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Abstract. With the advent of single-cell DNA sequencing, it is now
possible to infer the evolutionary history of thousands of tumor cells ob-
tained from a single patient. This evolutionary history, which takes the
shape of a tree, reveals the mode of evolution of the specific cancer under
study and, in turn, helps with clinical diagnosis, prognosis, and thera-
peutic treatment. In this study we focus on the question of determining
the mode of evolution of tumor cells from their inferred evolutionary his-
tory. In particular, we employ recursive neural networks that capture tree
structures to classify the evolutionary history of tumor cells into one of
four modes—Iinear, branching, neutral, and punctuated. We trained our
model, MoTERNN, using simulated data in a supervised fashion and
applied it to a real phylogenetic tree obtained from single-cell DNA se-
quencing data. MoTERNN is implemented in Python and is publicly
available at https://github.com/NakhlehLab/MoTERNN.

1 Introduction

From an evolutionary perspective, clonal evolution in cancer and intra-tumor
heterogeneity (ITH) are the results of an interplay between mutations and selec-
tive pressures in the tumor micro-environment [32/10/26] and can be in part some
of the contributing factors in metastasis [44] and tumor drug resistance [12l|2].
Aided by advances in sequencing technologies such as microarray [47], next-
generation sequencing [27)25], and single-cell sequencing [31/46] that have been
developed over the last three decades, the field of cancer evolution has gained at-
tention as studies have shown supporting evidence of tumor cells being subject to
selective pressures in response to their environment, which includes the immune
system response as well as treatments such as chemotherapy and radiation.

As cancer cells are sampled and sequenced at a small number of time points
(most often only one), understanding cancer evolution is done by inferring the
evolutionary history of the sampled cells from their somatic mutations—single-
nucleotide variations (SNVs) and copy number aberrations (CNAs)—obtained
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Fig. 1. The phylogenetic trees indicative of four different modes of evolution. (a) Linear
evolution, where a clone takes over the cancer cell population. (b) Branching evolution,
where multiple clones arise and evolve in parallel at different rates due to selective
pressures. (¢) Neutral evolution, where multiple clones arise and evolve at similar rates.
(d) Punctuated evolution, where a burst of mutations occurs followed by the growth
of clones. Ancestral cells are shown in black solid circles, whereas present-day cells are
shown in colored solid circles. (Reproduced from [3])

by a variety of DNA sequencing technologies. Indeed, a wide array of cancer
evolutionary tree inference methods has been developed in the last decade, which
use bulk sequencing data, single-cell sequencing data or a combination thereof
1141535414 1116/20467J22J521152/40].

While evolution is a stochastic process, it has been shown that this process
could be constrained in cancer as evidenced by different modes of evolution ob-
served in different cancers and, sometimes, during the lifetime of the same cancer
(e.g., see Table 1 in [48]). The four main modes of evolution are linear evolution
(LE), branching evolution (BE), neutral evolution (NE), and punctuated evolu-
tion (PE), all of which are illustrated in Fig. [I} In linear evolution, some cells
acquire somatic mutations with strong selective advantages over other cells. This
selective sweep results in the tumor being dominated by a major clon and a few
persistent minor clones that survived from the previous selective sweeps. Thus,
the expected phylogenetic tree would take a ladder-like shape, as illustrated in
Fig. In branching evolution, the clones evolve in parallel while all gaining
fitness during their evolution. Consequently, multiple clones are expected to be
present at the time of tissue sampling [3], and the phylogenetic tree would take
an overall balanced shape as the clones do not outcompete each other. However,
in each clone, one can observe fitness changes during the lifetime of the tumor
(Fig. . Neutral evolution refers to the case where there is no selection during
the lifespan of the tumor. Neutral evolution assumes that the accumulation of
mutations is merely a result of tumor progression and natural selection does not

3 A clone consists of a group of cells with similar genotypes.
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play much of a role; thus, it provides an alternative explanation for patterns and
frequencies of mutations [3I18]. The expected shape of a phylogeny following this
model would be highly balanced, not only on the tree’s backbone but also at the
level of individual cells, as illustrated in Fig. [1l Finally, punctuated evolution,
first proposed in paleontology [§], is based on the idea that tumor progression
begins in a big bang fashion: at the earlier stages, there is a burst of a large num-
ber of mutations. Following this phase, the clones gradually grow, leading to a
few dominant clones in the tumor. Since the burst of mutations occurs earlier,
all the clones share a large portion of mutations yielding a long root branch in
the expected phylogeny, as illustrated in Fig.

