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Abstract. By work of Uhlenbeck, the largest principal curvature of any least
area fiber of a hyperbolic 3-manifold fibering over the circle is bounded be-
low by one. We give a short argument to show that, along certain families of
fibered hyperbolic 3-manifolds, there is a uniform lower bound for the maxi-
mum principal curvatures of a least area minimal surface which is greater than
one.

1. Introduction

Since Thurston’s work on surfaces, the study of hyperbolic manifolds in dimen-
sions two and three has seen an explosion of progress. Abundant classes of sur-
faces, such as pleated surfaces, can be used to probe the geometry of a hyperbolic
3-manifold at nearly any point. In this note, we are interested in geometric aspects
of minimal surfaces in hyperbolic 3-manifolds, which are far less ubiquitous than
pleated surfaces and which subtly influence the geometry of the space that they
inhabit.

In her seminal work, Uhlenbeck [Uhl83] investigated minimal immersions of
closed surfaces into complete hyperbolic 3-manifolds with principal curvatures
bounded in absolute value by one. The covering space associated to such a surface is
remarkably well behaved in many aspects; the inclusion of the minimal immersion is
an incompressible least area minimal embedding, and no other closed minimal sur-
face of any kind can be found in this manifold. It has been unclear, geometrically,
how far the class of analytically defined almost-Fuchsian manifolds, i.e. those which
deformation retract onto a minimal surface with principal curvatures bounded by
one, could be from Fuchsian. Very recently, Huang and Lowe [HL] proved that the
closure of the almost-Fuchsian locus is contained in the well-studied quasi-Fuchsian
space.

Following ideas of Hass [Has], we observe that a surface minimizing area in its
homotopy class cannot penetrate too deeply into regions of small injectivity radius
in a hyperbolic 3-manifold. In particular, many sequences of incompressible least
area minimal surfaces of a fixed topological type are uniformly thick, and so minimal
limits with the same topology are easily extracted.
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Using this geometric control, we bound the maximum principal curvatures of
certain families of minimal surfaces in hyperbolic mapping tori strictly away from
one. As the Virtual Fibering Theorem of Agol and Wise asserts that every closed
hyperbolic 3-manifold has a finite cover that fibers over the circle, our applications
address the behavior of an important class of least area minimal immersions in
closed hyperbolic 3-manifolds.

Theorem 1.1. Given a hyperbolic 3-manifold fibering over the circle with mon-
odromy ψ : Σ → Σ and a simple curve α ⊂ Σ such that i(α,ψ(α)) > 5|χ(Σ)|,
any sequence of hyperbolic mapping tori that drills α admits a uniform lower bound
µ > 1 for the largest principal curvature in the area minimizer in the homotopy
class of the fiber.

The examples of Theorem 1.1 are very common. One need only pass to a power
of ψ to ensure the condition on the intersection of a curve and its image under
the monodromy. We can also bound the principal curvature of area minimizers
homotopic to the fiber if a pair of intersecting curves becomes short along the
sequence.

Theorem 1.2. Given a hyperbolic mapping torus and two intersecting simple
curves α and β in the fiber, for any sequence of mapping tori that drills α and
makes β sufficiently short, there is a uniform lower bound µ > 1 for the largest
principal curvature in the area minimizer in the homotopy class of the fiber.

See Section 4 for precise statements. We note that Huang and Lowe [HL] have
recently investigated limits of minimal surfaces in hyperbolic 3-manifolds, yielding
similar applications to ours. In contrast, our results are “hands on” in nature and
provide information about how curves of short (complex) length in a hyperbolic 3-
manifold affect least area minimal immersions. Our main technical result provides
a short argument for an improved version of a main result of [HW19]. This improve-
ment allows us to easily construct the examples given in Theorems 1.1 and 1.2.

The article is organized as follows. In Section 2 we show that area minimizers
cannot go arbitrarily deep into thin parts of controlled shape. In Section 3 we
discuss Uhlenbeck’s work on almost-Fuchsian manifolds. We show, by refocusing
perpendiculars at infinity, that a least area homotopy equivalence with principal
curvatures between −1 and 1 in a manifold with parabolic cusps contains horocyclic
segments, which are closed geodesics in the induced metric. Section 4 contains
our main applications regarding area minimizers in sequences of mapping tori. In
Section 5 we present a known result explaining how to rescue a local area-minimizer
from a geometric limit back to a sequence of approximations.

2. Area minimizing minimal surfaces and short curves

Fix a constant ε3 smaller than the 3-dimensional Margulis constant. If γ ⊂ M
is a closed geodesic with (real) length smaller than ε3, then γ is the core geodesic
of a Margulis tube T(ε3), the set of all points near γ through which there is a non-
contractible loop of length at most 2ε3, foliated by flat tori Tr at distance r ≤ r0

from γ. We let λ denote the complex length of γ whose real part is length and whose
imaginary part lies in [0, 2π), measuring the twisting angle. By [BM82], there is a
constant C = C(ε3) that satisfies

(1) er0 |λ| ≥ C−1;

we call r0 the radius of T(ε3).
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The following technical result is one of the main tools of the present article,
namely that π1-injective area minimizers do not penetrate too deeply into Margulis
tubes about short curves. Here “deep” depends on the shape of the boundary
of the tube, so that our uniform bound on distance from the area minimizer to
the boundary becomes interesting as the radius tends to infinity. This was done
originally by Hass in [Has] for rank-2 cusps; we follow the same ideas for tubes with
a short geodesic core.

