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Backward Reachability Analysis of Neural
Feedback Systems Using Hybrid Zonotopes

Yuhao Zhang

Abstract—The proliferation of neural networks in
safety-critical applications necessitates the development
of effective methods to ensure their safety. This letter
presents a novel approach for computing the exact back-
ward reachable sets of neural feedback systems with
known linear system models based on hybrid zonotopes.
It is shown that the input-output relationship imposed by
a ReLU-activated neural network can be exactly described
by a hybrid zonotope-represented graph set. Based on that,
the one-step exact backward reachable set of a neural feed-
back system is computed as a hybrid zonotope in the
closed form. In addition, a necessary and sufficient con-
dition is formulated as a mixed-integer linear program to
certify whether the trajectories of a neural feedback system
can avoid unsafe regions in finite time. Numerical examples
are provided to demonstrate the efficiency of the proposed
approach.

Index Terms—Backward reachable set, neural networks,
safety verification, hybrid zonotope.

[. INTRODUCTION

EURAL Networks (NNs) have become increasingly

prevalent in autonomous systems. However, it has been
shown that NNs are highly sensitive to even small perturba-
tions in the input space, despite performing well in nominal
scenarios [1]. Given the potential safety risks associated with
using NN in safety-critical systems, there is a pressing need
for developing efficient tools to provide safety guarantees for
control systems with NN components.

Reachability analysis of neural feedback systems, which are
systems with NN controllers in the feedback loop, has been
investigated in recent works [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11]. The majority of these results focus on for-
ward reachability, which estimate the set of states that can be
reached from an initial set [2], [3], [4], [5], [6], [7]. On the
contrary, the backward reachability problem is to compute a set
of states, known as the Backward Reachable Set (BRS), from
which the system’s trajectories can reach a specified target set
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within a finite time. For a safety-critical system (e.g., aircraft
and autonomous vehicles), backward reachability analysis can
identify the states that lead to safety violations when the tar-
get set is the set of unsafe states; for example, in the aircraft
collision avoidance protocol, the unsafe target set would con-
tain all the states where two aircraft are within the minimum
separation distance [12].

Although various techniques have been developed for back-
ward reachability analysis on systems without NNs [12],
[13], [14], they are not directly applicable to neural feedback
systems due to the highly nonlinear and nonconvex nature of
NNs. In [11], a method was presented to compute the exact
BRS of a ReLU-activated NN by determining the activation
pattern, but it is only applicable to NN in isolation, not neural
feedback systems. In [8], an algorithm was proposed to over-
approximate the BRS of a linear neural feedback system using
the convex relaxation of NNs. The result was generalized in [9]
for nonlinear system models with a guided partition algorithm
to reduce the conservatism induced by the relaxation. A hybrid
partition scheme was presented in [10] to further reduce con-
servatism. Note that the BRSs computed in these works are
inexact, even for linear systems.

This letter aims to compute the exact BRS of a neural feed-
back system where the controller is a Feedforward Neural
Network (FNN) with Rectified Linear Unit (ReLU) activa-
tion functions. The main mathematical tool used is Hybrid
Zonotope (HZ), which can compactly represent a finite union
of polytopic sets [15], [16], [17], [18]. This letter builds on
our previous work [18], which shows that an FNN with ReLU
activation functions can be exactly represented by an HZ
and provides algorithms to compute the exact and approx-
imated forward reachable sets of neural feedback systems.
The contributions of this letter are at least threefold: (i) An
algorithm with a linear set complexity growth rate is pro-
vided to represent the exact input-output relationship of a
ReLU-activated FNN as an HZ, which is an improvement
on the exponential set complexity growth rate given in [18];
(ii) Based on the reachability analysis of FNNs in isolation,
an algorithm is proposed to compute the exact BRS of neu-
ral feedback systems represented by HZs; (iii) A necessary
and sufficient condition formulated as a Mixed-Integer Linear
Program (MILP) is provided to certify the safety properties
of neural feedback systems. The performance of the proposed
method is demonstrated through two numerical examples.
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Notation: The i-th component of a vector x € R” is denoted
by x; with i € {1,...,n}. For a matrix A € R™"_ A[i : j, ]
denotes the matrix constructed by the i-th to j-th rows of A.
The identity matrix is denoted as I and e; is the i-th column
of I. The vectors and matrices whose entries are all O (resp. 1)
are denoted as 0 (resp. 1). Given sets X C R", Z C R™ and
a matrix R € R™*" the Cartesian product of X and Z is
X x Z={(x,2) | x € X,z € Z}, the generalized intersection
of ¥ and Zunder Ris ¥ Ng Z2 = {x € X | Rx € Z}, and the
k-ary Cartesian power of X is X¥ = X x --- x X.

