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Hamiltonian flows for pseudo-Anosov mapping classes

James Farre

Abstract. For a given pseudo-Anosov homeomorphism ¢ of a closed surface S, the action
of ¢ on the Teichmiiller space 7 (S) preserves the Weil-Petersson symplectic form. We give
explicit formulae for two invariant functions 7 (S) — R whose symplectic gradients generate
autonomous Hamiltonian flows that coincide with the action of ¢ at time one. We compute
the Poisson bracket between these two functions. This amounts to computing the variation of
length of a Holder cocycle on one lamination along a shear vector field defined by another.
For a measurably generic set of laminations, we prove that the variation of length is expressed
as the cosine of the angle between the two laminations integrated against the product Holder
distribution, generalizing a result of Kerckhoff. We also obtain rates of convergence for the
supports of germs of differentiable paths of measured laminations in the Hausdorff metric on a
hyperbolic surface, which may be of independent interest.

1. Introduction

1.1. Main results

We are interested in Hamiltonian flows associated to geometrically defined func-
tions on the Teichmiiller space 7 (S) of a closed, oriented surface S with negative
Euler characteristic equipped with its Weil-Petersson symplectic form wwp. Promi-
nent examples are furnished by the classical Fenchel-Nielsen twist flow about a
simple closed curve y, generalized by Thurston to earthquake flows in measured
laminations. These functions are their flows are real analytic Hamiltonian flows with
Hamiltonian potential the hyperbolic length [20,43].

The natural action of the mapping class group Mod(S) on 7 (S) preserves the
symplectic form. The Dehn twist T, in y is thus a symplectomorphism of 7 (.S), and
the square of the length function —%Z)z, : 7(S) — R is a Hamiltonian potential for 7, ;
that is, the flow of the corresponding Hamiltonian vector field at time one is equal to
the action of T}, on 7 (S).' Do other mapping classes admit Hamiltonian potentials?
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Let ¢: S — S be a pseudo-Anosov homeomorphism with projectively invariant
measured laminations @4 and pu— € ML(S). There is a real number A > 1 such
that gupty = Apy and upu— = A~ ju_; the leaves of 4 are stretched, while the
leaves of p_ are contracted under ¢. Although measured laminations space does not
have a natural smooth structure, if ;4 (hence p—) is maximal, the PL tangent space
Ty ME(S) can be identified with a symplectic vector space of transverse Holder
distributions J (i), which is modeled on the weight space W(r) of a train track ©
that carries p 4, equipped with its Thurston symplectic form wry, [4,5].

For a given @ € # (1) and small enough s > 0, ;4 + s« assigns positive num-
bers to the branches of t satisfying the switch conditions. The corresponding path of
measured laminations converging in measure to [+ represents the tangent direction «.
The length £4(Z) of a on a hyperbolic surface Z € T (S) computes the derivative of
the hyperbolic length of the measures 4+ + sa on Z at time s = 0; see [4, Corol-
lary 25] or Section 2, below.

The differential of ¢ induces a self map of the tangent space

T ) PMES) = H(14)/(1n+),

which lifts to a linear symplectomorphism # (i) — H (p4). Our first result gives
a formula for a Hamiltonian potential for the action of ¢ on 7 (S). We first assume
that 4 is maximal and that the linear action of ¢ on J (1) is diagonalizable over R
with positive spectrum. We give a detailed description of the linear action of ¢ and
lift all of the restrictions imposed above in Section 3.

Theorem 1.1. The action of ¢!

gradient of the function

on T (S) is the time one flow of the wwp-symplectic

3g-3

F)5(2) = ) log(Ai)te, (Z) - £, (2), (1)

i=1

where A = Ay > -+ > Azg_3 > A;;_3 > > 1\1_l are eigenvalues of the linear
action of ¢ on H (1) with corresponding symplectic basis of expanding and con-
tracting eigenvectors Ly = dy,...,03g—3 and P1,...,B3g—3 € H(u4).

Moreover, F(p“fl vanishes on the unique ¢!

-invariant stretch line forward direc-
ted by Ly, which is a Hamiltonian flow line parameterized proportionally to directed

arclength with respect to Thurston’s asymmetric Lipschitz metric on T (S).

"The minus sign comes from the definition of the action: Ty,.[f: S — Z] = [f o T, 1.
S —Z].
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Specializing the discussion to the other invariant lamination w—, Theorem 1.1
produces a function

3g—3
Fi(Z) ==Y log(A)li14,(Z) - Ly-15,(Z), )
i=1
whose corresponding Hamiltonian flow at time one is equal to the action of ¢. There
is a duality map (see Section 3.2)

ki H (1) = H (),

so that x Lo, ..., *_1a3g_3, U =*"181, ..., *_1,83g_3 is a symplectic basis of
contracting and expanding eigenvectors for the linear action of ¢! on J (u—). More-
over, Fj'~ vanishes on the unique g-invariant stretch line forward directed
by p—.

While the flows generated by — F : . and F)'~ coincide at time one, in general
these functions and their flows are different. Indeed, Thurston stretch lines are not
usually symmetric, even up to reparameterization.

One way to quantify the difference between the flows generated by these two
functions is to compute the Poisson bracket

{~FM Fp-) = wwp(—xF;:+1 Xpp-) = —dF)A Xpp-,

measuring the change of one function along the flow of the other. The Poisson bracket
is antisymmetric, satisfies a Leibniz rule and a Jacobi identity, and hence endows
C (T (S)) with the structure of a Poisson algebra. Using the Leibniz rule and linear-
ity, the computation of {—F : A, F}'™} (Corollary 8.5) is reduced to the computation
of {€; . Lk;}, where k; € {a;, i} and K; € {x o, 71 B;}.

Let « be a partition of 4g — 4, and let @ be a component of a stratum QM (k)
of the moduli space of holomorphic quadratic differentials. There is a corresponding
@-Thurston measure M'i(?h on ML(S), which is mutually singular with respect to the
Thurston measure in the class of Lebesgue (unless @ is the principal stratum, in which
case /,L%?h is the usual Thurston measure). The M%—typical point is the horizontal mea-
sured foliations without horizontal saddle connections for differentials in @ and can
(usually) be described by topological invariants; see Section 5.

Theorem 1.2. For Ml(’?h—almost every measured geodesic lamination (11 € ML(S)
and chain recurrent completion Ay, for every chain recurrent geodesic lamination A,

meeting A1 transversally, for all a1 € JH (A1) representing a tangent direction to |41
in ME(S), forall ay € H(Ay), and Z € T(S), we have

oy Ly} (Z) = // cos(h, Aa) day dasa,
Z
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where cos(A1, A2): Z — [—1, 1] is the function supported on the transverse intersec-
tion Ay h Ay measuring the cosine of the angle made from leaves of Ay to leaves

0f/\2.

We denote by Cos(a,o2): 7(S) — R the integral in Theorem 1.2, and empha-
size that the integral is signed, i.e., a; are not measures, but only finitely additive
signed measures (transverse Holder distributions), and part of the proof of Theo-
rem 1.2 involves making sure that this integral makes sense. In Section 7, we prove
that the integral is uniformly well approximated by certain Riemann sums defined by
geometric train track splitting sequences (Proposition 7.5) under suitable assumptions
about the integrand.

The & full measure set of measured geodesic laminations for which Theorem 1.2
holds are those for which any quadratic differential with horizontal foliation equiva-
lent to w1 recurs to a compact set in @ M (S) in backwards time under the Teichmiiller
geodesic flow. Ergodicity for the Masur—Veech measure on the unit area locus of a
component of a stratum implies that theses recurrent laminations indeed have full
measure. Evidently, the invariant Teichmiiller geodesic axis for ¢ satisfies this prop-
erty for our periodic laminations @ and p—.

Remark 1.3. There is an asymmetry in the statement of Theorem 1.2. Namely, we
have made a strong assumption about the dynamical properties of A1; and almost no
assumptions about A,. However, anti-symmetry of the Poisson bracket tells us that
the cosine formula admits descriptions as a derivative where the roles of A1 and A,
are reversed, i.e.,

oy Lo} (Z) = dly, Xey (Z2) = —dlg, Xa, (Z),

where Xy, is the shear vector field on T (S) symplectically dual to £y, (Lemma 2.5).
This suggests that perhaps the conclusion of the theorem should hold without restric-
tion on Aq.

Our Theorem 1.2 generalizes a result of Kerckhoff, who expressed the variation
of length of a measured lamination p along the earthquake defined by another v as
Cos(u, v). He proved [20, 21] that length functions are analytic and convex along
earthquake paths. Using different methods, Wolpert computed the first and second
variation of length functions for curves under twist/shear deformations in other curves
(see [42]). Goldman produced generalizations of these results for the smooth points of
Hom(m;(S), G) // G, where G is a connected Lie group with a non-degenerate Ad-
invariant bilinear form on its Lie algebra [18]. There are also analogous results [13]
for quakebends in directions ap + ibp, a,b € R and p € ML(S) for PSL, C valued
surface group representations. A special case of Theorem 1.2 (Proposition 8.4) was
proved in [16], where also some higher derivatives of the lengths of laminations in
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shearing vector fields were computed. It is known that length functions of laminations
are convex along the trajectories of shearing paths [1,35].

Let us point out that Theorem 1.2 actually computes a second derivative of the
length function £: T7(S) x ME(S) — R~y in the sense that

Ao X = b3 i X (D),

=0+
so part of the proof involves exchanging certain limits and justifying the swap. Care
is required here, as the domain of this function does not even have a natural C'! struc-
ture. This essentially boils down to making sure that all estimates we give in the paper
(especially Sections 6 and 7) are uniform over compact subsets of 7 (S). The main
technical ingredient needed to obtain Theorem 1.2 is provided in Section 6, where we
give rates of Hausdorff convergence for the supports of linear paths of measured lami-
nations along recurrence times (Theorem 6.2) on a hyperbolic metric Z € 7 (S). This
establishes a quantitative relationship between the measure topology and the Haus-
dorff topology on (supports of) measured laminations, which may be of independent
interest.

Having a geometric interpretation of these mixed partial derivatives may be useful
for making geometric arguments in shear coordinates, as they appear in the differential
of the change-of-shear-coordinates map j,,,: # (1) = H 1 (L,), taking 0, (Z)
to 03,(Z), for Z € T(S). We assume here that A; are maximal geodesic lamina-
tions satisfying the hypotheses of Theorem 1.2. We give the Jacobian matrix for the
derivative in terms of symplectic bases x1, ..., X3g-3, 1, ..., y3g—3 for # (1) and
Z1y++.,23g-3,W1,...,W3g-3 for Jf(kz)

Corollary 1.4. The derivative of £),,: H 1T (A1) = H1(X,) at a point 0,,(Z) is
given by

(s ) = W by} by ) _ Cos(xj,w;) Cos(yj,w;)
Aaki)x (b)) 4, 0)) Cos(zi.x;) Cos(zi.yj) )’

with inverse

(Saa)e = _{eyi»ﬂz,'} _{Zyi,ﬁwj} _ COS(Zj,y,') COS(wj,y,-) '
e {Kxi’gzj} {prgwj} COS()C;’,Z]') COS(Xj,U)j)

All functions are evaluated at Z, and {{x,, €, } represents the 3g — 3 square matrix
({exi ) er })i,j, etc.

The following expresses the variation of length of a measured lamination along
the stretch flow of another.
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Corollary 1.5. Let i € MEL(S) be maximal and generic in the sense of Theorem 1.2,
let Z € T(S), and let A be a chain recurrent geodesic lamination different from the
support of pu. For any Hélder cocycle o € # (), we have

1
02 // cos(A, u)dadoy(Z),
o z

where X ;”e“:h is the stretch vector field directed by |1, and 6,,(Z) € H T () measures
the shear of Z along p (see Theorem 2.4). If o is a transverse measure, then this

dlogle X} N(Z) =

quantity is strictly bounded above by 1.

1.2. Motivation and questions

It seems natural to ask for geometrically meaningful functions on 7 (.5) that induce
the action of arbitrary mapping classes, as properties of the function correspond to
properties of the flow. For example, level sets are preserved. Using only homoge-
neous quadratic polynomials in length functions of curves and Holder distributions
on geodesic laminations, it should be possible to obtain functions whose Hamilto-
nian flow generates the action of a suitable power of any mapping class at time one,
although this technique yields very little or no information about finite order mapping
classes.

It seems like an interesting problem to understand the flows associated to products
of length functions for intersecting curves or laminations, or even the flow associated
to the length functions of curves with self intersections. The product £,,, £, is invari-
ant under ¢, and seems like an especially interesting example. Using Corollary 1.4,
the corresponding Hamiltonian vector field £, X, + £, X, can be expressed in
terms of either the shearing vector fields associated to ;4 or to p—. Unfortunately,
such expressions (in the notation of Theorem 1.1)

3g-3
Gy Xpo A+ Xy =Ly Xyl + Ly ( > Cos(ai. p1—) Xeo; + Cos(je, ﬁi)xﬂi)

i=1

seem difficult to extract meaning from, except perhaps asymptotically.

The author was originally motivated by questions involving the action of a pseudo-
Anosov mapping class on the smooth points of the variety Hom(z1(S), PSL, C) //
PSL, C. It is known that there are two interesting hyperbolic fixed points of this action
on the boundary of the discrete and faithful locus coming from the cyclic cover asso-
ciated to the fiber subgroup of the hyperbolic mapping tori of My, and M,—1 [19]; see
also [27, Chapter 3].

Due to work of Bonahon [3] that there are holomorphic shear coordinates on the
locus of characters where a maximal lamination is realized, using the complex valued
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Goldman symplectic form, Theorem 1.2 has a straightforward generalization to shear-
bend deformations. However, the realizable locus of characters for p4 is a complex
torus and the action of ¢ is homotopically non-trivial, so the flow associated to any
Hamiltonian function defined only on the realizable locus cannot induce the action
of ¢ at time 1. The author does not know if inclusion of the realizable locus into the
character variety is null-homotopic. So, it might still be possible to find a Hamiltonian
function to generate the action on some appropriate open invariant set in the character
variety if the corresponding flow does not preserve the realizable locus.

1.3. Outline of the paper

Section 2 is dedicated to preliminaries on geodesic laminations and shear coordinates.
In Section 3, we discuss the linear action of ¢ and prove a more general version
of Theorem 1.1, which becomes an exercise in symplectic linear algebra in shear
coordinates. In Section 4, we discuss the geometry of horocyclically foliated train
track neighborhoods of geodesic laminations. Then in Section 5, we review some
recent work of Calderon—Farre and discuss the dynamics of the (generalized) stretch
flow on strata of the moduli space of surface-lamination pairs. We then use these
dynamical results in Section 6 to give a quantitative rate of convergence of germs of
paths of measured laminations in the Hausdorff metric on a hyperbolic surface for
recurrent measured laminations. This is the main technical ingredient for the proof
of Theorem 1.2. In Section 7, we discuss Holder geodesic currents and show that the
integral appearing in Theorem 1.2 can be approximated uniformly well by certain
Riemann sums, defined in terms of (geometric) train track splitting sequences. We
also recall the shearing cocycle associated to a transverse Holder cocycle o which
generates the flow of the shear vector field X. The proof of Theorem 1.2 is carried
out in Section 8. We then prove the remaining corollaries from the introduction.

