
NeuLens: Spatial-based Dynamic Acceleration of Convolutional
Neural Networks on Edge

Xueyu Hou∗

New Jersey Institute of Technology
Newark, NJ, USA
xh29@njit.edu

Yongjie Guan∗

New Jersey Institute of Technology
Newark, NJ, USA
yg274@njit.edu

Tao Han
New Jersey Institute of Technology

Newark, NJ, USA
tao.han@njit.edu

ABSTRACT

Convolutional neural networks (CNNs) play an important role in

today’s mobile and edge computing systems for vision-based tasks

like object classification and detection. However, state-of-the-art

methods on CNN acceleration are trapped in either limited prac-

tical latency speed-up on general computing platforms or latency

speed-up with severe accuracy loss. In this paper, we propose a

spatial-based dynamic CNN acceleration framework, NeuLens, for

mobile and edge platforms. Specially, we design a novel dynamic

inference mechanism, assemble region-aware convolution (ARAC)

supernet, that peels off redundant operations inside CNN models as

many as possible based on spatial redundancy and channel slicing.

In ARAC supernet, the CNN inference flow is split into multiple

independentmicro-flows, and the computational cost of each can be

autonomously adjusted based on its tiled-input content and applica-

tion requirements. These micro-flows can be loaded into hardware

like GPUs as single models. Consequently, its operation reduction

can be well translated into latency speed-up and is compatible with

hardware-level accelerations. Moreover, the inference accuracy can

be well preserved by identifying critical regions on images and

processing them in the original resolution with large micro-flow.

Based on our evaluation, NeuLens outperforms baseline methods

by up to 58% latency reduction with the same accuracy and by up

to 67.9% accuracy improvement under the same latency/memory

constraints.

CCS CONCEPTS

• Computing methodologies → Neural networks; • Human-

centered computing→ Ubiquitous and mobile computing.

KEYWORDS

convolutional neural networks, dynamic inference, edge computing

ACM Reference Format:

Xueyu Hou∗, Yongjie Guan∗, and Tao Han. 2022. NeuLens: Spatial-based

Dynamic Acceleration of Convolutional Neural Networks on Edge. In The

28th Annual International Conference on Mobile Computing and Networking

(ACM MobiCom ’22), October 17–21, 2022, Sydney, NSW, Australia. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3495243.3560528

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9181-8/22/10. . . $15.00
https://doi.org/10.1145/3495243.3560528

1 INTRODUCTION

Computer vision related tasks usually require a large number of

computational resources [23]. Many studies focus on reducing the

computational cost of CNN inference. Some works propose light-

weight network architectures like MobileNets [25, 26, 63], Con-

denseNet [29], ShuffleNets [51, 93], and EfficientNet [71]. Other

studies compress existing networks by pruning [42, 44, 49, 50] or

quantization [32, 33, 57]. Recent works propose various ways that

allow dynamic computational cost adjustment of CNN inference [19,

43] (details in §2.2). Inspired by human’s vision where only a limited

portion of visual scene is processed by the visual system, recent

works dig into the potential of computational cost reduction based

on input spatial information by proposing specialized network ar-

chitectures [83, 88] or by designing computing flows compatible

with general CNN architectures [20, 77, 95]. In video streaming and

analytics, regions of interest (RoIs) are determined by cross-frame

tracking (Edge-Assisted [47] and Elf [92]) or by low-resolution de-

tection (DDS [9]). By RoI-based encoding, the transmission data

sizes of offloaded frames are significantly reduced [47].

In this paper, we propose an adaptive framework, NeuLens, for

dynamic CNN inference acceleration on mobile and edge devices.

First, we design a novel dynamic mechanism, assemble region-

aware convolutional (ARAC) supernet (§4), that effectively reduces

inference cost with small accuracy loss. An ARAC supernet is a

spatial-split network ensemble. It adaptively selects sub-networks

with different sizes for split tiles of an image based on their rele-

vance to the final prediction. Furthermore, we design a lightweight

online controller, DEMUX (§5), that dynamically tunes per-tile

sub-network selection and the supernet’s configurations based on

service level objectives (SLOs) in real applications. Finally, we com-

prehensively evaluate ARAC supernet on different mobile/edge

platforms and various applications (§7). Based on our evaluation,

ARAC supernet achieves up to 67.9% accuracy improvement over

state-of-the-art (SOTA) dynamic inference methods under the same

latency/memory constraints (§7.2) and up to 1.23× higher accuracy

over SOTA model compression techniques with the same inference

latency (§7.4). In addition, applying ARAC supernet into continuous

object detection systems boosts the performance by up to 7.7× over

SOTA techniques [47] (§7.6).

We summarize the contributions of this paper as follows:

Development of a novel CNN acceleration mechanism for

mobile/edge computing platforms (§4). By exploiting spatial

and depth redundancy on images and in CNNs, we propose an

acceleration mechanism, ARAC supernet, that effectively reduces

the consumption of computing resources with slight accuracy re-

duction. Compared to existing acceleration works, ARAC supernet

*These authors contributed equally to this work.

186

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3495243.3560528&domain=pdf&date_stamp=2022-10-14

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Xueyu Hou∗ , Yongjie Guan∗ , and Tao Han

achieves the Pareto optimality on accuracy-latency trade-off. We

highlight the following advanced techniques in ARAC supernet:

• Construction of an ARAC supernet that generally applies to CNN

architectures (§4.1). By splitting an input image into tiles, the su-

pernet utilizes sub-networks with different compression levels to

analyze them. The outputs from the supernet are concatenated and

fed into the rest layers in the CNN model to compute the final re-

sults. Such structure allows the supernet to reduce spatial and depth

redundancy in computation without affecting the overall working

schemes of the original CNNs.

• Content-aware per-tile adjustment on computational cost in

ARAC supernet (§4.4). A compression guiding gate is designed

to effectively analyze the content in each tile and assign a sub-

network with proper compression level to analyze them in the

supernet. A labeling rule is proposed to automate the training set

generation for the compression guiding gate.

• Effective conversion from operation redundancy reduction to

on-device latency acceleration. In ARAC supernet, the computation

flow is split into multiple independent micro-flows. Based on the

content of its input (a tile), each micro-flow adjusts the operation

amount (compression level) in analyzing the input independently.

As each micro-flow is loaded into a device’s computing unit (e.g.,

GPU) like an individual neural network, its operation reduction is

directly converted into latency acceleration.

Design of a lightweight SLO-aware controller adaptive to

limited computing budgets on mobile/edge devices (§5).We

design an online lightweight controller, DEMUX, to tune ARAC

supernet based on user’s SLOs with neglectable overhead on mobile

and edge devices. Given customized options on the parameters of

an ARAC supernet, DEMUX adaptively selects the optimal set of

parameters and keeps high accuracy within the user’s SLOs.

Implementation of ARAC supernet and performance eval-

uation on different mobile/edge computing platforms and

for various vision applications (§6, 7). We comprehensively

evaluate the performance of ARAC supernet from several aspects

and proves its effectiveness in boosting the overall performance

in CNN-related applications on mobile/edge devices. We highlight

our evaluation results as follows:

• Outperforms SOTA techniques in dynamic inference and model

compression on mobile/edge devices by up to 67.9% (§7.2) and 1.23×
(§7.4), respectively.

• Improves overall performance of SOTA continuous object detec-

tion systems on edge by up to 7.7× (§7.6).

• Reduces end-to-end latency by almost 50% on a SOTA 3D objec-

tion detection system for mixed-reality devices (§7.8).

2 BACKGROUND AND MOTIVATION

2.1 Spatial Related Convolution

As demonstrated in [15, 83], there can be a considerable amount

of redundant pixels in an image that are irrelevant to accurate

recognition. Several works focus on reducing convolutional oper-

ations of redundant pixels. The majority of these works propose

spatial neural architectures. Compact networks are designed for

spatial-redundancy based operation reduction [15, 27, 28, 59, 68,

72, 74, 83]. Sequential networks are designed with multi-scale res-

olutions [11, 55, 87, 88]. CBAM [80] designs an attention module

that can be inserted into CNNs. Other recent works propose spatial-

redundancy-based modifications on computing flows that can be

generally applied to popular CNN architectures rather than design-

ing new ones. GFNet [77, 30] dynamically processes a sequence

of crops on the image until prediction with sufficient confidence.

DRNet [95] predicts optimal resolution for each input image with

a resolution predictor. SAR [20] designs a dual-branch network

architecture with one analyzing low-resolution input features and

selecting high-resolution refined areas for the other in each layer.

Compared to these studies, our work proposes a novel computing

flow, ARAC supernet, to tackle spatial redundancy. By splitting the

input images into tiles, we select different sub-networks in supernet

based on their contents. ARAC supernet generally applies to popu-

lar CNN architectures like [20, 77, 95]. It is important to note that

works like SAR [20], CGNet [27, 28] and ASC [68, 72] are not fully

supported for practical speed-up by deep learning platforms and

require special hardware/framework support. In contrast, our work

can be effectively implemented on SOTA deep learning platforms

and realize latency speed-up.

2.2 Dynamic Inference

We divide SOTA studies on dynamic inference into two types based

on whether they are platform and SLO adaptive.

Platform- and SLO-Agnostic: Some works focus on modify-

ing or designing a single network with the dynamic mechanism.

Early-exist topology is proposed for CNNs ([3], MSDNet [31],

and ZTW [79]). CNMMs [60] and RNP [45] design networks that

can be dynamically pruned. Skipnet [76] and BlockDrop [81] skip

blocks in ResNet based on inputs. Similarly, ConvNet-AIG [73] de-

termines whether to skip each layer based on estimated relevance,

and CoDiNet [75] optimizes layer skipping based on cross-image

similarity. LCCL [8] avoids computing zeros in feature maps by

predicting their locations. Other works develop network ensem-

bles for dynamic inference. Russian Doll Network [35] constructs a

nested network by embedding smaller sub-networks inside larger

ones. HNE [61] designs a hierarchical neural ensemble that allows

branch number adjustment. Slimmable networks [43, 89, 90] ad-

just filter numbers in layers for different inputs. CoE [94] pools

a collection of networks trained by mutually exclusive subsets in

a dataset. MoE [65] and CondConv [86] construct sub-networks

with mixture-of-experts and selects a combination of them for each

input. Overall, these works focus on training optimization and ar-

chitecture modifications. Their designs are hand-crafted without

considerations on adaptability to platforms and SLOs [41].

Platform- and SLO-Adaptive: In contrast, several works focus on

optimizing system-level performance on mobile and edge devices

under SLOs. Some works design adaptive frameworks for general

CNNs. NestDNN [12] dynamically implements resource-accuracy

trade-off inside a compact multi-capacity model. ReForm [85] pro-

poses a resource-aware DNN reconfiguration framework based

on the ADMM algorithm. DMS [38] controls resource demand of

inference by adaptive pruning. PatDNN [53] designs an efficient

DNN framework based on kernel-pattern pruning. LegoDNN [19]

dynamically scales DNNs by switching retrained descendant blocks

in them. Other works develop adaptive framework by addressing

features in specific applications like video analytics (FlexDNN [13])

187

NeuLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on Edge ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

To
p-

1
A

cc
ur

ac
y

(%
)

Average Inference Latency (ms)

77

76

75

74

73

72

71

70

69

*

DS-Net
MS-GFNet

LegoDNN
ARAC

*Original

DRNet

SAR

MSDNet
HNE

10 18 26 34 42 50 100

CGNet

Figure 1: Accuracy-latency trade-off comparison (Base Model:

ResNet50, ImageNet [7]), Jetson TX2.

and real-time (video) object detection (AdaVP [48], ApproxDet [84],

Remix [37], and [22]).