Determining the mode of tumor evolution is important as these models have
different diagnostic, prognostic, and therapeutic implications [48]. For example,
a tumor following LE and PE models would require a simpler biopsy since a
few samples are good representatives of the entire tumor. On the other hand,
BE and NE indicate a high degree of ITH and thus require more biopsy sam-
ples for diagnostic purposes [3]. Common approaches to determining the mode
of cancer evolution include simulations and mathematical modeling. There is a
rich body of literature on mathematical modeling of tumor evolution based on
stochastic processes such as the multi-type branching evolution process [4] and
the Moran process [29]. These stochastic processes provide predictive statistic
measurements on the population size of cancer cells, mutant allele frequencies,
or mutation rates [514] whose agreement with the observed data determines
the mode of evolution. As an example of a simulation-based approach, [11] iden-
tified punctuated evolution in triple-negative breast cancer (TNBC) by simulat-
ing CNA phylogenetic trees under gradual and punctuated modes of multi-type
stochastic birth-death-mutation process, and then measured the fitness of each
simulation scenario to the real data using AMOVA analysis [9]. Although this
approach benefits from taking the evolutionary history of cells into account, gen-
erating realistic phylogenies is still one of the challenges in the field. Minussi et
al. [28] assessed the fitness of two evolutionary hypotheses to eight TNBC tu-
mors. In both models, the tumor growth starts with a punctuated burst of CNA
events. In one model this punctuated phase is followed by a “gradual accumula-
tion of CNAs" at a constant rate, and in the other model it leads to a “transient
instability” in genomic evolution, then a return to the gradual evolution phase.
Incorporating these two models into a likelihood framework enabled the authors
to measure the fitness of the two models using Akaike Information Criterion [I].
This analysis showed punctuated evolution followed by transient instability and
gradual evolution better describes the TNBC tumors. In addition to these ap-
proaches, one can use model-based approaches (e.g., in [24]) that accurately
detect the speciation events that agree with the PE mode of evolution.

Outside the above categories, Phyolin [50] and the method of [37] identify
the mode of evolution given the binary genotype matrices obtained from single-
cell SNVs. These methods, however, are aimed at distinguishing between linear
and nonlinear modes (i.e., a binary classification), which is a simpler problem
than the one we address here. In this study, we tackle the problem of determin-
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ing the mode of cancer evolution as a graph classification where the graphs are
phylogenetic trees and their labels/classes are the corresponding evolutionary
modes. Specifically, we investigate the appropriateness of recursive neural net-
works, or RNNsﬁ, first proposed in [42]. RNNs have been successfully used in
natural language processing to capture semantic relationships between words in
variable-sized sentences and parse trees [42/43]. Here, the words and their seman-
tic representations are the genotypes of the present-day cells and their ancestors,
respectively. It is worth mentioning that the capability of RNNs in exploiting
the tree structure of phylogenies makes them a more natural candidate for our
task than stand-alone multi layer perceptrons (MLPs), convolutional neural net-
works (CNNs), or traditional classification methods such as random forests. To
train our model in a supervised manner, we modified the beta-splitting model
(BSM) [38] to generate simulated phylogenetic trees and genotypes according to
the four cancer evolutionary modes. Next, we applied our model, MoTERNN
(Mode of Tumor Evolution using Recursive Neural Networks), on a real bio-
logical phylogenetic tree obtained from single-cell DNA sequencing (scDNAseq)
data of a TNBC patient [49]. MoTERNN classified the TNBC patient’s data
as belonging to the punctuated mode of evolution. Our study demonstrates the
suitability of RNNs for classification problems on tree structures. By developing
MoTERNN;, we have added to the evolutionary biology toolbox that is used to
study and understand cancer biology.

