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ABSTRACT

Convolutional neural networks (CNNs) play an important role in

today’s mobile and edge computing systems for vision-based tasks

like object classification and detection. However, state-of-the-art

methods on CNN acceleration are trapped in either limited prac-

tical latency speed-up on general computing platforms or latency

speed-up with severe accuracy loss. In this paper, we propose a

spatial-based dynamic CNN acceleration framework, NeuLens, for

mobile and edge platforms. Specially, we design a novel dynamic

inference mechanism, assemble region-aware convolution (ARAC)

supernet, that peels off redundant operations inside CNN models as

many as possible based on spatial redundancy and channel slicing.

In ARAC supernet, the CNN inference flow is split into multiple

independentmicro-flows, and the computational cost of each can be

autonomously adjusted based on its tiled-input content and applica-

tion requirements. These micro-flows can be loaded into hardware

like GPUs as single models. Consequently, its operation reduction

can be well translated into latency speed-up and is compatible with

hardware-level accelerations. Moreover, the inference accuracy can

be well preserved by identifying critical regions on images and

processing them in the original resolution with large micro-flow.

Based on our evaluation, NeuLens outperforms baseline methods

by up to 58% latency reduction with the same accuracy and by up

to 67.9% accuracy improvement under the same latency/memory

constraints.

CCS CONCEPTS

• Computing methodologies → Neural networks; • Human-

centered computing→ Ubiquitous and mobile computing.
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1 INTRODUCTION

Computer vision related tasks usually require a large number of

computational resources [23]. Many studies focus on reducing the

computational cost of CNN inference. Some works propose light-

weight network architectures like MobileNets [25, 26, 63], Con-

denseNet [29], ShuffleNets [51, 93], and EfficientNet [71]. Other

studies compress existing networks by pruning [42, 44, 49, 50] or

quantization [32, 33, 57]. Recent works propose various ways that

allow dynamic computational cost adjustment of CNN inference [19,

43] (details in §2.2). Inspired by human’s vision where only a limited

portion of visual scene is processed by the visual system, recent

works dig into the potential of computational cost reduction based

on input spatial information by proposing specialized network ar-

chitectures [83, 88] or by designing computing flows compatible

with general CNN architectures [20, 77, 95]. In video streaming and

analytics, regions of interest (RoIs) are determined by cross-frame

tracking (Edge-Assisted [47] and Elf [92]) or by low-resolution de-

tection (DDS [9]). By RoI-based encoding, the transmission data

sizes of offloaded frames are significantly reduced [47].

In this paper, we propose an adaptive framework, NeuLens, for

dynamic CNN inference acceleration on mobile and edge devices.

First, we design a novel dynamic mechanism, assemble region-

aware convolutional (ARAC) supernet (§4), that effectively reduces

inference cost with small accuracy loss. An ARAC supernet is a

spatial-split network ensemble. It adaptively selects sub-networks

with different sizes for split tiles of an image based on their rele-

vance to the final prediction. Furthermore, we design a lightweight

online controller, DEMUX (§5), that dynamically tunes per-tile

sub-network selection and the supernet’s configurations based on

service level objectives (SLOs) in real applications. Finally, we com-

prehensively evaluate ARAC supernet on different mobile/edge

platforms and various applications (§7). Based on our evaluation,

ARAC supernet achieves up to 67.9% accuracy improvement over

state-of-the-art (SOTA) dynamic inference methods under the same

latency/memory constraints (§7.2) and up to 1.23× higher accuracy

over SOTA model compression techniques with the same inference

latency (§7.4). In addition, applying ARAC supernet into continuous

object detection systems boosts the performance by up to 7.7× over

SOTA techniques [47] (§7.6).

We summarize the contributions of this paper as follows:

Development of a novel CNN acceleration mechanism for

mobile/edge computing platforms (§4). By exploiting spatial

and depth redundancy on images and in CNNs, we propose an

acceleration mechanism, ARAC supernet, that effectively reduces

the consumption of computing resources with slight accuracy re-

duction. Compared to existing acceleration works, ARAC supernet

*These authors contributed equally to this work.
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achieves the Pareto optimality on accuracy-latency trade-off. We

highlight the following advanced techniques in ARAC supernet:

• Construction of an ARAC supernet that generally applies to CNN

architectures (§4.1). By splitting an input image into tiles, the su-

pernet utilizes sub-networks with different compression levels to

analyze them. The outputs from the supernet are concatenated and

fed into the rest layers in the CNN model to compute the final re-

sults. Such structure allows the supernet to reduce spatial and depth

redundancy in computation without affecting the overall working

schemes of the original CNNs.

• Content-aware per-tile adjustment on computational cost in

ARAC supernet (§4.4). A compression guiding gate is designed

to effectively analyze the content in each tile and assign a sub-

network with proper compression level to analyze them in the

supernet. A labeling rule is proposed to automate the training set

generation for the compression guiding gate.

• Effective conversion from operation redundancy reduction to

on-device latency acceleration. In ARAC supernet, the computation

flow is split into multiple independent micro-flows. Based on the

content of its input (a tile), each micro-flow adjusts the operation

amount (compression level) in analyzing the input independently.

As each micro-flow is loaded into a device’s computing unit (e.g.,

GPU) like an individual neural network, its operation reduction is

directly converted into latency acceleration.

Design of a lightweight SLO-aware controller adaptive to

limited computing budgets on mobile/edge devices (§5).We

design an online lightweight controller, DEMUX, to tune ARAC

supernet based on user’s SLOs with neglectable overhead on mobile

and edge devices. Given customized options on the parameters of

an ARAC supernet, DEMUX adaptively selects the optimal set of

parameters and keeps high accuracy within the user’s SLOs.

Implementation of ARAC supernet and performance eval-

uation on different mobile/edge computing platforms and

for various vision applications (§6, 7). We comprehensively

evaluate the performance of ARAC supernet from several aspects

and proves its effectiveness in boosting the overall performance

in CNN-related applications on mobile/edge devices. We highlight

our evaluation results as follows:

• Outperforms SOTA techniques in dynamic inference and model

compression on mobile/edge devices by up to 67.9% (§7.2) and 1.23×
(§7.4), respectively.

• Improves overall performance of SOTA continuous object detec-

tion systems on edge by up to 7.7× (§7.6).

• Reduces end-to-end latency by almost 50% on a SOTA 3D objec-

tion detection system for mixed-reality devices (§7.8).

2 BACKGROUND AND MOTIVATION

2.1 Spatial Related Convolution

As demonstrated in [15, 83], there can be a considerable amount

of redundant pixels in an image that are irrelevant to accurate

recognition. Several works focus on reducing convolutional oper-

ations of redundant pixels. The majority of these works propose

spatial neural architectures. Compact networks are designed for

spatial-redundancy based operation reduction [15, 27, 28, 59, 68,

72, 74, 83]. Sequential networks are designed with multi-scale res-

olutions [11, 55, 87, 88]. CBAM [80] designs an attention module

that can be inserted into CNNs. Other recent works propose spatial-

redundancy-based modifications on computing flows that can be

generally applied to popular CNN architectures rather than design-

ing new ones. GFNet [77, 30] dynamically processes a sequence

of crops on the image until prediction with sufficient confidence.

DRNet [95] predicts optimal resolution for each input image with

a resolution predictor. SAR [20] designs a dual-branch network

architecture with one analyzing low-resolution input features and

selecting high-resolution refined areas for the other in each layer.

Compared to these studies, our work proposes a novel computing

flow, ARAC supernet, to tackle spatial redundancy. By splitting the

input images into tiles, we select different sub-networks in supernet

based on their contents. ARAC supernet generally applies to popu-

lar CNN architectures like [20, 77, 95]. It is important to note that

works like SAR [20], CGNet [27, 28] and ASC [68, 72] are not fully

supported for practical speed-up by deep learning platforms and

require special hardware/framework support. In contrast, our work

can be effectively implemented on SOTA deep learning platforms

and realize latency speed-up.