2. Preliminaries on shear coordinates

In this section, we recall some basic facts about geodesic laminations on hyperbolic
surfaces. The discussion culminates in Theorem 2.4, in which we list some of the
remarkable properties of shear coordinates for Teichmiiller space. In subsequent sec-
tions, we give more context on some of the more technical aspects of the theory as we
require them.
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2.1. Geodesic laminations

We let S be a closed, oriented surface of genus at least two so that S admits a nega-
tively curved Riemannian metric m,,x. A geodesic lamination A is a non-empty closed
subset of S that is a disjoint union of complete simple m1,,x-geodesics called its leaves.
The space § £(S) of geodesic laminations with its Hausdorff topology is compact and
does not depend on 72,

A (simple) multi-curve is a collection of pairwise disjoint simple closed geodesics.
We call a geodesic lamination chain recurrent if it is approximated by multi-curves.
Denote by §£¢(S) the subspace of chain recurrent geodesic laminations.

A lamination is connected if it is connected as a topological space and minimal if it
has no non-trivial sublaminations. Alternatively, a lamination is minimal if each of its
leaves is dense. Any A € §£(S) can be decomposed uniquely as a union of minimal
sublaminations A1, ..., A, and isolated leaves ¢4, ..., £; that accumulate/spiral onto
the minimal components. We have bounds 0 < k < 6g —6and 1 <m < 3g — 3.

The m,ux-geodesic completion of S\ A is a (possibly non-compact, disconnected)
negatively curved surface with totally geodesic boundary and area equal to that of
Maux; We call this surface the cut surface or the surface obtained by cutting open
along A. A lamination is filling if the cut surface is a union of ideal polygons. We
let §£A(S) denote the space of minimal and filling geodesic laminations; the cut
surface is a union of ideal polygons. A lamination is maximal if it is not a proper
sublamination of any other geodesic lamination (the cut surface is a union of 4g — 4
ideal triangles). One can always make a choice of adding finitely many isolated leaves
that spiral onto the components of A to form a completion A’ that is maximal. If A is
chain recurrent, we can find a completion A’ that is also chain recurrent.

An extremely useful property of geodesic laminations is that their tangent line
fields are universally Lipschitz continuous. Let d be aleft invariant metric on PSLoR =
T'H? that is right invariant under PSO(2) and induces the hyperbolic metric on H?2.

Lemma 2.1 ([20, Lemma 1.1] or [11, Lemma 5.2.6]). There is a universal constant ¢
such that if x and x' € H? are at most ¢ < 1 apart and [ and I’ are disjoint complete
geodesics passing through x and X', respectively, then d (x1,x;,) < ce, where x; and
x}, € T'H? are tangent to | and I’ at x and X', respectively.

Geodesic laminations were introduced by Bill Thurston in [36,37] and have bec-
ome an important tool in various problems in Teichmiiller theory, low dimensional
geometry topology and dynamics. A comprehensive introduction to the structure the-
ory for geodesic laminations can be found in [12]; see also [11].
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2.2. Measured laminations

Let A € §£0(S) be minimal. If A is not a closed curve, then its intersection with any
transversal k, i.e., a C! simple arc meeting A transversally, is a cantor set of Hausdorff
dimension 0 (see [2]). We can associate a dynamical system on k N A by giving a
transversal k an orientation, which then gives a local orientation to the leaves of A.
Following the leaves of A induces a homeomorphic first return map P:k NA —>k N A.
It can be shown that there are at most 3g — 3 P -invariant ergodic probability measures
onk N A (see, e.g., [40]). If k' is a transversal isotopic to k" through arcs transverse
to A, then the corresponding dynamical systems are conjugated by the isotopy, and
the invariant measures are in bijective correspondence.

A transverse measure |1 supported on A is the assignment of a positive Borel mea-
sure (k) to each transversal k supported on k N A that is invariant under transverse
isotopy and natural with respect to inclusion. We sometimes conflate the Borel mea-
sure (k) with its integral against the constant function 1. A geodesic lamination A
equipped with a transverse measure p is a measured lamination.

Note. We will reserve the notation A € § £(S) for geodesic laminations without any
additional structure and use the letter p to refer to a measured geodesic lamination.
Abusing notation, we will also use the letter p to refer to the support of u, if it should
not cause any confusion.

The weak-* topology for continuous, flow invariant functions on 7' S makes the
space ML(S) of measured laminations on S a piecewise-integer-linear (PIL) cone
manifold homeomorphic to R%~6 \ {0} [36, 37] (see also [12, 14, 31] for exposi-
tions). The Dirac masses on multi-curves, i.e., simple multi-curves with the transverse
measure assigning positive integer weighted Dirac masses to transverse intersections,
form a lattice of integer points; the positive cone over the set of multi-curves is dense

in MEL(S).

2.3. Train tracks

Thurston invented train tracks as an extremely useful tool for understanding both the
geometry of and dynamical systems associated to geodesic laminations. We refer the
reader to [30,31,36].

A train track T C S is an embedded graph in S with a C! structure at the vertices
satisfying some additional geometrical and topological constraints. The train tracks
that are relevant to our discussion can all be obtained by looking at a suitable small
neighborhood of a chain recurrent geodesic lamination on a hyperbolic surface; we
formalize this later on in Section 4. The edges are called branches and are denoted
by b(t). The vertices are called switches and are denoted by s(7). A train track t is



J. Farre 144

called generic or trivalent if all switches are trivalent. A C! immersion of a ((bi)-
infinite) interval into 7 is called a train path. We usually consider two train tracks as
identical if they are C !-isotopic.

We say that a train track © carries a geodesic lamination A and write A < 7 if
there is a C! map S — S (called a carrying map) homotopic to the identity that
takes every leaf of A to a train path in 7. If u is a transverse measure with support
contained in A, then to each branch b of T we can associate the p-measure of the
fiber of the carrying map at any point p of b. We identify w,, with a vector in Rl;(g).
The invariance property of the transverse measure implies that this vector satisfies the
switch conditions. That is, the sum of the weights on branches coming in to s is equal
to the sum of the weights on branches going out.

Let W(t) C R?™ be the linear subspace (called the weight space) cut out by
all the switch conditions. Let W (7) = W(r) N Rl;(ot) denote the non-negative cone.
If W (1) contains any strictly positive vectors, ie.,a weight vector giving positive
mass to every branch of t, then t is recurrent.

If © can be embedded in a hyperbolic surface with long branches and small geo-
desic curvature, then we call T transversely recurrent.” To a recurrent and transversely
recurrent train track 7, and to any w € W (7) \ {0}, we can construct a geodesic
lamination A, that is carried by t and equipped with a transverse measure [, that
corresponds to w via the carrying map.

Thus to a bi-recurrent (recurrent and transversely recurrent) train track t, there is
a map

Wt (t) = ML(S).

If such a train track is maximal, i.e., every component of S \ 7 is a triangle, then
restricted to the strictly positive weights U(z) C W T (t), this map is a local homeo-
morphism. We often abuse notation and identify the set of positive weights U(t) for
a bi-recurrent track t with its image in MEL(S).

Say that 7’ is carried by T and write t’ < 7 if there isa C! carrying map h: S — S
homotopic to the identity mapping all train paths in 7’ to train paths in 7. A carrying
map induces a linear map Aj: R — RP™ a5 follows: Enumerate the branches
b(t) = {by,....bx} and b(r') = {b]. ..., by}, choose points p; in the interior of b;,
and define

My, = (#7"(pi) N b;)). (3)

Then M}, is a non-negative integer matrix that restricts to a map of weight spaces

Ap: W) — W(r)

2See [31, Section 1.4] for a more precise formulation. In Section 4, we construct train tracks
as quotients of certain neighborhoods of geodesic laminations on a hyperbolic surface, and so
they are transversely recurrent.
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taking the non-negative cone in W(z’) into the non-negative cone in W(t). While M},
depends on the specific carrying map and the points p;, Ay does not [31, Section 2.1].

There is a finite set of maximal bi-recurrent train tracks {z; } such that U; U(t;) =
ME(S) and the transition functions are piecewise restrictions of integer linear iso-
morphisms on the overlaps in these coordinate chats. Thus train track coordinate
charts give ML(S) the structure of a PIL manifold, as asserted in the previous sub-
section.

2.4. The mapping class group and pseudo-Anosov mappings

The mapping class group is the collection of homotopy classes of topological symme-
tries of S, i.e., Mod(S) = mo(Homeo™ (5)). The natural action of Mod(S) on ML(S)
by pushing forward measures is by PIL homeomorphisms. Ahistorically, we call a
mapping class ¢ € Mod(S) pseudo-Anosov if no proper power of ¢ fixes any simple
closed curve, i.e., for any essential simple closed curve y,

" (y) ~ y implies n = 0.

The works of Nielsen and Thurston give the following equivalent description of
pseudo-Anosov mapping classes. There exists a scalar A > 1 and measured geodesic
laminations p4+ € ML(S) such that

Quity = Apy and g =A""p

The @-action on PML(S) = ME(S)/R~¢ has exactly two fixed points correspond-
ing to the projective classes [(4+] and [i—], which are attracting and repelling, respec-
tively.

2.5. The intersection and symplectic forms on A L(S)

There is a continuous geometric intersection form
Pt MES) X ME(S) = Rxo

that is homogeneous in each factor and that can be described by the formula

(. v) = //S ddv.

where the measure dudv is the local product measure supported on the set of trans-
verse intersections of the supporting geodesic laminations.

The intersection is locally bilinear; that is, given measured laminations p1 and p;
with distinct supports, one can find maximal bi-recurrent train tracks 7; and 7, such
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that ¢; < 7; inducing positive weight systems on 7;, and the intersection pairing is
bilinear on U(ty) X U(1a).

There is also a symplectic form wr, on ME(S), though one has to take care to
interpret this correctly, as M £(.S) does not have a natural smooth structure. Rather, at
each point u € ML(S), there is a PL tangent cone 7, M £(S) consisting of one-sided
tangent vectors that correspond to directions pointing into a train track coordinate
chart where p lies on the boundary.

For the (measurably) generic set of maximal measured laminations, the tangent
cone has a linear structure that can be identified with the weight space W(t) of any
train track 7 such that y < 7. More generally, there is always a subspace of the tangent
cone with a well defined linear structure, coming from the weight space of a train track
that carries p snugly, i.e., that u < 7 and that the interior of the complement of an
arbitrarily small neighborhood of p in S has the same topology as the complement
of in S. See [38, Section 6] or [4].

Let us consider a maximal measured lamination x and a maximal bi-recurrent
generic train track t carrying p so that 7, M E(S) = W(r). For vectors o, B € W(7),
we define the anti-symmetric bilinear pairing

a(rs)  P(rs)

1
oo, B) = E Z alls) BLs)

ses(t)

’

where at the trivalent switch s there is an incoming branch and two outgoing branches
{5 and 7y exiting s to the left and to the right, respectively. An alternate description
of wt, as the homological intersection pairing on a certain double branched cover
S — S on which w lifts to an orientable lamination /i illustrates that in fact wry is
non-degenerate, hence symplectic (where defined); see [31, Section 3.2]. See also [7,
Appendix] for a description of the (degenerate) symplectic form on an arbitrary gen-
eric train track 7. The action of the mapping class group preserves the symplectic
form.

2.6. Transverse Holder distributions

To a geodesic lamination A € €£(S) and transversal k, we consider the space of
Holder distributions # (k N A) on k N A; these are functionals on the space of Holder
continuous functions on & N A that are bounded when restricted to functions with
a fixed Holder exponent. A Holder continuous isotopy transverse to A between two
transversals k and k’ induces a linear isomorphism between the Holder functions and
also the dual spaces, i.e., # (k N 1) == # (k' N L). A transverse Holder distribution o
to A is an assignment to each transversal k, a Holder distribution on k N A. This
assignment is required to be invariant under transverse Holder isotopy and natural
under inclusion.
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The vector space J(A) of transverse Holder distributions to a given geodesic
lamination has dimension

dimg H (1) = —x(A) + no(1),

where 719 (A) is the number of orientable components of A and y (1) is its Euler char-
acteristic. The Euler characteristic can be computed via a train track snugly carrying A
(see [5, Section 5]).

There is a natural isomorphism between the weight space W(t) of a snug train
track t for A and #(A). Indeed, to & € J€ (1) this isomorphism associates the weight
system wy, € W(tr) obtained by pairing o with the constant function 1 on a small
transversal to each branch of t. This rule exhibits a transverse Holder distribution
as a “kind of finitely additive signed transverse measure” to A called a transverse
cocycle [5, Sections 5 and 6].

If A is maximal and measured, then by virtue of the identifications 7, ML (S) =
W(t) = J (1), the space of Holder distributions is the vector space of tangent direc-
tions to p in ML (S), where the correspondence is given by

o€ H() > =1+ taliefoe € TME(S).

Thus when p is maximal and measured, the Thurston form wry, gives # () the struc-
ture of a (6g — 6)-dimensional symplectic vector space.

Let u € ML(S) be a measure whose support is contained in some A € §L(S).
Let o € #(A), and consider the path i 4+t C H (L) witht € [0,¢). If u + to gives
all branches non-negative mass for some train track  carrying A snugly, then we
can build a measured lamination corresponding to that weight system and attempt to
extract a one-sided tangent vector & = [it + t@];¢[0,¢)-

Theorem 2.2 ([4, Theorem 21]). With notation as above, a € J (L) corresponds to
a tangent vector to a measure [ supported in A if and only if the following three
conditions hold:

* every infinite isolated geodesic of A has non-negative a-mass; and

* every infinite isolated leaf of A which is asymptotic to a minimal sublamination
of A that is not contained in the support of | has o-mass 0; and

* the restriction of o to each minimal sublamination of A that is not contained in
the support of | is a transverse measure.

2.7. Teichmiiller space

From now on, we will restrict ourselves to hyperbolic metrics on S, i.e., those metrics
with constant curvature everywhere equal to —1. The Teichmiiller space T (S) is the
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collection of equivalence classes of marked hyperbolic structures on S. Note that we
often suppress notation for the marking and write Z € 7 (S). The §-thick part of 7 (.5)
consists of those hyperbolic surfaces Z where the injectivity radius inj(Z) > §; equiv-
alently, every closed geodesic loop has length least 24.

To each Z € T (S), there is a holonomy representation

71(S) = Isom*(Z) =~ PSL, R

that records the transitions between local isometric charts around the loops in S, well
defined up to conjugation. The image of 7 (S) in Hom(71(S), PSL, R)/PSL, R is a
component of discrete and faithful representations and endows 7 (S) with the struc-
ture of an R-analytic manifold.

2.8. The symplectic form on 7 (S)

Work of Goldman [17] provides us with a natural symplectic structure wg on the
smooth locus in Hom(7(S), PSL, R)/ PSL, R. It turns out that wg is a constant
multiple of the Weil-Petersson Kéhler form wwp when restricted to 7 (S) [17, Propo-
sition 2.5].

The symplectic form induces a bundle isomorphism T*7(S) — TT(S), hence
a linear isomorphism between 1-forms and vector fields. Concretely, to a 1-form 7,
there is a vector field X defined by the rule that for all vector fields Y, we have

wwp(X.Y) = n(Y).

To a smooth function f: 7 (§) — R, we associate the Hamiltonian vector field X ¢
by the rule wwp(Xy, ®) = df. The symplectic form induces a Poisson bracket on the
space of smooth functions:

d d
{£:aH2) = owe (X (2), Xg (2)) = | f(Hg(Z,1) = ——
=0

7| _e(H (2.0

=

where Hg and Hy are the (local) Hamiltonian flows of the Hamiltonian vector fields
Xg and Xy, respectively.