Il. PRELIMINARIES & PROBLEM STATEMENT
A. Hybrid Zonotopes

Definition 1 [15, Definition 3]: The set Z C R”" is a hybrid
zonotope if there exist ¢ € R, G¢ € R"™", G? ¢ R"™",
A¢ € R"*7s Ab ¢ R"%e* b e R" such that

&C g np
gc |:§b:| € Bog x {—1, 1},
Z= [G”Gb][b}—i-c £ :
§ [Ac Ab] |:Ebi| —=b

where Bgﬁ’; = {x € R™ | ||x|lcoc < 1} is the unit hypercube in
R”"¢. The shorthand notation of the hybrid zonotope is given
by Z = (G, G?, ¢, A, AP b).

Given an HZ Z = (GC,Gb,c,AC,Ab,b>, the vector ¢ is
called the center, the columns of G? are called the binary
generators, and the columns of G¢ are called the continuous
generators. For simplicity, we define the set B(AS, Al b) =
{(6°.E") € Bt x {—1, 1) | A6“ + APEP = b).

Identities are provided to compute the linear map and gen-
eralized intersection [15, Proposition 7], union operation [19,
Proposition 1], and Cartesian product of HZs [20, Proposition
3.2.5]. The emptiness of an HZ can be verified by solving an
MILP [15].

Lemma 1: Given Z = (G¢, G?, ¢, A, A’ b) C R", Z # ()
if and only if min{||£¢|loo | AEC + APEP = b, ¢ € R, &P €
{-L 1"} =<1

B. Problem Statement

Consider the following discrete-time linear system:
x(t+1) = Aax(t) + Bqu(1), )]

where x(7) € R", u(f) € R™ are the state and the control input,
respectively. We assume x € X where X' C R” is called the
state set and the controller is given as u(t) = mw(x(¢)), where
is an ¢-layer FNN with ReLU activation functions. The neural
feedback system consisting of system (1) and controller 7 is
a closed-loop system denoted as:

x(t+ 1) =fux(0) = Agx (@) + Bam (x(1)). 2)

Given a target set 7 C X for the closed-loop system (2),
the set of states in A that can be mapped into the tar-
get set 7 by (2) in exactly ¢ steps is defined as the f-step
BRS and denoted as P,(T) £ {x(0) € X|x(t) € T,x(k) =
fa&xk)), k=1,2,...,t}. Note that the ¢-step BRS is always
a subset of the state set X, i.e., P(7T) € X. For simplicity, the
one-step BRS is also denoted as P(T), i.e., P(T) = P1(T).

The equivalence of an HZ and a union of constrained zono-
topes [15, Th. 5] shows that an HZ can compactly represent
non-convex sets with flat faces. In this letter, we assume
both the state set X' and the target set 7 are represented by
HZs. This assumption enables us to handle sets and system
dynamics using a unified HZ-based approach.

For the {¢-layer FNN controller 7, the k-th layer weight
matrix and bias vector are denoted as W& and v(k_l),
respectively, where k = 1, ..., £. Denote x® as the neurons
of the k-th layer and ny as the dimension of x®_ Then, for
k=1,...,0—1, we have x®¥ = ¢(Wk=Dx*k=1 4 (k=1
where x©@ = x(r) and ¢ is the vector-valued activation
function constructed by component-wise repetition of ReLU
function, i.e., ¢(x) = [ReLU(x1), ..., ReLU(x,)]’. Only the
linear map is applied in the last layer, i.e., 7(x()) = x® =
WEDxE=D 1 (¢=D The total number of hidden neurons is
denoted as Ny =n; +--- 4+ ny_q.

The following problem will be investigated in this letter.

Problem 1: Given a target set 7 C X represented as an HZ
and a time horizon T € Z-(, compute the exact BRS P;(7)
of the neural feedback system (2), fort=1,2,...,T.