Compared to these works, our ARAC supernet implements a

dynamic mechanism by breaking inputs into tiles and processes

them with different compressed sub-networks based on spatial

redundancy (§4). Furthermore, we integrate ARAC supernet into

mobile and edge systems by designing an SLO-adaptive online

controller for on-device inference (§5). In other words, our work

also addresses adaptability to platforms and SLOs.

2.3 Observations

The accuracy-latency trade-offs of ARAC supernet and SOTA dy-

namic models are shown in Fig. 1. Both spatial-based works (MS-

GFNet [30], DRNet [95], MSDNet [31], CGNet [27, 28], and SAR [20])

and spatial-agnostic works (LegoDNN [19], DS-Net [43], HNE [61])

are included in the comparison. With the same inference latency,

the ARAC supernet outperforms SOTA methods by 1.22% to 2.07%
in top-1 accuracy.With the same top-1 accuracy, the ARAC supernet

takes 19.4% to 47.9% less time per inference. Most SOTA methods

on spatial redundancy do not implement practical speed-up [20].

The underlying reason is that they segment away operations on

redundant parts in a way that is not compatible with the interme-

diate mapping between layers. For example, SAR [20] (i.e., SOTA

pixel-level dynamic network) selects groups of refined patterns

from input features on each layer and runs operations on them

only. These patterns are irregular, and various patterns are gener-

ated per layer, making it impossible for computing efficiency on

GPUs [20]. In contrast, ARAC supernet jointly takes advantage of

spatially related operation reduction and dynamic inference. By

constructing multiple sub-networks with different sizes in the su-

pernet and splitting the CNN inference flow into spatial dimensions,

the ARAC supernet can adaptively adjust the computation of each

split-flow by selecting the proper sub-network inside the supernet.

Each split-flow executes as an independent micro network without

inter-dependency, i.e., the data flow from layer to layer occurs inside

each micro network only. Thus, each micro network can be loaded

to the GPU as one CNN model, and their operation reduction can

be effectively translated into latency speed-up. Note that, though

GFNet [30, 77] designs spatial-based CNN workflow where its oper-

ation reduction leads to real speed-up, its speed-up is limited due to

the sequential executions on a series of cropped images; similarly

for MSDNet [31].

We demonstrate the performance of two basic CNN acceleration

techniques in Fig. 2, where SOTA studies that apply to practical

2241681127256 9620

80

50

65

35

To
p-

1
A

cc
ur

ac
y

(%
)

Inference Latency
(m

s)

50

37.5

25

0

12.5

Accuracy Latency

Image Resolution
806448160 3212

80

46

63

29

To
p-

1
A

cc
ur

ac
y

(%
)

Inference Latency
(m

s)

50

37.5

25

0

12.5

Accuracy Latency

Channel Pruned Away (%)
(a) (b)

Figure 2: Performance of input resize and channel pruning (Base

Model: ResNet50, ImageNet [7]), Jetson TX2.

speed-up are built upon either of them. The first acceleration tech-

nique is to resize input image to different scales (Fig. 2 (a)). As more

detailed information is lost with down-scaling, the accuracy falls

below 50% with resolution 96. Even SOTA work on dynamic resolu-

tion, DRNet [95], keeps resolution options above 96. Consequently,

adjusting resolution alone cannot generate a wide range of latency

while preserving accuracy. The second acceleration technique is to

prune away channels in layers (Fig. 2 (b)), adopted by LegoDNN [19]

and DS-Net [43]. Note that channel pruning is different fromweight

pruning; the latter requires special hardware support for acceler-

ation. As shown in Fig. 2 (b), though the accuracy does not drop

sharply with a few channels pruned away, there is no significant

latency reduction either. When more channels are pruned away,

latency greatly decreases, but accuracy also shows an obvious drop.

2.4 Challenges

One way to take benefits of both input downscale and channel

pruning is shown in Fig. 3. We prepare four sub-networks with

different sizes (compressed on the first three blocks in ResNet-50

with four channel pruning levels). We split the original input image

into 3× 3 tiles (78× 78 pixels). We pair each tile with a sub-network

size and the tile is taken as input to the sub-network of the size.

All the outputs of the 3 × 3 tiles are concatenated and fed into the

last block in ResNet-50 to generate the final results of the whole

image.We exhaustively search over all the possible pairs for the four

images in this preliminary study, and we mark the optimal pairs1

of tiles and model sizes for each image in Fig. 3. As shown in Fig. 3,

the number of operations and latency are significantly reduced

without affecting prediction correctness. The success of such tile-

split CNN flow comes from two facts: First, there is no resolution

resize of the original image. While reducing sizes by several times,

the resolution-kept split-tile preserves detailed information. Second,

the method follows the intuition of human vision flow where the

critical parts are analyzed with high intensity and less critical parts

are analyzed with low intensity. The sub-networks of all the tiles

of an image are loaded independently as tiny models, and their

outputs are integrated to generate the image’s final predictions.

Sub-networks implement the variation of required computations

for the tiles with different sizes.

However, though the above preliminary study demonstrates

the benefits of tiling image input, there lie multiple challenges to

implementing such a beneficial inference flow: First, how to design

and prepare efficient and effective sub-networks with different sizes?

1The optimal pairs refer to the pairs that generate correct labels with the smallest
number of operations.

188

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Xueyu Hou∗ , Yongjie Guan∗ , and Tao Han

network size:
1 2 3 4

impala
-57.4%
-41.5%

Prediction:
FLOPs:

Latency:

impala
-68.9%
-49.2%

Prediction:
FLOPs:

Latency:

oyster
catcher
-77.6%
-61.7%

Prediction:
FLOPs:

Latency:
-86.5%
-79.3%

Prediction:
FLOPs:

Latency:

oyster
catcher

Figure 3: Observations on tiling image input.

We design a compact sub-network ensemble with channel-slicing,

called ARAC supernet (§4.1) where a smaller sub-network can be

directly extracted from the largest using channel-slicing. We jointly

train all the sub-networks together with an ensemble bootstrapping

scheme (§4.3). Second, it is impossible to exhaustively search over

all the possible pairs to find the optimal one in reality. We present

a lightweight guiding gate to autonomously select sub-networks

for tiles (§4.4). Third, how to apply the proposed inference flow to

real applications, especially satisfying service level objectives? We

propose a lightweight online controller for on-device inference

(§5). The controller tunes sub-network selection given latency and

memory constraints while preserving accuracy.

3 SYSTEM OVERVIEW

The proposed SLO-adaptive deep learning acceleration framework

for mobile and edge computing platforms, NeuLens, is shown in

Fig. 4. NeuLens contains a one-time offline stage and a lightweight

online stage. In the offline stage, a CNN model is modified into

an ARAC supernet (supernet generation in Fig 4); a compression

guiding gate is designed to select a sub-network for each tile of an

image (CGG design in Fig. 4); memory predictor, latency predictor,

and accuracy comparator are trained based on profiling data of

supernets (profiling in Fig. 4). In the online stage, a lightweight on-

line controller, DEMUX, is designed to find optimal parameters, i.e.,

tile size, layer number, and per-tile compression levels for ARAC

supernet. DEMUX adaptively selects these parameters based on the

contents of the tiles of an input image and service-level objectives

(SLOs). Based on input images’ contents and applications’ SLOs,

NeuLens splits an CNN inference computing flow into multiple

micro-flows and independently controls each micro-flow’s compu-

tational cost. In this way, NeuLens successfully amplify the benefits

of SOTA CNN acceleration techniques, i.e., spatial-redundancy-

based computing-operation reduction and channel pruning. With

the proposed ARAC supernet technique, NeuLens is able to achieve

up to 67.9% accuracy improvement over state-of-the-art (SOTA)

dynamic inference methods under the same latency/memory con-

straints (§7.2) and up to 1.23× higher accuracy over SOTA model

compression techniques with the same inference latency(§7.4).

4 DESIGN OF ARAC SUPERNET

4.1 Workflow of ARAC Supernet

As shown in Fig. 5, the input image is split into 𝑘 × 𝑘 tiles. These

tiles are fed into ARAC supernet, and they are processed indepen-

dently in parallel. Based on their contents, they are processed by

different sub-networks in the supernet. The outputs of these tiles

from the supernet are concatenated and are further fed into the

following layers (the layers in gray in Fig. 5) in the model. There

can be multiple ways to form such a model with ARAC supernet

(e.g., neural architecture search). In this paper, we modify existing

CNN models’ architectures (e.g., MobileNet [26], ResNet-50 [21],

Inception [69]) into architectures with ARAC supernets.
Given an existing CNN model with 𝑁 layers, we modify the first

𝑃 layers (0 ≤ 𝑃 ≤ 𝑁) into the ARAC supernet and keep the rest
(𝑁 − 𝑃) layers unchanged. In the supernet, we compress the first
(𝑃 − 1) layers with different compression levels using techniques
like channel pruning [42, 44, 49, 50] in this paper and we set 𝑅
different compression levels C = {𝑐1, ..., 𝑐𝑅} (0 ≤ 𝑐1 < ... < 𝑐𝑅 ≤ 1),
which represents different ratios of output channels pruned away
in the first (𝑃 − 1) layers. Thus, given a compression level 𝑐𝑖 , the
number of output channels in each layer of the first (𝑃 − 1) layers
is:

𝑑𝑜𝑙 = (1 − 𝑐𝑖) · 𝐷
𝑜
𝑙 , ∀ 1 ≤ 𝑙 ≤ (𝑃 − 1) . (1)

where 𝐷𝑜
𝑙
is the original number of output channels, and 𝑑𝑜

𝑙
is the

channel number after compression. When 𝑐𝑖 = 0, we have 𝑑𝑜
𝑙
= 𝐷𝑙 ,

which means that there is no output channel pruned away; when

𝑐𝑖 = 1, we have 𝑑𝑜
𝑙
= 0, which means that all output channels are

pruned away (i.e., the whole (𝑃 − 1) layers are pruned away). A

high compression level represents that a large number of output

channels in the first (𝑃 − 1) layers are pruned, and vice versa. In

other words, A sub-network with a higher compression level has a

lower computational cost. Based on the content in each tile and the

latency requirements (details in §5), the system selects different

compression levels for them. Note that though an ARAC supernet

splits an image into tiles, the tiling will not hurt feature extraction

across multiple tiles in the original image. For example, given an

object’s key features across tiles, the supernet will process all the

corresponding tiles with relatively high computation. Following

the supernet, the extracted features from different tiles are fed into

the shared last layers, and the final results are generated based on

the information from all tiles (the original image). Furthermore,

as the construction of ARAC supernet does not break down the

outputs of the original model, ARAC supernet generally applies to

various CNN-based vision tasks (§7.7).

4.2 Intermediate Dimensions in Supernet
For a sub-network in ARAC supernet, the dimensions of input to
the (𝑙 + 1)-th layer are equal to those of output from the 𝑙-th layer.
The depth of output (i.e., the number of output channels) from a
layer is determined by the compression level as shown in Eq. 1.
For a layer 𝑙 , the relationships between the output’s and input’s
spatial dimensions (height and width) are determined by the layer’s
configurations [24]:

𝑤𝑖𝑛
𝑙 = (𝑤𝑜

𝑙 − 1) · 𝑆𝑙 − b · 𝐴𝑙 + 𝐹𝑙 , (2)

ℎ𝑖𝑛𝑙 = (ℎ𝑜𝑙 − 1) · 𝑆𝑙 − b · 𝐴𝑙 + 𝐹𝑙 . (3)

where b is a binary: If the tile is on the edge of the original image

and layer 𝑙 is a convolutional layer then b = 1, else b = 0; 𝑆𝑙 is stride;
𝐹𝑙 is filter size;𝐴𝑙 is padding. As we split the input image into 𝑘 ×𝑘
tiles and process them independently with different sub-networks

inside the supernet, the 𝑘 × 𝑘 outputs from the supernet need to

be concatenated together. To seamlessly concatenate them, the

spatial dimensions of each output are set to (𝑊 𝑜
𝑃 /𝑘, 𝐻𝑜

𝑃/𝑘), where
(𝑊 𝑜

𝑃 , 𝐻𝑜
𝑃) are the spatial dimensions of input to the (𝑃 + 1)-th layer.