2.9. Length

To each point Z € 7 (S), there is a homogeneous continuous length function
Le(Z): ML(S) = R

extending the rule that if u corresponds to a weighted multi-curve then £,,(Z) is the
weighted sum of the lengths of the geodesic representatives on Z of each component
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of the support of w. Alternatively, length is the integral of the product of the length
element d ¢ along the geodesic leaves of y in Z and the transverse measure:

0(Z) = //Z dedpy.

For a simple closed curve y (with weight 1), we have

2cosh(ty(2)/2) = |r(fu(¥))],

where fi:71(S)—PSL; R is the holonomy representation corresponding to the mark-
ing f:S — Z. Thus length functions for weighted multi-curves are manifestly R-
analytic. Kerckhoff proved [21] that £,,: T (§) — R is analytic for every u € ML(S).

There is also a notion of length for transverse Holder distributions. Namely, for
Z€T(S),AegL(S),and o € #H(A), we define

0a(Z) = f/z dtda,

where d{ is the length element along leaves of A on Z, but since « is only finitely
additive and signed, some care has to be used when interpreting the meaning of this
integral; see [4, Section 6] or Section 7, below.

Let A € §£(S), and u € ME(S) be a measure whose support is contained in A.
For any o € # (1) representing a tangent direction to u in ML (S), Bonahon proved
in [4, Corollary 25] that

d

ﬁa(Z) = E t=0+€,u+toz(z)- “4)

2.10. Angle

The Poisson bracket between the length functions for measured laminations p and v
relates the change in length of one along the earthquake flow in the other. Formally,
for 7 € R, the earthquake flow Eq,,: 7 (S) — 7 (S) in p is the (complete) R-analytic
Hamiltonian flow associated to the length function £,,. Geometrically, to a hyperbolic
surface Z € T (), the earthquake flow at time 7 > 0 in a weighted curve y with weight
w > 0 is the surface Eq,, (Z) obtained by cutting open Z along y and regluing with
a twist of displacement fw to the left. This rule extends continuously from weighted
curves to measured laminations.
Kerckhoff [20] and Wolpert [43] proved that for weighted curves u and v,

d
(@) = 5| uEa,@) = [[ costur)duav.
t=0 Z
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where cos(u, v): Z — [—1, 1] is the function supported on the transverse intersection
w M v measuring the cosine of the angle made from leaves of u to leaves of v. This
formula extends continuously to arbitrary p and v € ME(S) (see [20]).

2.11. Measured foliations

A (singular) measured foliation on a surface S is a C! foliation ¥ of S away from
a finite set (called singular points) and equipped with a transverse measure v. The
transverse measure is required to be invariant under holonomy and every singularity
is modeled on a standard k-pronged singularity; see [14, 37] for details and further
development. Isotopic measured foliations are considered identical.

The space MF (S) of Whitehead equivalence classes of singular measured foli-
ations is equipped with a topology coming from the geometric intersection number
with homotopy classes of simple closed curves on S.

In a given hyperbolic metric, we can pull each non-singular leaf of a measured
foliation (¥, v) tight in the universal cover to obtain a geodesic. The closure is
a geodesic lamination invariant under the group of covering transformations that
projects to a geodesic lamination A on S, and A carries a measure of full support p
obtained in a natural way from v.

This procedure defines a natural homeomorphism M F (S) — ML(S) (see [23]),
so that we may pass between equivalence classes of measured foliations and the cor-
responding measured lamination at will.

2.12. The horocycle foliation

The following construction is essentially due to Thurston [36,38]. Let P be a regular
ideal n-gon in H?, i.e., P has n-fold rotational symmetry. There is a rotationally
symmetric horocyclic n-gon i p whose edges are horocyclic arcs facing the ends of P.
The unbounded components of P \ &p can be foliated by horocyclic segments facing
the ideal points. This (partial) foliation H(P) of P is called the horocycle foliation
and it carries a transverse measure: homotope a transverse arc into the boundary of P
where it inherits Lebesgue measure.

Recall that £ A (S) consists of minimal and filling geodesic laminations. Given
A € §LA(S), we define the regular locus

T2(S) ={Z € T(S) : every component of Z \ A is regular}.

Note that if A is maximal, then 74(S) = T(S), but otherwise 7*(S) is an analytic
submanifold of positive co-dimension.

For A € §£A(S) and Z € T*(S), the horocycle foliation on each complementary
component of A in Z defines a partial foliation of Z \ A. The line field orthogonal to A
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is locally Lipschitz (Lemma 2.1), so the horocycle foliation extends uniquely across
the measure 0 set A to obtain a C! partial foliation H,(Z) of Z. The transverse
measures on the complementary components piece together to a transverse measure
on all of H)(Z). It is sometimes useful to view H)(Z) as an element of MF (S) by
collapsing each horocyclic n-gon to a point. Indeed, this defines a map

H:THS) —> MF(S).

Remark 2.3. There is a similar construction of an orthogeodesic foliation Q) (Z)
which is defined for any geodesic lamination A and any Z €T (S). When A€ § LA (S)
and Z € T2(S), then 9;(Z) and H, (Z) agree in MF (S). See [9] for details.

2.13. Shearing coordinates

Configurations of ideal triangles T, T glued along an edge in H? are parameterized
by their shear coordinate o(Ty, T,): a signed distance between the tips of the two
interior horocyclic triangles along their shared geodesic edge. The sign is positive if
the tip of the horocyclic triangle in 75 is to the left of the tip of the horocyclic triangle
in 77 when viewed from T7; this assignment is symmetric, i.e., 6 (T, T2) = 0 (1>, T1).

Let A be a maximal geodesic lamination, and Z € 7 (S). The horocycle foliation
H, (Z) gives us a way to identify the closest edges g1 and g5 of two ideal triangles T;
and 77 in the universal cover in an isometric way, even when they are not glued along
an edge (see [3, Section 2] or [9, Section 13.2]). The shear parameter 0 (Z)(T1, T2)
is defined similarly for triangles glued along an edge, and is again symmetric.

To a train track 7 carrying A, the rule a551gn1ng 0,(Z)(T1, T») to triangles T}
and 75 that are adjacent across a branch b C7in Z defines a weight system on T that is
invariant under the covering group. Thus 0, (Z) defines an element of W(t) = H# (1),
and we have a map

01 T(S) = H )

called shear coordinates adapted to A.
We give a brief summary of some of the relevant (remarkable) properties of the
shear coordinates, due to Bonahon [3] (see also [4,5] and [33]).

Theorem 2.4. Given a maximal geodesic lamination A, the following are true:

*  For ameasure i € MEL(S) with support contained in A and Z € T (S), we have
u(Z) = om(p, 02(2)).

*  More generally, for any a € #H (L), we have £y(Z) = wm(a, o1 (2)).
s The map o3, is a real analytic diffeomorphism onto its image H (1) C H(A).
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o The set HT(L) is a convex cone of positive distributions, defined by the intersec-
tion of at most 3g — 3 linear inequalities wty(i,-) > 0, where w is an ergodic
measure whose support is contained in A.

»  The earthquake flow in a measure i € MEL(S) supported in A is linear in shear
coordinates:

03.(Eq,, (2)) = 0u(Z) + tpa.
*  The pullback of the Thurston symplectic form wt, on # (L) via oy, is equal to (a
constant multiple) of the Weil—-Petersson symplectic form wwp on T (S) (see [33]).

If © € ME(S) is a measure whose support is contained in A and & € H(A) rep-
resents a tangent direction & € T, ML (S), then combining the second bullet point in
Theorem 2.4 with equation (4) gives

d
2(1(2) = wTh(O‘, UA(Z)) = E +€u+ta(z)-
t=0

For any direction o € J(A), there is an analytic shearing vector field Xo on T (S)
given by
(01« Xa = «,
where we identify the vector space J (1) with its tangent space at every point. The
following lemma follows directly from Theorem 2.4 and says that length functions
are Hamiltonian for shearing vector fields.

Lemma 2.5. Let A be a maximal geodesic lamination, and let o € H (A). The shear-
ing vector field Xy is dual to d €, with respect to the Weil-Petersson symplectic form.
That is, dly = wwp(Xg, ).

Thurston’s stretch flow also has a nice formulation in shear coordinates. Stretch
lines are certain kinds of directed geodesics for Thurston’s asymmetric Lipschitz met-
ric on 7 (S) obtained by gluing together stretch maps on the ideal triangle along a
maximal geodesic lamination A; see [38, §4] for details.

If stretch(Z, A,1) € T7(S) is the hyperbolic metric obtained by stretching Z along A
for time ¢, then we have

oy (stretch(Z, A, 1)) = e'o,(2).

Remark 2.6. There is also a notion of a generalized stretch flow defined for points
in the regular locus 7*(S) for a (non-maximal) filling lamination A obtained by glu-
ing together stretch maps on the regular ideal polygons in the complement of A; the
construction of generalized stretch maps is a straightforward generalization of the
construction of stretch maps. See also [9, Section 15] for the construction of the dila-
tion flow which is defined for any (Z, u,t) € 7(S) x ML(S) x R and specializes to
generalized stretch flow when p is filling and regular on Z.
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3. Hamiltonian Flows in shear coordinates

The goal of this section is to formulate and prove a more general version of The-
orem 1.1 from the introduction. First we describe the linear action of (a bounded
positive power of) ¢ on the image of the shearing coordinates adapted to a (maximal
completion) of the support of the attractive fixed point for ¢ on P ML(S).

Once we have the linear action of ¢ in hand, the proof reduces to a computation
in linear algebra in shear coordinates. We then account for general Jordan decompo-
sitions of the linear action of ¢.

3.1. The linear action of a pseudo-Anosov mapping class

Let ¢ € Mod(S) be a pseudo-Anosov mapping class with projectively invariant mea-
sured laminations [u+] € PML(S). Choose a lift 4 in the class of [p4] and p—
lifting [4—] such that i (4, u—) = 1.

To understand the action of ¢ near its attracting fixed point [y] € PMEL, we
find a generic invariant train track to for ¢. That is, ¢ (t9) < 19, Where ¢ is a home-
omorphism representing ¢. We also require that tp carry @4 snugly so that g is not
maximal if g4 is not maximal.

A generic bi-recurrent invariant train track 7o exists and there is a choice of car-
rying map & for ¢(t9) < o such that if My, is the incidence matrix obtained via (3),
then

My RV & Ro@@o) M o)

is primitive irreducible [29, Theorem 4.1]. The Perron—Frobenius eigenvalue of Mg
is A and its corresponding eigenvector is the weight system on tp corresponding
to w4 . The restriction of My to weight spaces

Ay: W(to) = W(to)

only depends on ¢.

If 79 was not maximal, we now choose a generic maximal bi-recurrent comple-
tion T which is invariant under a bounded power of ¢. That is, 7 is obtained from 7y by
attaching branches to 7y in the complementary components of 7y that were not trian-
gles, and for some 1 < k < ko(g), we have ¢* (r) < 7. To make this choice, observe
that ¢ permutes the complementary components of ,’ so some power bounded by
the complexity of S fixes the spikes of the complementary polygons. Any choice of

3We remark that if ¢ was obtained from Penner’s construction [30], then ¢ preserves not
only the components of the complement of 1 but fixes all spikes.
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ideal triangulation of the ideal polygons complementary to the support of . defines a
maximal geodesic lamination A that contains the support of j14 as a sub-lamination;
make this choice so that A is chain recurrent. This induces a choice of additional
branches of 7y which can be combed apart so that again all switches are trivalent.

The resulting train track t is generic bi-recurrent maximal and invariant, so we
have an induced map of weight spaces

Bk W(r) - W(r)

that restricts to A{; on the subspace W (ty).

Then B« preserves the integer lattice and Thurston symplectic form wm, on W(z).
Up to replacing k with 2k (without changing notation), the set of eigenvalues of B«
contains no negative real numbers.

By Theorem 2.2, there is a convex cone with finitely many sides in W(t) = J€ (1 4)
that identifies with a linear fragment of 7}, M&£(S) containing W (7o) = H (j1+) as
a (vector) subspace. Since B« describes the action of ¢* on ML(S) in the PIL
chart W(t), B,k also describes the linearization on the directions in 7, , ML(S)
coming from J (A 4).

3.2. Duality

We relate the spectrum of the operator B« to the spectrum of a dual linear operator
modeling the action of (p‘k on certain directions near p—. This is essentially just a
summary/repackaging of [31, Section 3.4 and Epilogue].

To a maximal train track t there is a dual bi-gon track T*, such that ¢¥(7) < 1
implies ¢ % (r)* < t*. This induces an integer linear isomorphism

B;_k: W' (t*) = W'(z*),

where W' (t*) is a linear quotient of the subspace W (*) <R?™) satisfying the switch
conditions obtained as follows. For every branch b of t there is a dual branch »* of t*
meeting b once, and for vectors u € R?®™ and v € R?™™ a non-degenerate bilinear
pairing

(u,v) = Z u(b) - v(b*).

beb(r)

The paring induces a linear mapping
LW(TY) = W(r)*,

which is surjective when 7 is maximal. By definition, we have W’ (t*) =W (z*)/ker(1)
so that W'(t*) =~ W(z)™* holds. Moreover, there is a positive cone in W'(t*) that
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defines a chart for MZL(S) in a natural way that contains p_ (on a facet if t was
not maximal). As such, there is a (unique) chain recurrent geodesic lamination A_
invariant under ga_k that contains the support of p_ as a minimal sub-lamination and
a natural isomorphism W’(t*) 2 J# (A_) conjugating the linear ¢ % actions.

The Thurston form wr, on W(t) then induces an isomorphism W(z)* — W(t).
Composing isomorphisms, we have

W' (t*) - W) — W(r),

which satisfies
ot(w, x[v]) = (w, v).

If [v] and w both lie in their respective positive cones, then

a)Th(w’ *[U]) = i(,uw7 I/L[v])’

for the corresponding measured laminations.
Finally, the relationship between B« and B’ _,is
@

*B;,k [v] = B;kl * [v].

In particular, the spectra of B;) _x and Bk coincide. Moreover, direct computation
shows that * is a symplectomorphism with respect to the natural symplectic structure
on W'(t*), so that if ay, ..., @34-3, B1, ..., B3g—3 is a symplectic basis for W(7),
then * lay, ..., % lazg_s, x 1B1,..., %71 B3._3 is a symplectic basis for W'(z*).

Summarizing, the action of ¢* on ML (S) near 4 is naturally symplectomorphic
to the action of ¢ % on ML (S) near p1_.

3.3. Hamiltonian flows for pseudo-Anosov mappings with simple spectrum

The spectrum of a symplectic linear map is symmetric about 1; the eigenvalues come
in reciprocal and complex conjugate pairs with the same multiplicity.

Recall that we chose k so that B« has no negative real eigenvalues. We list the
eigenvalues of B« according to their algebraic multiplicity;* let

. A]'lg = {Ak = A1, As, ..., Ay} denote the real eigenvalues of B,k larger than 1;
. A;rr ={Ap+1,...,Apyq} denote the eigenvalues on the unit circle with argument
in [0, 7r);

4The algebraic multiplicity of a complex eigenvalue A; is the number of times it appears
on the main diagonal in the Jordan decomposition over C.
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. A%‘I = {Aptg+1.---» Apyg+r} denote the (complex) eigenvalues lying in the
upper half plane with magnitude larger than 1.