2 Methods

2.1 Problem description

The input to MoTERNN consists of a genotype matrix and a phylogenetic tree
obtained from tumor samples. Let G = (g;;) € {0,1}*M be a binary genotype
matrix where 0 and 1 indicate absence and presence of mutations, respectively,
N is the number of samples, and M is the number of genomic loci. Following this
notation, g; represents the genotype vector of the i*" sample at the ;' locus.
Let T = (V,E) be a phylogenetic tree where V and E are the sets of nodes
and edges, respectively. In this work, we assume that the phylogenetic tree is
binary. The leaves of T are bijectively labeled by the genotype vectors (rows) in
G. Given G and T, MoTERNN predicts one of the four labels in the set {LE,
BE, NE, PE}. Next, we give a brief background on RNNs and then describe the
model underlying MoTERNN.

2.2 Recursive Neural Networks

Dating back to the late eighties and early nineties, training neural networks on
recursive data structures attracted interest from the machine learning commu-
nity. Seminal works on models such as recursive autoassociative memory [34] and
backpropagation through structure (BTS) [13] established the basis for dealing
with variable-sized recursive structures and efficient computation of backpropa-
gation. Utilizing the BTS scheme for backpropagation, Socher et al. [42] intro-
duced RNNs for parsing natural scene images and natural language sentences.

4 Sometimes the acronym RvNN is used to distinguish it from recurrent neural net-
works.
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The input of an RNN is a binary tree (or the corresponding adjacency ma-
trix) and a set of vector embeddings for all the leaves. The goal is to learn and
predict the labels of the internal nodes including the root of the tree. To predict
the label of a node, a corresponding vector embedding for the node is required.
In our case, the embedding of the leaves are generated using an encoder neural
network that maps the genotype profiles into a shared lower dimension. Given
a tree, the algorithm traverses it and computes the labels and embeddings of
the internal nodes recursively. The embedding of a parent node is computed by
a neural network which takes as input the concatenation of the two children’s
embeddings and generates the parent’s embedding as output. Following the ter-
minology from [43], we refer to this network as a compositionality function. To
predict a node’s label, its embedding is given to a classifier neural network that
produces scores for the node’s association to each class. It is worth mentioning
that what separates RNNs from their predecessors is that the same composi-
tionality function and classifier network are applied to all inputs resulting in a
more flexible and computationally efficient architecture.

Although the original RNN aimed at predicting the labels of all nodes, we
associate the evolutionary mode of a phylogenetic tree with its root. Thus, in our
scheme, the other internal nodes do not have labels, and the RNN only predicts
the root’s label. Next, we describe the three components of our model including
the encoder, compositionality function, and classifier.

2.3 Encoder network
Each genotype profile g; is mapped into a shared lower dimension using an

encoder network ¢:
¢:{0,1}" = RY, (1)

where d is a user-specified parameter. Although the encoder network ¢ is applied
to only the genotypes at the leaves of 7, we use ¢(v) more generally to denote
the embedding of any node v in the tree 7. In our implementation, we used a
single-layer feed-forward neural network with d = 128 as our encoder network.
2.4 Compositionality function

The compositionality function is a neural network that computes the embedding
of a parent node given the computed embeddings of its children. Let v be an
internal node and ¢(v;) and ¢(v3) be the embeddings of its children v; and vs.
The embedding of v based on the compositionality function is computed using
the following formula:

o) =7 (w50, ©)

where .# is a non-linear activation function (such as ReLU) and W € R*24
represents the weights of the compositionality function which are multiplied by
the concatenation of the two embeddings of the children. Fig. |2] illustrates an
example of a tree being traversed by an RNN and how the compositionality func-
tion operates recursively during this process. First, the embeddings of the leaves

5 Hereafter, we use embedding instead of vector embedding.
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Fig. 2. An illustrative example of processing a tree by MoTERNN. (a) Given a phy-
logeny and the embeddings of the leaves, MOTERNN computes the embeddings of the
internal nodes up to the root of the tree in a bottom up fashion. A node and its em-
bedding are both shown in the same color. The embeddings of A and B are given to
compositionality function to produce the embedding of D, ¢(D). Next, the embedding
of root node, E, is generated from the embeddings of C' and D by compositionality
function (denoted by ¢(E)). (b) The classifier network takes as input the embedding
of the root node; the output contains the association scores for each mode of evolution
based on which the label of the tree, y(T), is predicted.