189

NeuLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on Edge ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Profiling Tile Size
Layer Number

Mobile/Edge Platforms
Service-Level Objectives

CNN w/ ARAC Supernet
CompressionDEMUX

Per-Tile
Compression

Memory Predictor
Latency Predictor

Accuracy Comparator

Memory
Latency

Accuracy Loss
Tr

ai
ni

ng
 D

at
as

et

Supernet generation
A CNN

Channel Slicing

Ensemble Bootstrap Training
CGG Design

Split Images

Compression-
Level Labels

Recognition
Labels

Labeling Rule

Joint Training

Input Image

Offline Stage Online Stage
Figure 4: NeuLens overview.

C
om

pr
es

si
on

 G
ui

di
ng

 G
at

e

…

ARAC Supernet w/ subnetworks

Subnetwork
selection

R
es

ul
ts

Concatenated
output

Figure 5: Workflow of ARAC supernet.

Given (𝑊 𝑜
𝑃 /𝑘, 𝐻𝑜

𝑃/𝑘), the intermediate spatial dimensions of inputs

and outputs in sub-networks of supernet can be determined by Eq. 2.

Consequently, we can obtain the spatial dimensions of each split tile,

denoted as (𝑤𝑖𝑛, ℎ𝑖𝑛). Further, we can determine the coordinates

of each tile on the original input image: 𝑥1,: = 0, 𝑥2,: = 𝑤𝑖𝑛 − Δ𝑥𝑖𝑛 ,
𝑥𝑖,: = 𝑥𝑖−1,: + 𝑤𝑖𝑛 − Δ𝑥𝑖𝑛 (3 ≤ 𝑖 ≤ 𝑘); 𝑦:,1 = 0, 𝑦:,2 = ℎ𝑖𝑛 − Δ𝑦𝑖𝑛 ,
𝑦:, 𝑗 = 𝑦:, 𝑗−1 + ℎ𝑖𝑛 − Δ𝑦𝑖𝑛 (3 ≤ 𝑗 ≤ 𝑘); where 𝑥𝑖,: refers to the 𝑥-
coordinate of the tile on the 𝑖-th row, 𝑦:, 𝑗 refers to the 𝑦-coordinate
of the tile on the 𝑗-th column, Δ𝑥𝑖𝑛 = (𝑘 ·𝑤𝑖𝑛 −𝑊𝑖𝑛)/(𝑘 − 1), and

Δ𝑦𝑖𝑛 = (𝑘 ·ℎ𝑖𝑛 −𝐻𝑖𝑛)/(𝑘 −1). Note that the origin is on the top-left

corner of the original input data.

In ARAC supernet, each tile is processed independently by a

compression level. We denote the compression level for the tile

at position (𝑖, 𝑗) (1 ≤ 𝑖, 𝑗 ≤ 𝑘) as 𝑐𝑖, 𝑗 . For convolutional layers in
supernet, the number of operations (multiply-accumulations) is

𝑂𝑙∈𝑐𝑜𝑛𝑣 (𝑐𝑖, 𝑗) = (1 − 𝑐𝑖, 𝑗)
2 · 𝐹 2

𝑙
· 𝐷𝑜

𝑙−1
·𝑤𝑜

𝑙
· ℎ𝑜

𝑙
· 𝐷𝑜

𝑙
. For maxpool-

ing layers in supernet, the number of operations (comparisons) is

𝑂𝑙∈𝑚𝑎𝑥𝑝𝑜𝑜𝑙 (𝑐𝑖, 𝑗) = (1 − 𝑐𝑖, 𝑗) · 𝐹
2
𝑙
· 𝐷𝑜

𝑙−1
· 𝑤𝑜

𝑙
· ℎ𝑜

𝑙
. Thus, the total

number of operations of supernet with {𝑐𝑖, 𝑗 } can be obtained by:
∑𝑘

𝑗=1
∑𝑘
𝑖=1

∑𝑃
𝑙=1𝑂𝑙 (𝑐𝑖, 𝑗).

4.3 Training of Supernet

For a CNN model with 𝑁 layers, we offline train 𝑅 compressed

models with compression levels 𝑐𝑖 (1 ≤ 𝑖 ≤ 𝑅). A straightforward

way is to train the 𝑅 compressed models individually. However,

the models obtained in the such way do not share weights and

consume a large amount of memory on edge devices [90, 89, 43].

Thus, we form an ensemble of 𝑅 models by channel slicing. We

denote the weights of layers in the model with compression level 𝑐1
asW𝑙 (1 ≤ 𝑙 ≤ 𝑁); For the other models with compression levels 𝑐𝑖
(2 ≤ 𝑖 ≤ 𝑅) in the ensemble, their weights in layer 𝑙 areW𝑙 [: (1 −

𝑐𝑖)/(1−𝑐1)·𝐷
𝑜
𝑙
], 1 ≤ 𝑙 ≤ 𝑁 . In this way, the number of weights in an

ensemble of𝑅 models is equal to that in the model with compression

level 𝑐1, and the other models can be directly obtained by slicing

its weights on the channel dimension. To train the ensemble of 𝑅
(compressed) models, we utilize an ensemble bootstrapping scheme

similar to IEB [43]. The difference between ours and IEB is that:

Instead of training randomly selected models, we train the models

with compression levels ranging from 𝑐2 to 𝑐𝑅−1 to predict the

soft label generated by the model with compression level 𝑐1, i.e.,
L(𝑦𝑐𝑖 , 𝑦𝑐1) (2 ≤ 𝑖 ≤ 𝑅 − 1). The model with compression level 𝑐1
is trained to predict the ground-truth label, i.e., L(𝑦𝑐1 , 𝑦𝑔𝑡). The
model with compression level 𝑐𝑅 is trained to predict the probability

accumulation of all the other models, i.e., 1
𝑅−1

∑𝑅−1
𝑖=1 𝑦𝑐𝑖 . Similar to

training a slimmable neural network [43], we train the ensemble of

𝑅 models together in each training iteration: We compute the losses

defined above individually for all models and accumulate their back-

propagation gradients together; Then, we update weights in the

ensemble. Note that the inputs to these models during training are

images in the training dataset without being split. Given the trained

ensemble of 𝑅 models, a supernet with 𝑃 layers can be obtained by

taking each model’s first 𝑃 layers in the ensemble. The following

(𝑁 − 𝑃) layers are the same as those in the original CNN model.

4.4 Compression Guiding Gate

We design a compression guiding gate (CGG) at the entrance of an

ARAC supernet. A CGG selects the compression level for each split

image. Specifically, the CGG takes split images as inputs and gener-

ates compression levels for them. A CGG can be regarded as a classi-

fication model that classifies split images into different compression

levels. However, the images in the training dataset are labeled for

the original applications, and we do not have compression-level la-

bels for split images. Thus, we propose a Labeling Rule to generate

compression-level labels for the split images in the training dataset.

With the generated compression-level labels, we can train a CGG

with supervised learning techniques.

4.4.1 Labeling Rule: We refer to the original labels of images as

𝐴-labels and the compression-level labels for split-images as𝐶-labels.
Given compression levels {𝑐1, ..., 𝑐𝑅} (𝑐1 < ... < 𝑐𝑅), we label all
split-images with 𝐶-labels in the training dataset. For the split-

images of an image, the labeling rule is: Initially, all the split-images

are processed by the sub-network with compression level 𝑐1. If its
final output does not match the𝐴-label, then all the split-images are

labeled as 𝑐1; else we raise the compression level of each split-image

to 𝑐2 respectively. If one’s final output does not match the 𝐴-label,
then the corresponding split-image is labeled as 𝑐1; else we raise
the compression level of it to 𝑐3. We repeat the match-label-raise

procedure until we reach compression level 𝑐𝑅 . Fig. 6 shows an

example of a labeling process given four compression levels.

4.4.2 CGG Architecture: Given an input image 𝑋 , CGG generates

𝑘 × 𝑘 one-hot 𝑅-length vectors {v}𝑘×𝑘 . An element in the vector

190

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Xueyu Hou∗ , Yongjie Guan∗ , and Tao Han

incorrect

correct

incorrect ‘ ’ ‘ ’ ‘ ’
‘ ’ ‘ ’ ‘ ’
‘ ’ ‘ ’ ‘ ’

‘ ’
‘ ’ ‘ ’ ‘ ’

‘ ’

‘ ’ ‘ ’
‘ ’

‘ ’ ‘ ’
‘ ’

‘ ’ ‘ ’
‘ ’

‘ ’ ‘ ’
‘ ’

‘ ’
‘ ’ ‘ ’ ‘ ’

‘ ’

‘ ’
‘ ’ ‘ ’ ‘ ’

‘ ’

‘ ’
‘ ’ ‘ ’ ‘ ’

‘ ’

‘ ’
‘ ’ ‘ ’ ‘ ’

‘ ’

‘ ’

‘ ’

‘ ’
‘ ’ ‘ ’ ‘ ’

‘ ’

‘ ’

‘ ’

‘ ’

‘ ’

…

…

…

correct

correct

incorrect

incorrect

Unlabeled Split-Part Labeled Split-Part

Figure 6: An example of Labeling Rule.

represents a compression level 𝑐𝑖 (1 ≤ 𝑖 ≤ 𝑅). The final outputs of
CGG is {𝑐argmax v}𝑘×𝑘 . The CGG processes the 𝑘 × 𝑘 split-images

of 𝑋 in a batch. Denoting a split-image as 𝑥 , we have an encoder

E and a feature-mapping function F : v = F (E(𝑥)). For encoder
E, we utilize one convolutional layer and one maxpooling layer

to integrate spatial information. we utilize a fully connected layer

for feature-mapping function F . The compression level choice is

obtained by applying argmax to the output vector of F .

4.4.3 CGG Training: We label the split-images in the training
dataset by our Labeling Rule. We define the compression-level
loss function as: L𝑐𝑙 = L(𝐶𝐺𝐺 (𝑥), 𝑐𝑔𝑡 (𝑥)), where 𝑥 is an split-
image, 𝐶𝐺𝐺 (𝑥) is softmax output of 𝑥 , 𝑐𝑔𝑡 (𝑥) is one-hot encod-
ing of compression-level label of 𝑥 . The image-recognition loss is
L𝑖𝑟 = L(𝑦 (𝑋), 𝑦𝑔𝑡), where 𝑦 (𝑋) is softmax output from the whole
model, 𝑦𝑔𝑡 is one-hot encoding of ground-truth label. We optimize
CGG jointly by image-recognition loss and compression-level loss:

L𝐶𝐺𝐺 (𝑋) = (1 − 𝛼)L𝑖𝑟 + 𝛼

∑
𝑥 ∈𝑋 L𝑐𝑙

𝑘2
(4)

where𝛼 controls the effect of the two losses. The back-propagations

of L(𝑦 (𝑋), 𝑦𝑔𝑡) to CGG’s parameters are implemented by gumbel-

softmax technique [34]. With the loss function (Eq. 4), the CGG

is trained to analyze the content of a split-image and selects a

compression level to it. The training of the CGG ensures the correct

output of the whole model (the first part in Eq. 4) while matching

the compression-level label (the second part in Eq. 4) as well. With

a higher 𝛼 , the CGG tends to assign tiles with higher compression

levels for more significant computational cost reduction; with a

lower 𝛼 , the CGG tends to assign tiles with lower compression

levels for higher accuracy. We set 𝛼 = 0.7 in this paper.

