geodesic axis(γ ) ⊂ H3, and acts

as a ’screw motion’ of complex length τ (γ ) = 2 + iθ along axis(γ ). That is, 2 ∈ R is

the translation length of γ , which is realized along axis(γ ), and θ ∈ R/2πZ represents

rotation around axis(γ ).

We have an a ∈ K such that ρ(a) is loxodromic. Let y ∈ H3 be a point on

axis(ρ(a)) ⊂ H3, and let ε > 0 be much smaller than the three-dimensional Margulis

constant µ3. Using density of ρ, we can find b ∈ F2 such that

• ρ(b) is loxodromic,

• |τ (ρ(a)) − τ (ρ(b))| < ε,
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• τ (ρ(b)) is not real,

• the attracting and repelling fixed points of ρ(a) and ρ(b) at infinity are

pairwise distinct, and

• axis(ρ(b)) is within distance ε/10 of axis(ρ(a)) in a 2|τ (ρ(a))|-neighborhood

of y.

Let Ĥ = 〈a, b〉; our goal is to show that ρ(Ĥ) is dense in PSL2C. Taking z = ρ(a).y, the

above conditions imply that ρ(ab−1).z and ρ(ab−2a).z are both closer than µ3 to z. Let

H ′ = 〈ab−1, ab−2a〉; by the Margulis Lemma 3.1, ρ(H ′) ≤ PSL2C is either indiscrete or

virtually abelian. Since ρ is faithful and H ′ is free, ρ(H ′) is free, hence not virtually

abelian. So ρ(H ′) is a closed Lie subgroup of PSL2C with positive dimension that is not

virtually abelian, and since Ĥ ≥ H ′, ρ(Ĥ) has the same property. Moreover, the endpoints

of the axes of ρ(a) and ρ(b) at infinity are pairwise distinct, so ρ(Ĥ) does not stabilize an

ideal point, and ρ(Ĥ) is not conjugate into PSL2R, since the complex translation length

of ρ(b) is not real. By Lemma 2.2, ρ|Ĥ is dense.

By construction, ρ0(Ĥ) is cyclic, hence geometrically elementary. We conclude as

in Case 1, supplementing Soma’s Theorem 2.1 with the proof of Lemma 2.2 in case ρ0(Ĥ)

has torsion, say. !

Remark 4.10. The argument given in Case 2 also proves the proposition in Case 1; we

will use the argument from Case 1 in the next section. Proposition 4.9 is an improvement

of a result in a previous draft of this manuscript, and strengthens our main theorems

from that version.

Our first main theorem now follows quite easily. We only need to observe

that restrictions to subgroups induce semi-norm non-increasing maps in bounded

cohomology. The first step in the proof of the following is a reduction; we use [10,

Theorem 1.1] to find a free subgroup of rank 2 of H, densely embedding into PSL2C
via ρ.

Theorem 4.11. Suppose ρ : G → PSL2C is a dense representation of a discrete group

G. If ρ0 : G → PSL2C is any other representation and there is a subgroup H ≤ G such

that ρ(H) = PSL2C, but ρ0 is geometrically elementary or discrete restricted to H, then

‖[ρ∗vol3] − [ρ∗
0vol3]‖∞ ≥ v3.

Proof. By [10, Theorem 1.1], there is a free subgroup F2 ≤ H such that ρ is dense

and faithful on F2. Moreover, ρ0 is still geometrically elementary or discrete on F2 ≤ H,
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50 J. Farre

because these properties pass to subgroups, as we have seen. If ρ0 is geometrically

elementary, the volume class of ρ0 vanishes when restricted to this F2, by the proof of

Lemma 2.2, so we set Ĥ = F2 and let i : Ĥ → F2 → G denote inclusion. Otherwise,

we apply Proposition 4.9 to obtain a free rank 2 subgroup i : Ĥ → F2 → G where

‖[(ρ ◦ i)∗vol3]‖∞ = v3 and [(ρ0 ◦ i)∗vol3] = 0.

Since i∗ : H•
b(G; R) → H•

b(Ĥ; R) is norm non-increasing, we have

v3 = ‖[(ρ ◦ i)∗vol3]‖∞

= ‖[(ρ ◦ i)∗vol3] − [(ρ0 ◦ i)∗vol3]‖∞

= ‖[i∗([ρ∗vol3] − [ρ∗
0vol3])‖∞

≤ ‖[ρ∗vol3] − [ρ∗
0vol3]‖∞.

This is what we wanted to show. !

If we are more careful, we can obtain the following generalization without too

much extra work.