2.2 Dynamic Inference

We divide SOTA studies on dynamic inference into two types based

on whether they are platform and SLO adaptive.

Platform- and SLO-Agnostic: Some works focus on modify-

ing or designing a single network with the dynamic mechanism.

Early-exist topology is proposed for CNNs ( [3], MSDNet [31],

and ZTW [79]). CNMMs [60] and RNP [45] design networks that

can be dynamically pruned. Skipnet [76] and BlockDrop [81] skip

blocks in ResNet based on inputs. Similarly, ConvNet-AIG [73] de-

termines whether to skip each layer based on estimated relevance,

and CoDiNet [75] optimizes layer skipping based on cross-image

similarity. LCCL [8] avoids computing zeros in feature maps by

predicting their locations. Other works develop network ensem-

bles for dynamic inference. Russian Doll Network [35] constructs a

nested network by embedding smaller sub-networks inside larger

ones. HNE [61] designs a hierarchical neural ensemble that allows

branch number adjustment. Slimmable networks [43, 89, 90] ad-

just filter numbers in layers for different inputs. CoE [94] pools

a collection of networks trained by mutually exclusive subsets in

a dataset. MoE [65] and CondConv [86] construct sub-networks

with mixture-of-experts and selects a combination of them for each

input. Overall, these works focus on training optimization and ar-

chitecture modifications. Their designs are hand-crafted without

considerations on adaptability to platforms and SLOs [41].

Platform- and SLO-Adaptive: In contrast, several works focus on

optimizing system-level performance on mobile and edge devices

under SLOs. Some works design adaptive frameworks for general

CNNs. NestDNN [12] dynamically implements resource-accuracy

trade-off inside a compact multi-capacity model. ReForm [85] pro-

poses a resource-aware DNN reconfiguration framework based

on the ADMM algorithm. DMS [38] controls resource demand of

inference by adaptive pruning. PatDNN [53] designs an efficient

DNN framework based on kernel-pattern pruning. LegoDNN [19]

dynamically scales DNNs by switching retrained descendant blocks

in them. Other works develop adaptive framework by addressing

features in specific applications like video analytics (FlexDNN [13])
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Figure 1: Accuracy-latency trade-off comparison (Base Model:

ResNet50, ImageNet [7]), Jetson TX2.

and real-time (video) object detection (AdaVP [48], ApproxDet [84],

Remix [37], and [22]).

Compared to these works, our ARAC supernet implements a

dynamic mechanism by breaking inputs into tiles and processes

them with different compressed sub-networks based on spatial

redundancy (§4). Furthermore, we integrate ARAC supernet into

mobile and edge systems by designing an SLO-adaptive online

controller for on-device inference (§5). In other words, our work

also addresses adaptability to platforms and SLOs.

2.3 Observations

The accuracy-latency trade-offs of ARAC supernet and SOTA dy-

namic models are shown in Fig. 1. Both spatial-based works (MS-

GFNet [30], DRNet [95], MSDNet [31], CGNet [27, 28], and SAR [20])

and spatial-agnostic works (LegoDNN [19], DS-Net [43], HNE [61])

are included in the comparison. With the same inference latency,

the ARAC supernet outperforms SOTA methods by 1.22% to 2.07%
in top-1 accuracy.With the same top-1 accuracy, the ARAC supernet

takes 19.4% to 47.9% less time per inference. Most SOTA methods

on spatial redundancy do not implement practical speed-up [20].

The underlying reason is that they segment away operations on

redundant parts in a way that is not compatible with the interme-

diate mapping between layers. For example, SAR [20] (i.e., SOTA

pixel-level dynamic network) selects groups of refined patterns

from input features on each layer and runs operations on them

only. These patterns are irregular, and various patterns are gener-

ated per layer, making it impossible for computing efficiency on

GPUs [20]. In contrast, ARAC supernet jointly takes advantage of

spatially related operation reduction and dynamic inference. By

constructing multiple sub-networks with different sizes in the su-

pernet and splitting the CNN inference flow into spatial dimensions,

the ARAC supernet can adaptively adjust the computation of each

split-flow by selecting the proper sub-network inside the supernet.

Each split-flow executes as an independent micro network without

inter-dependency, i.e., the data flow from layer to layer occurs inside

each micro network only. Thus, each micro network can be loaded

to the GPU as one CNN model, and their operation reduction can

be effectively translated into latency speed-up. Note that, though

GFNet [30, 77] designs spatial-based CNN workflow where its oper-

ation reduction leads to real speed-up, its speed-up is limited due to

the sequential executions on a series of cropped images; similarly

for MSDNet [31].

We demonstrate the performance of two basic CNN acceleration

techniques in Fig. 2, where SOTA studies that apply to practical
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Figure 2: Performance of input resize and channel pruning (Base

Model: ResNet50, ImageNet [7]), Jetson TX2.

speed-up are built upon either of them. The first acceleration tech-

nique is to resize input image to different scales (Fig. 2 (a)). As more

detailed information is lost with down-scaling, the accuracy falls

below 50% with resolution 96. Even SOTA work on dynamic resolu-

tion, DRNet [95], keeps resolution options above 96. Consequently,

adjusting resolution alone cannot generate a wide range of latency

while preserving accuracy. The second acceleration technique is to

prune away channels in layers (Fig. 2 (b)), adopted by LegoDNN [19]

and DS-Net [43]. Note that channel pruning is different fromweight

pruning; the latter requires special hardware support for acceler-

ation. As shown in Fig. 2 (b), though the accuracy does not drop

sharply with a few channels pruned away, there is no significant

latency reduction either. When more channels are pruned away,

latency greatly decreases, but accuracy also shows an obvious drop.

2.4 Challenges

One way to take benefits of both input downscale and channel

pruning is shown in Fig. 3. We prepare four sub-networks with

different sizes (compressed on the first three blocks in ResNet-50

with four channel pruning levels). We split the original input image

into 3× 3 tiles (78× 78 pixels). We pair each tile with a sub-network

size and the tile is taken as input to the sub-network of the size.

All the outputs of the 3 × 3 tiles are concatenated and fed into the

last block in ResNet-50 to generate the final results of the whole

image.We exhaustively search over all the possible pairs for the four

images in this preliminary study, and we mark the optimal pairs1

of tiles and model sizes for each image in Fig. 3. As shown in Fig. 3,

the number of operations and latency are significantly reduced

without affecting prediction correctness. The success of such tile-

split CNN flow comes from two facts: First, there is no resolution

resize of the original image. While reducing sizes by several times,

the resolution-kept split-tile preserves detailed information. Second,

the method follows the intuition of human vision flow where the

critical parts are analyzed with high intensity and less critical parts

are analyzed with low intensity. The sub-networks of all the tiles

of an image are loaded independently as tiny models, and their

outputs are integrated to generate the image’s final predictions.

Sub-networks implement the variation of required computations

for the tiles with different sizes.

However, though the above preliminary study demonstrates

the benefits of tiling image input, there lie multiple challenges to

implementing such a beneficial inference flow: First, how to design

and prepare efficient and effective sub-networks with different sizes?

1The optimal pairs refer to the pairs that generate correct labels with the smallest
number of operations.
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Figure 3: Observations on tiling image input.

We design a compact sub-network ensemble with channel-slicing,

called ARAC supernet (§4.1) where a smaller sub-network can be

directly extracted from the largest using channel-slicing. We jointly

train all the sub-networks together with an ensemble bootstrapping

scheme (§4.3). Second, it is impossible to exhaustively search over

all the possible pairs to find the optimal one in reality. We present

a lightweight guiding gate to autonomously select sub-networks

for tiles (§4.4). Third, how to apply the proposed inference flow to

real applications, especially satisfying service level objectives? We

propose a lightweight online controller for on-device inference

(§5). The controller tunes sub-network selection given latency and

memory constraints while preserving accuracy.