Proposition 2.1. Given K > 1, there exist constants δ(K) > 0 and d(K) > 0
such that for any π1-injective area minimizing surface Σ in a complete hyperbolic
3-manifold M and γ a geodesic in M with complex length λ satisfying Re(λ) < δ
and K−1 ≤ Im(λ)2/Re(λ), we have that Σ∩M<ε3 is within distance 2d of ∂M<ε3 .

Proof. The foliation of a compact component of the ε3-thin part M<ε3 by tori
equidistant from the core curve is mean-convex, so we can assume without loss of
generality that Σ ∩ ∂M<ε3 '= ∅.

By [Min10, Section 3.2] the boundary Tr of the r-neighborhood around γ is a
flat torus isometric to C/tr(Z + ωrZ), where the parameters tr > 0,ωr ∈ C are
given by the equations

tr|ωr| = 2π sinh(r)

and
itr|ωr|/ωr = Re(λ) cosh(r) + iIm(λ) sinh(r).

From this it is not hard to see that the area Ar of Tr is given by

Ar = t2r|Im(ωr)| = 2πRe(λ) cosh(r) sinh(r),

while the injectivity radius injr of Tr is bounded by

injr ≥ min{tr, tr.Im(ωr)} = min{tr,
2πRe(λ) cosh(r) sinh(r)

tr
}.

Since |λ| sinh(r) ≤ tr ≤ |λ| cosh(r) we can further simplify this inequality to

injr ≥ min{|λ| sinh(r),

2πRe(λ) sinh(r)

|λ| } =
sinh(r)

|λ| . min{|λ|2, 2πRe(λ)} ≥ Re(λ) sinh(r)

K|λ| ,

where in the last inequality we have used that Im(λ)2 ≥ K−1.Re(λ).
As for upper bounds, we have

(2) injr ≤
√

Ar

π
=

√
2Re(λ) cosh(r) sinh(r).

Observe then that for r0 > b ≥ 1.42, we have
∫ b

b−1
2.injrdr ≥

∫ b

b−1
2
Re(λ) sinh(r)

K|λ| dr

=
2Re(λ)

K|λ| (cosh(b) − cosh(b − 1))

≥ Re(λ) cosh(b))

K|λ| ,

(3)

where b ≥ 1.42 ensures that the last inequality holds. With this we can prove that
the disk components of Σ ∩ T(ε3) cannot go deep into the thin part.
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Lemma 2.2. Suppose Σ∩T(ε3) is a union of disks. Then as long as Re(λ) is small
enough, there is d = d(K) > 0 such that Σ stays within distance d from ∂T(ε3).

Proof. Denote by D one of the components of Σ ∩ T(ε3) and let , be the length of
∂D. Lift the disk D to H3.

First, we observe that as long as Re(λ) is small enough, ∂D cannot be isotopic to
the meridian curve of ∂T(ε3). Indeed, D would be a minimal disk passing through
the core geodesic of a tube with very large radius. A monotonicity argument of
Anderson [And82] then guarantees that the area of the disk is at least that of a
geodesic disk in the hyperbolic plane of the same radius. However, since the Gauss
curvature of Σ is bounded above by −1, the area of Σ is bounded above by a
constant depending only on the topology of Σ, so the area of this disk would be too
large compared to the total area of Σ.

The boundary of an r-neighborhood of the universal cover of a tube (with core
passing from 0 to ∞, say) in the upper half space model for H3 is a cone making
very small angle with the complex plane at 0. Take a point x0 ∈ ∂D and a
horoball outer-tangent to the boundary of the universal cover of T(ε3) at x. The
hyperbolic diameter of ∂D is at most ,/2. After enlarging our horoball to include
the horospheres centered at the same point distance at most , away, we find a
horoball B such that ∂D ⊂ B. Indeed, the boundary of our cone is nearly parallel
to the complex plane, so this follows from continuity by looking at the intersection
pattern between a horoball tangent to the plane and a horosphere centered at in
point at infinity in the half space model for H3. If D were not contained in B, then
we could enlarge B further to a horoball B′ which contains D, and whose closure
is tangent to D at a point. However, the mean curvature of D is 0 and the mean
curvature of the boundary of B′ is 1, which contradicts the maximum principle;
thus D ⊂ B.

Recall that T(ε3) is the r0-neighborhood of its core curve γ, so that Tr0 = ∂T(ε3).
We claim that r0 ≤ log 1

|λ| + log C1 for some C1 > 0. Indeed, we can take a point
x at distance r0 from the core geodesic so that the geodesic segment joining x and
γ.x has length 2ε3. Denote then y the point at distance r0 with the same projection
as γ.x that is in the same plane as x and the axis. Then d(x, y) ≈ er0Re(λ), and
d(y, γ.x) ≈ er0Im(λ). There is an upper bound [HW19, Corollary A.2], depending
only on the topology of Σ, for the ratio

Im(λ)2

Re(λ)
≤ 2π|χ(Σ)|

√
4π√

3
.

Using this bound, our assumption K−1 ≤ Im(λ)2/Re(λ) and the triangle inequality
can find C1 with er0 |λ| ≤ C1ε3. The claim follows after taking logarithms.

Together with (2), this implies that injr0 is bounded by a constant depending
on K. If , < 2injr0 , then the maximum principle argument shows that D stays at
distance , < 2injr0 from ∂T(ε), from which the lemma follows.