Lemma 3.1. If B« is diagonalizable over C, then there is a symplectic basis of
(generalized) eigenvectors

+ + + +
O1seees Optgs Opygitsee s Opiairs Bloeeos Bptags Bpirgts -+ Bpgtr € H(A4)
that satisfies:
e Fori=1,...,p, wehave

Ba; = Ajo;, BB = Aj'Bi.
« Fori=p+1....,p+gq, wehave A; = e'% for 0; € [0, ) and
Ba; = cos(0;)a; + sin(6;)Bi, Bpi = cos(8;)Bi —sin(6;)a;.
« Fori=p+q+1....p+q+r wehave A; = |A;le'% for6; € (0,7) and
Bai’" = |Al~|(cos(9,~)01;r + Sin(ei)ai_)’
Baj = |A;|(cos(6)a; — sin(6;)a;"),
BB = |A;| " (cos(6:) B} — sin(6:)B7),
BB = |Ai|" (cos(®)B; + sin(6:)B;F).

The subspaces

+ + + +
{ons g Oplgirs o Wgir )y (Broe o Bpas Bpgans s Bpigar)

form a Lagrangian splitting of H (Ay) with wm(c;, B;) = &), wTh(O{ii, ,BIi) = 0ij,
and a)Th(Oli:F, ﬂ/:t) =0.

Proof. This is the real Jordan normal form for (symplectic) linear maps diagonaliz-
able over C. See also [22]. ]

Recall from Section 2.9 that to each a € J# (A4 ) there is an analytic length func-
tion £4: 7 (S) — R, which is Hamiltonian for the corresponding shear vector field X,
and the Weil-Petersson symplectic form (Lemma 2.5).

With this notation set, we can restate and prove a more general version of Theo-
rem 1.1. The proof is an elementary computation in symplectic linear algebra in shear
coordinates.

Theorem 3.2. Let ¢ € Mod(S) be a pseudo-Anosov mapping class with stretch factor
A > 1 and (projectively) invariant uy+ € ML(S) satisfying

Qe = Apig, @up— = A"
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Let Ay be a chain recurrent maximal geodesic lamination that contains the sup-
port of juy as a sub-lamination, and let 1 < k < ko(g) be such that ¢* preserves A 4.
Assume that the linear action of (pk on # (Ay) is diagonalizable over C with no neg-
ative real eigenvalues.

For the symplectic bases of eigenvectors afforded by Lemma 3.1, the time 1 flow
of the real-analytic Hamiltonian function

p+q
Fyo —Zlog(A)ea,eﬂ, + 25 b +a)
i=1 i= p+1
p+q+r
+ D Tog(AiD (6 lpr + Loy L) + 6 (Lo Lt — L4 g))
i=p+q+1

coincides with the action of 9% on T (S).
Moreover, the unique ¢~ invariant Thurston stretch line forward-directed by Ay
is a flow line parameterized proportionally to directed arclength.

Remark 3.3. There are pseudo-Anosov mapping classes whose projectively invari-
ant measured laminations . and p— are both maximal, and the linear action A, on
W(zo) = R®~¢ has simple spectrum with no eigenvalues on the unit circle. Indeed,
the stretch factor A of mapping classes arising from Penner’s construction [30] have
no Galois conjugates on the unit circle [32], and it is possible to use Penner’s con-
struction to obtain A whose degree over QQ is 6g — 6 (see [34]). Thus the characteristic
polynomial of A, agrees with the minimal polynomial of A. Since irreducible poly-
nomials have distinct roots, this provides examples as claimed at the beginning of the
remark.

For such examples, we have 19 = 7, A+ = U4, TMi,MéE(S) >~ H(u+), and
B, =
values).

Ak for k = 1,2 (corresponding to whether or not A, has any negative eigen-

Remark 3.4. Theorem 3.2 applied to ¢ % which preserves the (dual) maximal lam-
ination A_ whose support contains — provides us with a very similar function F(jk_

whose Hamiltonian flow at time one coincides with the action of ¢*. The unique
invariant stretch line forward directed by A_ is a flow line parameterized proportion-
ally to arclength.

From the discussion in Section 3.2, there is a dual symplectic basis of (general-
ized) eigenvectors * ', *_1aii, *~18; and *_1,Bii € J(A_) compatible with the
action of B (; « on #(A_). The function F(j,j is obtained from F(p * by negation and
replacing each length function £, with the corresponding length function ¢ «la? for
all decorations e, and similarly w1th the B’s.
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To prove Theorem 3.2, we leverage the following elementary lemma from sym-
plectic linear algebra.

Lemma 3.5. Let (V, w) be a symplectic vector space and A € Sp(V') a symplectic
linear map. Let sp(V) denote the lie algebra of Sp(V') and suppose we have X €
sp(V) with exp(X) = A.

Then A is the Hamiltonian flow at time one of the quadratic form

F.V >R,
P %w(Xp, p)-
Proof. The elements X € sp(V) satisfy o(Xv, w) = —w(v, Xw), so the map
(v, w) > o(Xv,w)

is symmetric and bilinear. The time ¢ flow of the vector field p = Xp € T,V = V is
given by
p = exp(tX)p.

This means we just need to show that d F'(p)v = w(Xp, v) for all v. We compute
1
dF(p)v = S(@(Xp.v) + ©(Xv, p))

1
= 5(@Xp.v) — (v, Xp))
= w(Xp,v),
which is what we wanted to show. ]
Proof of Theorem 3.2. The first observation we make is that

0" (03, (2)) = Bros, (Z).

+

Let us examine the coordinate functions x;, y;, x;~, and yijE for o3, (Z) with

respect to our chosen symplectic basis adapted to B

02, (Z) =) xici + yifi + Y xiai + yi B
Using Theorem 2.4, we see

b2 (Z) = om(a}]. 00 (Z2)) = y; and Lpe(Z) = wom(B]. 04, (Z2)) = —x],

k)

where e represents one of the decorations ‘+’, ‘—’, or * . This means that

J)H_(Z) = Z—Eﬁi(xi + 4y, Bi + Z—Zﬂiiaii +€aiiﬁii‘ 5
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Comparing with Lemma 3.1, we specify an infinitesimal symplectic transforma-
tion X € sp(JH(A4)) with exp(X) = B« by the following rules:

e Fori=1,...,p,
Xa; =log(Aj)ei,  XBi = —log(Ai)pBi
e Fori=p+1,...,p+q¢q,
Xai = 0ifi, XBi = —bia;

e Fori=p+qg+1,....p+q+r,

XoF =log(|Ai))e;" + O;0f Xaj

1 1

XB = —log(|A: B — 6:B;. XB;

log(|Ai e — e}t
—log(|A:i B + 6:B;T.

By Lemma 3.5, the Hamiltonian flow at time 1 of the quadratic function in the
shear coordinate functions

1
Z Ea)Th(XUA+ (Z)’O-/lq_ (Z)) (6)

coincides with the action of B« on J(44), hence the action of @* on T(S) be-
cause 0, is a real analytic symplectomorphism onto its image.

For geometric reasons, we wish to run this flow backwards to obtain the (p‘k
action on 7 (§), so we negate the function (6) so that its flow at time one is the linear
map B(;kl on J (A4). Expanding this formula using (5) yields the function

F:jk:T(S) SR

from the statement of the theorem.
Now we explain the geometric rational for reversing the flow generated by (6).
For any Z € 7 (S), the Thurston stretch path directed by A through Z is

t O'A__;,l_ (eta;ur (2)),

so that the stretch paths are the rays e’ o emanating from zero that satisfy the positivity
condition wry (i, e'a) > 0 for all measures u whose support is contained in A4. By
unique ergodicity of p4+ and the fact that the isolated leaves of A4 cannot carry any
measure, the positivity condition is just wm, (4, e'c) > 0.

The path t — Z; defined by

Z: =0;1(e' B1)
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is the Thurston stretch path forward directed by A parameterized according to direc-
ted arclength, where the length of 4 at time ¢ is

by (Zy) = om(pig ., €' Br) = om(ar, e pr) = e’

No other eigenvector of B« besides f is positive. Indeed, all other (generalized)
eigenvectors v satisfy wm(t+,v) = om(og,v) = 0.
We see that

exp(1X)f1 = exp(—tk log(A))p1.

while exp(—7X)B1 = exp(tk log(A))B1. Thus the flow generated by F,, (which
corresponds to —X') has 7 = Z;x10g(a) as a flow line, which is parametrized propor-
tionally to the forward directed arclength (which is typically different from arclength
with time reversed). ]

3.4. More general Jordan blocks

In this section, we follow the proof of Theorem 3.2 to produce a (real valued) quadratic
polynomial in length functions for each Jordan block in the normal form of B«
over C. These quadratic polynomials poisson-commute with one another, and so
summing over the Jordan blocks produces the desired function whose time one Hamil-
tonian flow induces ¢ on 7(S).

For this we use the real canonical forms of Laub and Meyer [22] to obtain a
symplectic basis for the symplectic subspaces associated to certain B« -invariant sub-
spaces in which B« (or its logarithm) is particularly nice looking. Note however that
our notation does not agree with theirs. In what follows, we only treat Jordan blocks
of size at least two, as Theorem 3.2 handles Jordan blocks of size one.

Case: A; € A]'lg. Suppose there is real eigenvalue A; € AR that has a Jordan block
of size k in the normal form over C. That is, the k-by-k matrix

A 1

appears on the diagonal for the Jordan normal form of B .

Let V(A;) be the invariant subspace associated to this block (this is an abuse
of notation as there might be several Jordan blocks with A; on the main diagonal).
Since Bk preserves a symplectic form, there is another Jordan block of size k cor-
responding to A; ! with preserved subspace V(Ai_l), where V(A;) and V(A7) are
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Lagrangians in the 2k-dimensional symplectic subspace W(A;) they span [22, Sec-
tions 2-3].

The normal form [22, (1)] gives us a symplectic basis oy, ..., o, B1,..., Br of
W(A;) < #H(A+) and a standard linear vector field X € sp(W(A;)) with exp(X) =
B,k lw(a;)- Writing o for the projection of o (Z) to W(A;) and w the restriction
of wt,, we compute

k k—1
1
—(X0,0) = 1og(A,-)jZ;£a_, lg, + ;zaj+leﬂj.

This is the desired quadratic polynomial for this Jordan block.

Case: A; € A;]I. This case is similar; we proceed with analogous notation as in the
previous case. We have a complex eigenvalue of B« with a Jordan block of size k in
the normal form over C. We consider then the real Jordan normal form, in which we
can find a 2k-by-2k real Jordan block of the form

L I
L I

’

1
L;

Cia o [cos(6i)  —sin(6;) (1 0
Ll_|Al|<Sin(9i) cos(@i)) and 1_(0 1)'

Let V(A;) be the corresponding invariant subspace.

where

Since B« is symplectic, there is a real Jordan block of size 2k corresponding
to Ai_1 and its complex conjugate with invariant subspace V(A;'). The subspace
W(A;) < # (A1) spanned by these two has dimension 4k and V(A;) @ V(A; ') isa
Lagrangian splitting.

The normal form [22, (2)] gives us a symplectic basis o, . .. ,a,:f, BE, ..., ,B;E
of W(A;) and a standard linear vector field X €sp(W(A;)) with exp(X)= B [w(a,)-

With similar notation as before, we compute

k
1
—5(X0,0) = leog(|A,-|)(Ka;_L€Bj+ + Loy lp) + i (zaj—eﬂj+ - zajeﬂj—)
]=
k—1
T2 by e by
1

. J
j=
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Case: unipotent blocks. Let W be the largest B« invariant subspace of J{ (1) on
which B« is unipotent. Then W decomposes into a sum of minimal B« -invariant
symplectic subspaces W = U; @ --- @ Up, and in each factor either B« preserves a
Lagrangian splitting or not (see [22, Theorem 9]).

For each minimal invariant subspace V;, we find a symplectic basis ay, ..., o,
Bi,....Br € H(Ay) for Uy and X € sp(Up) withexp(X) = Bk |y, - If B« preserves
the Lagrangian splitting U, = (o1,...,0r) @ (B1, ..., Br), then we use the normal
form [22, (4)] for X to compute

k—1
1
—50(X0,0) = D oyl
=1

Otherwise, B« preserves only (a1, ..., ax) and k is even. In this case we use [22,
(3)] for the normal form of X and compute

(=D*?

k—1
1
—5(X0,0) = G+ Y o, lp;.
j=1

Case: A; #1 € A%. We proceed similarly to the last case, where we let W(A;) be
the largest B« invariant subspace of J((A) corresponding to all the (real) Jordan

blocks with
L= cos(f;)  sin(6;)
"7\ —sin(6;) cos(6;)

along their main (block) diagonal.

Then W(A;) decomposes into a sum of minimal B -invariant symplectic sub-
spaces W(A;) = U1 (A;) & --- & Uy (A;) and again, each summand in this decom-
position may or may not have an invariant Lagrangian splitting [22, Theorem 14].

In case B« preserves a Lagrangian splitting in Uy (A; ), the dimension of Uy (A;)
is divisible by 4, and we find a symplectic basis a;r, ... ,oz,j, oy, 0, ﬂfr, e, /3:,
Bi .-, By for Uy(A;) in which X is in its canonical form [22, (9)]. We compute

k—1 k
1
—50(X0,0) =) byt Lyr +larlpz +6i ) logy, Lo+ —Lyr gy

o .

j=1 j=1 S
There are two additional subcases when B« preserves no Lagrangian splitting;
that k is even or odd. Either way there is a symplectic basis o1, ..., %, B1, ..., Bk

for U, (A;) where X is in the normal form [22, (6)] if k is odd, and we have

k—1

k
1 b; .
—Ew(XU, o) = 2 E (_1)]+1(£°‘j£0‘k+1—j +eﬂjeﬂk+l—j) + § :Zaj+l€ﬂj'
Jj=1 Jj=1
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If k is even, then X is in its normal form [22, (7)] which allows us to compute

bl

1 0;
—50(X0,0) === (lajlaryr; + Lo,y ;)

EE
_ =

1 .
+ 5 2D (o Lo+ Ly sy )-
1

4. Geometric train tracks

The rest of the paper is devoted to finding an expression for the Poisson bracket
between length functions for Holder distributions. For this, we require estimates on
the geometry of train track neighborhoods of geodesic laminations (Proposition 4.1).

Note (Constants). All constants in the rest of the paper are understood to be local,
and are often absorbed into “big O” notation. It will be important however, that our
‘constants’ may be considered as continuous functions of the relevant data so that we
can make uniform estimates.

4.1. Horocyclic train track neighborhoods

Recall that § £A(S) consists of minimal and filling geodesic laminations, and let
A € §LA(S). Recall also that T*(S) is the locus of hyperbolic surfaces where the
complement of A consists of regular ideal polygons, and let Z € T4(S).

The following construction is due to Thurston [36, Chapter 9]. For ¢ < 1, the
e-horocyclic neighborhood Ng(A) C Z is obtained by removing (open) segments of
leaves of the horocycle foliation H, (Z) (Section 2.12) in the complementary poly-
gons of A with length smaller than e. Note that N; (1) is a closed set containing A.