3 SYSTEM OVERVIEW

The proposed SLO-adaptive deep learning acceleration framework

for mobile and edge computing platforms, NeuLens, is shown in

Fig. 4. NeuLens contains a one-time offline stage and a lightweight

online stage. In the offline stage, a CNN model is modified into

an ARAC supernet (supernet generation in Fig 4); a compression

guiding gate is designed to select a sub-network for each tile of an

image (CGG design in Fig. 4); memory predictor, latency predictor,

and accuracy comparator are trained based on profiling data of

supernets (profiling in Fig. 4). In the online stage, a lightweight on-

line controller, DEMUX, is designed to find optimal parameters, i.e.,

tile size, layer number, and per-tile compression levels for ARAC

supernet. DEMUX adaptively selects these parameters based on the

contents of the tiles of an input image and service-level objectives

(SLOs). Based on input images’ contents and applications’ SLOs,

NeuLens splits an CNN inference computing flow into multiple

micro-flows and independently controls each micro-flow’s compu-

tational cost. In this way, NeuLens successfully amplify the benefits

of SOTA CNN acceleration techniques, i.e., spatial-redundancy-

based computing-operation reduction and channel pruning. With

the proposed ARAC supernet technique, NeuLens is able to achieve

up to 67.9% accuracy improvement over state-of-the-art (SOTA)

dynamic inference methods under the same latency/memory con-

straints (§7.2) and up to 1.23× higher accuracy over SOTA model

compression techniques with the same inference latency(§7.4).

4 DESIGN OF ARAC SUPERNET

4.1 Workflow of ARAC Supernet

As shown in Fig. 5, the input image is split into 𝑘 × 𝑘 tiles. These

tiles are fed into ARAC supernet, and they are processed indepen-

dently in parallel. Based on their contents, they are processed by

different sub-networks in the supernet. The outputs of these tiles

from the supernet are concatenated and are further fed into the

following layers (the layers in gray in Fig. 5) in the model. There

can be multiple ways to form such a model with ARAC supernet

(e.g., neural architecture search). In this paper, we modify existing

CNN models’ architectures (e.g., MobileNet [26], ResNet-50 [21],

Inception [69]) into architectures with ARAC supernets.
Given an existing CNN model with 𝑁 layers, we modify the first

𝑃 layers (0 ≤ 𝑃 ≤ 𝑁 ) into the ARAC supernet and keep the rest
(𝑁 − 𝑃) layers unchanged. In the supernet, we compress the first
(𝑃 − 1) layers with different compression levels using techniques
like channel pruning [42, 44, 49, 50] in this paper and we set 𝑅
different compression levels C = {𝑐1, ..., 𝑐𝑅} (0 ≤ 𝑐1 < ... < 𝑐𝑅 ≤ 1),
which represents different ratios of output channels pruned away
in the first (𝑃 − 1) layers. Thus, given a compression level 𝑐𝑖 , the
number of output channels in each layer of the first (𝑃 − 1) layers
is:

𝑑𝑜𝑙 = (1 − 𝑐𝑖 ) · 𝐷
𝑜
𝑙 , ∀ 1 ≤ 𝑙 ≤ (𝑃 − 1) . (1)

where 𝐷𝑜
𝑙
is the original number of output channels, and 𝑑𝑜

𝑙
is the

channel number after compression. When 𝑐𝑖 = 0, we have 𝑑𝑜
𝑙
= 𝐷𝑙 ,

which means that there is no output channel pruned away; when

𝑐𝑖 = 1, we have 𝑑𝑜
𝑙
= 0, which means that all output channels are

pruned away (i.e., the whole (𝑃 − 1) layers are pruned away). A

high compression level represents that a large number of output

channels in the first (𝑃 − 1) layers are pruned, and vice versa. In

other words, A sub-network with a higher compression level has a

lower computational cost. Based on the content in each tile and the

latency requirements (details in §5), the system selects different

compression levels for them. Note that though an ARAC supernet

splits an image into tiles, the tiling will not hurt feature extraction

across multiple tiles in the original image. For example, given an

object’s key features across tiles, the supernet will process all the

corresponding tiles with relatively high computation. Following

the supernet, the extracted features from different tiles are fed into

the shared last layers, and the final results are generated based on

the information from all tiles (the original image). Furthermore,

as the construction of ARAC supernet does not break down the

outputs of the original model, ARAC supernet generally applies to

various CNN-based vision tasks (§7.7).

4.2 Intermediate Dimensions in Supernet
For a sub-network in ARAC supernet, the dimensions of input to
the (𝑙 + 1)-th layer are equal to those of output from the 𝑙-th layer.
The depth of output (i.e., the number of output channels) from a
layer is determined by the compression level as shown in Eq. 1.
For a layer 𝑙 , the relationships between the output’s and input’s
spatial dimensions (height and width) are determined by the layer’s
configurations [24]:

𝑤𝑖𝑛
𝑙 = (𝑤𝑜

𝑙 − 1) · 𝑆𝑙 − b · 𝐴𝑙 + 𝐹𝑙 , (2)

ℎ𝑖𝑛𝑙 = (ℎ𝑜𝑙 − 1) · 𝑆𝑙 − b · 𝐴𝑙 + 𝐹𝑙 . (3)

where b is a binary: If the tile is on the edge of the original image

and layer 𝑙 is a convolutional layer then b = 1, else b = 0; 𝑆𝑙 is stride;
𝐹𝑙 is filter size;𝐴𝑙 is padding. As we split the input image into 𝑘 ×𝑘
tiles and process them independently with different sub-networks

inside the supernet, the 𝑘 × 𝑘 outputs from the supernet need to

be concatenated together. To seamlessly concatenate them, the

spatial dimensions of each output are set to (𝑊 𝑜
𝑃 /𝑘, 𝐻𝑜

𝑃/𝑘), where
(𝑊 𝑜

𝑃 , 𝐻𝑜
𝑃 ) are the spatial dimensions of input to the (𝑃 + 1)-th layer.
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Given (𝑊 𝑜
𝑃 /𝑘, 𝐻𝑜

𝑃/𝑘), the intermediate spatial dimensions of inputs

and outputs in sub-networks of supernet can be determined by Eq. 2.

Consequently, we can obtain the spatial dimensions of each split tile,

denoted as (𝑤𝑖𝑛, ℎ𝑖𝑛). Further, we can determine the coordinates

of each tile on the original input image: 𝑥1,: = 0, 𝑥2,: = 𝑤𝑖𝑛 − Δ𝑥𝑖𝑛 ,
𝑥𝑖,: = 𝑥𝑖−1,: + 𝑤𝑖𝑛 − Δ𝑥𝑖𝑛 (3 ≤ 𝑖 ≤ 𝑘); 𝑦:,1 = 0, 𝑦:,2 = ℎ𝑖𝑛 − Δ𝑦𝑖𝑛 ,
𝑦:, 𝑗 = 𝑦:, 𝑗−1 + ℎ𝑖𝑛 − Δ𝑦𝑖𝑛 (3 ≤ 𝑗 ≤ 𝑘); where 𝑥𝑖,: refers to the 𝑥-
coordinate of the tile on the 𝑖-th row, 𝑦:, 𝑗 refers to the 𝑦-coordinate
of the tile on the 𝑗-th column, Δ𝑥𝑖𝑛 = (𝑘 ·𝑤𝑖𝑛 −𝑊𝑖𝑛)/(𝑘 − 1), and

Δ𝑦𝑖𝑛 = (𝑘 ·ℎ𝑖𝑛 −𝐻𝑖𝑛)/(𝑘 −1). Note that the origin is on the top-left

corner of the original input data.