5 CNN INFERENCEW/ SUPERNET

A compression guiding gate (CGG) selects proper compression

levels in an ARAC supernet for tiles of an image. The selected

compression levels from CGG guarantee neglectable accuracy loss

with the smallest number of operations. However, CGG is SLO-

agnostic, i.e., it selects compression levels without consideration

of latency and memory constraints. Thus, we design another SLO-

adaptive component, compression-level gear (§5.2), to tune the

selected compression levels online to meet SLOs. Given candidate

controllable parameters (𝑃 , 𝑘 , C), a lightweight online controller,
DEMUX (§5.3), is designed to find the optimal set of controllable

parameters.

5.1 Problem Definition
As demonstrated in §4, an ARAC supernet contains the first 𝑃 layers
of a CNN model with 𝑅 compression levels; an input image is split
into 𝑘 × 𝑘 tiles and is processed by sub-networks in the supernet
independently. Thus, for CNN inference with ARAC supernet, we
can dynamically control: (1) the number of layers in the supernet,
𝑃 ∈ P; (2) the number of tiles, 𝑘 ∈ K ; (3) the compression levels
for the tiles, 𝑐𝑖, 𝑗 ∈ C, (1 ≤ 𝑖, 𝑗 ≤ 𝑘). We denote compression-level
matrix for 𝑘×𝑘 tiles as Ω = {𝑐𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑘 . P,K , and C are candidate
values for 𝑃 , 𝑘 , and 𝑐𝑖, 𝑗 . In general, optimizations of CNN inference
focus on three types of performance: (1) accuracy (𝐴𝑐𝑐), (2) latency
(𝑇), and (3) memory consumption (𝑀). In this paper, we focus on
maximizing accuracy given latency and memory constraints (𝑇 and
𝑀̄):

arg max
𝑃∗,𝑘∗,Ω∗

𝐴𝑐𝑐 (𝑃, 𝑘,Ω), (5)

𝑠.𝑡 . 𝑇 (𝑃, 𝑘,Ω) ≤ 𝑇, (6)

𝑀 (𝑃, 𝑘,Ω) ≤ 𝑀̄ . (7)

As higher compression levels would reduce accuracy (Eq. 5) but

get lower latency/memory consumption (Eq. 6 and 7), the trade-off

exists in tuning compression level because high compression level

leads to low accuracy though latency and memory constraints are

satisfied. For the tiles of an input image, the ARAC supernet utilizes

different compression levels to process them. In other words, given

𝐶 compression levels and 𝑘 × 𝑘 tiles of an input image, there are

𝐶𝑘×𝑘 combinations of compression level choices for all the tiles of

the image, which can be an extremely large number (e.g., 1, 953, 125
with 𝐶 = 5 and 𝑘 = 3). Thus, an efficient solution to Eq. 5 to 7 is

necessary rather than exhaustive search.

5.2 Compression-Level Gear

For 𝑘 × 𝑘 tiles of an image, CGG (§4.4) selects compression lev-

els for them. We denote the compression levels of the 𝑘 × 𝑘 tiles

selected by CGG as Ω0 = {𝑐
(0)
𝑖, 𝑗 }1≤𝑖, 𝑗≤𝑘 , 𝑐

(0)
𝑖, 𝑗 ∈ C. The inference

latency 𝑇 (𝑃, 𝑘,Ω0) and memory consumption 𝑀 (𝑃, 𝑘,Ω0) are esti-

mated by latency and memory consumption predictors. When the

latency/memory constraints (Eq. 6 and 7) are violated, we adjust

compression levels of the 𝑘 × 𝑘 tiles with a compression-level gear

(CLG) by adaptively raising the compression levels of the 𝑘 ×𝑘 tiles.

There are different ways to adjust the compression levels. We de-

scribe the way that we empirically find effective (Fig. 12 (a) in §7.3),

which is referred to as confidence-based stepping (CS) method. As

CGG is trained in a supervised way (§4.4), its confidence indicates

the probability of being correctly identified with the compression

level. Thus, we design CLG based on the confidences to Ω0. Specifi-

cally, we set a confidence threshold 𝜃 𝑓 and a window length Δ𝑤 .

The tiles with confidences lower than 𝜃 𝑓 are sorted by confidences

from low to high, and the Δ𝑤 tiles are cyclically selected among

them. The CLG runs in loops until latency and memory constraints

(Eq. 6 and 7) are satisfied. In each loop, the CLG raises compression

levels of Δ𝑤 tiles by one.

191

NeuLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on Edge ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Memory

Latency

Compression
levels of tiles

Compression Guiding GateInput Image

Accuracy
Comparator

Compression-Level Gear

Compression
levels of tiles

Service Level Objectives

Latency Predictor

Memory Predictor

Satisfied?

Yes

No
Split Numbers

Layer Numbers ,,

,,

DEMUX

Figure 7: DEMUX.
A

cc
ur

ac
y

Lo
ss

 (%
)

0.01 0.1 1 10

12

8

4

0La
te

nc
y

Pr
ed

ic
tio

n
Er

ro
r (

%
)

2 3 4
Number of Blocks in Supernet

6

4.5

3

1.5

0

4

3

2

1

0

(a)

P = 4, k = 3
P = 4, k = 4
P = 3, k = 3
P = 3, k = 4
P = 2, k = 3
P = 2, k = 4

Degradation Score
(b)

Figure 8: Predictor observations: (a) prediction errors of latency

and memory (𝑘 ∈ {3, 4}, 𝑅 = 4), (b) Accuracy Loss v.s. Degradation

Score. (Base Model: ResNet50, ImageNet [7])

5.3 DEMUX

We design DEMUX to find (𝑃∗, 𝑘∗,Ω∗) of Eq. 5 to 7. DEMUX is

consisted of five lightweight components: CGG (§4.4), CLG (§5.2),

latency predictor, memory predictor, and accuracy comparator.

The workflow of DEMUX is shown in Fig. 7. Given 𝑃 ∈ P and

𝑘 ∈ K , CGG and CLG find the matrix of compression-levels Ω𝑃,𝑘
that satisfies Eq. 6 and 7 (§5.2). After finding all the matrices of

compression-levels {Ω𝑃,𝑘 }𝑃∈P,𝑘∈K , the accuracy comparator se-

lects (𝑃∗, 𝑘∗,Ω∗) from {𝑃, 𝑘,Ω𝑃,𝑘 }𝑃∈P,𝑘∈K . We profile the comput-

ing latency and memory consumption with respect to the compres-

sion levels of sub-networks in supernet. We train lightweight linear

regression models to predict latency and memory for a supernet

with the compression levels of all the sub-networks in the supernet

as inputs.Note that the training of the linear regressors are one-time

work and generate small offline overhead, e.g., training time is less

than five minutes on a computer with CPU only (Intel i7-8700K).

For the rest layers following the supernet, we can simply record

their computing latency and memory consumption with respect to

the number of layers. The total latency/memory consumption is

obtained by combining the two parts. As shown in Fig. 8 (a), the

predicted latency and memory consumption match the measured

results with less than 5% error. To select the optimal set among

the sets of (𝑃, 𝑘,Ω) from CLG, We define degradation-score as the

averaged difference across 𝑘 × 𝑘 tiles between the compression

levels selected by CGG and the compression levels adjusted by

CLG. As shown in Fig. 8 (b), there is a strong correlation between

accuracy losses and degradation-scores. Thus, we can offline profile

the curves for each pair of (𝑃, 𝑘) and regress a coefficient 𝛽𝑃,𝑘 . The
accuracy loss for each pair of (𝑃, 𝑘) can be estimated by 𝛽𝑃,𝑘 and

we select (𝑃∗, 𝑘∗,Ω∗) that has the lowest accuracy loss. Note that,

for all pairs of (𝑃, 𝑘), we observe neglectable accuracy loss when

processing tiles with the compression levels selected by CGG.

6 IMPLEMENTATION

The implementation of ARAC supernet is as follows:

Testbeds: For on-device inference evaluations, we choose three

heterogeneous mobile/edge devices: Jetson TX2; Xiaomi 6 Plus;

Alienware 17 R3. The first device runs Linux Ubuntu 18.04 LTS; The

second device runs Android 10.0; The third device runs Windows10.

Base CNN models, datasets, and framework:We mainly eval-

uate on two most important applications on mobile and edge sys-

tems: (1) Image Classification: We build ARAC supernet based on

three popular CNN models (ResNet50 [21], MobileNetV3 [25], and

Inception-V3 [69]) and we use ImageNet dataset [7]; (2) Object

Detection: We build ARAC supernet based on the most commonly

used model (YOLOv3 [58]) and we use COCO dataset [46]. We use

Pytorch framework [56]. We also evaluate on nine other vision

applications in §7.7,

Baselines: We select three SOTA methods that outperform the

others in Fig. 1: (i) DS-Net [43] adjusts filter numbers in layers by

channel slicing for different inputs. The key difference between

the proposed ARAC supernet and DS-Net is that we split an image

into small tiles and process them respectively with different com-

pressed sub-networks, but DS-Net processes an image as a whole;

(ii) MS-GFNet [30] dynamically processes a sequence of crops on

the image until prediction with sufficient confidence. Though MS-

GFNet designs spatial-based CNN workflow where its operation

reduction leads to real speed-up, its speed-up is limited due to

the sequential executions; (iii) LegoDNN [19] dynamically scales

DNNs by switching retrained descendant blocks in them. It offline

generates sets of blocks by filter pruning. It takes an image as a

whole and processes it with adaptively selected block scales. Note

that DS-Net and LegoDNN are the SOTA methods for dynamic in-

ference without spatial-redundancy based acceleration; MS-GFNet

is the SOTA method with spatial-redundancy based acceleration.

We also compare ARAC supernet with SOTA model compression

techniques in §7.4.

Candidate controllable parameters:We set three tile sizes (𝑘)
by splitting images into 2× 2, 3× 3, and 4× 4 tiles. We set five com-

pression levels (𝑅 = 5) with compression ratios {0, 0.25, 0.5, 0.75, 1}.
Note that compression ratio represents the ratio of channels pruned

away, e.g., all channels are pruned away with a compression ratio

equaling to 1. For ResNet50, we set three layer number options

in supernet: two blocks (11 layers), three blocks (23 layers), and

four blocks (41 layers). For MobileNet-V3, we set two-layer number

options in supernet: eight layers and 13 layers. For Inception-V3,

we set three layer number options in supernet: seven layers, after

the first Inception module and after the second Inception module.

For YOLO-V3, we set three layer number options in supernet: after

the first, the second, and the third residual block.

Hyper-parameters in CLG:We study the effects of the two hyper-

parameters in CLG (§5.2). We empirically find the optimal settings

are: Δ𝑤 = 2 for 2 × 2 tile split, Δ𝑤 = 4 for 3 × 3 tile split, Δ𝑤 = 5

for 4 × 4 tile split; and 𝜃 𝑓 = 0.5.
Compression guiding gate: The convolutional layer of the en-

coder in CGG (§4.4) is Conv2d(3, 64, kernel=(7, 7), stride=(4, 4)). The

input tile is resized to 28× 28 resolution. We train one CGG general

to all tile sizes and layer numbers in supernet. The compression-

level prediction accuracy (ground-truth labels generated by the

labeling rule in §4.4.1) is 82.6% for ResNet50, 79.5% for MobileNet-

V3, 85.7% for Inception-V3, 75.8% for YOLO-V3.