Suppose 1 < b < r0 is such that ,(Σ ∩ Tr) ≥ 2injr for all r ∈ [b − 1, b]. By (3)
and the coarea formula we have that

Area(D) ≥
∫ b

b−1
2.injrdr ≥ Re(λ) cosh(b)

K|λ| .
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Since D is area minimizer with respect to its boundary, it has less area than the
disk bounded by ∂D in Tb, which in turn is less than the total area of Tb. Hence

Ab = 2πRe(λ) cosh(b) sinh(b) ≥ Re(λ) cosh(b)

K|λ| .

From the above inequality, we obtain sinh(b) ≥ 1
2πK|λ| , which in turn implies

that b ≥ log 1
|λ| − log πK. Since we also had that r0 ≤ log 1

|λ| + log C2 for some

C2(K) > 0, it follows that r0 − b ≤ log C2πK.
Finally, if there is an r0 > r ≥ r0 − log C2πK such that ,(Σ ∩ Tr) < 2injr < 2ε,

then our previous argument shows that D stays at distance at most 2ε+ log C2πK
from Tr0 . Combining all of our inequalities, we may then take d = 2ε+log C2πK+1,
which satisfies the conclusion of the lemma. !
Remark 2.3. In general Σ∩Tr may not be connected or differentiable for all r, and
the topology of a component of the intersection of Σ with a solid tube may not be
a disk. However, by Sard’s Theorem, for almost every r the intersection Σ ∩ Tr is
differentiable, while for critical values it has 0 area, and hence we can apply the
coarea inequality by bounding the total length of the intersection for regular values
of r. To apply the maximum principle argument, we need to bound the diameter
of Σ∩Tr. Since Σ is incompressible, each component of Σ∩Tr bounds a disk in Σ,
and by maximum principle such a minimal disk belongs to the solid tube of radius
r about γ. Thus the length of each component of Σ ∩ Tr bounds the diameter of
that component, and we can run the argument on each of them.

We now continue with the rest of the proof of Proposition 2.1. By Lemma
2.2, we now only need to show that the non-disk components of Σ in T(ε3) are
at bounded distance (depending on K) from ∂M<ε3 . If r is at bounded distance
(depending on K) from r0, it is enough to show that the non-disk components of
the intersection of Σ with the r-neighborhood of a short geodesic are contained in
a bounded neighborhood of Tr.

Take then a component of Σ∩ T(ε3) that is not a disk. Take d from Lemma 2.2
and r ∈ (r0−d, r0). Then we can assume that the total length of Σ∩Tr is bounded
below by 2.injr, since otherwise each component of the intersection of Σ with the
r-neighborhood of the short curve bounds a disk and we are finished. Moreover,
we can further assume that every component of Σ ∩ Tr is homotopically essential
in Tr. Indeed, if such a component was null homotopic then it would bound a disk
in Σ, because Σ is incompressible. But then by maximum principle such minimal
disk cannot exit T(ε3), so we can take care of it by Lemma 2.2. Now we have that
the length of each component of Σ ∩ Tr is bounded below by 2.injr.

By (3) we see again that Area(Σ ∩ (
⋃

s∈(r−1,r) Ts)) is bigger than Area(Tr) for
some r ∈ (r0 − d, r0), as we did in Lemma 2.2. Then since Σ is incompressible
and the curves in Σ ∩ Tb are mutually disjoint and homotopically essential, each
component of Σ∩Tb bounds an essential annulus. But this is impossible since after
such homotopy we would have reduced the area of Σ. !
Remark 2.4. The main result of [HW19] essentially states that if a hyperbolic
mapping torus M has a short curve (necessarily isotopic to a simple curve in the
fiber) whose boundary torus lies in a specific compact subset of the moduli space
of flat tori then a least area minimal embedding in the homology class of the fiber
stays some definite distance from the short curve. We obtain the same conclusion if

Licensed to University of Heidelberg. Prepared on Fri Sep 29 04:56:29 EDT 2023 for download from IP 147.142.156.219.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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the curve is short enough, but this threshold depends on the shape of the boundary
tube.

Now we can apply Proposition 2.1 for geometrically convergent sequences of
hyperbolic manifolds where the thin regions converge to rank-2 cusps.

Theorem 2.5. Let Mn be a sequence of complete hyperbolic 3-manifolds without
rank-1 cusps converging geometrically to M∞, where if components M<ε3

n converge
to a cusp, then the rank is 2, and there are only finitely many such limits in M∞.
For each n, assume we have an embedded incompressible closed minimal surface
Σn ⊂ Mn of bounded genus that is an area minimizer in its homotopy class. Then
there exists d > 0 such that Σn is contained in a 2d-neighborhood of the ε3-thick
part of Mn for all n sufficiently large.

Proof. Consider a rank-2 component C of M<ε3
∞ approximated by compact Margulis

tubes Tn(ε3) ⊂ Mn. Then geometric convergence Mn
geom−→ M∞ tells us that the

boundary tori Tn = ∂Tn(ε3) converge in the moduli space of Euclidean tori to
T = ∂C, so that given ε > 0, the area An of ∂Tn is within ε of the area A of ∂T ,
for large enough n.

Let λn and ωn be the complex length and Teichmüller parameter of the core
geodesic and boundary torus of Tn(ε3), respectively. We also have the scale param-
eter tn which determines the area An of Tn by An = t2nIm(ωn), as in the proof of
Proposition 2.1.

Since the radii rn of the tubes Tn(ε3) tend to infinity with n, by [Min10, Lemma
3.2] we have

|λn − 2πi/ωn| = (1 − tanh(rn))Re(2πi/ωn)

≈ 2e−2rn
2πIm(ωn)

|ωn|2 = 2e−2rn
2πIm(ωn)t2n
4π2 sinh2(rn)

≈ e−4rn
(A + ε)

π
.