[1l. EXACT BACKWARD REACHABILITY ANALYSIS

In this section, we first present a technique that can represent
the exact input-output relationship of a ReLU-activated FNN
as an HZ-based graph set that has a linear set complexity
growth rate. Then, based on that, we show if the target set is
given as an HZ, the exact BRS of the system (2) can be also
represented as HZs in closed form.

A. Representation of the Graph of FNNs via HZs

The problem of computing the BRS and invariant set of
controlled dynamical systems has been studied in many works,
such as [21], [22], [23]. A commonly-used technique is to
abstract the constraints imposed by the dynamic system in
the input-output space. For example, state-update sets are
proposed in [16] to compute successor and precursor sets
for hybrid systems. For neural feedback systems, the imposed
constraints can be identified by finding a proper representation
of the input-output relationship of the NN controllers.

One of the major difficulties in analyzing NN is the com-
position of nonlinear activation functions [6]. To simplify the
analysis of NNs, quadratic constraints have been utilized to
abstract the constraints imposed by the NNs on the pre- and
post-activation signals [6], [24]. Building upon these method-
ologies, our approach employs an HZ to capture the constraints
imposed by NNs in an exact manner. Specifically, we denote
G, X) ={(x,u) |u=mkx),x € X} C R""™ as the graph
of the ReL.U-activated FNN m over the state space domain X,
and we will show that there exists an HZ H, = (G, GZ’ Cr,
AS, Az, b, ), such that G(r, X) = H.

To that end, we first consider the representation of a scalar-
valued ReLU function x = ReLU(z) = max{z, 0} over an
interval domain [ — o, ] where «, B € R. (. The graph of the
ReLU function over the interval domain is plotted in Fig. 1.

It is obvious that the set of points satisfying the ReLLU func-
tion over [—c, B8] form two line segments which can be exactly
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= ReLU(z)

Fig. 1. The graph of the ReLU function as the union of two HZs 4
and .o, over the interval domain [—«, B].

represented as two HZs H and H, given as follows:

=i [Fsshon={f o[ voe)

The union of H; and #Hz can be directly computed as a
single HZ ‘H using [19, Proposition 1]. We use the approach
presented in [18, Algorithm 3] to identify two redundant
continuous generators. We then apply [18, Proposition 3]
with proper transformation matrices to remove the redundant
continuous generators and obtain

H =M1 UHa = (G, GY, ci, AS, AL b)), (3)

0 at=[ =[]

. 1 o0 0] «»_[1 !
Ah_[o T B2 Y O FY

Note that a similar formulation was presented in
[25, Lemma 1] to represent the ReLU as an HZ for forward
reachability analysis. Their formulation was built on the rela-
tionship of three zonotopes while the graph set A in (3) was
computed based on the union of two line segments.

Using (3), we get the exact representation of the graph
of the ReLU function over [ — «, B8] using HZ, ie., H =
{z.x) € R? | x = ReLU(z),z € [ — a, B]}. Note that the
graph of a ReLU function can be also linearly approximated
using intervals, symbolic intervals, and polytopes, as stated
in [26]; however, the nonlinear nature of the ReLU func-
tion makes it impossible for these convex relaxation-based set
representations to exactly represent its graph.

In the following lemma, the analysis described above on
the ReLU function is extended to the vector-valued activation
function ¢ over a domain represented as an HZ.

Lemma 2: Given a domain represented as an HZ Z C R,
the graph of the k-th layer’s vector-valued activation function
¢ : R"™ — R™ over Z can be exactly represented by the
following HZ:

G@.2) =@ -H") Npo 2, “4)

where P =1[eseq, -, ey €1 €3, , €xy—1]] € RIWX2
is a permutation matrix and H is given in (3).