Offline training:We train supernet (§4.3) on two NVIDIA RTX

A6000 GPUs. We adopt the fast training approach in [19] to train

192

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Xueyu Hou∗ , Yongjie Guan∗ , and Tao Han

To
p-

1
A

cc
ur

ac
y

(%
)

(a) ResNet-50

77

76

75

74

73

*

2010 30 40 50
Average Inference

Latency (ms)

76

73.5

71

68.5

66

*

5.54 7 8.5 10

To
p-

1
A

cc
ur

ac
y

(%
)

(b) MobileNet-V3

Average Inference
Latency (ms)

79

77.5

76

74.5

73

*

To
p-

1
A

cc
ur

ac
y

(%
)

5540 70 85 100

(c) Inception-V3

Average Inference
Latency (ms)

m
A

P@
0.

5
52

42.5

33

23.5

14

*

4020 60 80 100

(d) YOLO-V3

Average Inference
Latency (ms)

DS-NetDS-Net MS-GFNetMS-GFNet LegoDNNLegoDNN
ARAC SupernetARAC Supernet *Original Model*Original Model

Figure 9: Accuracy v.s. Latency (Jetson TX2).

the sub-networks in the ARAC supernet. For image classification,

it takes 17h for ResNet50 based supernet, 13.4h for MobileNet-V3

based supernet, and 23.6h for Inception-V3 based supernet. For

object detection, it takes 37.5h for YOLO-V3. For all the supernets,

the pre-trained weights in their base models are used as the initial

weights in training. We train the compression guiding gate (§4.4) on

the same platform and it takes 10.5h to train.

Online overhead: We measure the overhead of CGG (§4.4) and

DEMUX (§5.3). On Jetson TX2 and Alienware 17 R3, the overhead

of CGG and DEMUX is 0.88ms to 1.87ms. On Xiaomi 6 plus, the

overhead of CGG and DEMUX is 4.7ms to 7.2ms.

7 EVALUATION

7.1 Accuracy v.s. Latency

The accuracy v.s. latency curves with different base models are

shown in Fig. 9. The latency is measured on Jetson TX2 and av-

eraged over 200 times inferences. With the same latency, ARAC

supernet outperforms SOTA methods by 0.46% to 76.5% accuracy

improvement. With the same accuracy, ARAC supernet outper-

forms SOTA methods by 2.5% to 58% latency reduction. Compared

to ARAC supernet, MS-GFNet [30] shows relatively sharper drop

in accuracy when low latency. It is mainly due to the cut-off of its

focus sequence, and MS-GFNet mainly relies on the low-resolution

glance stage for predictions with low latency. In addition, due to

its sequential exiting scheme, GFNet can only be applied to image

classification application [77, 30]. The sequential scheme of GFNet

cannot tackle with detection of multiple objects in the same image.

Thus, we only compare ARAC supernet with LegoDNN and DS-

Net in object detection applications. Compared to ARAC supernet,

DS-Net [43] and LegoDNN [19] can only adjust computational cost

at image-level. The regional awareness of ARAC supernet brings

up to 46.2% latency reduction with the same accuracy compared to

DS-Net and LegoDNN.

7.2 Latency/Memory Constraints

We evaluate the accuracy of the ARAC supernet and the baseline

methods under various latency and memory constraints, as shown

in Fig. 10. We implement on three platforms: Jetson TX2 (Fig. 10

(a) to (d)), Xiaomi 6 Plus (Fig. 10 (e) to (h)), Alienware R17 (Fig. 10

(i) to (l)). Under the same latency and memory constraint, ARAC

(a) ResNet-50 (100MB)

To
p-

1
A

cc
ur

ac
y

(%
)

Jetson TX2

77

76

75

74

73

76

73.5

71

68.5

66

79

77.5

76

74.5

73

52

42.5

33

14

Latency Constraint (ms)

76

75

74

73

72

75

62

69

66

63

79
77.5

76

74.5

73

52
42.5

33

23.5

14

77

76

75

74

73

76
73.5

71

68.5

66

79
77.5

76

74.5

73

52

42.5

33

23.5

14

2520 30 35 40

65 7 8 9

(b) MobileNet-V3 (30MB)
Latency Constraint (ms)

To
p-

1
A

cc
ur

ac
y

(%
)

To
p-

1
A

cc
ur

ac
y

(%
)

6050 70 80 90

(c) Inception-V3 (300MB)
Latency Constraint (ms)

23.5m
A

P@
0.

5
4530 60 75 90

(d) YOLO-V3 (500MB)
Latency Constraint (ms)

(e) ResNet-50 (100MB)
Latency Constraint (s)

0.20.1 0.3 0.4 0.5

7550 100 125 150

(f) MobileNet-V3 (30MB)
Latency Constraint (ms)

0.30.2 0.4 0.5 0.6

(g) Inception-V3 (260MB)
Latency Constraint (s)

0.30.1 0.5 0.4 0.9

(h) YOLO-V3 (450MB)
Latency Constraint (s)

To
p-

1
A

cc
ur

ac
y

(%
)

To
p-

1
A

cc
ur

ac
y

(%
)

To
p-

1
A

cc
ur

ac
y

(%
)

m
A

P@
0.

5

(i) ResNet-50 (100MB)
Latency Constraint (ms)

2216 28 34 40

65 7 8 9

(j) MobileNet-V3 (30MB)
Latency Constraint (ms)

4030 50 60 70

(k) Inception-V3 (300MB)
Latency Constraint (ms)

3724 50 63 76

(l) YOLO-V3 (500MB)
Latency Constraint (ms)

To
p-

1
A

cc
ur

ac
y

(%
)

To
p-

1
A

cc
ur

ac
y

(%
)

To
p-

1
A

cc
ur

ac
y

(%
)

m
A

P@
0.

5

Xiaomi 6 plus Alienware 17 R3
DS-Net MS-GFNet LegoDNN ARAC Supernet

Figure 10: Accuracy under latency/memory constraints.

supernet outperforms the baseline methods by 0.06% to 67.9% ac-

curacy improvement with the four base CNN models across the

three platforms. Especially, ARAC supernet achieves high accuracy

improvement over the baseline methods when latency constraints

are stringent, by 2.2% to 67.9%. Due to the sequential execution

of MS-GFNet [30], its performance becomes similar to the spatial-

agnostic methods (DS-Net [43] and LegoDNN [19]). The success

of ARAC supernet in preserving high accuracy under stringent

constraints is because it can wisely select regions that are crucial

to correct predictions and these regions can be analyzed with high

resolution even under stringent conditions.

7.3 Ablation Study

We have the following controllable parameters in the ARAC super-

net: (1) candidate layer numbers in the supernet; (2) candidate tile

sizes in splitting an image; (3) candidate compression levels of sub-

networks. Their default settings are described in §6. We elaborate

on the principle of how to set these parameters here. The selection

of these parameters is determined by two rules: First, different value

of the parameter generates a significant change in performance. Sec-

ond, the overhead of DEMUX with the given options is trivial. For

example, when selecting candidate layer numbers in the supernet

for ResNet-50, we vary the layer number options from one to five,

as shown in Fig. 11. Though increasing the layer number options

above three does not show a significant performance change, it

generates around twice the overhead for DEMUX. Thus, we set

three layer number options for ResNet-50. The settings of tile sizes

and compression levels are determined similarly. Overall, given a

new model, a similar one-time procedure can be applied to find a

group of settings for an ARAC supernet.

193

NeuLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on Edge ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

To
p-

1
A

cc
ur

ac
y

(%
) 77

76

755 15 25 35
Average Inference Latency (ms)

Layer{23} Layer{23, 41} Layer{11, 23, 41, 47}
Layer{11, 17, 23, 32, 41}Layer{11, 23, 41}

O
ve

rh
ea

d
La

te
nc

y
(m

s)
Number of Options

543210

1

2

3

4

Figure 11: Accuracy v.s. Inference Latency under different layer

number options in ARAC supernet. (Base Model: ResNet50, Ima-

geNet [7]), Jetson TX2.

(a) Compression-Level Adjustment

To
p-

1
A

cc
ur

ac
y

(%
) 77

76

75

74

73

Latency Constraint (ms)
2520 30 35 40

(b) Confidence Threshold

To
p-

1
A

cc
ur

ac
y

(%
) 77

76

75

74

73

Latency Constraint (ms)
2520 30 35 40

CS
Uniform

Min. =0.5 =0.25
=0.75

Figure 12: Accuracy v.s. Inference Latency under different hyper-

parameters in Compression-Level Gate. (Base Model: ResNet50, Ima-

geNet [7]), Jetson TX2.

We study the effect of the starting layer of the ARAC supernet.

We observe that starting the supernet from an intermediate layer

demonstrates poorer performance (e.g., 0.2% to 2.7% accuracy re-

duction under the same inference latency for a ResNet-50 based

ARAC supernet). The reason is that the spatial dimensions of the

feature maps in a CNN model decrease with the increase of lay-

ers. For example, the input’s spatial dimensions to ResNet-50 are

224 × 224, the input feature’s spatial dimensions to the 12-th layer

in ResNet-50 are only 14×14. Such a low-dimension indicates a lack

of spatial redundancy on the intermediate features. Thus, starting

the ARAC supernet from the intermediate layer (especially from

a very deep layer in a model) lowers its performance compared to

starting from the input layer.

We observe the performance of ARAC supernet with different

settings of CLG in Fig. 12. In Fig. 12 (a), we compare different

compression-level adjustment methods regarding the performance

under different latency constraints (memory constraint= 100𝑀𝐵).
The CS method (details in §5.2) is compared to two other potential

methods, i.e., uniform (increasing the compression levels of all the

tiles together) and min (increasing the compression level of the

tile with the lowest compression level). Overall, the CS method

outperforms them by up to 2.0% to 4.5%, respectively. In Fig. 12 (b),

we observe the effect of the hyper-parameter, confidence threshold

(𝜃 𝑓), on the performance of ARAC supernet. While more tiles are

selected to be tuned by the CLG with a higher confidence thresh-

old, it is risky to tune more than needed. Under the same latency

constraint, the accuracy with 𝜃 𝑓 = 0.75 is up to 0.67% lower than

that with 𝜃 𝑓 = 0.5; the latency constraints under 30ms cannot be

satisfied with 𝜃 𝑓 = 0.25 due to lack of tunable tiles when constraints
are violated.

It is important to note that, though these hyper-parameters have

an effect on the performance of ARAC supernet, their effects are

trivial except for the compression-level adjustment methods in

Fig. 12 (a). On the one hand, it justifies the rationality of the design

of the ARAC supernet in §4 and the CLG in §5.2. On the other hand,

it demonstrates the robustness of the ARAC supernet against the

hyper-parameter settings, which reduces the potential engineering

work in applying ARAC supernet in practice.

7.4 ARAC and Model Compression Techniques

As a dynamic inference technique, we have shown that ARAC su-

pernet outperforms SOTA works in §7.1. We further illustrate the

relationship between ARAC supernet and existing model compres-

sion techniques. Unlike dynamic inference, model compression

techniques target generating one compressed model with the low-

est computational cost and the highest accuracy [39, 1, 40]. We

specifically compare ARAC supernet with SOTA model compres-

sion techniques that apply to latency acceleration on general deep

learning platforms. We demonstrate that: (1) ARAC supernet, by

exploiting spatial redundancy on images, outperforms SOTA model

compression techniques; (2) ARAC supernet is complementary to

model compression techniques and can collaboratively boost the

performance with them.

Comparison:We compare ARAC supernet with SOTA model com-

pression techniques that keep high accuracy with effective latency

reduction. While each type of technique includes a series of works

(e.g., over 20 methods in channel pruning), we select the one that

shows the Pareto optimality on accuracy-latency trade-off. Specifi-

cally, for channel pruning, we select PruneNet [39]; for early-exit,

we select ZTW [79]; for low-rank decomposition, we select [40].