A, B, and C are obtained from the encoder network. The leaves’ embeddings are
denoted by ¢(A), ¢(B), and ¢(C). The first internal node whose embedding is
computed is D because its children’s embeddings have already been computed.
Next, the embedding of the root node, E, is computed by passing ¢(C') and ¢(D)
to the compositionality function.

2.5 Classifier network

To predict the label/model of the phylogenetic tree, we used a classifier network.
This could be a simple MLP whose weights are denoted by W¢ € R**?, The
classifier network takes as input the embedding of the root node, ¢(r), and
predicts scores for all four tumor evolutionary models, LE, BE, NE, and PE
(Fig. . The raw scores are passed through a softmax function to generate
values between 0 and 1 that are treated as the probability values for each of the
four models. The index of the maximum value corresponds the predicted label
of T denoted by y(7) € {1,2,3,4}. Let z = W° - ¢(r), formally, we have:
() —

y'") = argmax {o(z),}, (3)
ke{1,2,3,4}

where o(z);, is the k' element of the softmax activation function applied on
vector z, defined as o(z), = e** /3, €.
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Fig. 3. Examples of simulated trees for the four modes of cancer evolution. (a) Linear
evolution. (b) Branching evolution. (c) Neutral evolution. (d) Punctuated evolution.
All the trees contain 20 leaves. The branch lengths are proportional to the number of
mutations. Different evolutionary episodes are shown in different colors; the branches
generated using BSM’s unbalanced mode are shown in orange, while purple branches
indicate balanced BSM mode of simulation. The particularly long branch in the PE
mode is shown in pink. Since the input trees of MoOTERNN must be binary, we added
one extra branch connected to the root with no mutations in PE trees (colored in
green) so that the root has in-degree 0 and out-degree 2.

2.6 Loss function

We trained MoTERNN in a supervised manner using the simulated trees with
their true labels (see [Simulation design| for more details). We used the cross-
entropy loss as our objective function, which is commonly used in multi-class
classification tasks. Given a tree 7 and its true label y(7) at each iteration dur-
ing training, the cross-entropy between the estimated scores from the classifier
network and the true labels is calculated by

4
HT) = =S 1™ = k) log {P (k)}. (4)

k=1

where 1(y(7) = k) is an indicator variable that is equal to one if the true label
is k and to zero otherwise. The second term is the logarithm of the probability
of T being associated with class k. This probability is the k*" element in the
output of the softmax layer. In each iteration, H(7) is calculated and minimized
using stochastic gradient descent or its derivations [36] such as Adam [19]. The
weights of the encoder network, compositionality function, and classifier network
are updated through backpropagation.

2.7 Simulation design

The supervised learning of our model requires labeled phylogenies representing
each of the four modes of cancer evolution. In general, a phylogenetic tree has two
constituents, namely, a topology and branch lengths. As each mode of evolution
posits conditions on the topology and branch lengths, we simulated each mode
with a different scheme. To manipulate tree topologies, we used BSM, which
produces binary trees with arbitrary shapes. According to BSM, the generative
process of creating a tree with NV cells includes the following steps.

1. Sampling generative sequences: sample a sequence of N —1 independent
and identically distributed (i.i.d.) random values B = (by,--- ,by_1) from
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the beta distribution B(«aw + 1,5 + 1), where @ > 0 and 8 > 0 are the
parameters of the beta distribution. Next, sample a sequence of i.i.d. random
values U = (uy,- - ,uny—1) from a uniform distribution on [0, 1].

2. Initialization: create the root of the tree and assign the interval [0, 1] to
it. Next, split the root into the left and right child nodes and assign the
intervals [0,b1] and [b1, 1] to the left and right child nodes, respectively.