Proof: Since the HZ Z is a closed set, we can always
find large enough scalars o, B € R.o such that the interval
Z =[—-al,Bl] C R* is an enclosure of Z, ie., Z C Z.
Let z® denote the input of function ¢ and x® denote the

where

=0
Il
|
e IR
[
Ll STEes TR

Algorithm 1: Exact Graph Set Computation of FNN via
HZs
Input: HZ domain &', number of layers ¢, weight
matrices {W*D}¢_ | bias vectors {p*=D}f_,
large scalars o, 8 > 0
Output: exact graph set as an HZ H, = G(r, X)

1 X0 ¥ = (G, Gh, e, AS, A by);

2 H <« compute the graph of ReLU using (3);
3forke{l,2,...,¢£—1})do

4 Zk=1) L wk=1) p*k=1 + v(k—l); // Input set
5 GO — (P H"™) N o Z&=D, // Using (4)
6 X® —1011-6® ; // Output set
7 X© W=D y=1 4 =D, // Last layer

8 (G, G”, ¢, A%, A b) < xO;
// Stack input and output

G< ol [GP O] [e,
o (B[] o] o

0 return H,

o

—

output. The graph of ¢ over the domain Z is G(¢,7) =
(@R, x®) | x® = ¢z®),z® e T} ¢ R¥™. As the vector-
valued activation function ¢ is constructed by component-wise
repetition of ReLU functions, i.e., xl(k) = ReLU(zEk)), we
have [0 20 0 00 g o pow
To reassemble the }[)airs of input and output elements in the
WT T ~ -
same order of [z ,x")" ]', we use the permutation matrix

T T
Poand get [{O x0T = ) o0 ) =
P[ZE ) x% )L , z,&,) x,(1k)]T. Since HZs are closed under the

linear map and generalized intersection [15, Proposition 7], the
graph of ¢ over the interval Z is an HZ as G(¢, Z) = P - H"*.
Then, we have G(¢, Z2) = {@®,x®) | x® = p(®),z0 ¢
ZYy =G, 1) Nigo) Z2 = (P - H"™) Nz o) Z, which is also an
HZ. This completes the proof. |

Remark 1: Lemma 2 shows that the graph set of a vector-
valued ReLU activation function can be exactly represented
by an HZ. Reference [6, Lemma 4] abstracts the input-output
relationship of the ReLU function using quadratic constraints.
However, their proposed approach will only provide an over-
approximation of the graph set.

From the structure of the FNN 7, it is obvious that each
layer is a composition of the activation function ¢ and the
linear map with weight matrix W and bias vector v. Therefore,
to construct the HZ representation H, = G(w, X) for the
graph of the entire network m, we can repeat the procedures
described in Lemma 2 layer-by-layer and connect the input of
the k-th layer z© and the output of the (k — 1)-th layer x*—1
with the linear map z® = Wk=Dxk=D 4 &= The details
on the iterative construction of the HZ #H, are summarized in
Algorithm 1.

Theorem 1: Given an {-layer ReLU-activated FNN
7 : R" — R™ and an HZ X C R”, the output of Algorithm 1
Hr is an HZ that can exactly represent the graph set of
over the domain X, i.e., H; = G(, X).

Proof: For the (-layer ReLLU-activated FNN 1, it is easy
to check that the input set 2%~ graph set G® and output
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set X® of the k-th layer activation function ¢ are computed
iteratively for k =1, ..., £—1 in Line 4-6 of Algorithm 1. For
the last layer, only a linear map is applied and the output set
of ENN 7 is computed as X'© in Line 7. Note that from the
construction, the equality constraints in the domain set X are
included in X®_ In Line 8, H,, stacks the input and output
of mas Hy = {(x,u) | x € X,u = n(x)} = G(r, X), which
is an exact representation of the graph set of ¥ over X. ®

Denote ng y, np x and nc , as the number of continuous gen-
erators, binary generators and equality constraints of the HZ
X, respectively. The set complexity growth of the graph set
Hy is given by ng = ng x +4Ny, npzx =npx +Nz, ez =
nex + 3N;. The output set X © of the FNN x computed
in Algorithm 1 has the same set complexity as H,. In our
previous work [18], it has been shown that a ReL.U-activated
FNN can be exactly represented by an HZ; however, the set
complexity of the computed HZ there will grow exponentially
with the number of neurons in the FNN. In comparison. the
HZ representation of FNN produced by Algorithm 1 has a
linear set complexity growth rate.

B. Computation of Exact BRS for Neural Feedback
Systems

In this subsection, we will consider the computation of exact
BRS for the neural feedback system (2). Inspired by the pre-
cursor set formulation for Mixed Logical Dynamical (MLD)
systems given by [16, Th. 2], the following theorem provides
the closed-form of the one-step BRS, P(7") with a given target
set represented by an HZ, 7.