Theorem 4.12. Suppose {ρi : G → PSL2C}N
i=1 is a collection of dense representations of

a discrete group G such that for every i = 1, 2, ..., N there is a subgroup ιi : Hi ↪→ G such

that ρi(Hi) = PSL2C, and ρi ◦ ιj : Hj → PSL2C is geometrically elementary or discrete for

i *= j. Then for any a1, ..., aN ∈ R, we have

∥∥∥∥∥

N∑

i=1

ai[ρ
∗
i vol3]

∥∥∥∥∥
∞

≥ max{|ai|} · v3.

Consequently, {[ρ∗
i vol3]} ⊂ H

3
b(G; R) is a linearly independent discrete set.

Proof. For convenience, we assume that |a1| = max{|ai|}. First of all, by [10] we may

assume that H1
∼= F2 and that ρ1|H1

is faithful. We inductively define a nested family of

rank 2 subgroups

H(N)
1 ≤ ... ≤ H(2)

1 ≤ H(1)
1 = H1

by successively applying Proposition 4.9. The result is that ρ1|H(i)
1

is dense and faithful

for all i. Additionally, for each j ≥ 2, denote inclusion by ι
(j)
1 : H(j)

1 → G so that for

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab078/6236094 by guest on 26 M

ay 2021



Borel and Volume Classes 51

i ∈ {2, ..., N},

[(ρi ◦ ι
(j)
1 )∗vol3] = 0 ∈ H3

b(H(j)
1 ; R).

As in Theorem 4.11, the operator ι
(N)∗
1 : H3

b(H(N)
1 ; R) → H3

b(G; R) is norm non-

increasing. Applying Theorem 4.6, we see

|a1| · v3 =
∥∥∥a1[(ρ1 ◦ ι

(N)
1 )∗vol3]

∥∥∥
∞

=
∥∥∥∥∥[a1(ρ1 ◦ ι

(N)
1 )∗vol3] +

N∑

i=2

ai[(ρi ◦ ι
(N)
1 )∗vol3]

∥∥∥∥∥
∞

=
∥∥∥∥∥ι

(N)∗
1

( N∑

i=1

ai[ρ
∗
i vol3]

)∥∥∥∥∥
∞

≤
∥∥∥∥∥

N∑

i=1

ai[ρ
∗
i vol3]

∥∥∥∥∥
∞

,

as promised. !

5 Borel classes of dense representations

In this section, we show that pullbacks of the Borel class under dense representations

have maximal semi-norm. Since the structure of discrete subgroups + ≤ PSLnC is not

well understood, we cannot give a simple criterion for the differences of pullbacks of

Borel classes to be separated in semi-norm for arbitrary representations. Recall that

there is a unique conjugacy class of irreducible representations ιn : PSL2C → PSLnC.

We will work with a dense representation ρ : G → PSLnC and another representation

ρ′
0 : G → PSLnC that factors through PSL2C via ιn. We can then use tools developed in

previous sections and 3three-dimensional hyperbolic geometry to give some criteria for

which pullbacks to G of the bounded Borel class are separated in semi-norm.

It would be interesting to investigate whether maximality of the semi-norm of

the pullback of the Borel class under discrete and faithful representations ρ : π1(S) →
PSLnC can serve as a profitable definition for ‘geometrical infiniteness,’ where S is an

orientable surface of finite type. In fact, this paper grew out of an attempt to initiate

such an investigation.
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Theorem 5.1. Let G be a discrete group and ρ : G → PSLnC be dense. Then,

‖ρ∗βn‖∞ = v3
n(n2 − 1)

6
.

The following will be immediate from the proof of Theorem 5.1 and Theorem 4.11.

Corollary 5.2. Let G be a discrete group and ρ : G → PSLnC be dense. Suppose also

that ρ0 : G → PSL2C is such that there exists a subgroup H ≤ G such that ρ(H) = PSLnC
and ρ0 is geometrically elementary or discrete and faithful restricted to H. Then,

‖ρ∗βn − (ιk ◦ ρ0)∗βk‖∞ ≥ v3
n(n2 − 1)

6
,

for all k ≥ 2.

Proof. We apply [10, Theorem 1.1] to obtain F2 ≤ H such that ρ|F2
is faithful and dense.

The argument in Proposition 4.9 (Case 1) provides us with a rank 2 subgroup i : Ĥ → F2

such that ρ ◦ i is dense and faithful, while [(ρ0 ◦ i)∗vol3] = 0. Then, (ιk ◦ ρ0 ◦ i)∗βk = 0

for all k ≥ 2, by Theorem 2.5, but ‖(ρ ◦ i)∗βn‖∞ = v3
n(n2−1)

6 by Theorem 5.1. Since i∗

is semi-norm non-increasing on bounded cohomology, the corollary follows (as in the

proof of Theorem 4.11). !