In ARAC supernet, each tile is processed independently by a

compression level. We denote the compression level for the tile

at position (𝑖, 𝑗) (1 ≤ 𝑖, 𝑗 ≤ 𝑘) as 𝑐𝑖, 𝑗 . For convolutional layers in
supernet, the number of operations (multiply-accumulations) is

𝑂𝑙∈𝑐𝑜𝑛𝑣 (𝑐𝑖, 𝑗 ) = (1 − 𝑐𝑖, 𝑗 )
2 · 𝐹 2

𝑙
· 𝐷𝑜

𝑙−1
·𝑤𝑜

𝑙
· ℎ𝑜

𝑙
· 𝐷𝑜

𝑙
. For maxpool-

ing layers in supernet, the number of operations (comparisons) is

𝑂𝑙∈𝑚𝑎𝑥𝑝𝑜𝑜𝑙 (𝑐𝑖, 𝑗 ) = (1 − 𝑐𝑖, 𝑗 ) · 𝐹
2
𝑙
· 𝐷𝑜

𝑙−1
· 𝑤𝑜

𝑙
· ℎ𝑜

𝑙
. Thus, the total

number of operations of supernet with {𝑐𝑖, 𝑗 } can be obtained by:
∑𝑘

𝑗=1
∑𝑘
𝑖=1

∑𝑃
𝑙=1𝑂𝑙 (𝑐𝑖, 𝑗 ).

4.3 Training of Supernet

For a CNN model with 𝑁 layers, we offline train 𝑅 compressed

models with compression levels 𝑐𝑖 (1 ≤ 𝑖 ≤ 𝑅). A straightforward

way is to train the 𝑅 compressed models individually. However,

the models obtained in the such way do not share weights and

consume a large amount of memory on edge devices [90, 89, 43].

Thus, we form an ensemble of 𝑅 models by channel slicing. We

denote the weights of layers in the model with compression level 𝑐1
asW𝑙 (1 ≤ 𝑙 ≤ 𝑁 ); For the other models with compression levels 𝑐𝑖
(2 ≤ 𝑖 ≤ 𝑅) in the ensemble, their weights in layer 𝑙 areW𝑙 [: (1 −

𝑐𝑖 )/(1−𝑐1)·𝐷
𝑜
𝑙
], 1 ≤ 𝑙 ≤ 𝑁 . In this way, the number of weights in an

ensemble of𝑅 models is equal to that in the model with compression

level 𝑐1, and the other models can be directly obtained by slicing

its weights on the channel dimension. To train the ensemble of 𝑅
(compressed) models, we utilize an ensemble bootstrapping scheme

similar to IEB [43]. The difference between ours and IEB is that:

Instead of training randomly selected models, we train the models

with compression levels ranging from 𝑐2 to 𝑐𝑅−1 to predict the

soft label generated by the model with compression level 𝑐1, i.e.,
L(𝑦𝑐𝑖 , 𝑦𝑐1 ) (2 ≤ 𝑖 ≤ 𝑅 − 1). The model with compression level 𝑐1
is trained to predict the ground-truth label, i.e., L(𝑦𝑐1 , 𝑦𝑔𝑡 ). The
model with compression level 𝑐𝑅 is trained to predict the probability

accumulation of all the other models, i.e., 1
𝑅−1

∑𝑅−1
𝑖=1 𝑦𝑐𝑖 . Similar to

training a slimmable neural network [43], we train the ensemble of

𝑅 models together in each training iteration: We compute the losses

defined above individually for all models and accumulate their back-

propagation gradients together; Then, we update weights in the

ensemble. Note that the inputs to these models during training are

images in the training dataset without being split. Given the trained

ensemble of 𝑅 models, a supernet with 𝑃 layers can be obtained by

taking each model’s first 𝑃 layers in the ensemble. The following

(𝑁 − 𝑃) layers are the same as those in the original CNN model.

4.4 Compression Guiding Gate

We design a compression guiding gate (CGG) at the entrance of an

ARAC supernet. A CGG selects the compression level for each split

image. Specifically, the CGG takes split images as inputs and gener-

ates compression levels for them. A CGG can be regarded as a classi-

fication model that classifies split images into different compression

levels. However, the images in the training dataset are labeled for

the original applications, and we do not have compression-level la-

bels for split images. Thus, we propose a Labeling Rule to generate

compression-level labels for the split images in the training dataset.

With the generated compression-level labels, we can train a CGG

with supervised learning techniques.

4.4.1 Labeling Rule: We refer to the original labels of images as

𝐴-labels and the compression-level labels for split-images as𝐶-labels.
Given compression levels {𝑐1, ..., 𝑐𝑅} (𝑐1 < ... < 𝑐𝑅 ), we label all
split-images with 𝐶-labels in the training dataset. For the split-

images of an image, the labeling rule is: Initially, all the split-images

are processed by the sub-network with compression level 𝑐1. If its
final output does not match the𝐴-label, then all the split-images are

labeled as 𝑐1; else we raise the compression level of each split-image

to 𝑐2 respectively. If one’s final output does not match the 𝐴-label,
then the corresponding split-image is labeled as 𝑐1; else we raise
the compression level of it to 𝑐3. We repeat the match-label-raise

procedure until we reach compression level 𝑐𝑅 . Fig. 6 shows an

example of a labeling process given four compression levels.

4.4.2 CGG Architecture: Given an input image 𝑋 , CGG generates

𝑘 × 𝑘 one-hot 𝑅-length vectors {v}𝑘×𝑘 . An element in the vector
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Figure 6: An example of Labeling Rule.

represents a compression level 𝑐𝑖 (1 ≤ 𝑖 ≤ 𝑅). The final outputs of
CGG is {𝑐argmax v}𝑘×𝑘 . The CGG processes the 𝑘 × 𝑘 split-images

of 𝑋 in a batch. Denoting a split-image as 𝑥 , we have an encoder

E and a feature-mapping function F : v = F (E(𝑥)). For encoder
E, we utilize one convolutional layer and one maxpooling layer

to integrate spatial information. we utilize a fully connected layer

for feature-mapping function F . The compression level choice is

obtained by applying argmax to the output vector of F .

4.4.3 CGG Training: We label the split-images in the training
dataset by our Labeling Rule. We define the compression-level
loss function as: L𝑐𝑙 = L(𝐶𝐺𝐺 (𝑥), 𝑐𝑔𝑡 (𝑥)), where 𝑥 is an split-
image, 𝐶𝐺𝐺 (𝑥) is softmax output of 𝑥 , 𝑐𝑔𝑡 (𝑥) is one-hot encod-
ing of compression-level label of 𝑥 . The image-recognition loss is
L𝑖𝑟 = L(𝑦 (𝑋 ), 𝑦𝑔𝑡 ), where 𝑦 (𝑋 ) is softmax output from the whole
model, 𝑦𝑔𝑡 is one-hot encoding of ground-truth label. We optimize
CGG jointly by image-recognition loss and compression-level loss:

L𝐶𝐺𝐺 (𝑋 ) = (1 − 𝛼 )L𝑖𝑟 + 𝛼

∑
𝑥 ∈𝑋 L𝑐𝑙

𝑘2
(4)

where𝛼 controls the effect of the two losses. The back-propagations

of L(𝑦 (𝑋 ), 𝑦𝑔𝑡 ) to CGG’s parameters are implemented by gumbel-

softmax technique [34]. With the loss function (Eq. 4), the CGG

is trained to analyze the content of a split-image and selects a

compression level to it. The training of the CGG ensures the correct

output of the whole model (the first part in Eq. 4) while matching

the compression-level label (the second part in Eq. 4) as well. With

a higher 𝛼 , the CGG tends to assign tiles with higher compression

levels for more significant computational cost reduction; with a

lower 𝛼 , the CGG tends to assign tiles with lower compression

levels for higher accuracy. We set 𝛼 = 0.7 in this paper.