The comparison is shown in Fig. 13, where the performance of the

original model is also marked. Overall, benefit from the spatial-

redundancy reduction, ARAC supernet achieves the highest accu-

racy with the same latency, i.e., by 1.1% to over 6.9% higher accuracy

(ResNet-50) and by 8.8% to 1.23× higher accuracy (YOLO-V3). Cor-

respondingly, it achieves the lowest latency with the same accuracy,

i.e., by 60.2% (ResNet-50) and by 3.4% to 18.4% (YOLO-V3) latency

reduction compared to channel pruning. Besides the performance

improvement, the comparison in Fig. 13 also shows another advan-

tage over the model compression techniques, higher granularity

in tuning accuracy-latency tradeoff. As an ARAC supernet splits

the original input image into small tiles and prepares different lev-

els of compressed sub-networks to process them, the accuracy v.s.

latency curve generated by ARAC supernet demonstrates higher

granularity than model compression techniques. For example, in

Fig. 13 (a), in the latency range of 18ms to 34ms, there are only

two points on the curve generated by channel pruning, but there

are eight points on the curve generated by ARAC supernet. The

higher granularity of ARAC supernet largely improves its adaptiv-

ity to dynamic conditions like changing contention on devices, i.e.,

the performance of inference can be adaptively tuned by ARAC

supernet according to the device conditions (details in §7.5).

Integration: In Fig. 14 (a), we show the performance of ARAC

supernet that integrates with low-rank decomposition [40]. The

integration follows the same procedure described in §4 besides that,

the sub-network with different compression levels is formed by

194

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Xueyu Hou∗ , Yongjie Guan∗ , and Tao Han

Channel Pruning
Low Rank Decomposition Resolution Scaling
ARAC Supernet

Early-Exit Original Model *

Channel Pruning
Low Rank Decomposition Resolution Scaling
ARAC Supernet

Early-Exit Original Model *
**

To
p-

1
A

cc
ur

ac
y

(%
)

Average Inference Latency (ms)
10 42 50

77
76

74

72

70

m
A

P@
0.

5
Average Inference Latency (ms)
40 52 64 76 88 100

52
47

37

27

17

(a) ResNet-50 (b) YOLO-V3

18 26 34

Figure 13: Comparison w/ model compression techniques.

*

To
p-

1
A

cc
ur

ac
y

(%
)

77

76

75

74

73

72

77

76

75

74

73

72

(a) ARAC w/ Low Rank Decomposition

42 50
)Average Inference Latency (msAverage Inference Latency (ms)Average Inference Latency (ms

To
p-

1
A

cc
ur

ac
y

(%
)

Average Inference Latency (ms)
16 20

(b) Low-Precision ARAC

*
*

ARAC
ARAC w/ LRD
Original Model *

LRDARAC
ARAC w/ LRD
Original Model *

LRD
int8/-ARAC
int4-ARAC

int8-Original Model *
int4-Original Model *
int8/-ARAC
int4-ARAC

int8-Original Model *
int4-Original Model *

0 4 8 1210 18 26 34

Figure 14: ARAC supernet: (a) with low rank decomposition, and

(b) in low precision.

low-rank decomposition rather than channel pruning. As shown

in Fig. 14 (a), the ARAC supernet with low-rank decomposition

(dashed red curve) raises the accuracy by 1.1% compared to basic

low-rank decomposition. Its performance is 2% lower than the

ARAC supernet with channel pruning (solid red curve), which

justifies the rationality of utilizing channel pruning to generate an

ARAC supernet in our design (§4).

Low-Precision: Like other studies on model compression and

dynamic inference, ARAC supernet is also a technique that is com-

plementary to the studies on low-precision. As shown in Fig. 14 (b),

we integrate low-precision technique [1] into ARAC supernet and

reduce the precision of weights in ARAC supernet to int8 and int4.

The performance of (low-precision) ARAC is compared with that

of the original low-precision model (marked in star symbols). Simi-

lar to the float32 results, ARAC supernet realizes a wide range of

accuracy and latency trade-offs above the original (low-precision)

model, which proves the complementarity between ARAC supernet

and low-precision technique. Note that most studies on DNNmodel

design [21, 25, 58] and compression [39, 40, 79] keep in the original

precision (float32) because the generation of low-precision model

suffers from high engineering complexity including configuration

calibration procedure, sensitivity to training settings, and frequent

tuning of hyper-parameters during training [1, 52, 67]

7.5 ARAC under Background Loads

We examine the performance of ARAC supernet under background

loads by changing the running conditions of the device with a

GPU-intensive application (Gaussian Elimination in the Rodinia

Benchmark Suite [4]), which is widely used by mobile computing

evaluation [84]. For the latency and memory predictors in DE-

MUX (§5.3), we can easily modify and train them to predict under

varying system contention (memory bandwidth and CPU/GPU

Images
100 200 300 4000 50 150 250 350

30

20

10

0

40

Pr
oc

es
sin

g
La

te
nc

y
(m

s)

No
Contention

Background
Applications

No
Contention

Background
Applications

ARAC Supernet
LegoDNNChannel Pruning

Figure 15: Performance comparison under dynamic device con-

tention (ResNet-50 [21], Jetson TX2, 30ms latency constraint).

usage) by adding them as inputs [84]. In Fig 15, we show the perfor-

mance comparison of ARAC supernet and two baseline methods,

LegoDNN [19] and channel pruning [39]. As shown in Fig. 15, all

threemethods are adaptive to the changing contention on the device

and keep most of their inference execution within the latency con-

straint (30ms). The processing latency of ARAC supernet fluctuates

in a wide range (under 30ms) because it is a content-aware method

that makes an individual decision on how much computation is

assigned to each image according to its content. We also observe

that, the average accuracy of ARAC supernet is 1.5% higher than

that of LegoDNN and 2.8% higher than that of channel-pruning in

the test.

7.6 ARAC in Continuous Object Detection

Recent works on continuous object detection [5, 36, 47, 84] exploit

the temporal correlation between consecutive frames and reduce

the overall computation of video streams by combining model

detection with tracking algorithms [47, 84]. In contrast, ARAC su-

pernet, by modifying the detection model’s computation directly,

reduces computation per frame in video streams. In general, apply-

ing ARAC supernet into a continuous object detection system: (1)

significantly reduces model inference latency in processing a frame

(Fig. 16); (2) increases the system’s adaptivity to various conditions

like cross-frame similarity, sampling rate (FPS), and processing

deadline (Fig. 18). We implement three continuous object detection

systems: offloading (all frames are processed by the detection model

on the server), Edge-Assisted [47], and local [84]. The detection

model is YOLO-V3, the server is with RTX 2070, and the local device

is Jetson TX2. The network is WiFi 2.4GHz. As shown in Fig. 16,

with ARAC supernet, the end-to-end latencies of processing a frame

with the detection model show a significant reduction (36.0% to

54.1%) in all three systems.

We further demonstrate how ARAC supernet contributes to the

overall performance of a continuous object detection system in two

videos. Video-1 and Video-2 are two one-hour videos taken on the

side of a vehicle at 60FPS. As shown in Fig. 17, with different mov-

ing speeds (Video-1: at 45 to 70 mph, Video-2: at around 20mph),

the similarities (SSIM) of the two videos deviates from each other.

In Fig. 18 (a), we observe the accuracy trend along with different

sampling rate (latency constraint= 30ms). As ARAC supernet re-

duces computation in the detection model, it allows more frames to

be processed within a fixed period. Thus, the systems with ARAC

supernet show high adaptivity to the increase of sampling rate. For

example, the accuracy of offloading with ARAC supernet keeps the

highest in all cases. In contrast, the accuracy of Edge-Assisted is

up to 88.5% lower than that of offloading with ARAC supernet. In

195

NeuLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on Edge ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Offloading

w
/ A

R
A

C

Edge-
Assisted Local

E2
E

La
te

nc
y

(m
s)

w
/ A

R
A

C

w
/ A

R
A

C

25

50

75

100

0

25

50

75

100

0

Figure 16: Detection model

latency.

SS
IM

0.4

0.6
0.8
1.0

0.2

FPS

0

Video-1 Video-2

0 10 20 30 40 50 60 70

Figure 17: Cross-frame simi-

larity.

Offloading w/ ARAC (Video-1) Edge-Assisted (Video-1)
Edge-Assisted w/ ARAC (Video-1)Local w/ ARAC (Video-1)

Offloading w/ ARAC (Video-2) Edge-Assisted (Video-2)
Edge-Assisted w/ ARAC (Video-2)Local w/ ARAC (Video-2)

(a) IoU v.s. FPS

Io
U 0.55

0.7
0.85
1.0

0.4

FPS

0.25
0.1

(b) IoU v.s. Constraint

Io
U

Latency Constraint (ms)
0 10 20 30 40 50 60 0 10 20 30 40 50 60

0.55

0.7
0.85
1.0

0.4
0.25

0.1

Figure 18: Performance comparison of continuous object detection.

Fig. 18 (b), we observe the performance (IoU as metric [47]) under

different per-frame latency constraints. Specifically, the detection

results of a frame are required to be obtained within a latency

constraint once a frame is sampled 2. To satisfy a small latency

constraint, the low-accuracy detection results can be frequently

generated by the tracker. Consequently, Edge-Assisted has poor

performance with small latency constraints on videos with low

similarity (e.g., Video-1). For example, for Video-1, its IoU is < 0.4
when the latency constraint is less than 40𝑚𝑠 . In contrast, offload-

ing with ARAC supernet outperforms Edge-Assisted by up to 1.25×
when the latency constraints are 30 and 40ms. Local with ARAC

supernet also achieves comparable performance with Edge-Assisted

in Fig. 18 (b). When the server has poorer GPU (e.g., GTX 1070),

local with ARAC supernet even outperforms Edge-Assisted by up

to 95% when the latency constraint is 30ms. We also observe that

the combination of ARAC supernet with Edge-Assisted achieves

the highest performance in all cases. Compared to Edge-Assisted,

the Edge-Assisted with ARAC supernet increases accuracy by up

to 1.25× and 7.7× in Fig. 18 (a) and (b), respectively.

7.7 ARAC in Various Vision Applications

Besides image classification and object detection, we also evaluate

the performance of ARAC supernet in other vision applications,

including action recognition [16], traffic accident detection [2], ab-

normal activity detection [10], traffic sign recognition [66], flower

classification [82], vehicle detection [64], fall detection [6], vehicle

make and model recognition [70]. As shown in Fig. 19, ARAC su-

pernet achieves the highest accuracy under the same constraints

in all applications. Reducing computation based on spatial redun-

dancy allows ARAC supernet to preserve high accuracy with lower

latency and less memory consumption.

2Such latency constraint is common in real applications because the detection
results are often utilized by other applications like augmented reality [18] and au-
tonomous driving [14].

(a) Action Recognition
(500MB)

A
cc

ur
ac

y
(%

) 82
79
76
73
70

95
90
85
80
75

95

90
85
80

75

76
62
48

20

Latency Constraint (ms)
5540 70 85 100 10080 120 140 160

(b) Traffic Accident
Detection (430MB)

Latency Constraint (ms)

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

6050 70 80 90
Latency Constraint (ms)

34A
U

C
 (%

)

21 3 4 5

(d) Abnormal Activity
Detection (800MB)

Latency Constraint (s)

(c) Vehicle Detection
(400MB)

96
90
84

72
78A

U
C

 (%
)

360280 440 520 600
Latency Constraint (ms)

A
lie

nw
ar

e
R

17
G

T
X

10
70

(e) Fall Detection
(500MB)

81
76
71

61

66A
U

C
 (%

)

1412 16 18 20
Latency Constraint (s)

(f) Fall Detection
(500MB)

(g) Traffic Sign
Recognition (30MB)

A
cc

ur
ac

y
(%

) 96
94
92
90

88

94
93
92
91

90

91

88
85
82

79
Latency Constraint (ms)

6055 65 70 75 5040 60 70 80

(h) Flower Classification
(30MB)

Latency Constraint (ms)

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

7560 90 105 120
Latency Constraint (ms)

(i) Vehicle Make
Recognition (70MB)

X
ia

om
i 6

 p
lu

s

DS-NetDS-Net LegoDNNLegoDNN ARAC SupernetARAC Supernet Channel PruningDS-Net LegoDNN ARAC Supernet Channel Pruning

Figure 19: Accuracy under latency/memory constraints in 9 differ-

ent vision applications.