Note that in the previous section, we obtain stronger results; in Corollary 5.2, we

have made the additional assumption that ρ0 is faithful, in addition to being discrete

on H. This is because the structure of positive dimensional Lie subgroups of PSL2C is

particularly simple (see the proof of Case 2, Proposition 4.9). We believe that with more

work, it should be possible to upgrade the results in this section.

Remark 5.3. Another easy consequence of Theorem 5.1 and the triangle inequality is

that if ρ1 : G → PSLnC and ρ2 : G → PSLkC are both dense, then

‖ρ∗
1βn − ρ∗

2βk‖∞ ≥ v3

∣∣∣∣
n(n2 − 1)

6
− k(k2 − 1)

6

∣∣∣∣ .

We begin proving Theorem 5.1 by finding a sequence of efficient chains on which

the Borel class evaluates to a large number with controlled boundary. These chains come

from hyperbolic geometry, together with the explicit description of the cocycle BF
n given
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by [6] (see Proposition 2.3) and the explicit formula for the semi-norm of the pullback

under the irreducible representation ιn : PSL2C → PSLnC; see Theorem 2.5.

Lemma 5.4. If G is a discrete group and ρ : G → PSLnC is dense, then for every ε > 0,

there is a y ∈ F (Cn) and a sequence of chains Dk ∈ C3(G; R) such that

1. |ρ∗By
n(Dk)|

‖Dk‖1
> (v3 − ε)n(n2−1)

6 , for all k, and

2. limk→∞
‖∂Dk‖1
‖Dk‖1

= 0.

Proof. As in the proof of Proposition 4.5, fix a geometrically infinite discrete and

faithful representation ρ0 : F2 → PSL2C with no parabolic elements, take ε > 0 and

apply Proposition 4.2. We now have K2 > 0 and Zk ∈ C3(F2; R) that satisfy conditions

(1), (2), and (3) of the conclusion of Proposition 4.2. By Lemma 4.3, we may assume that

x ∈ ∂H3 for the conclusion (1), and no ideal simplex in (ρ0∗Zk).x is degenerate. Recall that

the irreducible representation ιn induces an equivariant continuous map of boundaries

ι̂n : ∂H3 → F (Cn). Take y = ι̂n(x), so that by equivariance of ι̂n, we have ι̂n(ρ0∗(Zk).x) =
(ιn ◦ ρ0)∗(Zk).y. By Proposition 2.3, ι∗nBy

n = n(n2−1)
6 volx

3. Thus,

(ιn ◦ ρ0)∗By
n(Zk) = n(n2 − 1)

6
ρ∗

0volx
3(Zk).

Since no simplex is degenerate, thanks to Lemma 4.3, we can apply Corollary 2.10 for

each k to obtain Zk(1) ∈ C3(G; R) such that

|ρ∗By
n(Zk(1)) − (ιn ◦ ρ0)∗By

n(Zk)| < 1.

As in the proof of Proposition 4.5, the two conclusions now follow with Dk = Zk(1). !

Proof of Theorem 5.1. The chains from Lemma 5.4 satisfy the hypotheses of Lemma

2.6. Thus, ‖ρ∗βn‖∞ ≥ (v3 − ε)n(n2−1)
6 , for all ε > 0. By Theorem 2.5, ‖ρ∗βn‖∞ ≤ v3

n(n2−1)
6 ,

which yields the desired equality. !

6 Constructions, examples, and questions

We now give some applications of the work that we have done to show that subspaces

of bounded cohomology spanned by the pullback of volume classes can be quite large.

We also pose some questions.
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54 J. Farre

6.1 Constructing incompatible representations

We will construct a family of representations {ρθ : F2 → PSL2C : θ ∈ )} such that, given

any finite subset {ρθ1
, ..., ρθN

}, there are subgroups Hi ≤ F2 such that ρθi
(Hi) = PSL2C,

but ρθi
|Hj

is discrete, faithful, and convex co-compact, i.e. ρθi
|Hj

is a marked Schottky

group group for i *= j. Marked Schottky groups are, in particular, geometrically finite,

so we can apply Theorem 4.12 to show that the volume classes of these representations

are linearly independent in reduced bounded cohomology. Furthermore, the set ) has

cardinality that of the continuum. The construction of dense representations in this

section shares some features with the construction found in [26,Appendix A].

We start with a loxodromic element a ∈ PSL2C such that the complex translation

length τ (a) of a has translational part r and non-zero rotational part strictly between

0 and π/8. In particular, a is not conjugate into PSL2R. Find an elliptic element b(θ)

with rotation angle 2πθ , where θ ∈ R/Z is irrational and with fixed line meeting axis(a)

orthogonally in a point x. For infinitely many values n, axis(b(θ)nab(θ)−n) makes a very

small angle with axis(a) at x.