5 CNN INFERENCEW/ SUPERNET

A compression guiding gate (CGG) selects proper compression

levels in an ARAC supernet for tiles of an image. The selected

compression levels from CGG guarantee neglectable accuracy loss

with the smallest number of operations. However, CGG is SLO-

agnostic, i.e., it selects compression levels without consideration

of latency and memory constraints. Thus, we design another SLO-

adaptive component, compression-level gear (§5.2), to tune the

selected compression levels online to meet SLOs. Given candidate

controllable parameters (𝑃 , 𝑘 , C), a lightweight online controller,
DEMUX (§5.3), is designed to find the optimal set of controllable

parameters.

5.1 Problem Definition
As demonstrated in §4, an ARAC supernet contains the first 𝑃 layers
of a CNN model with 𝑅 compression levels; an input image is split
into 𝑘 × 𝑘 tiles and is processed by sub-networks in the supernet
independently. Thus, for CNN inference with ARAC supernet, we
can dynamically control: (1) the number of layers in the supernet,
𝑃 ∈ P; (2) the number of tiles, 𝑘 ∈ K ; (3) the compression levels
for the tiles, 𝑐𝑖, 𝑗 ∈ C, (1 ≤ 𝑖, 𝑗 ≤ 𝑘). We denote compression-level
matrix for 𝑘×𝑘 tiles as Ω = {𝑐𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑘 . P,K , and C are candidate
values for 𝑃 , 𝑘 , and 𝑐𝑖, 𝑗 . In general, optimizations of CNN inference
focus on three types of performance: (1) accuracy (𝐴𝑐𝑐), (2) latency
(𝑇 ), and (3) memory consumption (𝑀). In this paper, we focus on
maximizing accuracy given latency and memory constraints (𝑇 and
𝑀̄):

arg max
𝑃∗,𝑘∗,Ω∗

𝐴𝑐𝑐 (𝑃, 𝑘,Ω), (5)

𝑠.𝑡 . 𝑇 (𝑃, 𝑘,Ω) ≤ 𝑇, (6)

𝑀 (𝑃, 𝑘,Ω) ≤ 𝑀̄ . (7)

As higher compression levels would reduce accuracy (Eq. 5) but

get lower latency/memory consumption (Eq. 6 and 7), the trade-off

exists in tuning compression level because high compression level

leads to low accuracy though latency and memory constraints are

satisfied. For the tiles of an input image, the ARAC supernet utilizes

different compression levels to process them. In other words, given

𝐶 compression levels and 𝑘 × 𝑘 tiles of an input image, there are

𝐶𝑘×𝑘 combinations of compression level choices for all the tiles of

the image, which can be an extremely large number (e.g., 1, 953, 125
with 𝐶 = 5 and 𝑘 = 3). Thus, an efficient solution to Eq. 5 to 7 is

necessary rather than exhaustive search.

5.2 Compression-Level Gear

For 𝑘 × 𝑘 tiles of an image, CGG (§4.4) selects compression lev-

els for them. We denote the compression levels of the 𝑘 × 𝑘 tiles

selected by CGG as Ω0 = {𝑐
(0)
𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑘 , 𝑐

(0)
𝑖, 𝑗 ∈ C. The inference

latency 𝑇 (𝑃, 𝑘,Ω0) and memory consumption 𝑀 (𝑃, 𝑘,Ω0) are esti-

mated by latency and memory consumption predictors. When the

latency/memory constraints (Eq. 6 and 7) are violated, we adjust

compression levels of the 𝑘 × 𝑘 tiles with a compression-level gear

(CLG) by adaptively raising the compression levels of the 𝑘 ×𝑘 tiles.

There are different ways to adjust the compression levels. We de-

scribe the way that we empirically find effective (Fig. 12 (a) in §7.3),

which is referred to as confidence-based stepping (CS) method. As

CGG is trained in a supervised way (§4.4), its confidence indicates

the probability of being correctly identified with the compression

level. Thus, we design CLG based on the confidences to Ω0. Specifi-

cally, we set a confidence threshold 𝜃 𝑓 and a window length Δ𝑤 .

The tiles with confidences lower than 𝜃 𝑓 are sorted by confidences

from low to high, and the Δ𝑤 tiles are cyclically selected among

them. The CLG runs in loops until latency and memory constraints

(Eq. 6 and 7) are satisfied. In each loop, the CLG raises compression

levels of Δ𝑤 tiles by one.
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5.3 DEMUX

We design DEMUX to find (𝑃∗, 𝑘∗,Ω∗) of Eq. 5 to 7. DEMUX is

consisted of five lightweight components: CGG (§4.4), CLG (§5.2),

latency predictor, memory predictor, and accuracy comparator.

The workflow of DEMUX is shown in Fig. 7. Given 𝑃 ∈ P and

𝑘 ∈ K , CGG and CLG find the matrix of compression-levels Ω𝑃,𝑘
that satisfies Eq. 6 and 7 (§5.2). After finding all the matrices of

compression-levels {Ω𝑃,𝑘 }𝑃∈P,𝑘∈K , the accuracy comparator se-

lects (𝑃∗, 𝑘∗,Ω∗) from {𝑃, 𝑘,Ω𝑃,𝑘 }𝑃∈P,𝑘∈K . We profile the comput-

ing latency and memory consumption with respect to the compres-

sion levels of sub-networks in supernet. We train lightweight linear

regression models to predict latency and memory for a supernet

with the compression levels of all the sub-networks in the supernet

as inputs.Note that the training of the linear regressors are one-time

work and generate small offline overhead, e.g., training time is less

than five minutes on a computer with CPU only (Intel i7-8700K).

For the rest layers following the supernet, we can simply record

their computing latency and memory consumption with respect to

the number of layers. The total latency/memory consumption is

obtained by combining the two parts. As shown in Fig. 8 (a), the

predicted latency and memory consumption match the measured

results with less than 5% error. To select the optimal set among

the sets of (𝑃, 𝑘,Ω) from CLG, We define degradation-score as the

averaged difference across 𝑘 × 𝑘 tiles between the compression

levels selected by CGG and the compression levels adjusted by

CLG. As shown in Fig. 8 (b), there is a strong correlation between

accuracy losses and degradation-scores. Thus, we can offline profile

the curves for each pair of (𝑃, 𝑘) and regress a coefficient 𝛽𝑃,𝑘 . The
accuracy loss for each pair of (𝑃, 𝑘) can be estimated by 𝛽𝑃,𝑘 and

we select (𝑃∗, 𝑘∗,Ω∗) that has the lowest accuracy loss. Note that,

for all pairs of (𝑃, 𝑘), we observe neglectable accuracy loss when

processing tiles with the compression levels selected by CGG.

6 IMPLEMENTATION

The implementation of ARAC supernet is as follows:

Testbeds: For on-device inference evaluations, we choose three

heterogeneous mobile/edge devices: Jetson TX2; Xiaomi 6 Plus;

Alienware 17 R3. The first device runs Linux Ubuntu 18.04 LTS; The

second device runs Android 10.0; The third device runs Windows10.