In particular, this implies that ωn = 2πi/λn + O(e−4rn).
Any preimage to H2 of the conformal parameter of T in the moduli space has

imaginary part at most c. Thus, given ε > 0, we have

2πReλn

|λn|2 < c + ε + O(e−4rn),

for n large enough. Rearranging the terms and noting that since Re(λn) → 0,
Re(λn)2 is negligible compared to Re(λn), we can recover

Im(λn)2

Re(λn)
>

2π

c + 1
= K,

for n large enough.
There are finitely many rank-2 parabolic cusps in M∞, so we may apply Propo-

sition 2.1 to obtain d such that Σ ∩ M<ε3
n is within distance 2d of ∂M<ε3

n . !

Remark 2.6. It is immediate from the proof of Theorem 2.5 that the conclusion
still holds if we allow infinitely many rank-2 parabolic cusps in M∞, as long as we
assume that the Euclidean structures on the boundaries of the rank 2 cusps lie in
a compact set of the (3-dimensional) moduli space of Euclidean tori.
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Remark 2.7. We may also relax the hypotheses of Theorem 2.5 to include the case
that M∞ has infinity many cusps if we require that the minimal surfaces Σn stay
at bounded distance from the basepoint for geometric convergence Mn → M∞.
Indeed, we claim that Σn can only ever meet a (uniformly) bounded number of
components of M<ε

n , to which we can apply the proof of Theorem 2.5.
First we argue that each component of Σn∩M≥ε

n contributes a definite amount of
area to Σn. To see this, first note that there is a definite distance between ε-Margulis
tubes and goes to infinity as ε goes to 0 (see [Min10, §3.2.2]). Taking ε smaller if
necessary, we may assume that the distance between distinct tubes is at least ε.
Now, find a maximal ε-separated set F in Σn ∩M≥ε

n . By Anderson’s monotonicity
formula [And82], the intersection of each (embedded) ε/2-ball centered at a point
of F with Σn contributes at least 4π sinh2(ε/4), the area of a disk of radius ε/2 in
the hyperbolic plane, to the area of Σn, hence at least |F |4π sinh2(ε/4) total area
to Σn.

Since the area of Σn is at most 2π|χ(Σn)| by Gauss-Bonnet, it follows that F
has uniformly bounded cardinality. Since the ε-balls centered at F cover Σn∩M≥ε

n ,
the sum of diameters of each component is bounded by 2|F |ε. Since the number of
components of Σn ∩ M≥ε

n is uniformly bounded, Σn ∩ M≥ε
n has bounded distance

from the basepoint, and hence it can only intersect finitely many of the ε-tubes in
Mn.

Since Mn → M∞, the boundary of the ε-tubes meeting Σn lie in a compact set
of the moduli space, and we can apply the proof of Theorem 2.5 to obtain the result
at the beginning of the remark.

Theorem 2.5 says that there exists ε3 ≥ ε > 0 so that for n large we have
Σn ⊆ M>ε

n . In fact, this holds for any ε satisfying log( ε3ε ) ≥ 2d + c3 for some
constant c3 (see [Min10]). Since Σ is incompressible, this means that the injectivity
radius of the intrinsic metrics of Σn is uniformly bounded below.

Following [Uhl83], [Tau04], we say that (Σ, g,α, u) is a minimal surface in hy-
perbolic geometry if

• g is a hyperbolic metric on Σ.
• α is a holomorphic quadratic differential on (Σ, g)
• u : Σ → R is a smooth positive function.
• The 2-form Re(α) satisfies the Gauss equation with respect to e2ug and H3.

Explicitly

∆u + 1 − e2u − |α|2e−2u = 0.

Morally, Σ represents a minimal surface with second fundamental form Re(α)
in a hyperbolic 3-manifold. The conditions above say that the universal cover
(Σ̂, ĝ, α̂, û) has an immersion to H3 as a minimal plane invariant by the isometries
given by a representation π1(Σ) → PSL(2, C). We will still denote (Σ, g,α, u) by
Σ for simplicity. We can also talk about the index of the second variation of area,
and in particular define if a minimal surface Σ is stable or not. Well-known results
(see [SSY75]) say that for a stable minimal surface, a lower bound on injectivity
radius implies an upper bound on the norm of the second fundamental form. Such
results apply to this definition of minimal surfaces in hyperbolic geometry, and the
following compactness result follows.
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Theorem 2.8. Let Σn be a sequence of stable minimal surfaces in hyperbolic geome-
try with a positive lower bound on their injectivity radius and bounded genus. Then,

up to subsequence, there is a stable minimal surface Σ∞ such that Σn
C∞
−→ Σ∞.

Since we are dealing with minimal surfaces in hyperbolic space, this surface has
negative curvature bounded by −1. In particular, given Theorem 2.5, we know that
π1-injective area minimizers along a geometrically convergent sequence of hyper-
bolic 3-manifolds have limits in the limit manifold.

3. Minimal surfaces with bounded curvature

In her seminal work, Uhlenbeck [Uhl83] describes the space of stable minimal
surfaces in hyperbolic geometry, and more precisely, the space of almost-Fuchsian
surfaces, detailed in Theorem 3.1.

Theorem 3.1 ([Uhl83]). If M is a complete hyperbolic 3-manifold and Σ ⊂ M is
a closed minimal surface with principal curvatures |k1,2(x)| ≤ 1 then

(1) expT⊥Σ . M̃ → M , where M̃ is the covering of M associated to π1(Σ).

(2) If |k1,2| < 1, then M̃ is quasi-Fuchsian.