C
om

pr
es

si
on

 G
ui

di
ng

 G
at

e

Tiles of image

Compression levels of tiles

HoloLens 2

Input Image/Frame
YOLO-V3 based
ARAC Supernet

Wireless Network
Edge Server

Detection results

Figure 20: DeepMix [18] w/ ARAC supernet.

7.8 Evaluation on Mixed-Reality Platform

We implement ARAC supernet on the SOTAMixed-Reality platform

for 3D object detection, DeepMix [17, 18], as shown in Fig. 20.

DeepMix implements 3D object detection based on detection results

of 2D object detection models like YOLO [18]. We run CGG on

the MR device (HoloLens), and only the tiles with a compression

ratio higher than 0 are sent to the edge server (Alienware 17 R3)

for processing. Neglecting computing tiles with zero compression

ratio only causes less than 4.7% accuracy loss. The server then

sends the detection results (bounding boxes and objects’ classes)

back to the MR device. We observe that both transmission latency

and computing latency on the server is significantly reduced with

ARAC supernet under different network conditions. As shown in

Fig. 21, ARAC supernet reduces end-to-end latency by 32.2% to

49.3% compared to the original DeepMix implementation under

different network conditions. The data processing latency on the

server is reduced by 50.7%, and the data transmission latency is

reduced by 56.5% to 66.7%. The overhead of the computing guiding

gate on the MR device is less than 4.2ms.

7.9 Cross-Domain and Multi-Scale Performance

We evaluate the performance of the compression guiding gate

(CGG) that is trained on one domain (e.g., a dataset) but is applied to

196

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Xueyu Hou∗ , Yongjie Guan∗ , and Tao Han

60

45

30

15

0
WiFi-2.4G WiFi-5G LTE

Data Trans.

Data Process
(Server)

Data Process
(MR device)

W
ith

 A
R

A
C

W
ith

 A
R

A
C

W
ith

 A
R

A
C

En
d-

to
- e

nd
 L

at
en

cy
 (m

s)

Figure 21: Latency of DeepMix w/ and w/o ARAC supernet.

A
cc

ur
ac

y
R

ed
uc

tio
n

(%
)

0

20

15

10

5

Figure 22: Cross-domain performance (Base Model: YOLO-V3, Jet-

son TX2, memory constraint= 500MB, latency constraint= 75ms).

Large Medium Small
(b) COCO(a) ImageNetTo

p-
1

A
cc

ur
ac

y
(%

)

75

78

77

76

ARAC Channel-Pruning

Large Medium Small

m
A

P

24

48

40

32

ARAC Channel-Pruning

Figure 23: Multi-scale observation: (a) ResNet-50, (b) YOLO-V3.

another domain (e.g., another dataset). Besides COCO dataset [46],

we include four other datasets that are collected on various loca-

tions and with different contents: VID [62], UA [78] (high-way

traffic in China), VIRAT [54] (on-campus), and GSV [91] (google

street view). As shown in Fig. 22, applying a CGG from another

domain generates an accuracy reduction of < 10% in most cross-

domain cases, which indicates the transferability of the CGG. Note

that the poor cross-domain performance between GSV and VID is

due to the large difference between the two datasets’ contents. In

practice, a common deep learning solution is to train the model

on large datasets like ImageNet and COCO, then to finetune the

model on the customized dataset to make the model adaptive to the

specific application.

We observe the accuracy distribution of ARAC supernets regard-

ing the sizes of objects in images. For the ImageNet dataset (image

classification), we group objects into large, medium, and small size

as > 70%, between 40% and 70%, < 40% area of the whole image,

respectively. For the COCO dataset (object detection), we group

objects into large, medium, and small size as > 50%, between 25%

and 50%, < 25% area of the whole image, respectively. As shown in

Fig. 23, ARAC supernet outperforms channel-pruning in all sizes.

Especially, it shows significant accuracy improvement on small-size

objects by 0.6% (image classification) and 12% (object detection).

The underlying reason is that the recognition on small objects is

easily affected by other pixels of the image when processed by

spatial-agnostic inference like channel-pruning. As ARAC supernet

adaptively allocates the computation on different pixels in an image,

it prevents interference from redundant pixels on the final results.

8 DISCUSSION

• Training overhead of ARAC supernet: In Table 1, we compare the

training time of the ARAC supernet with channel-pruning [39]

ARAC Supernet Channel-Pruning Original Model

(five levels+CGG) (four levels)

27.5h 67h 218h

Table 1: Comparison of training time (base model: ResNet-50).

Ground truth Persian cat Titi MinkGround truth English setter
ARAC output Persian cat Titi MinkEnglish setter

Original output Lynx Spider monkey AlbatrossBrittany spaniel

Example images

Figure 24: Image examples from ImageNet validation dataset [7],

original model: ResNet-50 [21].

and the original model. We utilize ResNet-50 as the base model

and train on ImageNet dataset [7]. As ARAC supernet integrates

sub-networks with different compression levels and trains them

together with one loss function (§4.3), the sharing of model parame-

ters among sub-networks allows all sub-networks to converge syn-

chronously. The channel-pruned model with different compression

levels can only be trained individually. Thus, compared to channel-

pruning [39], the ARAC supernet can finish training within less

than 50% of the training time for channel-pruning.

•Online Overhead:We observe the latency breakdown of the end-to-

end processing latency with ARAC supernet. Overall, the average

overhead of CGG and DEMUX (including CLG) is less than 7.3% of

the total execution latency.

• Accuracy improvement by ARAC supernet: As our approach makes

the network focus on processing regions in an image that contain

key features related to the vision task, the side-effect of redundant

pixels is weaken or eliminated, which is equivalent to strengthen

the effects of key-feature pixels on the final output. For cases when

the side-effect from redundant pixels are so strong that the original

network is misled to a wrong output, the ARAC supernet may

help the model to remove the side-effect and output correct results.

We show four such examples in Fig. 24. Similar observations are

reported by [95] and [43].

9 CONCLUSION

In this paper, we proposed a spatial-based dynamic CNN accel-

eration framework, NeuLens, adaptive to users’ SLOs for mobile

and edge platforms. A novel dynamic inference mechanism, ARAC

supernet, was presented. Splitting image into tiles can adaptively

select computational cost for each tile and ensure speed-up on

general platforms. We also proposed an online controller to tune

ARAC supernet based on users’ SLOs with neglectable overhead

on mobile/edge devices. NeuLens outperforms baseline methods

by up to 58% latency reduction with the same accuracy and by up

to 67.9% accuracy improvement under the same latency/memory

constraints. Significant performance improvements are observed

in mobile vision applications like continuous object detection and

3D object detection for MR devices.

10 ACKNOWLEDGEMENTS

We sincerely thank our anonymous shepherd and reviewers for

their valuable comments. This work is partially supported by the US

National Science Foundation under Grant No. 2147821, No. 2147623,

No. 2047655, and No. 2049875.

197

NeuLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on Edge ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

REFERENCES
[1] AmirAli Abdolrashidi et al. “Pareto-optimal quantized resnet is mostly 4-bit”.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 3091–3099.

[2] Aman Kumar Agrawal et al. “Automatic traffic accident detection system
using ResNet and SVM”. In: 2020 Fifth International Conference on Research
in Computational Intelligence and Communication Networks (ICRCICN). IEEE.
2020, pp. 71–76.

[3] Tolga Bolukbasi et al. “Adaptive neural networks for efficient inference”. In:
International Conference on Machine Learning. PMLR. 2017, pp. 527–536.

[4] Shuai Che et al. “Rodinia: A benchmark suite for heterogeneous computing”.
In: 2009 IEEE international symposium on workload characterization (IISWC).
Ieee. 2009, pp. 44–54.

[5] Tiffany Yu-Han Chen et al. “Glimpse: Continuous, Real-Time Object Recog-
nition on Mobile Devices”. In: Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems, SenSys 2015, Seoul, South Korea, Novem-
ber 1-4, 2015. Ed. by Junehwa Song, Tarek F. Abdelzaher, and Cecilia Mas-
colo. ACM, 2015, pp. 155–168. doi: 10 . 1145 / 2809695 . 2809711. url: https :
//doi.org/10.1145/2809695.2809711.

[6] Sagar Chhetri et al. “Deep learning for vision-based fall detection system:
Enhanced optical dynamic flow”. In: Computational Intelligence 37.1 (2021),
pp. 578–595.

[7] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009
IEEE conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–
255.

[8] Xuanyi Dong et al. “More is less: A more complicated network with less
inference complexity”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 5840–5848.

[9] Kuntai Du et al. “Server-driven video streaming for deep learning inference”. In:
Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication. 2020, pp. 557–570.

[10] Shikha Dubey, Abhijeet Boragule, and Moongu Jeon. “3d resnet with ranking
loss function for abnormal activity detection in videos”. In: 2019 International
Conference on Control, Automation and Information Sciences (ICCAIS). IEEE.
2019, pp. 1–6.

[11] Gamaleldin Elsayed, Simon Kornblith, and Quoc V Le. “Saccader: Improving ac-
curacy of hard attention models for vision”. In: Advances in Neural Information
Processing Systems 32 (2019).

[12] Biyi Fang, Xiao Zeng, and Mi Zhang. “Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision”. In: Proceedings of the
24th Annual International Conference on Mobile Computing and Networking.
2018, pp. 115–127.

[13] Biyi Fang et al. “FlexDNN: Input-adaptive on-device deep learning for efficient
mobile vision”. In: 2020 IEEE/ACM Symposium on Edge Computing (SEC). IEEE.
2020, pp. 84–95.

[14] Di Feng et al. “A review and comparative study on probabilistic object detection
in autonomous driving”. In: IEEE Transactions on Intelligent Transportation
Systems (2021).

[15] Michael Figurnov et al. “Spatially adaptive computation time for residual net-
works”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 1039–1048.

[16] Deeptha Girish, Vineeta Singh, and Anca Ralescu. “Understanding action recog-
nition in still images”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. 2020, pp. 370–371.

[17] Yongjie Guan et al. “DeepMix: A Real-time Adaptive Virtual Content Reg-
istration System with Intelligent Detection”. In: IEEE INFOCOM 2021-IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE. 2021, pp. 1–2.

[18] Yongjie Guan et al. “DeepMix: Mobility-aware, Lightweight, and Hybrid 3D
Object Detection for Headsets”. In: arXiv preprint arXiv:2201.08812 (2022).

[19] Rui Han et al. “LegoDNN: block-grained scaling of deep neural networks for
mobile vision”. In: Proceedings of the 27th Annual International Conference on
Mobile Computing and Networking. 2021, pp. 406–419.

[20] Yizeng Han et al. “Spatially adaptive feature refinement for efficient inference”.
In: IEEE Transactions on Image Processing 30 (2021), pp. 9345–9358.

[21] KaimingHe et al. “Deep residual learning for image recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–
778.

[22] Seonyeong Heo et al. “Real-time object detection systemwith multi-path neural
networks”. In: 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE. 2020, pp. 174–187.