Base CNN models, datasets, and framework:We mainly eval-

uate on two most important applications on mobile and edge sys-

tems: (1) Image Classification: We build ARAC supernet based on

three popular CNN models (ResNet50 [21], MobileNetV3 [25], and

Inception-V3 [69]) and we use ImageNet dataset [7]; (2) Object

Detection: We build ARAC supernet based on the most commonly

used model (YOLOv3 [58]) and we use COCO dataset [46]. We use

Pytorch framework [56]. We also evaluate on nine other vision

applications in §7.7,

Baselines: We select three SOTA methods that outperform the

others in Fig. 1: (i) DS-Net [43] adjusts filter numbers in layers by

channel slicing for different inputs. The key difference between

the proposed ARAC supernet and DS-Net is that we split an image

into small tiles and process them respectively with different com-

pressed sub-networks, but DS-Net processes an image as a whole;

(ii) MS-GFNet [30] dynamically processes a sequence of crops on

the image until prediction with sufficient confidence. Though MS-

GFNet designs spatial-based CNN workflow where its operation

reduction leads to real speed-up, its speed-up is limited due to

the sequential executions; (iii) LegoDNN [19] dynamically scales

DNNs by switching retrained descendant blocks in them. It offline

generates sets of blocks by filter pruning. It takes an image as a

whole and processes it with adaptively selected block scales. Note

that DS-Net and LegoDNN are the SOTA methods for dynamic in-

ference without spatial-redundancy based acceleration; MS-GFNet

is the SOTA method with spatial-redundancy based acceleration.

We also compare ARAC supernet with SOTA model compression

techniques in §7.4.

Candidate controllable parameters:We set three tile sizes (𝑘)
by splitting images into 2× 2, 3× 3, and 4× 4 tiles. We set five com-

pression levels (𝑅 = 5) with compression ratios {0, 0.25, 0.5, 0.75, 1}.
Note that compression ratio represents the ratio of channels pruned

away, e.g., all channels are pruned away with a compression ratio

equaling to 1. For ResNet50, we set three layer number options

in supernet: two blocks (11 layers), three blocks (23 layers), and

four blocks (41 layers). For MobileNet-V3, we set two-layer number

options in supernet: eight layers and 13 layers. For Inception-V3,

we set three layer number options in supernet: seven layers, after

the first Inception module and after the second Inception module.

For YOLO-V3, we set three layer number options in supernet: after

the first, the second, and the third residual block.

Hyper-parameters in CLG:We study the effects of the two hyper-

parameters in CLG (§5.2). We empirically find the optimal settings

are: Δ𝑤 = 2 for 2 × 2 tile split, Δ𝑤 = 4 for 3 × 3 tile split, Δ𝑤 = 5

for 4 × 4 tile split; and 𝜃 𝑓 = 0.5.
Compression guiding gate: The convolutional layer of the en-

coder in CGG (§4.4) is Conv2d(3, 64, kernel=(7, 7), stride=(4, 4)). The

input tile is resized to 28× 28 resolution. We train one CGG general

to all tile sizes and layer numbers in supernet. The compression-

level prediction accuracy (ground-truth labels generated by the

labeling rule in §4.4.1) is 82.6% for ResNet50, 79.5% for MobileNet-

V3, 85.7% for Inception-V3, 75.8% for YOLO-V3.

Offline training:We train supernet (§4.3) on two NVIDIA RTX

A6000 GPUs. We adopt the fast training approach in [19] to train
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Figure 9: Accuracy v.s. Latency (Jetson TX2).

the sub-networks in the ARAC supernet. For image classification,

it takes 17h for ResNet50 based supernet, 13.4h for MobileNet-V3

based supernet, and 23.6h for Inception-V3 based supernet. For

object detection, it takes 37.5h for YOLO-V3. For all the supernets,

the pre-trained weights in their base models are used as the initial

weights in training. We train the compression guiding gate (§4.4) on

the same platform and it takes 10.5h to train.

Online overhead: We measure the overhead of CGG (§4.4) and

DEMUX (§5.3). On Jetson TX2 and Alienware 17 R3, the overhead

of CGG and DEMUX is 0.88ms to 1.87ms. On Xiaomi 6 plus, the

overhead of CGG and DEMUX is 4.7ms to 7.2ms.

7 EVALUATION

7.1 Accuracy v.s. Latency

The accuracy v.s. latency curves with different base models are

shown in Fig. 9. The latency is measured on Jetson TX2 and av-

eraged over 200 times inferences. With the same latency, ARAC

supernet outperforms SOTA methods by 0.46% to 76.5% accuracy

improvement. With the same accuracy, ARAC supernet outper-

forms SOTA methods by 2.5% to 58% latency reduction. Compared

to ARAC supernet, MS-GFNet [30] shows relatively sharper drop

in accuracy when low latency. It is mainly due to the cut-off of its

focus sequence, and MS-GFNet mainly relies on the low-resolution

glance stage for predictions with low latency. In addition, due to

its sequential exiting scheme, GFNet can only be applied to image

classification application [77, 30]. The sequential scheme of GFNet

cannot tackle with detection of multiple objects in the same image.

Thus, we only compare ARAC supernet with LegoDNN and DS-

Net in object detection applications. Compared to ARAC supernet,

DS-Net [43] and LegoDNN [19] can only adjust computational cost

at image-level. The regional awareness of ARAC supernet brings

up to 46.2% latency reduction with the same accuracy compared to

DS-Net and LegoDNN.

7.2 Latency/Memory Constraints

We evaluate the accuracy of the ARAC supernet and the baseline

methods under various latency and memory constraints, as shown

in Fig. 10. We implement on three platforms: Jetson TX2 (Fig. 10

(a) to (d)), Xiaomi 6 Plus (Fig. 10 (e) to (h)), Alienware R17 (Fig. 10

(i) to (l)). Under the same latency and memory constraint, ARAC
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Figure 10: Accuracy under latency/memory constraints.

supernet outperforms the baseline methods by 0.06% to 67.9% ac-

curacy improvement with the four base CNN models across the

three platforms. Especially, ARAC supernet achieves high accuracy

improvement over the baseline methods when latency constraints

are stringent, by 2.2% to 67.9%. Due to the sequential execution

of MS-GFNet [30], its performance becomes similar to the spatial-

agnostic methods (DS-Net [43] and LegoDNN [19]). The success

of ARAC supernet in preserving high accuracy under stringent

constraints is because it can wisely select regions that are crucial

to correct predictions and these regions can be analyzed with high

resolution even under stringent conditions.

7.3 Ablation Study

We have the following controllable parameters in the ARAC super-

net: (1) candidate layer numbers in the supernet; (2) candidate tile

sizes in splitting an image; (3) candidate compression levels of sub-

networks. Their default settings are described in §6. We elaborate

on the principle of how to set these parameters here. The selection

of these parameters is determined by two rules: First, different value

of the parameter generates a significant change in performance. Sec-

ond, the overhead of DEMUX with the given options is trivial. For

example, when selecting candidate layer numbers in the supernet

for ResNet-50, we vary the layer number options from one to five,

as shown in Fig. 11. Though increasing the layer number options

above three does not show a significant performance change, it

generates around twice the overhead for DEMUX. Thus, we set

three layer number options for ResNet-50. The settings of tile sizes

and compression levels are determined similarly. Overall, given a

new model, a similar one-time procedure can be applied to find a

group of settings for an ARAC supernet.
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We study the effect of the starting layer of the ARAC supernet.

We observe that starting the supernet from an intermediate layer

demonstrates poorer performance (e.g., 0.2% to 2.7% accuracy re-

duction under the same inference latency for a ResNet-50 based

ARAC supernet). The reason is that the spatial dimensions of the

feature maps in a CNN model decrease with the increase of lay-

ers. For example, the input’s spatial dimensions to ResNet-50 are

224 × 224, the input feature’s spatial dimensions to the 12-th layer

in ResNet-50 are only 14×14. Such a low-dimension indicates a lack

of spatial redundancy on the intermediate features. Thus, starting

the ARAC supernet from the intermediate layer (especially from

a very deep layer in a model) lowers its performance compared to

starting from the input layer.