(3) Σ is area-minimizing and is the only closed minimal surface in M̃ .

(4) Σ ⊂ M̃ is embedded.

(5) Σ ⊂ M is totally geodesic if and only if M̃ is Fuchsian.

Remark 3.2. We observe that statement (2) was only known for |k1,2| strictly
bounded by 1, but in recent work Huang and Lowe [HL] proved that the same
conclusion holds for |k1,2| ≤ 1. All other items (including (3)) have essentially the
same proof for either |k1,2(x)| ≤ 1 or |k1,2(x)| < 1. Commonly the notation of
almost-Fuchsian refers to the case when |k1,2(x)| < 1.

A consequence of this result is that every point of p ∈ Σ has a “unique” outer
tangent horosphere Hp. More precisely, lifting to universal covers Σ̃ ⊂ H3, for each

choice of normal outer direction and for each p̃ ∈ Σ̃, there exist a horosphere Hp̃

outer-tangent to Σ̃ at p̃. This means that is tangent on the side of the chosen
normal, and Σ̃ does not intersect the interior of Hp̃. Moreover, this is a one-
to-one correspondence, meaning that p̃ is the only point of contact for Hp̃, i.e.

Σ̃ ∩ Hp̃ = {p̃}. We would like to describe how this behavior translates for the
boundary of almost-Fuchsian manifolds.

Proposition 3.3. Let M be a complete hyperbolic 3-manifold and Σ ⊂ M a com-
plete surface that has principal curvatures bounded by 1 in size (|k1,2| ≤ 1). Then

(1) expT⊥Σ . M̃ → M , where M̃ is the covering of M associated to π1(Σ).

(2) Σ ⊂ M̃ is embedded.

Proof. As in [Uhl83] we see that if g denotes the induced metric in Σ and B denotes
its shape operator, then we have the explicit hyperbolic metric in Σx × Rt

G(x, t)(u, v) = g(x)(cosh t.u + sinh t.Bu, cosh t.v + sinh t.Bv) + rs,

(u, r), (v, s) ∈ T(x,t)Σ× R.

The condition |k1,2| ≤ 1 allows us to see that the metric G is positive definite,
while the completeness of Σ allows us to see that (Σx × Rt, G) is complete. As in
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[Uhl83] one can verify that the metric G is hyperbolic and that t = 0 is isometric
to Σ. This proves both items. !

We now describe the behavior of outer tangent horospheres when |k1,2| ≤ 1.

Take Σ̃ the universal covering of Σ. Since it is complete, we know that expT⊥Σ̃
is isometric to H3. Hence the normal geodesics to Σ̃ are mutually disjoint. For a
choice of outer normal direction and each p ∈ Σ̃, we can follow the normal geodesic
at p along the outer normal to find a point at infinity z(p). Then the horosphere
Hp centered at z(p) passing through p is tangent to Σ̃. To see that Hp is outer

tangent, i.e., Σ̃ is disjoint from the horoball bounded by Hp, foliate the horoball by

the geodesic spheres tangent at p. If Σ̃ has a point in the interior of Hp, then one
of the geodesic spheres from the foliation is tangent to Σ at a point different from
p. Such point would have a normal geodesic intersecting the one emanating from
p.

Note that, when |k1,2(p)| = 1, we cannot necessarily conclude that Σ̃∩Hp = {p};
see Proposition 3.4.

As Uhlenbeck points out, it was known by Bianchi and others that if Σ is a
minimal surface in hyperbolic geometry, then the second fundamental form of Σ is
the real part of a holomorphic quadratic differential (with respect to the conformal
structure induced in Σ). Then if µ denotes a conformal structure on Σ with hy-
perbolic metric gµ, and α is a quadratic differential with respect to µ, Uhlenbeck
[Uhl83, Theorem 4.2] describes the Gauss-Codazzi equations for a minimal surface
Σ in hyperbolic geometry with induced metric g = e2ugµ:

(4) ∆gµu + 1 − e2u − |α|2gµe−2u = 0.

By solving this equation with gµ and α as coefficients, Uhlenbeck describes the
space of stable minimal surfaces. We say that a minimal surface is stable if the
second variation of area is a non-negative operator. Uhlenbeck notices that the
linearization of (4) coincides with the second variation of area and, by applying the
Implicit Function Theorem and maximum principle, shows [Uhl83, Theorem 4.4]
that the space of stable minimal surfaces is star-shaped with respect to the param-
eter α. This means that for given (gµ,α) there exists tα such that the following
hold:

• If 0 ≤ t ≤ tα then equation (4) for (gµ, tα) has a unique stable solution.
• Any stable minimal surface is found in this way.
• As t increases, the principal curvatures ±k(x, t) of non-umbilic points

strictly increase in size.

From this discussion, we can see that (2) in Theorem 3.1 can be replaced by

(2’) If |k1,2| < 1 then M̃ is quasi-Fuchsian. If |k1,2| = 1 somewhere, then M̃ can
be obtained as the limit of almost-Fuchsian manifolds, i.e. quasi-Fuchsian
manifolds with a minimal surface satisfying the strict inequality |k1,2| < 1.

Thanks to (2’) we can expand the property of outer tangent horosphere to min-
imal surface with |k1,2| ≤ 1. Clearly, having an outer tangent horosphere is a
property preserved by closure. What we potentially lose is the one-to-one corre-
spondence between points in the surface and outer-tangent horospheres. We can
have multiple points with the same outer-tangent horosphere, but this can only
happen under special circumstances.
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Proposition 3.4. Let Σ̃ be an embedded surface in H3 with principal curvatures
|k1,2| ≤ 1. Then if two points p and q have the same outer tangent horosphere

H, then H ∩ Σ̃ contains the geodesic in Σ̃ joining p to q. Moreover, this geodesic
segment is also a geodesic in H and a line of curvature of Σ̃.