Theorem 2: Given any HZ X C R", let H, = (GS, Gh,
Cr, A;;,Aﬁ’,, b,) be the computed graph set of the FNN =
over the domain X using Algorithm 1, i.e., H; = G(r, X).
Let D = [Ad Bdl. Then, for any target set represented by
an HZ 7 = (G¢, G2, ¢, AS, A?, b.) C R”, the one-step BRS
of the neural feedback system (2) is an HZ given as

P(T) = (G}, Gh, ¢y, As, AL by), (5)
where

GS =[G4l :n.:10], GL=[Gh[1:n10],

AS 0 AL 0
Ac=| 0 A | A= 0 A2 |
DG¢ —G¢ DG: —G!
b
¢ =c¢g[l:n:], b= b,
¢; — Dc;;

Proof: By the definition of the one-step BRS, we have
Pl =xeX|fux)eT})={x|Awx+Bgu e T,u=
), x € X} = {x | DxT u”1" e T,[xT u"]" e H,).
Denote the right-hand side of (5) as H,,. We will first prove that
P(T) < Hb,,. Let x be any element of set P(7). Then, there
exist £, &2 £¢ and &% such that (£S,&2) € B(AS, AL, b,),
(&, E5) € BAS, AL, by), [x7 7(0) 7 = GEES + GLEL + ¢
and D[xT 7(x)T1T = GEES + G},”;'}r7 + ¢;. Therefore, we have
x = (I, 0]- " 7" = [I, 0] - (GS&; + GLEL +
¢r) = GS[1 : n,:)ES + G2[1 @ n, ‘1€2 + ¢x[1 : n,:] and
D(GSES + GLED +cp) = GEEC + GLED + ¢,

Let £ = [(€)" DT and & = (DT €D
Then, it’s easy to check that x = [Gg[l in, O]EC +
[GEI1:n,:10]6" + cxll : n.:] = GSE + GbE” + ¢, and
(§C,£h) e B(AC,AZ,bp). Thus, we have x € H,. And
since x is arbitrary, we know that P(7) < H,. Next,
we will show that H, < P(T). Let x € H,. Then,
there exist £ and £ such that (£, &%) € B(AC,A[b,,bp)
and x = Gj&° + Gg&b + ¢,. Partitioning £¢ as &° =
[(E5)7 (DT and &7 as & = [(2)T EDTT, it follows
that (85, £2) € B(AC, AL, by), (5, £7) € B(AS, AL, by) and
x = GE[1 2 n, )& + GEI1 2 n,:]€5 4 ¢x[1 : n,:]. Choose
u=GS[n+1:m+n,:)E —i—Gﬁ’r[n—i—l m+n, :]52 +e [n+
1 : m+n,:). Then, we can get [x” u”1" = GS &S +GLEL 4-¢,
and D[x” u”]" = GS&¢ + GPEL 4 ¢,. Thus, x € P(T).
Since x is arbitrary, H, C P(T). Therefore, we conclude that
P(T) = Hp. u

To the best of our knowledge, Theorem 2 is the first result
that can compute the exact BRS of a neural feedback system
that consists of a linear model and an FNN controller.

Based on Theorem 2, the exact 7T-step BRS of system (2)
can be computed iteratively as follows:

Po(M) =T, P(T)=PP_1(T)), t=1,...,T. (6)

Assuming that the target set 7 has n, . continuous gen-
erators, np  binary generators and n. . equality constraints,
the set complexity of the T-step BRS computed using (6)
and Theorem 2 is given by ng ), = T - (ngx + 4Ny) + ng <,
npp = T-(npx+Nx)+npe, Nep = T-(nex+3Ny+n)+neq,
where the subscript p represents the one-step BRS P(7).

Remark 2: Linear Programming (LP)-based methods were
proposed in [8], [9], [10] to over-approximate the BRS for
neural feedback systems. Our method relies on the exact HZ
representation of the nonlinearities of ReLU-activated FNNs
and can compute exact BRSs without the necessity of parti-
tion when the system model is linear. For general nonlinear
feedback systems, our approach can be readily extended by
abstracting nonlinear dynamics with piece-wise linear bounds
as in [27]. In the presence of modeling error and measure-
ment noise, our method remains applicable provided that these
uncertainties are bounded by hybrid zonotopes.