If H,(Z) has no closed leaves, then the leaf space t, = N:(1)/ ~ of the e-horo-
cyclic neighborhood has the structure of a train track. We think of 7, as being C!
embedded in MN(A). The collapse map N:(1) — 7, extends to a homotopy equiva-
lence Z — Z homotopic to the identity on Z witnessing A < 7. Even if H,(Z) does
have closed leaves, if we take ¢ small enough, the collapse map will still extend to a
homotopy equivalence of Z homotopic to the identity; see Proposition 4.1.

Any train track 7, = 7(Z, 4, &) constructed from a triple of data as above will be
called a geometric train track and comes equipped with its collapse map

7 Ne(A) = Te.

Minimality of A implies that we make take the parameter ¢ smaller if necessary to
ensure that 7, is trivalent. The ties of 7, or N, (A) are connected components of restric-
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tions of the leaves of Hj(Z) to the neighborhood; all the ties are C! and meet z,
transversally. A train path y is induced by or follows a leaf of A if there is a segment g
of aleaf h C A such that 7(g) = y.

Given k > 0, we may find ¢ > 0 depending only on inj(Z) and the topology of S
such that immersed train paths in 7(Z, A, €) have average geodesic curvature at most k
(see [11]) on long enough segments.

4.2. Geometry of train track neighborhoods

A train path y induced by a leaf of A has a well defined length £(y), which is given
by £(g) for any segment g C w~!(y) of a leaf of A. This notion of length is well
defined as transporting a geodesic segment of a leaf of A along the (orthogonal) horo-
cycle foliation is length preserving. The length £(t) of t is the sum of the lengths of
the branches of 7.

We will need a number of geometrical facts about train track neighborhoods,
as constructed above; similar estimates are scattered about throughout the literature,
e.g., in [8] and [10]. We supply proofs for completeness.

Proposition 4.1. Let A € §LA(S), suppose Z € T*(S) is §-thick, i.e., inj(Z) > 8,
and let ¢ < 1. If N:(L) has no closed ties, then t. = 1(Z, A, &) is a geometric train
track with collapse map w: Ne(L) — ¢, and the following are true:

(1) Every closed train path in t, has length at least 26.

(2) The inequality £(ts) < 6|x(S)|(log 1/e + d/2) holds, where d is the max-
imum distance between adjacent horocycles of length 1 in any polygonal
component of Z \ A.

(3) There is a constant E depending only on § and the topology of S such that
L(t) < Ec foreverytiet C Ng(A).

4) Ife < 2E718, then Ny()) has no closed ties.

(5) For s < &, any tie of Ng(A) meets at most O(log(e/s) + 1) branches of s,
counted with multiplicity.

Proof. The bound in item (1) follows from the fact that every closed curve carried
by 7. is homotopically essential, hence has length at least 2inj(Z) > 26. Indeed, if a
closed curve y carried by 7. is not essential, then it bounds an immersed disk in Z.
After adjusting by a homotopy, this disk is a union of polygonal components of t,,
and y runs along the boundary. But the presence of sharp corners (spikes) on the
boundary prevents the existence of a tangent map from y to 7, induced by any C'
carrying map.

We consider item (2). The length of a train path running from spike to spike along
the boundary of a complementary polygon is equal to the distance along A between
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horocycles of length ¢. A computation shows that this is at most d + 21og 1/¢. Since
every branch of 7, has two sides, each polygon contributes at most half this quantity
to the total length of 7, for each of its interior edges. The total number of interior
edges is maximized when every polygon is a triangle. Maximal laminations have zero
area, hence there are 2|y (S)| triangles in the complement, each of area 7. Stringing
together these inequalities yields (2).

For item (3), we recall a theorem of Birman and Series [2], which asserts that
the Hausdorff dimension of the union over all Hausdorff limits of geodesic closed
curves with bounded self intersection is zero. In particular, for any transversal to a
geodesic lamination, the intersection with A has one dimensional Lebesgue measure
zero. So the length of a tie is the sum of the lengths of its intersections with the
spikes of Z \ A. There are at most 6| y(S)| spikes of A, and each time a spike passes
through 7, it follows an essential train path in 7, before returning to ¢. Such a train
path has length is at least 28, so the next horocyclic intersection of the spike with # has
length at most e~2% times the previous length. The longest horocyclic arc through ¢ is
less than ¢ in every spike, so we obtain

L) < 6x(S)|ed e = E(d)e.

r=0

To prove (3), we observe that no leaf of H)(Z) in the universal cover is closed,
so closed ties of N;(A) are homotopically essential. This means that their length is at
least 28 and at most E¢ by item (3). Item (4) follows.

To prove the last item, let N be the number of intersections of ¢ C N¢(A) with
branches of ;. The components of ¢ \ 7y correspond to spikes of A meeting ¢ in
horocyclic arcs of length between ¢ and s. There are at most 6| x(.S)| spikes of A,
so the pigeon hole principal implies that there is a spike that cuts through 7 at least
K = L%J times. Before returning to ¢, this spike makes a non-trivial loop in ;.
Thus the longest horocyclic arc of ¢ meeting this spike has length at least seK—128
On the other hand, this arc has length at most €. This gives

1
K < %log(s/s) + 1.

Remembering that % — 1 < K, we obtain

N < 6|)((S)|(21—810g(8/s) + 2) + 1= O(log(e/s) + 1)

This concludes the proof of the proposition. ]

We will need the following estimate on the angle made by any pair of leaves of
geodesic laminations which are close in some metric.
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Lemma 4.2. Let A € §£A(S) and Z € TH(S) be §-thick. Suppose that X' is con-
tained in an e-neighborhood of A C Z. Let k be a geodesic transversal to a branch b
of a geometric train track t, = t1(Z, A, &), and suppose that k meets leaves £ C A and
" C M. Denoting by 0 and 0’ € (0, i) the angles made between £ and k and U’ and k,
respectively. Then we have

| cos(0) — cos(8)| = O(e),

with implicit constants depending on §, the topology of S, and the angle made by k
with any leaf of M.

Proof. Let us consider the function on k& N A measuring the angle made between
leaves of A and k. By the universal Lipschitz property of geodesic laminations (Lem-
ma 2.1), this function is locally L-Lipschitz. So the angle made by any leaf of A with k
is at most L times the diameter of the set k N A, which is contained in the foliated
band of N (A) collapsing to the branch b. By Proposition 4.1, the length of any tie
foliated this band is at most E¢. Then the diameter of £k N A is bounded by AEe,
with A depending on the angle made between k and some leaf of A. We have shown
that for any points p and p’ of k N A, the angles made between k and A at p and p’
differ by at most LAEe = O(e).

If we can show also that some leaf of A is O(e) close in the unit tangent bundle
to some leaf of A’ at their intersections with k, then the lemma will follow, appealing
to the fact that cosine is Lipschitz. Give k an orientation and let £o C A and £, C A/
be the first geodesics that k crosses. Then £ and £;, bound polygons P and P’ com-
plementary to A and A, hence induce the same train path of length at least 2 log(1/¢)
running between two spikes of 7. Proposition 4.1 implies that £, and £;, fellow travel
at distance (E + 2)¢ along this path of length at least 2 log(1/¢). This is enough to
show that £y and £;, are O(g) close in the unit tangent bundle at their intersections
with k, and concludes the proof of the lemma. ]

4.3. Growth

We consider an oriented geodesic transversal k C Z meeting a single branch b C ;.
The orientation of k defines a linear order on the geodesics that meet k, and we locally
give orientations that form a positively oriented basis for the tangent space of Z at
every point of intersection; the orientation can be made (non-equivariantly) global
when working in universal covers.

For a component d C k \ A, d is the positive endpoint of d meeting the leaf h:{
of A and d~ is the negative endpoint meeting the leaf /7;; note that 4; and h; are
asymptotic and form an oriented spike sq4 = (h, h;), where the orientation is induced
by that of k. The bi-infinite train paths induced by 4 and h} fellow travel along a ray
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in one direction and eventually diverge in the other. The divergence radius r(d) > 1
is the number of branches that train paths following /4; and h; agree on in their non-
asymptotic direction.” There are also points k= and k™ C k N A meeting leaves i~
and h™ closest to the start and end of k, respectively. Choosing a point in d, we let k4
be the subsegment of k joining the negative endpoint of k to that point.

We will need some bounds on the growth of the size of a Holder distribution « €
H (1) evaluated on k. Recall from Section 2.6 that there is a canonical integer linear
isomorphism between W(z;) < R?(%) and # (). We define a norm || - || on # (1) as
the restriction of the £>° norm on R?(™®) to W(z,). The following facts are extremely
useful when working with shear coordinates; see [3, Lemmas 3, 4, 5, and 6], [33,
Lemmas 4, 5, and 6], or [9, Lemmas 14.2, 14.3, and 14.5].

Lemma 4.3. With notation as above and a € J# (), we have a constant A depending
on the angles of intersection of k with A such that

(D) la(kq)| = llellr(d); and

—r(d)2inj
(2) €(d) =< Ae exp(%); and

(3) For each r > 1 and each spike s of A, there is at most one component d of
k \ A contained in s such that r(d) = r, and there are 6| y(S)| spikes of A.

Note that we essentially proved items (2) and (3) in the course of proving Propo-
sition 4.1.

We can relate the weight deposited on a branch of a geometric train track t, =
1(Z, A, ) with its weights on 7, = 7(Z, A, &9), for € < &¢. For the next lemma,
let || - || denote the restriction of the £°-norm on R?(%0) to W(te,).

Lemma 4.4. Let ty, be a tie for a branch of Tt and o € H (A). Then for & small enough
compared to gy, |a(tp)| < C || log(eo/e) holds, with C depending on inj(Z), and
the topology of S.

Proof. There is a branch bg of ¢ onto which the tie #; collapses. Let ¢y be a tie of 7
containing #, and give o an orientation. Choose points x_ and x4 in 7o \ MNz(4)
adjacent to 5 on its negative and positive sides, respectively. Take a subarc 7_ joining
the negative endpoint of 7y to x_ and 7 joining the positive endpoint of 7 to x4+. By
transverse invariance and finite additivity, we have

a(ty) = a(t-) + a(ty) — all).

>The divergence radius (d) depends on the train track 7, and branch b that k crosses, but
we omit these data from the notation.
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According to Lemma 4.3 (2), & < gg exp(—7(t+)2inj(Z)/9|x(S)|),® which in par-
ticular implies that

9 x(S)|
1) < 1 ,
r(ty) < 2ini(Z) og(eo/e)
and similarly that (1_) < x(S)I log(eo/€). Then by Lemma 4.3 item (1), we deduce
2inj(Z)
that I4(S)|
X
o(ty)] = ||a||(1 +24 10g(80/8)) < Cllafllog(eo/e).  (7)
inj(Z)

demonstrating the lemma for € small enough with C > %L’J‘g; | large enough to absorb

the additive error. n

5. Dynamics of the stretch flow

In the next section, we will obtain estimates on the rate of Hausdorff convergence of
supports for certain C'! paths of measured laminations (Theorem 6.2). The argument
is dynamical in nature, and our discussion relies on a dictionary between surface-
lamination pairs and half-translation structures, i.e., holomorphic quadratic differen-
tials.

In this section, we discuss some preliminaries on dynamics of the earthquake and
stretch flows on the moduli space of hyperbolic surfaces equipped with a geodesic
lamination, as well as on the structure of the invariant measures corresponding to
components @ of strata of quadratic differentials. The main result from this section
is Corollary 5.7, which states that almost every minimal filling measured geodesic
lamination of topological type coming from @ has a certain recurrence property with
respect the to @-Thurston measure on ML(S).

5.1. Holomorphic quadratic differentials

Let Z € 7(S). A holomorphic quadratic differential g € Q%°(Z) is a holomorphic
section of the symmetric square of the holomorphic cotangent bundle. Path integration
against a branch of the square root of ¢ produces holomorphic charts to C where
the transitions are translations and translations with w-rotation. The transition maps
preserve the Euclidean metric and directional foliations in C, so ¢ defines a flat metric
on Z away from the zeros of ¢, which we equip with its imaginary (#, |dy|) and
real ('V, |dx|) measured foliations. The metric completion of this flat structure has

%We take A from Lemma 4.3 (2) to be equal to 1 here, since we are working with the lengths
of horocyclic arcs.
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cone points of excess angle wk at each zero of order k where there are k-pronged
singularities of both # and V. A saddle connection is a (singularity free) Euclidean
segment joining zeros of ¢q.

For each ¢ € 2:°(X), there is a constant & > 0 such that for all essential simple
closed curves y

(V. ldx)),y) +i((F,1dy]).y) > e. ®)

We call a pair of measured foliations binding if they satisfy (8). It turns out that this
property characterizes those pairs of measured foliations that can be realized as the
real and imaginary foliations of a holomorphic quadratic differential. Indeed, let A
be the subset of MF (S) x MF (S) that do not bind, and let @7 (S) be the complex
vector bundle of holomorphic quadratic differentials over 7 (.S).

Theorem 5.1 ([15]). The map that assigns to a holomorphic quadratic differential the
real and imaginary measured foliations is a Mod(S)-equivariant homeomorphism.
That is,

QT (S) = MF(S)x MF(S)\ A.

The moduli space of quadratic differentials @ M (S) = @T (S)/ Mod(S) is strat-
ified by specifying the number and multiplicities of zeros. Thus for a partition « of
4g — 4, there is a corresponding stratum of quadratic differentials @ (k) C QT ().
There are finitely many components in each stratum, classified by topological data
(except for some exceptional cases in genus 4). Each stratum is a complex orbifold;
there are natural local period coordinates on each component of each stratum obtained
by specifying a basis for a certain relative cohomology group recording the periods.

There is a natural action of GL;R on @7 (S) preserving the strata given by post-
composing the natural half-translation charts with a given linear map of C = R?. The

_etO u_lt
&= o o) " T \o 1

correspond to the Teichmiiller geodesic and horocycle flows, respectively. There is a

1-parameter groups

GL,R-invariant Masur—Veech probability measure (g in the class of Lebesgue on the
unit area locus of each component @ of each stratum. Both g; and u, are ergodic with
respect to g [25,26,41].

5.2. The dynamical conjugacy

Let k = (kq,...,k;) be a partition of 4g — 4 and consider the locus ML (k) of
measured geodesic laminations with minimal and filling support whose complement
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consists of j polygons with «; + 2 sides. We consider the “stratum” of regular pairs

PTw) = J (Z.w:ZeTS)
HEMEL (k)

with quotient P M (k) = P T (k)/ Mod(S). The unit length locus is denoted
PIM) = PLT (k)/ Mod(S).
Using the horocycle foliation construction, we can define a map

H: | 2T () — QT (S)

where H(Z, ) is the unique quadratic differential ¢(H,(Z), ) with real folia-
tion H,,(Z) and imaginary foliation equivalent to u. For « = (1,. .., 1), the following
is due to Mirzakhani, while for arbitrary k, we use the results of Calderon—Farre.

Theorem 5.2 ([9,10,28]). For each k, the map H restricts to a Borel-Borel Mod(S)-
equivariant bijection between PT (k) and the locus of QT (k) with no horizontal
saddle connections with the following additional properties:

* {u(Z) = Area(H(Z, p)).
»  The earthquake flow is mapped to the Teichmiiller horocycle flow, i.e.,
H(Eq;, (Z2), n) = us H(Z, ).
*  The generalized stretch flow is mapped to the Teichmiiller geodesic flow, i.e.,
H(stretch(Z, u,t),e ') = g, H(Z, ).