Lemma 6.1. Let r > 0 be given. There is a threshold τ0 ∈ (0, 1/2) such that if nθ ∈
(−τ0, τ0) mod 1, then 〈a, b(θ)nab(θ)−n〉 is dense in PSL2C.

Proof. For any τ ∈ (0, 1), axis(b(τ )ab(τ )−1) = b(τ )axis(a), and axis(a) ∩ b(τ )axis(a) =
{x}, since the fixed line of b(τ ) meets axis(a) at x. Using hyperbolic trigonometry, there

is a τ0 = τ0(r) such that if −τ0 < τ < τ0 mod 1, then in an (r + 1)-neighborhood of x,

the Hausdorff distance between axis(a) and b(τ )axis(a) is at most µ3. Specifically, take

τ0 ∈ (0, 1) such that 2 sinh−1(sin(2πτ0) sinh(r + 1)) < µ3. Suppose −τ0 < τ < τ0 mod 1,

and for convenience, write b for b(τ ).

Then d(ax, bab−1x) < µ3, because d(x, ax) = d(x, bab−1x) = r < r + 1. This

means that d(ba−1b−1ax, x) < µ3. Similarly, d(bab−1a−1x, x) < µ3. Set c = bab−1; by the

Margulis Lemma 3.1, the group 〈c−1a, ca−1〉 is indiscrete if it is not virtually abelian.

We will show that 〈c−1a, ca−1〉 contains a free subgroup, so it is not virtually abelian.

An element γ ∈ PSL2C is loxodromic if and only if the trace of a lift of γ to SL2C
is not in the interval [−2, 2]. Trace identities give

tr(c−1a) = tr(ac−1) = tr(ca−1).
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By construction, a and c can be represented by matrices

a =
(

eτ (a)/2 0

0 e−τ (a)/2

)

and c =
(

cos(2πτ ) − sin(2πτ )

sin(2πτ ) cos(2πτ )

) (
eτ (a)/2 0

0 e−τ (a)/2

)

(
cos(2πτ ) sin(2πτ )

− sin(2πτ ) cos(2πτ )

)

.

Explicit computation with matrices shows that as long as the rotational part of τ (a)

is not an integer multiple of π and b is not rotation by 0 or π (i.e. τ *= 0, 1/2), then

the imaginary part of tr(c−1a) = tr(ca−1) is different from 0. Thus, our assumptions

guarantee that both c−1a and ca−1 are loxodromic. The traces are equal, so the complex

translation lengths are equal. This means that if axis(c−1a) = axis(ca−1), then c−1a and

ca−1 are either equal or inverse to one another. Inspection shows that c−1a.x *= ca−1.x,

if the rotational part of τ (a) is small enough (less than π/8, for example). If c−1a =
(ca−1)−1, then c commutes with a, which only happens if b is rotation by 0 or π .

So, the axes of c−1a and ca−1 are different. If the axes are asymptotic, then again

since τ (c−1a) = τ (ca−1), the product c−1a(ca−1)−1 = c−1a2c−1 stabilizes a horosphere,

hence has trace equal to ±2. Another explicit computation shows that the imaginary

part of the tr(c−1a2c−1) vanishes only when b is rotation by 0 or π or the rotational part

of τ (a) is an integer multiple of π/8. We have assumed that the rotational part of τ (a)

is non-zero and less than π/8, so the set of fixed points of c−1a and ca−1 at infinity are

distinct. By the Ping-Pong Lemma, for large enough k, 〈(c−1a)k, (ca−1)k〉 is a Schottky

group. In particular, 〈c−1a, ca−1〉 contains a free subgroup, and so it is indiscrete. Thus,

〈a, bab−1〉 is indiscrete, because 〈c−1a, ca−1〉 ≤ 〈a, bab−1〉.
Finally, 〈a, bab−1〉 does not fix an ideal point, nor does it stabilize a plane,

since the rotational part of τ (a) is non-trivial. By the proof of Lemma 2.2, 〈a, bab−1〉 is

dense. !

There are also infinitely many values of n such that axis(a) is nearly orthogonal

to b(θ)naxis(a). The following is immediate from the Ping-Pong Lemma and another

direct computation in H2 ⊂ H3.

Lemma 6.2. For r > 1+cos(π/8)
1−cos(π/8) , if the translational part of τ (a) is at least r and nθ ∈

(1/8, 3/8) mod 1, then 〈a, b(θ)nab(θ)−n〉 is a Schottky group of rank 2.