Remark 3: In [16], a novel HZ-based approach was
proposed to compute the precursor set of MLD systems by
constructing the state-update sets. Although one might apply
the results there for the backward reachability analysis of
neural feedback systems, this will require the transformation
from the ReLU-activated FNN to an equivalent MLD system
using the big-M formulation. However, this transformation
will induce additional auxiliary variables and result in a more
complex hybrid zonotope representation than Theorem 2.

Remark 4: The analysis in the preceding subsections can
be readily extended to neural feedback systems with saturated
control inputs, using techniques similar to [4]. Specifically,
assume that the system (1) has interval control input con-
straints, i.e., u € U = [u, u]. Then the closed-loop system (2)
becomes x(t + 1) = Agx({®) + By satz(n(x(t))), where
the saturation function can be equivalently described by
the ReLU functions as satz(u) = min{max{u,u},u} =
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ReLU(—ReLU(u — u) + u — u) + u. Therefore, the saturated
NN controller 7 (x) = satz(n(x)) is an (£ + 2)-layer ReLU-
activated FNN. Then, all preceding results can be directly
applied to this modified FNN.

IV. SAFETY VERIFICATION FOR NEURAL FEEDBACK
SYSTEMS VIA BRS

In this section, the backward reachability analysis in the
preceding section will be utilized for the safety verification of
neural feedback systems.

Consider an initial state set Ay C X and an unsafe region
O C X, both of which are represented as HZs. We consider the
unsafe set O as the target set in Section III and suppose that the
exact t-step BRS of O can be computed as P;(QO) by (6), where
t =1,...,T with T an arbitrary positive integer. Clearly, if
Xp does not intersect with any P; for t = 1, ..., T, any state
trajectory that starts from X will not enter into the unsafe
region O within 7 time steps, in other words, the neural feed-
back system (2) is safe within T steps. By [15, Proposition 7]
and Lemma 1, checking the emptiness of the intersection of
Ay and P; is equivalent to solving an MILP.

The safety verification of neural feedback systems via BRSs
is summarized in the following proposition whose proof is
omitted due to space limitations.

Proposition 1: Suppose that an initial state set Xy = (G,
Gg,co,Ag,Ag, bp) C X and an unsafe set O C X are both
HZs, and P; = (GY, Gf, ¢, AY, Af?, b;) is the exact t-step BRS
of O where =1, ..., T with T an arbitrary positive integer.
Then, the state trajectories of the neural feedback system (2)
starting from Xy can avoid the unsafe region O within T steps,

if and only if the following condition holds for t=1,...,T:
AS 0 Al 0
min | [&|| 0 A§ [E°+| 0 AL [& @)
G¢ -G G’ -G}
b;
=| by | EecR% g ec{—1,1)»} >1.
CO — €t

Remark 5: Denote the number of continuous generators,
binary generators and equality constraints of the HZ O (resp.
Xo) as ng o, np o and ne, (resp. ng o, np,o and nc o), respec-
tively. The T MILPs in (7) include ng, continuous variables,
np,; binary variables, and n., linear constraints, where ng ; =
t‘(”g,x+4Nn)+ng,u+ng,Oa np,t = t-(Npx+Nz)+npo+np0 and
net = t- (e x+ 3Ny +n)+ne o +ne o+ n. Commercial solvers
such as Gurobi have shown promising performance in solv-
ing MILPs. To further reduce the computation burden, we can
use [18, Lemma 5] to get the tightest convex relaxation of the
exact BRS P by replacing the binary generators with continu-
ous generators. If relaxed BRSs are used in Proposition 1, (7)
will degenerate into linear programs which are much easier to
solve.

V. SIMULATION EXAMPLES

In this section, two simulation examples will be presented
to demonstrate the effectiveness of the proposed method. The
method proposed in this letter is implemented in MATLAB

251
151 | ;|
I Target set

j [
[ nitial set

0r BReach-LP [8]
ReBReach-LP [8]
[ 1BReach-HZ (ours)

051

-3 -2 -1 0 1 2 3 4 5
T

Fig. 2. Simulation results in Example 1. The exact BRSs computed
by our HZ-based approach are shown in cyan. Over-approximated
BRSs computed by BReach-LP and ReBReach-LP algorithms in [8] are
bounded by orange and magenta lines, respectively. The target set as
the unsafe region is in red and the initial set is in green.