Proof. Take a geodesic segment γ ⊂ Σ̃ joining p to q. Then the geodesic curvature
of γ is also bounded in norm by 1. Suppose for sake of contradiction that γ is not
contained in H. Take in H a disk D that contains H ∩ γ in its interior. Consider
the family of geodesic balls whose intersection with H is ∂D and which contain γ
in their interiors. By construction, the first geodesic ball to make contact with γ
will do so tangentially at an interior point of γ. But geodesic balls have curvature
above one, which contradicts the curvature bound on γ. From this we conclude
that γ is contained in H.

Since the principal curvatures of H are equal to 1 (in particular H is umbilic),
any curve that is not a geodesic will have curvature above one. Hence then γ is
also a geodesic in H, so it has curvature equal to 1 at all points. This means that
in the direction of γ′ the surface Σ̃ has curvature 1. Since this is the maximum
possible value for a curvature on Σ̃, then γ always points in a direction of maximal
curvature. !

In the proof of Theorem 4.2, we see as a consequence of Proposition 3.4 that if
Σ ⊂ M has principal curvatures |k1,2| ≤ 1 and M has a parabolic cusp represented
by a closed curve homotopic into Σ, then the geodesic representative of that curve
in Σ is a horocyclic segment.

4. Mapping torus 3-manifolds with small geodesics

In this section, we bound the number of orthogonal intersections of closed curves
in a finite type surface equipped with a metric of negative curvature and finite area.
Together with Proposition 3.4 and the results of Section 2, we then use this bound
to produce families of area minimizing minimal surfaces in fibered hyperbolic 3-
manifolds with maximum principal curvature bounded uniformly away from 1. We
do this by drilling out families of curves homotopic to a fiber which would be
forced to intersect orthogonally on a limit of area minimizing minimal surfaces
with maximum principal curvatures tending to 1.

A curve system C ⊂ Σ is a non-empty collection of homotopically distinct es-
sential simple closed curves on Σ. We say two curve systems C1, C2 ⊂ Σ fill a
homotopically essential subsurface F = F (C1, C2) ⊂ Σ if every essential closed
curve in F has an essential intersection with a component of C1 or C2.

Let Sg,n be an oriented surface of genus g, n boundary components or punctures,
and negative Euler Characteristic. Let m be a Riemannian metric of finite area on
Sg,n so that each boundary component is totally geodesic and with pinched negative
curvature, i.e. there are a, b > 0 with −a ≤ κ(m) ≤ −b. The following bounds are
obtained by combinatorial Euler characteristic arguments and several applications
of Gauss-Bonnet.

Lemma 4.1. Let C1 and C2 each be a curve system represented by geodesics in
Sg,n not corresponding to boundary components and sharing no common curves.
Suppose C1 ∪ C2 is connected and every point of intersection C1 ∩ C2 is orthogonal.
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Then the total intersection satisfies

|C1 ∩ C2| ≤ (
2a

b
+ 1)|χ(F (C1, C2)| ≤ (

2a

b
+ 1)|χ(Sg,n)|.

Proof. We have assumed that C1∪C2 is connected, so C1∪C2 fills some homotopically
essential connected subsurface F ⊂ Sg,n; that is, F is the smallest subsurface so
that F \ C1 ∪ C2 is a collection of disks with at most one puncture and boundary
parallel annuli. Our assumptions tell us that F is not an annulus and χ(F ) < 0,
because some component of C1 meets a component of C2 transversely (so π1(F ) is
non-elementary); we may realize F in Sg,n so that its boundary (if any) is totally
geodesic.

We consider the components {F1, . . . , Fk} = F \ (C1 ∪ C2). Each has right
angled piecewise geodesic polygonal boundary Pi. The edges of Pi alternate between
segments of curves of C1 and C2, so that the number of sides |Pi| = 2pi is even.
A compact annular component has only one polygonal boundary component; the
other is totally geodesic and smooth.

The decomposition of F as F \(C1∪C2) almost gives us a cellulation of F ; we add
in an (open) edge joining each puncture to a vertex of its polygonal boundary as
well as a vertex on the boundary components of a compact annular component and
an edge connecting it to a vertex on its polygonal boundary. Now we compute χ(F )
in terms of our cellulation. A disk or punctured disk component Fi contributes 2pi

vertices and each compact annular component Fi contributes 2pi + 1 vertices, but
each vertex corresponding to a point of intersection of C1 ∩ C2 is counted 4 times.
This is because the cells all meet at right angles. If A is the number of compact
annular components, then the number v of vertices is given by

v =
k∑

i=1

2pi

4
+ A = |C1 ∩ C2| + A.

Similarly, if C is the number of cusps components, we compute the number e of
edges

e = 2|C1 ∩ C2| + 2A + C.

The number of faces is k = A + C + D, where D is the number of disks, so that

|C1 ∩ C2| − D = −v + e − f = −χ(F ),

and in particular,

|C1 ∩ C2| = |χ(F )| + D.

We just need to bound the number D of disks. Reordering if necessary (when
there are annular components of F \ (C1 ∪ C2)), they are {F1, . . . , FD}. We note

that
∑D

i=1 Area(Fi) ≤ Area(F ). Using the upper bound −b on curvature and the
fact that the boundary of F is totally geodesic, Gauss–Bonnet yields

Area(F ) ≤ 2π|χ(F )|
b

.