Remark 5.3. The map H is the restriction of an everywhere defined Mod(S)-equi-
variant Borel-Borel bijection O: T (S) — QT (S) using the orthogeodesic foliation
construction, which is (measure) equivalent to the horocycle foliation construction for
polygonal, regular surface lamination pairs [9, 10].

The locus of @M (k) with no horizontal saddle connections has zero measure for
any GL, (R)-invariant measure, so H has a measurable inverse on each stratum with
respect to any such measure. In particular, for each component @ of @ M (k), we have
a measurable inverse H~': @ — M (k) pushing the Masur—Veech measure j1g to
a stretchquake (earthquake and stretch flow) invariant Borel measure vg = H g
on $ M (), which induces a probability measure with the same name on P .M (k).

The following is an immediate consequence of Theorem 5.2 and the correspond-
ing facts that the Teichmiiller flows are ergodic on the unit area loci for every compo-
nent of every stratum of quadratic differentials.

Corollary 5.4. The earthquake flow and generalized stretch flow are both ergodic on
the unit length locus with respect to vg for every component of every stratum.
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5.3. @-Thurston measures

With « = (1, ..., 1), Mirzakhani proved for the principal (connected, open) stra-
tum @ = @(k), that vg is locally the product of the Weil-Petersson volume form
with the Thurston measure on measured laminations [28]. The Thurston measure py
on ML(S) is constructed as the Lebesgue measure in maximal bi-recurrent train track
charts, normalized so that the integer lattice has co-volume 1 in each chart. As the
transitions between train track charts are piecewise integer-linear and invertible, these
Lebesgue measures piece together into a globally defined Mod(S )-invariant (ergodic)
measure on MEL(S); see, e.g., [31].

We outline the construction for the @-Thurston measure ,u%?h on ML(S) and refer
the reader to [9] for details. Apart from some sporadic cases in genus four, the stra-
tum @ can be identified in terms of topological properties of the horizontal foliation
of the ug-typical quadratic differential (those without horizontal saddle connections).
We let T(Q) be the set of isotopy classes of bi-recurrent train tracks of type x on S
subject to the additional topological restrictions (such as orientability, hyperellipticity,
etc.) imposed by the horizontal foliation of the ytq-typical differential. Note that T(Q)
is Mod(S)-invariant.

Define

MEQ) = | Ui,
T€T(Q)

where Ugpyg(7) C ML(S) is the cone of measures snugly carried by 7.” Then the /L%?h
is defined in each cone Ug,(7) as the Lebesgue measure, normalized so that the
integer lattice® has co-volume 1. Again, the transitions between charts are piecewise
integer-linear, so these measures can be patched together to form a Mod(S)-invariant
measure ,u%?h on ML(S); then ML(S) \ ML(Q) has M?h-measure 0.

The usual Thurston measure induces an inner and outer regular Borel probability
measure on the unit length locus M£'(Z) for any Z € 7(S), but the @-Thurston
measure is not outer regular or even locally finite on M 'z ), unless @ is the prin-
cipal stratum; see [9] and [24].

Nevertheless, we have the following structural result regarding vg generalizing
Mirzakhani’s disintegration formula.

Theorem 5.5 ([9]). Let k be a partition of 4g — 4, and @ C Q@M (k) be a component.
The measure vg on P M(x) is locally the product of the @-Thurston measure and a
volume form on the regular locus T (S) induced by the (degenerate) Weil—Petersson
symplectic form tangent to TH(S).

7USrlug (7) is the complement of countably many integer-linear hyperplanes, and is therefore
a Borel set.

8The conditions cutting out Usq(t) from ME(S) are piecewise Z-linear, so the integer
lattice in M EL(S) restricts to an integer lattice in Us.o (7).
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Remark 5.6. Part of the content of Theorem 5.5 is the definition of the volume forms
on regular loci and the construction of (locally defined) volume-preserving diffeo-
morphisms between open sets in 7#(S) and 7' (S) if u and ' are close enough in
measure. See [9] for a precise formulation and further discussion.

We make use of the following corollary for arbitrary components @ C @ M (k).

Corollary 5.7. Let R(Q) C ML(Q) be the set of measured geodesic laminations of
type @ satisfying the following property: for any p € R(Q) and any Z € TH(S),
the projection of the anti-stretch path (stretch(Z, u, —t), e’ u) € PT (k) to P M(k)
returns to some compact set in P M(k) infinitely often as t — oo.

Then R(Q) has full /Lj(?h—measure, ie., ;L%(Mi(@) \ R(@)) =0.

Proof. By Corollary 5.4, the (generalized) stretch flow is ergodic for vg on the locus
of constant length pairs in &? M (@). Thus vg-a.e. pair is recurrent in backward time.
By Theorem 5.5, vg is locally the product of the @-Thurston measure and a volume
element on the regular locus in 7 (.S). An application of Fubini’s theorem completes
the proof. ]

6. Measure vs. Hausdorff convergence

Our main result in this section (Theorem 6.2) relates measure convergence of cer-
tain C'! paths of measured laminations with the Hausdorff convergence of their sup-
ports along a subsequence, and may be of independent interest. It appears that a
better rate of convergence could be obtained by studying the Lyapunov exponents and
Oseledets flag for (a hyperbolic geometric version of) the Kontsevich—Zorich cocycle.
However, we do not pursue this here, as the naive rate of convergence obtained below
suffices for our purposes.

As we split a geometric train track for a pair (Z, 1) € P17 («) by taking a small
parameter to zero, the measures deposited on the thin split track by p are very small.
The next proposition states that for vg almost every pair, there is an infinite collec-
tion of “stopping times,” where the measure deposited on the corresponding tracks is
“balanced.”

Proposition 6.1. Let @ be a component of a stratum QM(k) of quadratic differen-
tials, and vg be the corresponding stretchquake invariant ergodic probability measure
on the unit length locus P'M (k). For vg-almost every pair (Z, ) € P M(x),
there are constants M and ty and a sequence t1,1t,, ... tending to infinity, such that
the weights of | deposited on the branches of t, = ©(Z, i, e 0) are bounded
between 4ze~"™ and Me™" for all n.



Hamiltonian flows for pseudo-Anosov mapping classes 173

Proof. Let R~(Q) C P! M(k) be the set of pairs which recur to compact sets in
backward time under the stretch flow on P!.M (k). By ergodicity (Corollary 5.4),
R (@) has full vg measure. Let e7%‘((,‘2) C P17 (k) be the full preimage under the
Mod(S) orbit projection.

Let (Z,u) € ﬁ_((fl) and let 7o be small enough so that the geometric train track
190 = 1(Z, pt, e~ ) snugly carries u. By taking fo smaller if necessary, we may also
assume that 7y is generic/trivalent. Since 7 is generic, it is structurally stable, i.e.,
if (Z’, ') is close enough to (Z, u) in the sense that the metric structures of Z
and Z’ are close and the supports of yu and u’ are Hausdorff close on both metrics,
then ©(Z’, i/, e7%) is isotopic to Tg. The set of pairs K C P17 (k) near (Z, i)
satisfying this condition has positive vg-measure; making K smaller if necessary, we
also require that the closure of the projection of K to ML(S) stays in the interior of
the positive cone of measures carried by 7p. Then there is a constant M such that

1
— <u@t) <M
=) =
for any transversal/tie 7, to any branch b of 7o and for all i’ with (Z', u’) € X.
Now, let t1, 3, . . . be an unbounded increasing sequence of recurrence times to the
projection of X in the moduli space $!.M (k) under the anti-stretch flow. That is, we
have mapping classes ¢, € Mod(S) such that

@n.(stretch(Z, pu, —t,), e p) € X.

The time s anti-stretch mapping is in the homotopy class of the identity and takes
horocycles of length e in the spikes of u to horocycles of length e~¢"!in the spikes
of p. Thus

tw = T(Z, u,e¢" ) is isotopic to 7 (stretch(Z, jt, —t), 1, e ).

We set Z,, = @y stretch(Z, u, —t,) and p, = ¢,.e~" 1. By definition of KX, we have
that 7(Z,, i, e~'0) is isotopic to to. In particular, ¢,.t, is isotopic to 7o, and w, lies
in the interior of the positive cone in the weight space of 7g.

By our choice of M, we know

1
M = :un(zb) <M,

for any transversal #; to any branch b of ty. Equivalently,

e _tn

< u(ty) < Me™™n

for any transversal f,/ to any branch b’ of 7,,, and this is what we wanted to show. m
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We use the previous collection of balanced train tracks converging to p to control
the rate of geometric convergence of (germs of) C! paths of measured laminations.

Theorem 6.2. For ;L%?h-almost every b € ML(Q) and any chain recurrent diagonal
extension A, for every o € J(A) representing a tangent vector to p in ML(S), and
every Z € T(S), there are constants c1,c2 > 1, a € (0, 1], and ty > 0 depending
continuously on Z, u, and the size of a such that the following holds.

There is a sequence t1,t,, ... tending to infinity such that if s < cre 2 then a
¢ exp(—atoe'™) neighborhood of Ls := |t + sa on Z contains |i.

Proof. Assuming that p is in the ;Li‘?h—full measure set R (@) from Corollary 5.7, we
can find a surface Z’ € 7#(S) such that H(Z', u) € R(Q). We apply Proposi-
tion 6.1 to obtain constants M, fg, and a sequence ?1, f,, . . . tending to infinity so that
for the family of geometric train tracks 1, = 7(Z’, i, e~foe™” ), we have

tn

< t < _tnM’
S M) =e

for any transversal #; to any branch b of 1.

Let 7, be a diagonal extension of 7, corresponding to the isolated leaves of A.
Then t,, carries ji, if, for any branch b and a transversal 7, to that branch, we have
Us(tp) = 0. By Theorem 2.2, since o represents a tangent vector to i, [Ls iS positive
on any branch of 7, corresponding to an isolated leaf of A.

We will determine how small s must be in order for 15 to be carried by t,,; let b be
a branch of 7;, that does not come from an isolated leaf of A, and let 7, be a transversal.
Using Lemma 4.4, we have

—tn

(1) = slaap)| = S = 5C e,

where ||a|| is the £ norm of « as a weight system on 19 = t(Z’, u,e ) and C =
9] x(S)|/ inj(Z’). This is non-negative if s < %ﬁ;” = cje~ 2™ Thus if s is at least
this small, ;s must be carried by ;.

Adjusting t,, by isotopy if necessary, the average geodesic curvature of long train
paths in 7 can be made arbitrarily small as n — oo. It follows that there are scalars
ki.ko,...decreasing to 1, such that g, straightened in Z’, lies in the k, exp(—fge™)-
neighborhood of 7;, as long as s < cre~2, Furthermore, j is carried by T;,, SO its
straightening is also contained in the k, exp(—foe’”)-neighborhood of 7, C t,,.

Let 4 C A’ C A be the diagonal extension of y on which « is supported. Let d g,
denote the Hausdorff distance on closed subsets with respect to the hyperbolic struc-
ture Z’. We have proved that

dB (s, )') < 2k, exp(—toe™) aslong as s < cje™n,
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The Hausdorff metrics on the space of geodesic laminations are all Holder equivalent
to one another [44], so there are constants ¢ > 1 and a € (0, 1] depending on Z and Z’
such that

dZ (s Ny < cd B (ue )%,

Collecting constants appropriately completes the proof. |

7. Product distributions and shearing cocycles

In this section, we make sense of the double integrals with respect to the product
distribution ¢ ® B evaluated on nice enough functions. We observe that Fubini’s The-
orem holds for Holder distributions, thought of as Holder currents on the space of
geodesics of S for functions that are in the closure of simple tensors (Lemma 7.1).
Then the geometric intersection form is extended to transverse Holder cocycles, and
we explain its meaning as the second derivative of the usual intersection form on
ME(S) (Lemma 7.2).

Next, we establish some basic estimates, most of which can be extracted from
[3-5]. And show that certain “Riemann sums” can be used to compute double inte-
grals of Holder functions for which we can apply Fubini’s Theorem (Proposition 7.5).
The proof of this proposition is more technical than anticipated; it is also more general
than what we require in Section 8 to establish Theorem 1.2, where we only consider
smooth functions.

We conclude with a description of Bonahon’s shearing cocycles associated to a
Holder cocycle on a maximal geodesic lamination. These shearing cocycles corre-
spond to (germs of) analytic paths in 7 (S).

7.1. Currents and intersection

A geodesic Holder current is a Holder distribution on the space § (§ ) of geodesics in
the universal cover which is invariant under the action of 1 (S) by covering transfor-
mations. The space of geodesics has a well defined bi-Holder structure, independent of
negatively curved metric on S. Given A; € §£((S) and Holder cocycles o; € #(A;)
(i = 1, 2), we can associate uniquely a geodesic Holder current to o; whose support
is contained in the leaves of Ii (see [5, Proposition 5]). We form the tensor product
Holder distribution &y ® e, on the product €(S) x (S) which is again invariant by
covering transformations.
For any Holder continuous function f:§(S) x €(S) — R, we have

01 ®as(f) = a1 ® a2(f1, 47,):
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where Il h Iz denotes the subset (h1, h;) € L X 12 such that the endpoints of /2; are
interlaced with the endpoints of /1, in the circle at infinity, i.e., h; meets /i, transver-
sally in H?2.

We define D€ (S) as the subspace of €(S) x5(S) consisting of geodesics meet-
ing transversally and denote by D§ (S) the quotient by the diagonal action of 71 (S),
which is free and properly discontinuous. A choice of hyperbolic metric Z € 7 (S)
on § identifies HF (S) homomorphically with the total space of the bundle PT'(S) &
PT(S) \ A equipped with a bundle projection to S. We can endow D& (S) with an
isotopy class of Riemannian metric mz such that the right action of a maximal com-
pact K < Isom™ (Z ) on each factor of the fiber over a point of Z, is isometric. We let
DE(Z) denote DE(S) equipped with the isotopy class of m 7.

The following Fubini-type theorem for distributions on D& (S) follows from the
analogous result for distributions on R*.

Lemma 7.1 (cf. [39, Theorem 40.4]). Given Z €T (S), suppose that fe H*(DE(Z))
is in the closure of the linear span of simple tensors H*(§(Z)) @ H*(G(Z)) (with
respect to the a-Holder norm), then

e = [ ( [ re» dal(x)) das(y)

_ / ( / . y)daz(y)) don (x). ©)

In other words, Fubini’s theorem holds. In particular, if f is smooth, then (9) holds.

Sketch of proof. We have already observed above, for any 1 (S)-invariant Holder
continuous function f: €(S) x €(S) — R, that o; @ a2(f) = a1 ® a2 (fla,hay)-
Then f'[;,h, has compact support contained in (a fundamental domain for) DG (S).

For compactly supported a-Hélder continuous functions f;: §(S) — R, the prod-
uct f(x,y) = fi(x) f2(y) is compactly supported on €(S) x €(S) and a-Holder
continuous. Equality (9) clearly holds for such simple tensors, finite linear combina-
tions of simple tensors, and limits of finite linear combinations of simple tensors,
by linearity and continuity of the distributions o, o, and o) ® o restricted to
a-Holder functions. Moreover, the closure of compactly supported smooth simple ten-
sors CX(§(Z)) ® C°(9(Z)) contains C°(DE(Z)) with respect to the a-Holder
norm for any a € (0, 1), and this completes the proof of the lemma. |

Now, given A1, A, € §£¢(S) and o; € H(A;), we define the intersection number
i(ay,a2) =01 Qax(l) = // dai doy € R.
DE(S)

The intersection number between transverse Holder distributions is a natural exten-
sion of the intersection number of the space of measured laminations.
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Lemma 7.2. With respect to an auxiliary hyperbolic metric Z € T (S), the inter-
section number can be computed on (geometric) train tracks t1 = t(Z, A1, &1) and
1o = 1(Z, Ay, &3) carrying Ay and A, with small geodesic curvature, respectively, as
follows:

ilar.00) = Y ar1(t(p)aa(t2(p)). (10)

perihr

where t;(p) is a tie of t; through p.