Now fix a ∈ PSL2C with translation length r + it, with r > 1+cos(π/8)
1−cos(π/8) and t ∈

(0, π/8).
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Lemma 6.3. Let {θ1, ..., θN} ⊂ (0, 1) be a rationally independent set of irrational

numbers, F2 = 〈z1, z2〉, and let ρθi
: F2 → PSL2C be defined by ρθi

(z1) = a and

ρθi
(z2) = b(θi). There are integers n1, ..., nN such that Hi := 〈z1, zni

2 z1z−ni
2 〉 satisfies

ρθi
(Hi) ≤ PSL2C is dense but ρθi

|Hj
is a marked Schottky group.

Proof. Since {θi} is a rationally independent set of irrational numbers, the self

homeomorphism of the N-torus ; : (R/Z)N → (R/Z)N defined by (x1, ..., xN) .→ (x1 +
θ1, ..., xN + θN) is topologically minimal, i.e. every orbit is dense. Let τ0 be the threshold

from Lemma 6.1, and let D = (−τ0, τ0) ⊂ R/Z and F = (1/8, 3/8) ⊂ R/Z. For each i, let

pi : (R/Z)N → R/Z be projection onto the ith factor and take Ui ⊂ (R/Z)N to be the

product of D’s and F’s where pi(Ui) = D and pj(Ui) = F, if i *= j. By minimality of ;, there

is an ni such that ;ni(0) ∈ Ui. By Lemma 6.1, ρθi
(Hi) = PSL2C, and ρθi

|Hj
: Hj → PSL2C is

discrete, faithful, and convex co-compact for i *= j, by Lemma 6.2. !

Using the axiom of choice, we can find a basis ) 9 {1} for R as a Q-vector space.

We may assume that ) ⊂ (0, 1). For each θ ∈ ) we have the representation ρθ : F2 →
PSL2C defined as in Lemma 6.3.

Theorem 6.4. The map

) → H
3
b(F2)

θ .→ [ρ∗
θ vol3]

is injective with discrete image. Moreover, {[ρ∗
θ vol3] : θ ∈ )} is a linearly independent

set, and #) = #R.

Proof. Any finite subset {θ1, ..., θN} ⊂ ) is rationally independent. By Lemma 6.3, the

collection {ρθi
: i = 1, ..., N} satisfies the hypotheses of Theorem 4.12. This shows that

{[ρ∗
θ vol3] : θ ∈ )} ⊂ H

3
b(F2) is linearly independent and discrete. Injectivity follows from

linear independence. !

6.2 On the spaces H3
b(PSL2R; R) and H3

b(PSL2C; R)

As a further application of Theorem 4.12, we will show that both H
3
b(PSL2R; R) and

H
3
b(PSL2C; R) have dimension at least #R. We remind the reader that we are computing

bounded cohomology of discrete groups, i.e. PSL2R and PSL2C are endowed with

the discrete topology. The key is to use the axiom of choice to find ‘wild’ field
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automorphisms of C that induce embeddings PSL2R ↪→ PSL2C and PSL2C ↪→ PSL2C;

these embeddings would be highly discontinuous when these groups are considered

with their standard smooth topologies.

Theorem 6.5. The real dimension of the degree three reduced bounded cohomology

of PSL2R and PSL2C is at least #R. More specifically, there are dense representations

{ρt : PSL2R → PSL2C}t∈R such that {[ρ∗
t vol3] : t ∈ R} is a linearly independent set

in H
3
b(PSL2R; R). The family {ρt} are the restrictions of representations {ρ′

t : PSL2C →
PSL2C}, thus {[ρ′

t
∗vol3] : t ∈ R} is a linearly independent set in H

3
b(PSL2C; R).

Proof. Let Hom(R, C) denote the set of injective homomorphisms of fields σ :

R → C. Every field mapping takes polynomial identities with rational coefficients to

polynomial identities with rational coefficients, hence induces a group homomorphism

ρσ : PSL2R → PSL2C. It is not hard to see that if σ (R) ⊂ R, then σ is order preserving,

hence σ restricts to the identity mapping on R, i.e. σ is trivial [58,Theorem 3]. In fact, if

σ ∈ Hom(R, C) is not trivial, then σ (R\Q) is dense in C [58,Theorem 4]. Hence ρσ (PSL2R)

is dense in PSL2C for non-trivial σ . By Theorem 4.6, ‖[ρ∗
σ vol3]‖∞ = v3 for all non-trivial

σ ∈ Hom(R, C).

Next, we will produce a family of non-trivial field maps σ (t) ∈ Hom(R, C)

indexed by a set with cardinality that of the continuum, which we assume is R for

simplicity. The field maps σ (t) induce dense representations ρt = ρσ (t) : PSL2R → PSL2C.

Finite subsets will satisfy the hypotheses of Theorem 4.12, but in fact any subset will

satisfy the hypotheses of Theorem 4.12.