Using the lower curvature bound, for any Fi, Gauss–Bonnet gives
π

2
|Pi| − 2πχ(Fi) ≤ a Area(Fi).

The universal cover of Sg,n is contractible and negatively curved, so there are no
right angled 4-gons. Thus, if Fi is a disk, then pi ≥ 3 and χ(Fi) = 1. If Fi is
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annular, then χ(Fi) = 0 and pi ≥ 2. Thus

Area(Fi) ≥
π

a
(pi − 2χ(Fi)) ≥ π/a.

Now summing over disks {F1, . . . , FD} we obtain Area(F ) ≥ Dπ/a. Combining
this with our upper bound on Area(F ), we get

D ≤ 2a|χ(F )|
b

.

Note that |χ(F )| ≤ |χ(Sg,n)| = |2g−2+n|, so that combining the above estimate
with |C1 ∩ C2| = D + |χ(F )| completes the proof of the lemma. !

Note that this bound is sharp: if S is a closed surface of genus g and has a
metric of constant curvature equal to 1, then one can build a surface with a pants
decomposition and ‘dual’ pants decomposition where all curves meet at right an-
gles, and the union is connected. The number of intersections of these two pants
decompositions is 6(g − 1) = 3|χ(S)|.

We now construct infinite families of closed hyperbolic 3-manifolds fibered over
the circle such that any area minimizing minimal surface homotopic to a fiber (of a
particular fibration) has maximal principal curvatures bounded strictly away from 1
in absolute value. Our approach is to consider a family of surface bundles obtained
by Dehn filling on a finite volume hyperbolic manifold with cusps. For filling with
large enough slope, we know that area minimizing minimal surfaces must stay away
from the tubes that degenerate to cusps. Thus the thin parts act as barriers to area
minimizing surfaces of bounded genus.

Let ψ : Σ → Σ be a pseudo-Anosov mapping class. For a curve system C ⊂ Σ,
we say that (ψ, C) intersects enough if

• C and ψ(C) share no common curves; and
• F = F (C,ψ(C)) ⊂ Σ is connected; and
• i(C,ψ(C)) ≥ 5|χ(F )|.

Note that for some power of ψ, any non-empty curve system satisfies the above
properties with F = Σ.

We take a simple closed curve C = {γ} such that (ψ, C) intersects enough. Fur-
ther, we require that the geodesic representative C∗ of C in the hyperbolic metric
on the mapping cylinder Cψ is unknotted, i.e. isotopic into the fiber. Note that
postcomposing ψ by a large Dehn twist TN

C in C, we can assume that C∗ is very
short, hence unknotted by an argument of Otal [Ota03].

We consider the open manifold M = Cψ \ C∗. By Thurston’s hyperbolization
theorem, M admits a (unique) complete hyperbolic metric of finite volume, and
Dehn fillings Mψ,k with slopes k near enough to infinity converge geometrically to
M . Moreover, Mψ,k can be realized as the mapping cylinder of T k

C ◦ψ, hence fibers
over S1 with fiber Σ.

Theorem 4.2. Let Mk = Mψ,k be as above with k → ∞, and let Σk ⊂ Mk be area
minimizing minimal surfaces in the homotopy class of the fiber Σ ↪→ Mk. Then
there exist K0 and µ > 1 such that for k ≥ K0, the maximum principal curvature
of Σk is bounded below by µ.

Proof. By Theorem 2.5, Σk stays in the complement of M<ε
k for some ε ≤ ε3 and

k ≥ K0 large enough. Since Σk is incompressible and 1-Lipschitz, ε provides a lower
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bound on the injectivity radius of Σk. Assume for sake of contradiction that some
subsequence (with the same name) has maximum principal curvatures tending to 1.

By Theorem 2.8, there is a stable minimal surface Σ∞ ⊂ M such that, up to

subsequence (again with the same name) Σk
C∞
−−→ Σ∞, all principal curvatures of

Σ∞ are bounded in absolute value by 1. Clearly, Σ∞ does not enter the ε-thin part
of M .

The subgroup Γ ≤ π1M corresponding to Σ∞ defines a covering space M̃ to
which Σ∞ lifts isometrically to a homotopy equivalence. Moreover, M̃ ∼= Σ × R
is geometrically finite; by changing the orientation of Σ∞ if necessary, C and ψ(C)
correspond to rank-1 parabolic cusps in the ‘top’ and ‘bottom’ conformal surfaces
at infinity, respectively.

Now we lift the situation to universal covers to obtain a Γ-equivariant embedded
minimal surface Σ̃∞ ⊂ H3. Suppose γ ∈ Γ represents (the conjugacy class of) C
and let z be the parabolic fixed point of γ. There is a smallest horoball such that
the horosphere H comprising its closure meets Σ̃∞ in a set containing a point p.
By equivariance, γ.p ∈ Σ̃∞ ∩ H, so by Proposition 3.4, the intersection Σ̃∞ ∩ H is

• the H-geodesic line in H joining p to γ.p; and
• a lift of the geodesic in Σ̃∞ in the homotopy class of γ ⊂ Σ∞; and
• a line of curvature of Σ∞.

Now, we apply the same argument for ψ∗γ representing ψ(C) to see that any lift
of the geodesic representative of ψ∗γ in Σ∞ is a line of curvature (with curvature
of opposite sign). It follows that all points of intersection of the Σ∞-geodesic
representatives C and ψ(C) are orthogonal.

However, (ψ, C) intersects enough, which contradicts Lemma 4.1. This contra-
diction provides a lower bound µ > 1 for the maximum curvature of the local area
minimizers Σk ⊂ Mk along any subsequence. !