We observe the performance of ARAC supernet with different

settings of CLG in Fig. 12. In Fig. 12 (a), we compare different

compression-level adjustment methods regarding the performance

under different latency constraints (memory constraint= 100𝑀𝐵).
The CS method (details in §5.2) is compared to two other potential

methods, i.e., uniform (increasing the compression levels of all the

tiles together) and min (increasing the compression level of the

tile with the lowest compression level). Overall, the CS method

outperforms them by up to 2.0% to 4.5%, respectively. In Fig. 12 (b),

we observe the effect of the hyper-parameter, confidence threshold

(𝜃 𝑓 ), on the performance of ARAC supernet. While more tiles are

selected to be tuned by the CLG with a higher confidence thresh-

old, it is risky to tune more than needed. Under the same latency

constraint, the accuracy with 𝜃 𝑓 = 0.75 is up to 0.67% lower than

that with 𝜃 𝑓 = 0.5; the latency constraints under 30ms cannot be

satisfied with 𝜃 𝑓 = 0.25 due to lack of tunable tiles when constraints
are violated.

It is important to note that, though these hyper-parameters have

an effect on the performance of ARAC supernet, their effects are

trivial except for the compression-level adjustment methods in

Fig. 12 (a). On the one hand, it justifies the rationality of the design

of the ARAC supernet in §4 and the CLG in §5.2. On the other hand,

it demonstrates the robustness of the ARAC supernet against the

hyper-parameter settings, which reduces the potential engineering

work in applying ARAC supernet in practice.

7.4 ARAC and Model Compression Techniques

As a dynamic inference technique, we have shown that ARAC su-

pernet outperforms SOTA works in §7.1. We further illustrate the

relationship between ARAC supernet and existing model compres-

sion techniques. Unlike dynamic inference, model compression

techniques target generating one compressed model with the low-

est computational cost and the highest accuracy [39, 1, 40]. We

specifically compare ARAC supernet with SOTA model compres-

sion techniques that apply to latency acceleration on general deep

learning platforms. We demonstrate that: (1) ARAC supernet, by

exploiting spatial redundancy on images, outperforms SOTA model

compression techniques; (2) ARAC supernet is complementary to

model compression techniques and can collaboratively boost the

performance with them.

Comparison:We compare ARAC supernet with SOTA model com-

pression techniques that keep high accuracy with effective latency

reduction. While each type of technique includes a series of works

(e.g., over 20 methods in channel pruning), we select the one that

shows the Pareto optimality on accuracy-latency trade-off. Specifi-

cally, for channel pruning, we select PruneNet [39]; for early-exit,

we select ZTW [79]; for low-rank decomposition, we select [40].

The comparison is shown in Fig. 13, where the performance of the

original model is also marked. Overall, benefit from the spatial-

redundancy reduction, ARAC supernet achieves the highest accu-

racy with the same latency, i.e., by 1.1% to over 6.9% higher accuracy

(ResNet-50) and by 8.8% to 1.23× higher accuracy (YOLO-V3). Cor-

respondingly, it achieves the lowest latency with the same accuracy,

i.e., by 60.2% (ResNet-50) and by 3.4% to 18.4% (YOLO-V3) latency

reduction compared to channel pruning. Besides the performance

improvement, the comparison in Fig. 13 also shows another advan-

tage over the model compression techniques, higher granularity

in tuning accuracy-latency tradeoff. As an ARAC supernet splits

the original input image into small tiles and prepares different lev-

els of compressed sub-networks to process them, the accuracy v.s.

latency curve generated by ARAC supernet demonstrates higher

granularity than model compression techniques. For example, in

Fig. 13 (a), in the latency range of 18ms to 34ms, there are only

two points on the curve generated by channel pruning, but there

are eight points on the curve generated by ARAC supernet. The

higher granularity of ARAC supernet largely improves its adaptiv-

ity to dynamic conditions like changing contention on devices, i.e.,

the performance of inference can be adaptively tuned by ARAC

supernet according to the device conditions (details in §7.5).

Integration: In Fig. 14 (a), we show the performance of ARAC

supernet that integrates with low-rank decomposition [40]. The

integration follows the same procedure described in §4 besides that,

the sub-network with different compression levels is formed by
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low-rank decomposition rather than channel pruning. As shown

in Fig. 14 (a), the ARAC supernet with low-rank decomposition

(dashed red curve) raises the accuracy by 1.1% compared to basic

low-rank decomposition. Its performance is 2% lower than the

ARAC supernet with channel pruning (solid red curve), which

justifies the rationality of utilizing channel pruning to generate an

ARAC supernet in our design (§4).

Low-Precision: Like other studies on model compression and

dynamic inference, ARAC supernet is also a technique that is com-

plementary to the studies on low-precision. As shown in Fig. 14 (b),

we integrate low-precision technique [1] into ARAC supernet and

reduce the precision of weights in ARAC supernet to int8 and int4.

The performance of (low-precision) ARAC is compared with that

of the original low-precision model (marked in star symbols). Simi-

lar to the float32 results, ARAC supernet realizes a wide range of

accuracy and latency trade-offs above the original (low-precision)

model, which proves the complementarity between ARAC supernet

and low-precision technique. Note that most studies on DNNmodel

design [21, 25, 58] and compression [39, 40, 79] keep in the original

precision (float32) because the generation of low-precision model

suffers from high engineering complexity including configuration

calibration procedure, sensitivity to training settings, and frequent

tuning of hyper-parameters during training [1, 52, 67]

7.5 ARAC under Background Loads

We examine the performance of ARAC supernet under background

loads by changing the running conditions of the device with a

GPU-intensive application (Gaussian Elimination in the Rodinia

Benchmark Suite [4]), which is widely used by mobile computing

evaluation [84]. For the latency and memory predictors in DE-

MUX (§5.3), we can easily modify and train them to predict under

varying system contention (memory bandwidth and CPU/GPU
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Figure 15: Performance comparison under dynamic device con-

tention (ResNet-50 [21], Jetson TX2, 30ms latency constraint).

usage) by adding them as inputs [84]. In Fig 15, we show the perfor-

mance comparison of ARAC supernet and two baseline methods,

LegoDNN [19] and channel pruning [39]. As shown in Fig. 15, all

threemethods are adaptive to the changing contention on the device

and keep most of their inference execution within the latency con-

straint (30ms). The processing latency of ARAC supernet fluctuates

in a wide range (under 30ms) because it is a content-aware method

that makes an individual decision on how much computation is

assigned to each image according to its content. We also observe

that, the average accuracy of ARAC supernet is 1.5% higher than

that of LegoDNN and 2.8% higher than that of channel-pruning in

the test.

7.6 ARAC in Continuous Object Detection

Recent works on continuous object detection [5, 36, 47, 84] exploit

the temporal correlation between consecutive frames and reduce

the overall computation of video streams by combining model

detection with tracking algorithms [47, 84]. In contrast, ARAC su-

pernet, by modifying the detection model’s computation directly,

reduces computation per frame in video streams. In general, apply-

ing ARAC supernet into a continuous object detection system: (1)

significantly reduces model inference latency in processing a frame

(Fig. 16); (2) increases the system’s adaptivity to various conditions

like cross-frame similarity, sampling rate (FPS), and processing

deadline (Fig. 18). We implement three continuous object detection

systems: offloading (all frames are processed by the detection model

on the server), Edge-Assisted [47], and local [84]. The detection

model is YOLO-V3, the server is with RTX 2070, and the local device

is Jetson TX2. The network is WiFi 2.4GHz. As shown in Fig. 16,

with ARAC supernet, the end-to-end latencies of processing a frame

with the detection model show a significant reduction (36.0% to

54.1%) in all three systems.

We further demonstrate how ARAC supernet contributes to the

overall performance of a continuous object detection system in two

videos. Video-1 and Video-2 are two one-hour videos taken on the

side of a vehicle at 60FPS. As shown in Fig. 17, with different mov-

ing speeds (Video-1: at 45 to 70 mph, Video-2: at around 20mph),

the similarities (SSIM) of the two videos deviates from each other.