3. Iteration: in iteration i (considering the initialization step as the first and
second iterations), among the leaves of the current tree, find the leaf whose
interval [z, y] contains u;. Select the leaf and split it into the left and right
child nodes. Assign [z, x + (y — x)b;] to the left child and [z + (y — z)b;, y] to
the right child. Stop at iteration N — 1.

The parameters « and S control the shape of the tree; for example, equal values of
« and (3 generate balanced topologies with high probability, and this probability
increases as « and 8 become larger. On the other hand, the difference between the
values of o and 3 determines the imbalance of the tree. We used BSM in balanced
and unbalanced modes. For the balanced mode, we used (a, 3) = (10%,10%). A
balanced topology resembles the NE mode overall topology. Also, we used it
to imitate the cellular evolution within a clone. For unbalanced mode, we used
(o, 8) = (10*,10~%). An unbalanced topology can imitate the genetic drifts as
it occurs during most of a tumor’s lifetime in the LE mode.

In the following sections, we detail on our simulation schemes for the four
modes of cancer evolution in terms of creating the topology and sampling the
mutations on the branches of the trees.

Simulation scheme for LE We assume the tree topology of LE model grows
during two episodes. The first and second episodes occur before and after the
emergence of the dominant clone, respectively. We model the first episode with
the unbalanced mode of BSM. Among the total N —1 number of speciations—or
cell divisions—required for simulating a tree with IV cells, two thirds of the first
speciations are done in the unbalanced mode. We model the tree growth in the
second episode with the balanced mode of BSM which covers the rest of specia-
tions. Fig. [3| shows an example of an LE tree with 20 cells. The first and second
episodes are shown in orange and purple, respectively. After creating a topology,
we sample the number of mutations from a Poisson distribution with a mean of
5 (A = 5) for each branch. To generate binary genotype profiles of the cells with
M loci, we assign an all-zeros vector to the root, which is assumed to be a nor-
mal cell without mutations. We assume the mutations are accumulated following
the infinite-sites assumption (ISA) for all cancer evolution modes. Starting from
the root node’s children, the tree is traversed in a breadth-first (or level-order)
manner. For a branch with X mutations, we randomly sample X loci (without
replacement) from the unmutated loci. Next, to create the genotype vector of
the child node, we copy the genotype vector of the parent node and change the
values of the entries corresponding to the randomly selected loci to 1.

Simulation scheme for BE We simulate BE trees in two steps. First, the total
number of clones, C, is determined. We sample C uniformly from the set {2, 3,4}.
The tree grows using the balanced mode of BSM until C' leaves are generated.
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In the second step, the number of cells associated with each clone is sampled.
Note that the sum of the number of leaves under all clones must be equal to
the total number of leaves, N, which is specified by the user. We sample these
counts from a multinomial distribution with N trials and C categories where the
success probability of each category equals % Having sampled these counts, we
generate each clonal lineage using the same procedure described in
to account for the evolutionary sweeps within each clonal lineage.
Fig. |3| shows an example of a simulated BE tree. The number of mutations on
the branches and genotype profiles of the cells are generated according to the
same procedure and distributions for sampling mutations in [Simulation scheme|

ffor TE.

Simulation scheme for NE Since there are no selection or dominant clones
in the NE mode, we simulate the entire tree topology using BSM’s balanced
mode. The sampling of mutations and their assignment to the cells are done
according to the procedure described in [Simulation scheme for LEl Fig. [3| shows
an example tree generated according to the NE mode.

Simulation scheme for PE The main characteristics of the PE trees include
a long root branch with the largest portion of mutations accumulated during the
lifetime of a tumor followed by a few dominant clones. To simulate such trees,
we first determine the number of clones, C, by sampling uniformly from {2, 3}.
Next, we sample the number of cells belonging to each clone from a multinomial
distribution with N trials, C' categories, and the success probability of % for
each category (the same as in [Simulation scheme for BE). Given the number
of cells within each clone, we grow each clonal lineage separately using BSM’s
balanced mode. The number of mutations on the long root branch is determined
by sampling from a Poisson distribution with A = 100. The number of mutations
on the clonal branches is sampled with A = 5. Since MOTERNN requires binary
trees as input, we attach one extra cell with no mutations to the root that
represents a normal cell. Fig. [3| shows an example tree generated according to
this procedure.