Remark 4.3. Theorem 4.2 clearly holds under less restrictive hypotheses. Namely,
one can drill any curve system (ψ, C) that intersects enough (or multiple curve
systems) as long as one can assure that the rank-1 parabolic curves on the two
conformal boundaries of the cover associated to any geometric limit Σ∞ have enough
(orthogonal) intersections, as in Lemma 4.1. Note that as soon as C has at least
2 components, then there are different homotopy classes of embeddings into M
which map to fibers of the approximating manifolds Mk, which ‘weave through’ the
rank-2 cusps changing which curves are on ‘top’ and ‘bottom’ in the corresponding
covering space.

In our next application, we show how a short curve can act as a barrier to find
more than one local area minimizing minimal surface in the same homotopy class
with maximum principal curvature bounded away from 1.

Theorem 4.4. Let ψ : Σ → Σ a pseudo-Anosov map, Cψ = Σ × [0, 1]/(x, 0) ∼
(ψ(x), 1) its mapping torus, and α ⊆ Σ×{0},β ⊂ Σ×{ 1

2} two simple closed curves
that have non-trivial intersection when homotoped to a single copy of Σ. Denote by
M0 = Cψ \ {α,β}. Then for n sufficiently large, the slope-n Dehn-surgery around
β, denoted by Mn, has the property that for any sequence of pseudo-Anosov maps
ψk : Σ → Σ so that Cψk

geom−→ Mn, there exists a uniform constant µ(n) > 1 so that
µ is a lower bound for the maximal principal curvature on any area minimizer of
Cψk in the homotopy class of Σ.
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Proof. Note than in M0 we have two distinct copies of Σ, namely Σ× { 1
4},Σ× { 3

4}
(differentiated by their cyclic order with α,β), so we can obtain two area minimizers,

one in each homotopy class [FHS83]. By Theorem 5.1 of Section 5, as Mn
geom−→ M0,

we have that for n large enough we will find local area minimizers homotopic to the
standard Σ. Since now they belong to the same homotopy class, each of them has
a point with a principal curvature strictly bigger than 1. By Theorem 2.5 one of
these surfaces is the limit of the area minimizers in Mn, which implies the existence
of a uniform lower bound µ > 1 for the largest principal curvature. !
Remark 4.5. In the previous result, we can also conclude that there is a uniform
µ > 1 lower bound for the largest principal curvature along any sequence of minimal
surfaces that converge to either local minimizer in Mn.

Remark 4.6. Using Proposition 2.1, we can guarantee the existence of two local
area minimizers using the short curve β as a barrier using shrinkwrapping [CG06],
as detailed in [Cos21].

5. Further discussion

We make some concluding remarks about existence of local area minimizing
surfaces in some families of hyperbolic 3-manifolds. While in previous sections we
have used information about a sequence Mn

geom−→ M∞ to conclude the existence of
a minimal surface in the limit, here we include a result that uses a minimal surface
in the limit to conclude existence along the sequence. While the arguments are
known, we include this discussion for the sake of completeness.

Theorem 5.1. Let Mn
geom−→ M∞ be a geometrically convergent sequence of hyper-

bolic 3-manifolds. If M∞ has a closed embedded local minimizer of area Σ that does
not extend to a local foliation by minimal surfaces, then for n sufficiently large,
there exist local area-minimizers Σn ⊂ Mn so that Σn → Σ.

Proof. We know by [BBN10, Proposition 3.2] and [Son, Lemma 10] that in a neigh-
borhood of Σ, we have a foliation such that on each side of Σ is either strictly mean
convex, strictly mean concave, or is foliated by minimal surfaces. By a result of
Anderson (see [And83, Theorem 5.5]) we can further assume that Σ is the only
minimal leaf. Because Σ is a local minimizer of area, neither side can be strictly
mean convex. Hence we can consider Σ±, homotopic surfaces on each side of Σ,
whose mean curvature vectors point strictly towards Σ. By geometric convergence,
MN contains regions exiting the end which are C2 close to the region U limited
onto by Σ±, for large n. Hence eventually these regions are mean convex, so we can
find area minimizers by minimizing area along surfaces contained in those regions.
These are the local area minimizers Σn ⊂ Mn, which we can make converge to Σ
by taking Σ± closer to Σ and a standard diagonal argument. !

We say that an end E of a complete hyperbolic 3-manifold M is asymptotically
periodic if for any sequence of points pn exiting E, the geometric limit of M based
at pn converges to the cyclic cover of a hyperbolic mapping cylinder corresponding
to the fiber.

We can apply Theorem 5.1 to conclude

Corollary 5.2. Any complete hyperbolic 3-manifold M with an asymptotically pe-
riodic end E has an infinite sequence of pairwise homotopic, π1-injective local area
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minimizing surfaces exiting E, as long as the periodic manifold to which the end E
converges is not foliated by minimal surfaces exiting the ends.

Remark 5.3. There exist non-periodic complete hyperbolic 3-manifolds with an
asymptotically periodic end. Such examples can be obtained, using Thurston’s
Double Limit Theorem, as limits of quasi-Fuchsian manifolds with conformal end
invariants (Xn, Yn) with Xn staying in a compact subset of the Teichmüller space
and Yn converging in Thurston’s compactification to the projective class of a mea-
sured lamination left invariant by some pseudo-Anosov mapping ψ. Such a limit
has one geometrically finite end, and one geometrically infinite end with a ray of
local area minimizing homotopy equivalences that exit the end.
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