In Fig. 18 (a), we observe the accuracy trend along with different

sampling rate (latency constraint= 30ms). As ARAC supernet re-

duces computation in the detection model, it allows more frames to

be processed within a fixed period. Thus, the systems with ARAC

supernet show high adaptivity to the increase of sampling rate. For

example, the accuracy of offloading with ARAC supernet keeps the

highest in all cases. In contrast, the accuracy of Edge-Assisted is

up to 88.5% lower than that of offloading with ARAC supernet. In
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Fig. 18 (b), we observe the performance (IoU as metric [47]) under

different per-frame latency constraints. Specifically, the detection

results of a frame are required to be obtained within a latency

constraint once a frame is sampled 2. To satisfy a small latency

constraint, the low-accuracy detection results can be frequently

generated by the tracker. Consequently, Edge-Assisted has poor

performance with small latency constraints on videos with low

similarity (e.g., Video-1). For example, for Video-1, its IoU is < 0.4
when the latency constraint is less than 40𝑚𝑠 . In contrast, offload-

ing with ARAC supernet outperforms Edge-Assisted by up to 1.25×
when the latency constraints are 30 and 40ms. Local with ARAC

supernet also achieves comparable performance with Edge-Assisted

in Fig. 18 (b). When the server has poorer GPU (e.g., GTX 1070),

local with ARAC supernet even outperforms Edge-Assisted by up

to 95% when the latency constraint is 30ms. We also observe that

the combination of ARAC supernet with Edge-Assisted achieves

the highest performance in all cases. Compared to Edge-Assisted,

the Edge-Assisted with ARAC supernet increases accuracy by up

to 1.25× and 7.7× in Fig. 18 (a) and (b), respectively.

7.7 ARAC in Various Vision Applications

Besides image classification and object detection, we also evaluate

the performance of ARAC supernet in other vision applications,

including action recognition [16], traffic accident detection [2], ab-

normal activity detection [10], traffic sign recognition [66], flower

classification [82], vehicle detection [64], fall detection [6], vehicle

make and model recognition [70]. As shown in Fig. 19, ARAC su-

pernet achieves the highest accuracy under the same constraints

in all applications. Reducing computation based on spatial redun-

dancy allows ARAC supernet to preserve high accuracy with lower

latency and less memory consumption.

2Such latency constraint is common in real applications because the detection
results are often utilized by other applications like augmented reality [18] and au-
tonomous driving [14].
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7.8 Evaluation on Mixed-Reality Platform

We implement ARAC supernet on the SOTAMixed-Reality platform

for 3D object detection, DeepMix [17, 18], as shown in Fig. 20.

DeepMix implements 3D object detection based on detection results

of 2D object detection models like YOLO [18]. We run CGG on

the MR device (HoloLens), and only the tiles with a compression

ratio higher than 0 are sent to the edge server (Alienware 17 R3)

for processing. Neglecting computing tiles with zero compression

ratio only causes less than 4.7% accuracy loss. The server then

sends the detection results (bounding boxes and objects’ classes)

back to the MR device. We observe that both transmission latency

and computing latency on the server is significantly reduced with

ARAC supernet under different network conditions. As shown in

Fig. 21, ARAC supernet reduces end-to-end latency by 32.2% to

49.3% compared to the original DeepMix implementation under

different network conditions. The data processing latency on the

server is reduced by 50.7%, and the data transmission latency is

reduced by 56.5% to 66.7%. The overhead of the computing guiding

gate on the MR device is less than 4.2ms.

7.9 Cross-Domain and Multi-Scale Performance

We evaluate the performance of the compression guiding gate

(CGG) that is trained on one domain (e.g., a dataset) but is applied to
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another domain (e.g., another dataset). Besides COCO dataset [46],

we include four other datasets that are collected on various loca-

tions and with different contents: VID [62], UA [78] (high-way

traffic in China), VIRAT [54] (on-campus), and GSV [91] (google

street view). As shown in Fig. 22, applying a CGG from another

domain generates an accuracy reduction of < 10% in most cross-

domain cases, which indicates the transferability of the CGG. Note

that the poor cross-domain performance between GSV and VID is

due to the large difference between the two datasets’ contents. In

practice, a common deep learning solution is to train the model

on large datasets like ImageNet and COCO, then to finetune the

model on the customized dataset to make the model adaptive to the

specific application.

We observe the accuracy distribution of ARAC supernets regard-

ing the sizes of objects in images. For the ImageNet dataset (image

classification), we group objects into large, medium, and small size

as > 70%, between 40% and 70%, < 40% area of the whole image,

respectively. For the COCO dataset (object detection), we group

objects into large, medium, and small size as > 50%, between 25%

and 50%, < 25% area of the whole image, respectively. As shown in

Fig. 23, ARAC supernet outperforms channel-pruning in all sizes.

Especially, it shows significant accuracy improvement on small-size

objects by 0.6% (image classification) and 12% (object detection).

The underlying reason is that the recognition on small objects is

easily affected by other pixels of the image when processed by

spatial-agnostic inference like channel-pruning. As ARAC supernet

adaptively allocates the computation on different pixels in an image,

it prevents interference from redundant pixels on the final results.

8 DISCUSSION

• Training overhead of ARAC supernet: In Table 1, we compare the

training time of the ARAC supernet with channel-pruning [39]

ARAC Supernet Channel-Pruning Original Model

(five levels+CGG) (four levels)

27.5h 67h 218h

Table 1: Comparison of training time (base model: ResNet-50).

Ground truth Persian cat Titi MinkGround truth English setter
ARAC output Persian cat Titi MinkEnglish setter

Original output Lynx Spider monkey AlbatrossBrittany spaniel

Example images

Figure 24: Image examples from ImageNet validation dataset [7],

original model: ResNet-50 [21].

and the original model. We utilize ResNet-50 as the base model

and train on ImageNet dataset [7]. As ARAC supernet integrates

sub-networks with different compression levels and trains them

together with one loss function (§4.3), the sharing of model parame-

ters among sub-networks allows all sub-networks to converge syn-

chronously. The channel-pruned model with different compression

levels can only be trained individually. Thus, compared to channel-

pruning [39], the ARAC supernet can finish training within less

than 50% of the training time for channel-pruning.

•Online Overhead:We observe the latency breakdown of the end-to-

end processing latency with ARAC supernet. Overall, the average

overhead of CGG and DEMUX (including CLG) is less than 7.3% of

the total execution latency.

• Accuracy improvement by ARAC supernet: As our approach makes

the network focus on processing regions in an image that contain

key features related to the vision task, the side-effect of redundant

pixels is weaken or eliminated, which is equivalent to strengthen

the effects of key-feature pixels on the final output. For cases when

the side-effect from redundant pixels are so strong that the original

network is misled to a wrong output, the ARAC supernet may

help the model to remove the side-effect and output correct results.

We show four such examples in Fig. 24. Similar observations are

reported by [95] and [43].

9 CONCLUSION

In this paper, we proposed a spatial-based dynamic CNN accel-

eration framework, NeuLens, adaptive to users’ SLOs for mobile

and edge platforms. A novel dynamic inference mechanism, ARAC

supernet, was presented. Splitting image into tiles can adaptively

select computational cost for each tile and ensure speed-up on

general platforms. We also proposed an online controller to tune

ARAC supernet based on users’ SLOs with neglectable overhead

on mobile/edge devices. NeuLens outperforms baseline methods

by up to 58% latency reduction with the same accuracy and by up

to 67.9% accuracy improvement under the same latency/memory

constraints. Significant performance improvements are observed

in mobile vision applications like continuous object detection and

3D object detection for MR devices.
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