The intersection number defines a bilinear pairing # (A1) x #(A2) — R, and
if oy and oy represent tangent vectors to measures [L1 and Lo with support contained
in A1 and My, respectively, then i(a1, oz) is the second derivative of the geometric
intersection pairing i: ML(S) X ME(S) — R at the point (i1, |2) in the direc-
tions a1 and oy.

Proof. That 71 and 1, are geometric with small geodesic curvature on Z ensures that
they are in minimal position. The support of &; ® w5 is contained in the transverse
intersections between A; and A,; take a geodesic quadrilateral Q, for each intersec-
tion p € 1y M 7, with opposite sides contained in leaves of A; and ties 71 (p) and 5 (p)
running through Q,. Then

// dayday = ai(t1(p))az(t2(p))
)

p

is immediate from Lemma 7.1. By finite additivity and transverse invariance, any
subdivision of O, into smaller rectangles with smaller transversals yields the same
result after summation.

Note that (10) is identical to the expression for the geometric intersection pair-
ing between measures carried by 7; and 7. Indeed, the non-negative cone in the
weight space of W(t;) defines a (possibly high codimension) subspace of measures
in ME(S), fori = 1,2, and the intersection pairing is bilinear restricted to pairs of
measured laminations in the product of these convex cones; a coordinate expression
is given by (10). Using the canonical isomorphisms W(z;) = J# (1;), we have demon-
strated bilinearity of i: H (A1) x H (A,) — R.

For each measure p;, there is a convex cone with finitely many sides in #(A;) =
W (z;) that represents a linear fragment of the one sided tangent space to ; in ML(.S)
(see [4, Theorem 22] or Section 2.6). For each pair «; and o5 in these tangent cones
and small positive s and ¢, pu; + so; and up + tap define measured laminations
carried by 71 and 13, respectively. As in the previous paragraph, the intersection form
on non-positive cones extends by the same formula to W(zy) x W(z,). To compute
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the second derivative, we can then write

d d d

dt ds . + ’ + t = =57 s + t =1 5 .

dt ot ds S=0+l (my + saq, o az) dr ot (otq, o a2) i(ay,az)
This completes the proof of the lemma. .

7.2. Integration

We will integrate transverse Holder distributions with respect to Holder continuous
functions f:k — R on transverse arcs k. The integral turns out to only depend on
the restriction of f to kK N A ([5, Lemma 1]). The fact that k¥ N A has Hausdorff
dimension 0 (see [2]) is an important ingredient in establishing the following inte-
gral formula.

Theorem 7.3 ([5, Theorem 10]). With notation as above and in Section 4.2, the inte-
grala(f) = [, f dais given by

a(f) =ak) fkF) + Y altka)(f(d7) = f(dT)),

dCk\A

where the sum is taken over all components d C k \ A except for the two extreme
components.

Given a geodesic transversal k to A, and an a-Holder function f:k N A — R, let

”f”a = Sup|f(x)| + sup M
x xty X =)l

denote the a-Holder norm of f restricted to A N k. We also define ae(k) = [, da. The
following can be extracted from the proof of [5, Theorem 11], but we include a proof
here for convenience of the reader.

Lemma 7.4. Let A€ §Ly(S), a € H (L), Z €T (S) be §-thick, f € H*(k), and & >0.
Let t, = 1(Z, A, €) be a geometric train track, and let k be a geodesic transversal to
a branch b of t. There exists C > 0 depending on the topology of S, the angle that k
makes with A, 8, and a such that if e is small enough, then

(/) —a(k) f(kT) < C|l flla - lelle®.
Proof. By Theorem 7.3, we have
o (f) —a(k) f(kT)] < Z loe(ka)(f(d7) — f(d ™))
d

<D r@lalll flad@d=,d*)?
d
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> —ar2é
<61l I flla 3 racee eXp( )
Z 92(5)]

< Clleell - 11 f llag®.

We have used Proposition 4.1 (2) and all three items of Lemma 4.3 to justify the
inequalities. ]

In general, we can approximate oy ® oz ( f) by “Riemann sums” of the form

(@ ®@wm)e(f) = Y. f(pati(p)eata(p)), (11)

peti(e)hra(e)

where #;(p) is a tie for 7;(¢) = ©(A;, Z, €) through points p chosen in the set of
transverse intersections A th A, corresponding to the intersections 71 () M 72(g) C Z,
fori =1,2.

Setting notation for the proposition, take g9 small enough so that t;(g¢) both
define train track neighborhoods, and W(z;(g9)) = #(1;). By |l@;|, we mean the
£°° norm on R2(i (¢0))

Proposition 7.5. With notation as above, then the Riemann sums (a7 ® o2).(f) con-
verge to a1 ® oz (f) as e — 0, for any 71 (S)-invariant a-Hélder function

7:6(8)x€(S) >R

in the closure of the linear span of simple tensors H°(§ (§ ) ® H(E (§ )). Moreover,
the convergence is at rate

(a1 ® @2)e(f) — a1 ® a2(f)] = O(eD),

where b € (0, a). The implicit constants depend (continuously) on b, || fla> o1,
ez ||, inj(Z), and the topology of S.

Proof. First we note that a; ® ay is supported on A; th A5, and on our reference
surface Z, these transverse intersections are contained in the union UQ,, of geodesic
quadrilaterals, as in the proof of Lemma 7.2. So, we may think of f as a Holder
continuous function on Z, supported on A; M A,, and write

log @ a2 (f) — (a1 ® a2)e(f)] =

Z/ f=f(p)dayday|.  (12)
p 9p

We now take a moment to point out that the usual integral inequality

‘/fdu < [ 1f1du
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for measures p does not necessarily hold for general distributions, as our ‘integrals’
are signed. As such, we will need to use care when distributing absolute value signs.
For instance, by the triangle inequality and Fubini’s Theorem for distributions which
are Holder approximated by simple tensors (Lemma 7.1), we can bound

(2=
D

where x represents a geodesic segment of A; N O, and y represents a geodesic

/ ( [ 160 = st dal(x)) daz(y)‘,

segment of A, N Op, so that (x, y) € Z represents their intersection, and we take

p = (xp. yp)-
For y fixed, we denote f)(x) = f(x, y) and define

Fp(3) = [ £ = frpe ) den ).
In order to evaluate the iterated integral above, we need to know that F,(y) is b-
Holder continuous for some b.

Claim 7.6. For ¢ small enough and all p, F,,(y) is b-Holder continuous for b € (0,a).

Proof of Claim 7.6. Let yy, y, be segments of leaves of A, N O, at Hausdorff dis-
tance A < E¢, which is a bound for the width of the e-horocyclic neighborhood of A,
(Proposition 4.1 (3)). We consider

|Fp(y1) - Fp(y2)| = |0(1(fy1 - fyz) —Oll(fl(P))(fyl(er) - fyz(x+))|
+ lor (1 (p)] - [(fyy (T = fr, ()] (13)

where x7 is the last intersection of y; and y, with a leaf of A1 in Q,. Note that the
intersections y; with A1 and y, with A, are in bi-Holder correspondence, so it makes
sense to compare these functions. Using the fact that f is a-Holder and Lemma 4.4,
we know

e (e (p)] - 1Sy 67) = fr, (XTI = Clle Tog(1/e) | f lla A (14)

Now we focus on bounding the first term of (13), which by Theorem 7.3 is

Y atka)(fn @) = fr,(d7) = S, (d ) + f,(d )], (15)

dCk\Ay

where the sum is taken over components d not containing an endpoint of a geodesic
transversal k (which we could take to be y; or y,, for example).



Hamiltonian flows for pseudo-Anosov mapping classes 181

We separate this sum into two pieces. Namely, we organize the components d
according to their divergence radius (measured with respect to 71 (¢€)), and separate out
those which have depth at most k, whose value will be determined later. Proceeding
as in the proof of Lemma 7.4, we can bound the previous equation by

Y laka)lI(fr (@) = f52(d7) + (frad ) = fr,(d )]

r(d)<k

+ Y lako)l(f (@) = S5 (@) + (f2(d ™) = fin(d )]

r(d)>k

< 614(8)IC log(1/¢) ] - IIfIIa(2kA“ + 22%“8“ eXP(—gT;(rsz;))

< 61x(8)IC log(1/8) ] - ||f||a(2kA“ +2C ke eXP(M))-
9(S)]

We want

—a28(k — 1)
A% ~ ke e
‘ e"p( 9x(S)] )

which means we should choose k on the order of 9"(2—%‘;)‘ log(e/$).

Substituting k chosen above back in, we obtain the upper bound (15) = O(A?),
where b € (0,a). Together with (14), we have bounded (13) by O(A?) for b € (0, a).
Since A was the distance between y; and y,, this completes the proof of the claim
that F, is b-Holder continuous. ]

We have shown that the iterated integrals, summed over p, make sense, and there-
fore proceed to bound them. We now recall that Proposition 4.1 (5) tells us that there
are at most O(log? 1/¢) intersection points p, and so it suffices to bound any of the
integrals in the sum. As such we want to bound

=

‘ / Fy(y) data(y)

/ Fo(y) — Fp(r™) das(y)| + lea(t2(p))] - | Fp (v
< C|Fpllpllezlle® + C log(1/e) el Fp(y D)1, (16)

where we have used Lemma 7.4 and Lemma 4.4 to move from the first to the second
line of the inequality. If now we can provide a good bound for || F, ||, in terms of &,
then we will arrive at the proposition.

Claim 7.7. We have bounds |F,(y)| = O(¢®) and | F, ||, = O(e?) + O(1), where
b €(0,a).
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Proof of Claim 7.7. Again, we have

1Fy ()] = ‘ / 500 = f(ipe yp) dotr ()

< / 50 = £, den(0)] + o (G (o) - LGt ¥) = F(epe i)l

< Cll fyllallen |l log(1/€)e” + C e | log(1/) ]| f lla(2E)* = O(e”)

for b € (0,a). Going from the second line to the third, we invoke Lemmas 7.4 and 4.4,
and Proposition 4.1 (3) to see that diam(Q,) < 2E¢; it is also clear that

I fylla = 11f lla-

Thus we have bounded || F} || 0, While the proof of Claim 7.6 provides the second

bound of O(1), independent of &, for SUpy,, £y, 1EpG)=Fp(r2)l

n
d(y1,y2)?

Putting Claim 7.7 together with (16), we have

‘ f Fp(y>da2(y>' = 0(),

with b € (0, a). We have already observed that the quantity (12) which we are trying
to bound is the sum over O(log?(1/¢))-many points p of terms given above. This
gives the final estimate O(log?(1/¢)e?) = O(&°) for any ¢ € (0, a), and concludes
the proof of the proposition. |

7.3. Shearing deformations

We recall the construction of shearing deformations and shearing cocycles introduced
in [3, Section 5], although we follow (more) closely the exposition and notation given
in [6]. We fix a hyperbolic structure Z € 7 (5) and maximal chain recurrent geodesic
lamination A € §£(¢(Z) and consider a transverse Holder cocycle @ € # (). For
small time ¢ < tz depending on the geometry of A C Z and the size of «, there is a
PSL, R-valued shearing cocycle

E': (Z\2)? - IsomT(Z) =~ PSL, R,

which is constant on the triangular complementary components.

Intuitively, E'* explains how to cut Z apart along X and reglue equivariantly by
right- and left-earthquakes. We will see that the recipe for this deformation involves
infinite ordered products of parabolic isometries of the plane, adjusting the shearing
of complementary triangles relative to one another, and convergence is not automatic
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(as would essentially be the case if we were dealing with right-earthquakes or left-
earthquakes, exclusively). Formally, the shearing cocycle defines a one-parameter
analytic family of discrete and faithful representations p;q: 71(Z, z) — Isom™ Z,
given by post-composition: if y € w;(Z,z) < Isom™ Z, then

pra(y) = Em(Tz’ yTz) oy,

where T, C Z \ X is a fixed lift of a triangle containing a lift of the basepoint z
(see [3]). We hence obtain an analytic one-parameter family E'*Z =[Z /psa] € T (S).

With 77 fixed, we can define a partial order < on the components of 4 \ X differ-
ent from 77 : for such components T and T’, we declare that T < T’ if T separates T’
from T7. A non-backtracking path k7 starting at 7, and ending in some component T
gives an orientation to all geodesics of X that it meets making the intersection positive
with respect to the underlying orientation of HZ2. Each component 7’ < T has two
oriented boundary geodesics ng " and ng/ meeting k7, where ng " is closest to 7.
Let k7/ be the restriction of k7 from its start to some point of intersection with 7”7,
and take o(T") = a(kr’) = a(T;, T).

For an oriented geodesic g C H?, E ¢ 1s the hyperbolic translation along g with
(signed) magnitude a € R. Define E% := E ng ) E;‘Tl for a € R, called the elementary
shearinT.

We may now define

(1) (T)

o — a o

E(T..T):= [] E¥ HEng ,
T'<T

where the first (ordered) infinite product is the limit

lim E2T 0 EZT) oo 2T, (a7

asthechain Ty < T, <--- < T, < T increases to the set of all triangles smaller than 7.
It was shown in [3, Section 5] that the limit exists for o small enough compared to
inj(Z), and defines a 71 (Z, z)-equivariant cocycle.

Under the shear coordinates described earlier (Theorem 2.4), we have

0A(E'®Z) = 0,(Z) + ta € ().

8. A cosine formula

The goal of this section is to compute the Poisson bracket between length functions
for transverse Holder distributions on transversally intersecting geodesic laminations.
We consider the change of length of a transverse cocycle supported on A; under a
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deformation in the direction of a transverse cocycle supported on A,. Without loss of
generality, we may assume that A; and A, are both maximal.

More precisely, let ¢y € # (A1) and a; € F# (A2), and consider the shearing vector
fields Xq, := (a;ll)*al and X, := (o;zl)*az on 7 (S). We would like to compute
dly, Xa,, which by Lemma 2.5, is equivalent to computing the Poisson bracket

{Zal P Eotz} = wWP(XOtl P Xaz) = _{EOQ’ 6061 }

Note that when @ € #H (A1) and u, € H(A,) are (positive) measures, then Ker-
ckhoff’s cosine formula [20, Lemma 3.2] (see also [42, Theorem 3.3]) gives

o )(Z) = // cos(h, Aa) dity dit. (18)
Z

where if p € A1 M A5, then cos(A1,A,)(p) is the cosine of the angle from the corre-
sponding leaf of A; measured in the positive direction to the corresponding leaf of A,
near p on Z.

Let @ be a component of a stratum of quadratic differentials with associated @-
Thurston measure M"i‘?h (cf. Section 5.3). Our main result in this section is the following
generalization of (18).