R2022a and executed on a desktop with an Intel Core 17-8700k
CPU and 32GB of RAM.
Example I1: Consider the discrete-time double integrator

model given in [6]: x(t + 1) = |: [Ois u(r).

(1) i:Lx(t) +

The NN controller u(¢) = m(x(¢)) has two hidden layers with
ReLU activation functions and [10, 5] neurons. Similar to [8],
this NN controller was trained using the dataset generated by
an MPC controller. The saturation bounds 4 = —1,u = 1 was
imposed on the controller, i.e., u(t) € U = [—1, 1]. We chose
the initial set as Xy = [—1.25, 0.25] x [0.4, 0.6], the unsafe
region as O = [4.5,5.0] x [ — 0.25, 0.25], the state region as
X =[—40, 40] x [—40, 40], and o = B = 400.

We denote our method based on Theorem 2 and equa-
tions (6) as BReach-HZ. To facilitate comparison with other
BRS computation methods, we implement BReach-HZ to
compute 5 exact BRSs P (7), ..., Ps(7T) which are shown by
the sets in cyan in Figure 2. The set complexity of the last-step
BRS Ps5(T) is given by: ny = 352, nj, = 85 and n, = 265.
We also verified that condition (7) in Proposition 1 holds true,
which implies the safety of the neural feedback system. The
time for computing the BRSs is 0.0452 seconds, and the time
for solving the MILPs given in (7) via the commercial solver
Gurobi is 0.639 seconds. For comparison, we also ran the
BReach-LP and ReBReach-LP algorithms proposed in [8],
which were implemented in Python with default parameters
provided by the authors of [8]. The times for computing the
BRSs using BReach-LP and ReBReach-LP are 1.23 seconds
and 11.7 seconds, respectively. The computed BRSs are shown
by the rectangles with orange and magenta lines in Figure 2.
It can be observed that our method provides more accurate
BRSs for all the time steps compared with the BReach-LP
and the ReBReach-LP algorithms. In addition, the exact BRSs
computed by our method certify safety in this scenario, while
the over-approximated BRSs computed by the two algorithms
given in [8] lead to false unsafe detection.
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Fig. 3. Simulation results in Example 2. Note that there are set
overlapping areas when projecting the BRSs onto the x — y plane.

Example 2: Consider the 4-dimensional linearized ground
robot model described by two integrators corresponding to the
102 Z:|x(t) + [0‘5121
X = [px, Py, Vx, vy]T is the position and velocity in the x —y
plane. The target set is 7 = [—1.5, —0.5] x [-2.5, —1.5] x
[—0.1,0.1]x[—0.1, 0.1] and the initial set is Xy = [0.5, 1.5] x
[-1,0] x[-1.1,—-0.9] x [-0.1,0.1].

Similar to Example 1, we trained a ReLU-activated neural
network comprising [10, 5] neurons to learn an MPC policy

x —y plane: x(t+ 1) = 2:|u(t), where

while adhering to the saturation constraints of # = —1 and
u = 1. Figure 3 shows the projections of the computed exact

BRSs P1(T),...,Ps(T) on the x — y plane by using our
proposed method. The set complexity of the last-step BRS
Ps(T) is given by: n, = 404, n, = 95 and n. = 305. The
time for computing BRSs is 0.0116 seconds, and the time for
solving MILPs to verify the safety is 0.745 seconds, which
has the same order of magnitude as that in Example 1.

V1. CONCLUSION

We proposed a novel HZ-based approach to compute the
exact BRSs of neural feedback systems. We showed that the
input-output relationship of a ReLU-activated FNN can be
exactly described by its graph set represented by an HZ.
We provided an exact HZ formulation for the BRSs of neu-
ral feedback systems and extended the result to the saturated
input case. We also proposed a sufficient and necessary con-
dition in the form of MILPs for the safety verification of
neural feedback systems via BRSs. The performance of the
proposed approach was compared with state-of-the-art using
two numerical examples.
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