Let α, β ∈ C, and consider

x(α) =
(

α 0

0 α−1

)

, andy(β) =
(

(β + β−1)/2 (β − β−1)/2

(β − β−1)/2 (β + β−1)/2

)

∈ PSL2C.

We consider the group

Hα,β = 〈x(α), y(β)〉 ≤ PSL2C.

Geometrically, as long as |α|, |β| *= 1, then the two generators are loxodromic with axes

that meet orthogonally in a point, hence are contained in a hyperbolic plane. If |α| and |β|
are large enough, by playing Ping-Pong, we see that Hα,β is Schottky, hence geometrically

finite. If |α|, |β| < µ3, then Hα,β is dense in PSL2C as long as at least one of α or β has
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argument not a multiple of π/2, essentially by an easier argument than found in the

proof of Lemma 6.1.

Since C is algebraic over Q(R) = R, there is a transcendence basis T ⊂ R for C
over Q [44, Theorem 19.14]. Let a, b ∈ C \ R ∪ iR be Q-linearly independent, algebraic

numbers with magnitude smaller than µ3. By the Lindemann-Weierstrass Theorem

[3,Theorem 1.4], {ea, eb} is an algebraically independent set. Since Q({z ∈ C : |z| > 100}) =
C is algebraic over C, we may find a transcendence basis T ′ for C over Q such that

{ea, eb} ⊂ T ′ ⊂ {|z| > 100} ∪ {ea, eb} [44, Theorem 19.14]. Two transcendence bases for C
over Q have the same cardinality, that of the continuum. The algebraic closures of Q(T)

and Q(T ′) are both C, so if π : T → T ′ is a bijection, then there is a field isomorphism

σπ : C → C extending π , by the Isomorphism Extension Theorem.

Find a partition T = A 9 B, with #A = #B and bijections R → A and R → B

denoted t .→ αt and t .→ βt, respectively. Now, for each real number t, we extend the

assignment αt .→ ea and βt .→ eb to a bijection π(t) : T → T ′. We thus induce a field

isomorphism σ (t) = σπ(t) : C → C that restricts to a field map R → C with the same

name. We obtain, for each t ∈ R, a homomorphism ρt = ρσ (t) : PSL2R → PSL2C and also

ρ′
t : PSL2C → PSL2C.

By construction, ρt(x(αt)) = x(ea) and ρt(y(βt)) = y(eb), so that ρt(Hαt,βt
) = Hea,eb

is dense in PSL2C, by our choice of a and b. For s *= t, we see that the group

ρt(〈x(αs), y(βs)〉) is Schottky, because σt(αs), σt(βs) ∈ {|z| > 100}. Thus every subset of

representations of {ρt : PSL2R → PSL2C : t ∈ R} satisfies the hypotheses of Theorem

4.12. As in the proof of Theorem 6.4, {[ρ∗
t vol3] : t ∈ R} is a linearly independent subset of

H
3
b(PSL2R; R). !

The cardinality of the set of functions from a continuum to itself is 2#R, as is the

set of bounded functions. Thus, dimR H3
b(PSL2K; R) ≤ 2#R, where K = C or R. The set of

field mappings R → C or C → C has cardinality 2#R.

Question 6.6. Let K ∈ {R, C}. Is dimR H
3
b(PSL2K; R) = 2#R? Assuming the axiom of

choice, does the set of field embeddings C → C define an injective map with discrete

and linearly independent image to H3
b(PSL2K; R) by pulling back the standard volume

class? Without the axiom of choice, what is the dimension of dimR H3
b(PSL2K; R)? Do

pullbacks of volume classes span all of H3
b(PSL2K; R)?
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6.3 On the collection of ρ-dense subgroups

Let G be a discrete group and suppose ρ : G → PSL2R is dense. Define the set DS(ρ) of

ρ-dense subgroups by

DS(ρ) = {H ≤f .g. G : ρ(H) = PSL2R},

where H ≤f .g. G means that H is a finitely generated subgroup of G. The following fact

may seem surprising, at first. An outline of the proof was communicated to the author

by Yair Minsky.

Fact 6.7. Let ρ1, ρ2 : F2 → PSL2R be dense. If DS(ρ1) = DS(ρ2), then ρ1 is conjugate to

ρ2 in PSL2R.

The proof of Fact 6.7 uses the fact that dense representations into PSL2R contain

elliptic elements, since (0, 2) ⊂ R is open in the image of the absolute value of the trace

function. Generically, dense representations F2 → PSL2C do not contain any elliptics.

Due to the fractal nature of the boundary of Schottky space, one might expect an answer

to the following to be more involved.