3 Results and Discussion
3.1 Supervised training of MoTERNN

We simulated 8100 data points (2025 for each mode) according to the schemes
described in [Simulation design] A data point refers to a phylogenetic tree, a
genotype matrix of the leaves, and the true label of the tree. For each phylogeny,
the number of cells was sampled uniformly from the set of integers ranging
from 20 to 100. We set the number of loci to 3375 to match the number of
candidate loci for mutation calling in our real data set that we applied our
trained model later on (see |[Application to real data). We applied k-fold cross-
validation with & = 4 on our model to assess its predictive ability given different
randomly selected test and training subsets. First, we randomly shuffled the
data, and selected 100 data points as the validation set. Next, we partitioned
the 8,000 remaining data points into four equal-sized subsets. In each round of
cross-validation, a single subset was chosen as the test set, and the rest retained
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as the training set. We trained four instances of our model, separately, on each
pair of training and test subsets selected by cross-validation.

We used single layer fully-connected feed-forward neural networks for all the
functions, including the encoder, compositionality function, and classifier net-
work. In particular, the encoder network was of size 3375 x 128 (3375 nodes at
the input and 128 nodes at the output), the compositionality function was a
network of dimensions 256 x 128 (so that it takes concatenation of two embed-
dings as input), and the classifier was of size 128 x 4. In each iteration, one data
point is processed to compute the cross-entropy loss. The networks’ weights are
updated via the Adam optimization algorithm implemented in PyTorch. For the
Adam optimizer, we used the default parameters except for the learning rate,
which was set to 10 (lower than 103, the default value) to achieve a smoother
convergence. In each cross-validation round, we trained MoTERNN for 6,000
iterations to process all the data points in the training set. We ran MoTERNN
on an Nvidia A6000 GPU with 48 GB RAM, and an Intel Xeon Gold 6226R
CPU with 64GB available RAM. The average training time was five minutes
and 14 seconds. The peak of memory consumption on GPU was 1.53 GB, while
on CPU, the maximum occupation of RAM was 29.6 GB.

In every iteration, we evaluated each of the four models on its entire training
and validation sets. Then, we calculated the average training and validation
accuracy of the four models at each iteration (Fig. . The average loss function
values of the models are also demonstrated in Fig. [dl We observed spikes in the
loss curve, especially in the early iterations. Such spikes are likely caused by
the exploding gradients due to the small batch size we used. More restriction
on the gradient values using the gradient clipping technique [33] could better
stabilize the training. After the four models were separately trained on the cross-
validation subsets, we evaluated the trained models on their corresponding test
and training sets. MOTERNN achieved an average training and test accuracy of
99.98% and 99.95%, respectively.

3.2 Application to real data

We applied our trained models on a data set consisting of single-cell whole-exome
sequencing samples from a TNBC patient [49]. The TNBC data set consists of
16 diploid cells (treated as normal control samples), eight aneuploid cells, and
eight hypodiploid cells [49]. We ran Phylovar [5] to infer the SNVs and the un-
derlying phylogeny of the single-cells. The total number of candidate loci for
mutation calling was 3,375. The phylogeny inferred by Phylovar is binary and
admits the infinite-sites assumption [5]. To apply our trained model only on the
tumor cells, we detached all the diploid cells from the phylogeny except for one
that was directly connected to the root. The TNBC phylogeny is illustrated in
Fig.[5l Given the genotype matrix and the phylogeny, we applied the four trained
models to the TNBC data and measured their average association probability
scores to each mode of cancer evolution. These probability scores were approxi-
mately 0.7501, 0.2498, 0, and 0 for PE, NE, LE, and BE, respectively. Therefore
MoTERNN hypothesized PE as the mode of evolution for this data set. In the
original study, Wang et al. concluded that “point mutations evolved gradually,”
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Fig. 4. MoTERNN’s loss and classification accuracy during training (a) The average
accuracy of the four models trained in cross-validation. For each model, the accuracy
on the training and validation sets was computed in each iteration. Then, we averaged
over the accuracy values of the models in each iteration. (b) The average cross-entropy
loss function during training of the four cross-validation models. To further smooth the
plots, we averaged the accuracy and loss values over the last ten iterations.