Theorem 8.1. For ;/q(’?h almost every € MEL(S) with chain recurrent diagonal
extension A1, for every chain recurrent geodesic lamination A, az € H(A2), and
Z € T(S), ifay € H (A1) represents a tangent vector to jt in ML(S), then

(o, Ly }(Z) = dly, Xay(Z) :// cos(A1, A2) day das.
Z

Remark 8.2. We only use the restrictive hypotheses on p and A; in the final lim-
iting argument, so Lemma 8.3 and Proposition 8.4 hold without qualification for all
a1 € H (A1) and ap € H(A3), and A; is allowed to be any chain recurrent geodesic
lamination. It is natural to ask whether this restriction is necessary or not, especially
given the asymmetry of theorem and the (anti-)symmetry of the Poisson bracket.

We may sometimes denote the corresponding function as Cos(c, 8): 7(S) — R.
Our proof of Theorem 8.1, which occupies the rest of this section, follows the strategy
of [13, Section I1.3.9] for simple curves and the limiting argument of [21] for measures
on laminations. A more delicate limiting argument proves the theorem for general
transverse Holder distributions.

Lemma 8.3. Let y be a closed geodesic in Z, A be a chain recurrent geodesic lami-
nation and o« € JH (A). Then

€y Lo} (Z) =dly Xo(Z) = / cos(y,A)da = // cos(y,A)da dy.
y z
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Proof. This is a relatively straightforward computation following [13, Section 11.3.9];
we include the details for completeness.

Lety e m(Z,2) < IsomT(Z) = PSL, R. The absolute value 7(y) = 7 of the
trace of either lift of y to SL, R is related to the translation length £(y) = £ by

2exp(£/2) = 1+ V12 — 4.

If y; is an analytic path in PSL, R with yg = y, then

e 2 dt
dt — J72 _4dt’

Complete A to a maximal chain recurrent geodesic lamination, and view « as a
transverse cocycle on the new object. For T < y.Ty, and ¢ > 0, we would like to
calculate the trace £ }“(T)y, which is invariant by conjugation. We may therefore nor-
malize the situation in the upper half plane as follows: gg is the geodesic between 0
and oo, ng is the geodesic between 1 and infinity, and y goes froma < 0 to b > 0.
The matrix representing y in SL, R with respect to this normalization is given by

1 (beé/2 —ae Y2 ab(e~t/2 — ee/z))

b—a eZ/Z _ 6—6/2 be—(/Z _ ae€/2

while

Eff = B4 o 2™

2 8]

_ [ D)2 0 1 1\ [e™D/2 0 1 -1
- 0 e @M/2 ] \o 1 0 M2 \o 1 |°

Direct computation along this path yields

dt

sinh £ /2
i = —a(T
7 a(T)

9
1=0 a—b

so that 40 _r |
a° 2 (r)Sinn Y/ — o(T)—

2
dif,—g a—b \/cosh2€/2—4_ a—b

The center of the Euclidean circle joining a to b is (b 4+ a)/2 and its radius is

(b — a)/2. An exercise in Euclidean trigonometry shows that

b+a/b—a _b+a
2 2 b—ua

—cos(y,g7) =

and

b+a\ b—a 2—(b+a)
COS(%ng)=(1— > )/ =

where cos(y, giT ) is the cosine of the angle from y to giT in the positive direction.
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Thus "y
ar| _, = @D leos(y.g3) —cos(r. g1).
t=
Similarly, the derivative of length at time ¢ = O for £ t‘f,%rz y is given by
dr
—| = eI cos(r.g3 ).
dt |;=o

For an approximating chain 7; < --- < T,, < y.T,, define

pea(y) = EFT oo X 0 E90T) 6y € PSL, R,
n gy

so that
lim prn(y) = pe(y)
n—>oo

uniformly on compact sets in HZ2. Then

n

Lpen()) = Y a(Ti)(cos(y, g5') — cos(y. g1")) + cos(y, g5 7).

=0 i=1

dt

The function cos(y, i) is c-Lipschitz for some universal ¢ > 1 [20, Lemma 1.1], so
by Theorem 7.3, this series converges to a(cos(y,A)) asthechain Ty <--- < T, < y.T;
increases to {7 : T < y.T x}.

The family p;(y) = E'(T,,y.T;) o y varies holomorphically in a small complex
parameter ¢ [3, Theorem 31]. By holomorphicity, we may exchange the limit:

d d J
—| ¢ = | lim Loa(y) = lim — () = o).
dr|,— (pe () dt|,_gn im_ (prn(y)) = lim |, Opt, (y) = a(cos(y, 1))

which is what we wanted to prove. ]

Given maximal A1 and A, € §£¢(S), let 71 (¢) and 72 () be geometric train tracks
constructed from (Z, A1, ¢) and (Z, A, €), respectively, where ¢ is small enough as
in Section 4.2. Let p denote a point of transverse intersection, and Q, be the corre-
sponding geodesic quadrilateral with opposite sides contained in leaves of A; and A,.
We establish the following special case of Theorem 8.1 by a limiting argument; com-
pare with [21, Proposition 2.5]. Most of the technical work for the proof was done in
Section 7.

Proposition 8.4. For any A1 and A,, chain recurrent geodesic laminations on Z €
T(S), @ € H (A1), and v € ML(S), a measure supported in A,, we have

€y, L} (Z2) = /f cos(Aaz, A1) dadv.
z
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Proof. It suffices to prove that if y; is a sequence of weighted multicurves converging
in measure to v, then

// cos(yi, A1) da dy; —>// cos(Az, A1) dadv,
z z

uniformly on compact subsets of 7 (). Indeed, we know that £,, — £, and that

dly, Xe = //cos()/i,)cl)dozdyi

by Lemma 8.3, so if the convergence is uniform near Z, then
dl,Xe(Z) = /f cos(Az, A1) da dv.
z

We consider g¢ small enough (as in Proposition 4.1 (4)) and construct 7 (¢¢) and
12 (g9), endowing the weight spaces with the restriction of £>° norms || - || on R?(z(€0))
i = 1,2. For ¢ < g, we consider the geodesic quadrilaterals Q, corresponding to
intersection points p € pu M v near transverse intersection points 71 (g)  72(g). The
functions cosz (A2, A1) and cosz (i, A1) are restrictions of a smooth function

cosz:DE(Z) - R

to the support of « ® v and o ® y;, respectively; see Section 7.

In particular, we note that the derivative of cosz is bounded on the (compact)
support of cosz(Az, A1); thus cosz(A,, A1) is Lipschitz (in fact c-Lipschitz for a
universal constant ¢ [20, Lemma 1.1]). We can therefore apply Proposition 7.5 to see
that

(@ ® v)s(cosz (A2, A1) —a ® v(cosz (A2, A1) = O(e?),

for a € (0, 1) and where the implicit constants depend continuously on inj(Z), the
Lipschitz constant ¢ of cosz(A,, A1) as well as ||«||, ||v], @, and the topology of S.

For a fixed ¢ and i large enough, y; is carried fully by t,(¢), i.e., gives every
branch of t;(¢) positive measure. We can again apply the proof of Proposition 7.5 to
see that

[( ® yi)e(cosz(yi. A1) —a ® v(cosz(yi, A1))| = O(e?),

for a € (0, 1) and implicit constants depending on all of the same data replacing ||v ||
with ||y .

It therefore suffices to compare the Riemann sums directly; we borrow nota-
tion for the Riemann sum from the proof of Proposition 7.5, and choose the points
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pi € vi N Ay and p € A, N A1 on the same leaf of A. Then

(@ ® yi)e(cosz(yi, A1) — (@ ® v)e(cosz(A2. A1)

< Y leosz(yi A)(pi)yi(t2(p)) — cosz(Aa, A0 (P)v(ta(p)|e(t1 (p))]
71(e)the2(e)

holds for i large enough compared to e. Furthermore, passing to a subsequence, we
can assume that |y; (t2(p)) — v(t2(p))| = O(e) for all p and i large enough.

Since y; is carried on 73(¢), it is contained in an O(¢e) neighborhood of A,. We
can apply Lemma 4.2 to obtain

|cosz (yi, A1) (pi) — cosz(A2. A1)(p)| = O(e).

for i large enough. As in the proof of Proposition 7.5, there are at most O(log? 1/¢)
intersection points over which we sum, and |a(#1(p))| = O(log1/¢) (Lemma 4.4).
Combining these observations, we can bound the difference of the Riemann sums by

O(log>(1/¢) - €) = O(&%)

for a € (0, 1), and all implicit constants depending continuously inj(Z) and the other
relevant data.
By the triangle inequality, convergence of the Riemann sums approximating

// cos(Ao, A1) da dv
z

are approximated uniformly by those approximating

// cos(y;, A1) dady;
z

on compact sets of 7 (S), and the proposition follows. ]

To prove the general statement of Theorem 8.1, without loss of generality, we
regard o7 € J (A1) as tangent vector to the measure y and consider a family of dif-
ference quotients

es — Eﬂ-i-sa] _ZM
s
where (s := @ 4 soq represents a measured lamination carried on a train track

9’

t1(g0) = 1(Z, A1, 80)

for small enough s.

We know that {; are analytic functions converging to the analytic function £,
on 7 (S) (see (4)). We want to prove that the derivatives converge to the cosine for-
mula from the theorem statement uniformly near Z as s — O.
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Proof of Theorem 8.1. By Proposition 8.4, we have

1
dils Xy, = ;([/ cos(its, Az) daxdus — // cos(A1,A2) dozzd,u) (19)

We have assumed that p is generic in the sense of Theorem 6.2, so there is a
sequence €1, &2, . . . tending to zero, constants ¢ and ¢, and @ € (0, 1] depending con-
tinuously on Z such that if we take s, = c¢1(log 1/&,) ™2, then a c,&%-neighborhood
of A1 contains pg,. Let &, = cpe4.

As in the proof of Proposition 8.4, each of the two terms in (19) is uniformly well
approximated by their Riemann sums at scale ¢),. Since p5, < 71(¢),), we know that
Ws, (tp) = p(tp) + spa1(tp) for all branches b or t;(¢),). Borrowing notation from
Proposition 7.5, we can choose p, € is, NAz and p € A; N A, on the same leaf
of A, as in the proof of Proposition 8.4. These points at distance at most O(e) apart;
we abuse notation and write them as the same point. We can approximate the first
term in (19) by

S coslits, 12)(P) @i (p)s, (4 ()

periEp)hoale)

= 37 L costta, 22)(p) -0 t2(p) (1 () + st (1)
P n

$a A
= 30 U A2 P) oy utar ()

S
I n

+ Z cos(lhs,, A2)(p) - a2 (t2(p))a1(t1(p))
»

with error O(eﬁ,b) with b € (0, 1] and uniform constants depending continuously on
the relevant data. So at scale ¢, (19) is approximated by

Z (cos(usn ,A2)(p) —cos(A1,A2)(p)

Sn

)Otz(lz(P))M(fl(P))

)
+ Y cos(its,, A2)(p) - aa(t2(p)e (11 (p)), (20)
»

again with error O(eilb) with b € (0, 1] and uniform constants.

By the triangle inequality and Proposition 7.5, it therefore suffices to prove that
the first term in (20) goes to zero uniformly as » tends to infinity, and that the second
term tends uniformly to oy ® oq(cosz (A1, A2)). However, we will see that the first
claim implies the second.
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To see uniform convergence of the first term in (20), we apply Lemma 4.2 to
obtain

| cos(ps, . A2)(p) — cos(A1, A2)(p)| = O(e,) = O(ep),

with uniform constants, as usual. There are O(log?(1/¢/,)) intersection points p,
loa (t2(p))| = O(log(1/e},)), and |u(t1(p))| = O(1). By our choice of s, the abso-
lute value of the first term in (20) goes to zero at rate

O(e), log?(1/€}) 1og?(1/en)) = O(e%1og>(1/ex)) = O(eh),

where b € (0, a), uniformly near Z.
Now, essentially the same argument applied to the second term of (20), also invok-
ing the triangle inequality and Proposition 7.5 yields

> coslitg A (p) el r(p) = [[ cos(ir.da) das dan
VA

peti(ep)ha(en)
= O(el log4(1/8n)) = 0(82)

for b € (0, a), uniformly near Z. This completes the proof of the theorem. [

Applying Theorem 8.1 to the results of Section 3, and basic properties of the
Poisson bracket (Leibniz rule, antisymmetry, and linearity) we immediately obtain the
following formula where ¢ as it is in the introduction, i.e., ¢ has maximal invariant
measured laminations [(+] and simple, positive real spectrum for its linear action on
an invariant train track. A more general formulation can again be obtained from the
results in Section 3, but this formula is somewhat challenging to parse, even in this
simplified setting. Recall our notation that if ; € (A1) and o, € H(A;), then

Cos(a1,02)(Z2) = // cos(A1,Ar) day dos.
z

Recall also that there is a natural duality isomorphism *: # ((—) — JH (u+); to ease

notational burden below, let 4; = x~lo; and B; = *~!8;, where o, ... , 03g_3,
B1.....B3g—3 is a symplectic basis of eigenvectors for the linear ¢ action on J¢ (u).
Corollary 8.5. We have an equality
3g—¢
{—F;‘j iy = log(Ay) 1og(Aj) (be; La; Cos(Bi. Bj) + La; L5; Cos(Bi. A;)
ij=1

+ EﬂiﬁAj Cos(a;, Bj) + EﬂiZBj Cos(a;, Aj)).
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e : P R — 1t
Remark 8.6. Along the invariant stretch line Z, = o), i (e" x n-) = o, i (e'B1)
for (14, many terms vanish:

(—F Fi-y(ZL,)
3g—-3

= ¢'log(A) Y log(A;)(£a; Cos(B1, B;) + Lr, Cos(Br. A)))(Z},, ).
j=1

This expression can be considered as a measurement for how different the invariant
stretch line directed by w4 is from the invariant stretch line directed by pu—. By ¢
invariance, it admits upper and lower bounds.

We now give proofs of Corollaries 1.4 and 1.5 from the introduction.

Proof of Corollary 1.4. We wish to compute (X4, )«, and hence to write

3g—-3
Xe, = > aij Xz +¢ij X,

i=1

from which will can write the jth column in the Jacobian matrix with respect to our
chosen symplectic bases.

We can solve for the coefficients a; ; and ¢; ; by using linearity of the symplectic
form, the fact that wwp(X;,, Xy,) = 1 = —wwp(Xy;, Xz;), and Lemma 2.5 to deduce

_ci,j = a)WP(XXj ’ XZl') = {Kxj 7£Zf} and ai,j = a)WP(Xx_/' ’ Xw,-) = {Ex_/- ’ Zwi}-

Applying Theorem 8.1 gives the formulae for a; ; and ¢; ; in terms of cosines. The
computations for the columns corresponding to X, ; are similar.
The computation of the inverse matrix is identical, but we can also use the relation

-1
A B _ [ D" -B'
c p) \-c' A
for symplectic matrices written in block form. ]

Proof of Corollary 1.5. The formula follows from the definition of the stretch vec-
tor field, bilinearity of wwp, and Theorem 8.1. If « is a transverse measure i, then
d log €, X ™" (Z) < 1 with equality if and only if 1 < v [38, Section 5].

In fact, if @ € J () is arbitrary, then d log £ X$™"(Z) = 1, because

dlog by XS™N(Z) = owp(Xq, X3ty = wm(e, 0,(2)),

1
te(2) ta(2)

while (o, 0, (2)) = £o(Z). ]
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