Question 6.8. Let ρ1, ρ2 : F2 → PSL2C be dense. If DS(ρ1) = DS(ρ2), then is ρ1

necessarily conjugate to ρ2 in PSL2C?

If Question 6.8 has an affirmative answer, then the volume class of (the con-

jugacy class of) a dense representation is distinguished and separated in semi-norm

from every other such class, by Theorem 1.1 and Lemma 2.2. We note however, that

Question 6.8 may have a negative answer, and all conjugacy classes of dense represen-

tations can still be separated in semi-norm, because there was a tremendous amount

of freedom in our choice of discrete and faithful representation used to define chains

on F2 in Lemma 4.1 and Proposition 4.5. Otherwise, given ρ0 : F2 → PSL2C, it would be

interesting to understand the set of representations that are not conjugate to ρ0 but that

have the same volume class in bounded cohomology. We expect that nothing interesting

happens, however.

Conjecture 6.9. For a dense representation ρ : F2 → PSL2C, if ρ′ : F2 → PSL2C is any

other representation such that

‖[ρ∗vol] − [ρ′∗vol]‖ < v3,

then ρ′ is conjugate to ρ.
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7 Higher and lower dimensional volume classes

For even n ≥ 4, it is known that there is an εn > 0 such that the Cheeger constant of

Hn/ρ(H) is at least εn when H is a free group of finite rank, a closed surface group

of genus at least two, or a finite volume hyperbolic 3three-manifold group and ρ is

discrete and faithful [15]. Vanishing of the Cheeger constant is equivalent to the non-

vanishing of the n-dimensional volume class of a discrete and faithful representation

ρ : H → Isom+(Hn) [32], so we cannot hope to prove that a dense representation ρ : F2 →
Isom+(Hn) has non-zero volume class by approximating chains built from a discrete

and faithful representation ρ0 : F2 → Isom+(Hn).

In this section, we give a criterion to ensure that a dense representation ρ : F2 →
Isom+(Hn) has non-vanishing n-dimensional volume class. We stress, however, that we

do not know if our criterion is ever satisfied for n ≥ 4. We recall a definition from the

introduction.

Definition 7.1. Let + be a discrete group, α ∈ Hn(+; R), and K > 0. We say that α is

K-freely approximated if there is an integer m ≥ 2, a homomorphism ϕ : Fm → +, and a

chain Z ∈ Cn(Fm; R) such that ϕ∗(Z) ∈ α and ‖∂Z‖1 ≤ K.

The conclusions of the following proposition should now feel somewhat believ-

able. The proof more or less follows directly from the definitions and an application of

the approximation scheme introduced in Section 2.6.

Proposition 7.2. Let n ≥ 2 and suppose (Mi) is a sequence of closed and oriented

hyperbolic n-manifolds with volume tending to infinity. Let [Mi] ∈ Hn(π1(Mi); R) be

the image of the fundamental class of Mi under the natural isomorphism Hn(Mi; R) →
Hn(π1(Mi); R).

If there is a K > 0 such that [Mi] is K-freely approximated for all i, then for any

dense representation ρ : F2 → Isom+(Hn),

[ρ∗voln] *= 0 ∈ Hn
b(F2; R).

Proof. By definition of K-free approximation, there are maps ϕi : Fmi
→ π1(Mi) and

chains Zi ∈ Cn(Fmi
; R) such that ϕi∗(Zi) ∈ [Mi] and ‖∂Zi‖1 < K. Let ρi : π1(Mi) →

Isom+(Hn) be a hyperbolization of Mi; consider ρi ◦ ϕi : Fmi
→ Isom+(Hn). Since
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ϕi∗(Zi) ∈ [Mi], for any x ∈ Hn, we have

〈[ϕi∗(Zi)], [ρ∗
i volx

n]〉 =
∫

Mi

dvol = vol(Mi) → ∞.

Indeed,

vol(Mi) = 〈ϕi∗(Zi), ρ
∗
i volx

n〉 = 〈Zi, (ρi ◦ ϕi)
∗volx

n〉.

By Proposition 2.8, there is a chain Zi(1) ∈ Cn(F2; R) such that

|ρ∗volx
n(Zi(1))| > vol(Mi) − 1,

‖Zi(1)‖1 ≤ ‖Zi‖1, and ‖∂Zi(1)‖1 ≤ ‖∂Zi‖1 < K. If b ∈ Cn−1(F2; R) is such that δb = ρ∗volx
n,

then

|ρ∗volx
n(Zi(1))| = |b(∂Zi(1))|.

But then

‖b‖∞ >
vol(Mi) − 1

K

for every i. The right hand side goes to infinity with i, so b is not bounded. Thus,

[ρ∗volx
n] *= 0 ∈ Hn

b(F2; R). !