which disagrees with our result. This difference might be attributed to the direct
incorporation of phylogenetic information, as opposed to the birth-death process
the authors utilized for modeling the evolution of SNVs [49]. It is worth men-
tioning that Wang et al. reported punctuated copy number evolution from the
same TNBC patient. Based on the similarity between the two phylogenies—one
obtained from CNA profiles by Wang et al. and the other from SNVs in our
study—in terms of grouping the aneuploid and hypodiploid cells, and also our
model’s result, we hypothesize that CNAs and SN'Vs both followed a punctuated
evolution in this patient. We leave investigating the evolutionary mode of the
TNBC patient’s CNA data by MoTERNN as a future direction.

We note that in order to train MoTERNN for a real data set, the number
of loci in the training data set must be exactly the same as in the real data set.
Also, the number of cells for training must be in a range that covers the number
of cells in the real data set.

4 Summary and Future Directions

In this work, we developed MoTERNN;, a supervised learning approach to clas-
sifying the mode of cancer evolution using RNNs. MoTERNN takes as input
a tumor phylogeny and the binary genotype matrix of the single-cells, and as-
sociates the tumor to one of four evolutionary modes, including LE, BE, NE,
and PE. To train our model, we simulated tree topologies for the four modes of
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Fig. 5. The phylogeny obtained from the TNBC data set. The aneuploid cells are
tagged with a and colored in pink. The hypodiploid cells are tagged with h and col-
ored in blue. The diploid cell connected to the root is shown in green. The branch
lengths indicate the number of mutations that occurred on them. The scale axis at the
bottom of the figure shows the number of accumulated mutations as the tree grows.
The branches are annotated from the tips for better visualization. Figure generated by
FigTree (http://tree.bio.ed.ac.uk/software/figtree/).

evolution and generated binary genotype matrices of the leaves following an ISA
model for mutation placements on the tree branches. Our model achieved 99.98%
and 99.95% accuracy on the training and test sets, respectively. We applied the
trained model on a single-cell DNA sequencing data set from a triple-negative
breast cancer patient. MOTERNN identified a punctuated mode of evolution in
this data.

One factor that could impact the performance of our method is sampling
bias. Sampling has been shown to have an impact on the inferred tree in the
field of phylogenetics [15], though the debate about this has been inconclusive so
far [30]. Moreover, to extend our model to non-binary tree topologies, a potential
solution is to employ N-ary Tree LSTMs (long short-term memory), a general-
ization of RNNs for trees with arbitrary branching factors [45]. Like any other
supervised learning method, the performance of MoTERNN on real data relies
on the quality of simulations used to generate the training data. The ISA that
we used for simulating mutations can be violated in cancer. In this regard, sim-
ulating phylogenetic trees by incorporating more complex evolutionary models
such as multi-type branching evolution process or utilizing more ad-
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vanced simulators for SNVs—especially, to deviate from binary genotypes and
move towards ternary genotypes—and CNAs, such as [3523], is a future research
direction to explore. Extending MoTERNN to CNAs paves the way to its appli-
cation to larger and more diverse data sets such as the CNA data set originally
studied by Kim et al. [I7], where the authors investigated the clonal evolution
of eight TNBC patients at various stages of tumor progression.

Although learning on more advanced simulations might require more model
parameters, the computational training cost would not increase dramatically
by making MoTERNN more complex because such architectures train/apply,
repeatedly, a few building blocks (e.g., the encoder, compositionality function,
and classifier network) to the entire data structure. As the first RNN applica-
tion to phylogenetics (see [39] for details on the current status of deep learning
applications in phylogenetics), MOTERNN demonstrated the potential of RNN
models in learning on phylogenetic trees. We believe that variations of RNN
models can be suitable choices for future studies in evolutionary biology.
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