[23] Xueyu Hou and Tao Han. “TrustServing: A quality inspection sampling ap-
proach for remote DNN services”. In: 2020 17th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON). IEEE. 2020,
pp. 1–9.

[24] Xueyu Hou et al. “Distredge: Speeding up convolutional neural network in-
ference on distributed edge devices”. In: 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE. 2022, pp. 1097–1107.

[25] Andrew Howard et al. “Searching for mobilenetv3”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2019, pp. 1314–1324.

[26] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks
for mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).

[27] Weizhe Hua et al. “Boosting the performance of cnn accelerators with dynamic
fine-grained channel gating”. In: Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. 2019, pp. 139–150.

[28] Weizhe Hua et al. “Channel gating neural networks”. In: Advances in Neural
Information Processing Systems 32 (2019).

[29] Gao Huang et al. “Condensenet: An efficient densenet using learned group
convolutions”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018, pp. 2752–2761.

[30] Gao Huang et al. “Glance and Focus Networks for Dynamic Visual Recognition”.
In: arXiv preprint arXiv:2201.03014 (2022).

[31] Gao Huang et al. “Multi-scale dense networks for resource efficient image
classification”. In: arXiv preprint arXiv:1703.09844 (2017).

[32] Itay Hubara et al. “Binarized neural networks”. In: Advances in neural informa-
tion processing systems 29 (2016).

[33] Benoit Jacob et al. “Quantization and training of neural networks for efficient
integer-arithmetic-only inference”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, pp. 2704–2713.

[34] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with
gumbel-softmax”. In: arXiv preprint arXiv:1611.01144 (2016).

[35] Borui Jiang and YadongMu. “Russian Doll Network: Learning Nested Networks
for Sample-Adaptive Dynamic Inference”. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. 2021, pp. 336–344.

[36] Junchen Jiang et al. “Chameleon: scalable adaptation of video analytics”. In:
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM 2018, Budapest, Hungary, August 20-25, 2018. Ed. by
Sergey Gorinsky and János Tapolcai. ACM, 2018, pp. 253–266. doi: 10.1145/
3230543.3230574. url: https://doi.org/10.1145/3230543.3230574.

[37] Shiqi Jiang et al. “Flexible high-resolution object detection on edge devices with
tunable latency”. In: Proceedings of the 27th Annual International Conference on
Mobile Computing and Networking. 2021, pp. 559–572.

[38] Woochul Kang, Daeyeon Kim, and Junyoung Park. “Dms: Dynamic model
scaling for quality-aware deep learning inference in mobile and embedded
devices”. In: IEEE Access 7 (2019), pp. 168048–168059.

[39] Ashish Khetan and Zohar Karnin. “Prunenet: Channel pruning via global
importance”. In: arXiv preprint arXiv:2005.11282 (2020).

[40] Yong-Deok Kim et al. “Compression of deep convolutional neural networks for
fast and low power mobile applications”. In: arXiv preprint arXiv:1511.06530
(2015).

[41] Stefanos Laskaridis et al. “SPINN: synergistic progressive inference of neural
networks over device and cloud”. In: Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking. 2020, pp. 1–15.

[42] Yann LeCun, John Denker, and Sara Solla. “Optimal brain damage”. In:Advances
in neural information processing systems 2 (1989).

[43] Changlin Li et al. “Dynamic slimmable network”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 8607–8617.

[44] Hao Li et al. “Pruning filters for efficient convnets”. In: arXiv preprint arXiv:1608.08710
(2016).

[45] Ji Lin et al. “Runtime neural pruning”. In: Advances in neural information
processing systems 30 (2017).

[46] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European
conference on computer vision. Springer. 2014, pp. 740–755.

[47] Luyang Liu, Hongyu Li, and Marco Gruteser. “Edge assisted real-time object
detection for mobile augmented reality”. In: The 25th Annual International
Conference on Mobile Computing and Networking. 2019, pp. 1–16.

[48] Miaomiao Liu, Xianzhong Ding, and Wan Du. “Continuous, real-time object
detection onmobile devices without offloading”. In: 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS). IEEE. 2020, pp. 976–986.

[49] Zhuang Liu et al. “Learning efficient convolutional networks through network
slimming”. In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 2736–2744.

[50] Zhuang Liu et al. “Rethinking the value of network pruning”. In: arXiv preprint
arXiv:1810.05270 (2018).

[51] Ningning Ma et al. “Shufflenet v2: Practical guidelines for efficient cnn archi-
tecture design”. In: Proceedings of the European conference on computer vision
(ECCV). 2018, pp. 116–131.

[52] Jeffrey L McKinstry et al. “Discovering low-precision networks close to full-
precision networks for efficient embedded inference”. In: arXiv preprint arXiv:1809.04191
(2018).

198

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Xueyu Hou∗ , Yongjie Guan∗ , and Tao Han

[53] Wei Niu et al. “Patdnn: Achieving real-time dnn execution on mobile devices
with pattern-based weight pruning”. In: Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 2020, pp. 907–922.

[54] Sangmin Oh et al. “A large-scale benchmark dataset for event recognition in
surveillance video”. In: CVPR 2011. IEEE. 2011, pp. 3153–3160.

[55] Athanasios Papadopoulos, Pawel Korus, and Nasir Memon. “Hard-attention
for scalable image classification”. In: Advances in Neural Information Processing
Systems 34 (2021).

[56] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035. url:
http://papers.neurips.cc/paper/9015- pytorch- an- imperative- style- high-
performance-deep-learning-library.pdf.

[57] Mohammad Rastegari et al. “Xnor-net: Imagenet classification using binary
convolutional neural networks”. In: European conference on computer vision.
Springer. 2016, pp. 525–542.

[58] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In:
arXiv preprint arXiv:1804.02767 (2018).

[59] Mengye Ren et al. “Sbnet: Sparse blocks network for fast inference”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 8711–8720.

[60] Adria Ruiz and Jakob Verbeek. “Adaptative inference cost with convolutional
neural mixture models”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2019, pp. 1872–1881.

[61] Adria Ruiz and Jakob Verbeek. “Anytime inference with distilled hierarchi-
cal neural ensembles”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. 11. 2021, pp. 9463–9471.

[62] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”.
In: International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252.
doi: 10.1007/s11263-015-0816-y.

[63] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bottlenecks”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 4510–4520.

[64] Jun Sang et al. “An improved YOLOv2 for vehicle detection”. In: Sensors 18.12
(2018), p. 4272.

[65] Noam Shazeer et al. “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer”. In: arXiv preprint arXiv:1701.06538 (2017).

[66] Johannes Stallkamp et al. “The German traffic sign recognition benchmark: a
multi-class classification competition”. In: The 2011 international joint conference
on neural networks. IEEE. 2011, pp. 1453–1460.

[67] Qigong Sun et al. “Effective and fast: A novel sequential single path search for
mixed-precision quantization”. In: arXiv preprint arXiv:2103.02904 (2021).

[68] Wenyu Sun et al. “A 112-765 GOPS/W FPGA-based CNN Accelerator using
Importance Map Guided Adaptive Activation Sparsification for Pix2pix Ap-
plications”. In: 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC). 2020,
pp. 1–4. doi: 10.1109/A-SSCC48613.2020.9336115.

[69] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[70] Faezeh Tafazzoli, Hichem Frigui, and Keishin Nishiyama. “A large and diverse
dataset for improved vehicle make and model recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition workshops. 2017,
pp. 1–8.

[71] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for con-
volutional neural networks”. In: International conference on machine learning.
PMLR. 2019, pp. 6105–6114.

[72] Chen Tang et al. “Adaptive Pixel-wise Structured Sparse Network for Efficient
CNNs”. In: arXiv preprint arXiv:2010.11083 (2020).

[73] Andreas Veit and Serge Belongie. “Convolutional networks with adaptive
inference graphs”. In: Proceedings of the European Conference on Computer
Vision (ECCV). 2018, pp. 3–18.

[74] Thomas Verelst and Tinne Tuytelaars. “Dynamic convolutions: Exploiting
spatial sparsity for faster inference”. In: Proceedings of the ieee/cvf conference
on computer vision and pattern recognition. 2020, pp. 2320–2329.

[75] Huanyu Wang et al. “CoDiNet: Path Distribution Modeling with Consistency
and Diversity for Dynamic Routing”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (2021).

[76] XinWang et al. “Skipnet: Learning dynamic routing in convolutional networks”.
In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,
pp. 409–424.

[77] Yulin Wang et al. “Glance and focus: a dynamic approach to reducing spa-
tial redundancy in image classification”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 2432–2444.

[78] Longyin Wen et al. “UA-DETRAC: A new benchmark and protocol for multi-
object detection and tracking”. In: Computer Vision and Image Understanding
193 (2020), p. 102907.

[79] Maciej Wołczyk et al. “Zero Time Waste: Recycling Predictions in Early Exit
Neural Networks”. In: Advances in Neural Information Processing Systems 34
(2021).

[80] Sanghyun Woo et al. “Cbam: Convolutional block attention module”. In: Pro-
ceedings of the European conference on computer vision (ECCV). 2018, pp. 3–
19.

[81] Zuxuan Wu et al. “Blockdrop: Dynamic inference paths in residual networks”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2018, pp. 8817–8826.

[82] Xiaoling Xia, Cui Xu, and Bing Nan. “Inception-v3 for flower classification”.
In: 2017 2nd international conference on image, vision and computing (ICIVC).
IEEE. 2017, pp. 783–787.

[83] Zhenda Xie et al. “Spatially adaptive inference with stochastic feature sampling
and interpolation”. In: European conference on computer vision. Springer. 2020,
pp. 531–548.

[84] Ran Xu et al. “ApproxDet: content and contention-aware approximate object
detection for mobiles”. In: Proceedings of the 18th Conference on Embedded
Networked Sensor Systems. 2020, pp. 449–462.

[85] Zirui Xu et al. “Reform: Static and dynamic resource-aware dnn reconfigura-
tion framework for mobile device”. In: Proceedings of the 56th Annual Design
Automation Conference 2019. 2019, pp. 1–6.

[86] Brandon Yang et al. “Condconv: Conditionally parameterized convolutions for
efficient inference”. In: Advances in Neural Information Processing Systems 32
(2019).

[87] Le Yang et al. “Resolution adaptive networks for efficient inference”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 2369–2378.

[88] Jaehyoung Yoo et al. “RaScaNet: Learning Tiny Models by Raster-Scanning
Images”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 13673–13682.

[89] Jiahui Yu and Thomas S Huang. “Universally slimmable networks and improved
training techniques”. In: Proceedings of the IEEE/CVF international conference
on computer vision. 2019, pp. 1803–1811.

[90] Jiahui Yu et al. “Slimmable neural networks”. In: arXiv preprint arXiv:1812.08928
(2018).

[91] A.R. Zamir and M. Shah. Image Geo-localization Based on Multiple Nearest
Neighbor Feature Matching using Generalized Graphs. 2014. doi: 10.1109/TPAMI.
2014.2299799.

[92] Wuyang Zhang et al. “Elf: accelerate high-resolution mobile deep vision with
content-aware parallel offloading”. In: Proceedings of the 27th Annual Interna-
tional Conference on Mobile Computing and Networking. 2021, pp. 201–214.

[93] Xiangyu Zhang et al. “Shufflenet: An extremely efficient convolutional neural
network for mobile devices”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 6848–6856.

[94] Yikang Zhang, Zhuo Chen, and Zhao Zhong. “Collaboration of experts: Achiev-
ing 80% top-1 accuracy on imagenet with 100m flops”. In: arXiv preprint
arXiv:2107.03815 (2021).

[95] Mingjian Zhu et al. “Dynamic Resolution Network”. In: Advances in Neural
Information Processing Systems 34 (2021).

199