Remark 7.3. Suppose that one can find a sequence of n-manifolds (Mi) satisfying

the hypotheses of Proposition 7.2. If one is able to construct dense representations {ρθ :

F2 → Isom+(Hn)}θ∈) by analogy with those defined in Section 6.1, then for even integers

n ≥ 4, dimR Hn
b(F2; R) = #R. Indeed, assume we have a finite collection {ρθ1

, ..., ρθm
}

and subgroups ιj : Hθj
→ F2 such that ρθk

(Hθj
) is dense if k = j, and a Schottky group

otherwise. Then, [(ρθk
◦ ιj)

∗voln] = 0 ∈ Hn
b(Hθj

; R) by the combination of [32] and [15],

as long as k *= j. We can then apply a slight modification of the proof of Theorem 6.4;

we would only be able to prove linear independence of volume classes of these dense

representations in Hn
b(F2; R) but not necessarily in the reduced space. It seems that such

representations {ρθ : F2 → Isom+(Hn)}θ∈) should not be too difficult to construct by

hand, as we have done for n = 3.
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The above criterion is just an example of how to apply Proposition 2.8 to show

that some bounded classes may be non-trivial, with the necessary auxiliary information.

There are notions of straight chains with bounded volume in complex hyperbolic space;

the statement of the proposition can be modified appropriately. Also, the manifolds

(Mi) may be chosen to be non-compact with finite volume; the relevant feature is that

the fundamental group of a cross section of a cusp is amenable. Many additional

modifications can be made, and the reader is encouraged to make them.

We would like to convince the reader that free approximation of fundamental

classes of manifolds is not an entirely contrived concept; although we admit that it may

be a low dimensional phenomenon.

Lemma 7.4. Let X be a closed and oriented hyperbolic surface of genus g ≥ 2. Then

[X] is 2two-freely approximated.

Proof. Sketch of proof There is a nice one-vertex triangulation of a hyperbolic

surface; see Figure 1. We can find a base point x̄ in X and a standard generating set

{a1, b1, ..., ag, bg} for π1(X, x̄) ≤ PSL2R such that the union of the geodesic representatives

of the ai’s and bi’s based at x̄ is embedded. Cutting X open along these arcs produces a

convex identification 4g-gon with geodesic sides that can be embedded in the hyperbolic

plane with vertex set contained in the preimage of x̄ under the covering projection. By

choosing a vertex x ∈ H2 of this 4g-gon, we can join every vertex not adjacent to x with

a geodesic segment. This process triangulates the identification polygon and defines a

chain V ∈ C2(π1(X); R) that represents [X]; we have ‖V‖1 = 4g − 2. Let x1, y1, ..., xg, yg be

a free basis for F2g. We define a homomorphsim ϕ : F2g → π1(X) given by ϕ(xj) = aj and

ϕ(yj) = bj.

There is a chain Z ∈ C2(F2g; R) such that ϕ∗(Z) = V and such that ‖Z‖1 = ‖V‖1

and ‖∂Z‖1 = 2; Z is obtained by replacing words in {ai, bi} with the corresponding words

spelled with {xi, yi}. Topologically, the quotient of Z by the identifications induced by

F2g is a two-dimensional CW-complex that is obtained by taking the metric completion

of X after removing the interior of the based geodesic bg. The boundary of this complex

consists of two one-cells. !

Take any sequence (Xg) of closed hyperbolic surfaces with genus g tending to

∞. By Lemma 7.4, [Xg] is two-freely approximated for all g. In the sketch of the proof of

Lemma 7.4, the chains Vg are Area(Xg)

‖Vg‖1
= 4π(g−1)

4g−2 -efficient. Combined with Lemma 2.6, we

obtain the following.
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Fig. 1. Left: X cut along a standard generating set and a nice one-vertex locally geodesic

triangulation of X. Right: Using F2g, the polygon on the left does not quite close up to form a

closed surface, because yg *= ∏g
i=1[xi, yi]yg ∈ F2g.

Corollary 7.5. If ρ : F2 → PSL2R is a dense representation, then ‖[ρ∗vol2]‖∞ = π .

Corollary 7.5 is obtained easily from the sophisticated theory of computing

bounded cohomology via boundary maps; see, e.g. [11,Section 4.3]. However, we empha-

size that our hands on approach leads to a completely elementary and geometric proof.

Remark 7.6. For any closed hyperbolic three-manifold M, there is a sequence of covers

Md → M such that [Md] is K-freely approximated for all d; the constant K is a function

of the genus of a certain immersed π1-injective surface in M, that of a virtual fiber. The

proof, which we omit, relies on the positive resolution of the Virtual Fibering Conjecture.
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