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ABSTRACT

Convolutional neural networks (CNNs) play an important role in
today’s mobile and edge computing systems for vision-based tasks
like object classification and detection. However, state-of-the-art
methods on CNN acceleration are trapped in either limited prac-
tical latency speed-up on general computing platforms or latency
speed-up with severe accuracy loss. In this paper, we propose a
spatial-based dynamic CNN acceleration framework, NeuLens, for
mobile and edge platforms. Specially, we design a novel dynamic
inference mechanism, assemble region-aware convolution (ARAC)
supernet, that peels off redundant operations inside CNN models as
many as possible based on spatial redundancy and channel slicing.
In ARAC supernet, the CNN inference flow is split into multiple
independent micro-flows, and the computational cost of each can be
autonomously adjusted based on its tiled-input content and applica-
tion requirements. These micro-flows can be loaded into hardware
like GPUs as single models. Consequently, its operation reduction
can be well translated into latency speed-up and is compatible with
hardware-level accelerations. Moreover, the inference accuracy can
be well preserved by identifying critical regions on images and
processing them in the original resolution with large micro-flow.
Based on our evaluation, NeuLens outperforms baseline methods
by up to 58% latency reduction with the same accuracy and by up
to 67.9% accuracy improvement under the same latency/memory
constraints.
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1 INTRODUCTION

Computer vision related tasks usually require a large number of
computational resources [23]. Many studies focus on reducing the
computational cost of CNN inference. Some works propose light-
weight network architectures like MobileNets [25, 26, 63], Con-
denseNet [29], ShuffleNets [51, 93], and EfficientNet [71]. Other
studies compress existing networks by pruning [42, 44, 49, 50] or
quantization [32, 33, 57]. Recent works propose various ways that
allow dynamic computational cost adjustment of CNN inference [19,
43] (details in §2.2). Inspired by human’s vision where only a limited
portion of visual scene is processed by the visual system, recent
works dig into the potential of computational cost reduction based
on input spatial information by proposing specialized network ar-
chitectures [83, 88] or by designing computing flows compatible
with general CNN architectures [20, 77, 95]. In video streaming and
analytics, regions of interest (Rols) are determined by cross-frame
tracking (Edge-Assisted [47] and EIf [92]) or by low-resolution de-
tection (DDS [9]). By Rol-based encoding, the transmission data
sizes of offloaded frames are significantly reduced [47].

In this paper, we propose an adaptive framework, NeuLens, for
dynamic CNN inference acceleration on mobile and edge devices.
First, we design a novel dynamic mechanism, assemble region-
aware convolutional (ARAC) supernet (§4), that effectively reduces
inference cost with small accuracy loss. An ARAC supernet is a
spatial-split network ensemble. It adaptively selects sub-networks
with different sizes for split tiles of an image based on their rele-
vance to the final prediction. Furthermore, we design a lightweight
online controller, DEMUX (§5), that dynamically tunes per-tile
sub-network selection and the supernet’s configurations based on
service level objectives (SLOs) in real applications. Finally, we com-
prehensively evaluate ARAC supernet on different mobile/edge
platforms and various applications (§7). Based on our evaluation,
ARAC supernet achieves up to 67.9% accuracy improvement over
state-of-the-art (SOTA) dynamic inference methods under the same
latency/memory constraints (§7.2) and up to 1.23x higher accuracy
over SOTA model compression techniques with the same inference
latency (§7.4). In addition, applying ARAC supernet into continuous
object detection systems boosts the performance by up to 7.7x over
SOTA techniques [47] (§7.6).

We summarize the contributions of this paper as follows:
Development of a novel CNN acceleration mechanism for
mobile/edge computing platforms (§4). By exploiting spatial
and depth redundancy on images and in CNNs, we propose an
acceleration mechanism, ARAC supernet, that effectively reduces
the consumption of computing resources with slight accuracy re-
duction. Compared to existing acceleration works, ARAC supernet
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achieves the Pareto optimality on accuracy-latency trade-off. We
highlight the following advanced techniques in ARAC supernet:

e Construction of an ARAC supernet that generally applies to CNN
architectures (§4.1). By splitting an input image into tiles, the su-
pernet utilizes sub-networks with different compression levels to
analyze them. The outputs from the supernet are concatenated and
fed into the rest layers in the CNN model to compute the final re-
sults. Such structure allows the supernet to reduce spatial and depth
redundancy in computation without affecting the overall working
schemes of the original CNNs.

e Content-aware per-tile adjustment on computational cost in
ARAC supernet (§4.4). A compression guiding gate is designed
to effectively analyze the content in each tile and assign a sub-
network with proper compression level to analyze them in the
supernet. A labeling rule is proposed to automate the training set
generation for the compression guiding gate.

e Effective conversion from operation redundancy reduction to
on-device latency acceleration. In ARAC supernet, the computation
flow is split into multiple independent micro-flows. Based on the
content of its input (a tile), each micro-flow adjusts the operation
amount (compression level) in analyzing the input independently.
As each micro-flow is loaded into a device’s computing unit (e.g.,
GPU) like an individual neural network, its operation reduction is
directly converted into latency acceleration.

Design of a lightweight SLO-aware controller adaptive to
limited computing budgets on mobile/edge devices (§5). We
design an online lightweight controller, DEMUX, to tune ARAC
supernet based on user’s SLOs with neglectable overhead on mobile
and edge devices. Given customized options on the parameters of
an ARAC supernet, DEMUX adaptively selects the optimal set of
parameters and keeps high accuracy within the user’s SLOs.
Implementation of ARAC supernet and performance eval-
uation on different mobile/edge computing platforms and
for various vision applications (§6, 7). We comprehensively
evaluate the performance of ARAC supernet from several aspects
and proves its effectiveness in boosting the overall performance
in CNN-related applications on mobile/edge devices. We highlight
our evaluation results as follows:

e Outperforms SOTA techniques in dynamic inference and model
compression on mobile/edge devices by up to 67.9% (§7.2) and 1.23x
(§7.4), respectively.

e Improves overall performance of SOTA continuous object detec-
tion systems on edge by up to 7.7x (§7.6).

e Reduces end-to-end latency by almost 50% on a SOTA 3D objec-
tion detection system for mixed-reality devices (§7.8).

2 BACKGROUND AND MOTIVATION
2.1 Spatial Related Convolution

As demonstrated in [15, 83], there can be a considerable amount
of redundant pixels in an image that are irrelevant to accurate
recognition. Several works focus on reducing convolutional oper-
ations of redundant pixels. The majority of these works propose
spatial neural architectures. Compact networks are designed for
spatial-redundancy based operation reduction [15, 27, 28, 59, 68,
72, 74, 83]. Sequential networks are designed with multi-scale res-
olutions [11, 55, 87, 88]. CBAM [80] designs an attention module
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that can be inserted into CNNs. Other recent works propose spatial-
redundancy-based modifications on computing flows that can be
generally applied to popular CNN architectures rather than design-
ing new ones. GFNet [77, 30] dynamically processes a sequence
of crops on the image until prediction with sufficient confidence.
DRNet [95] predicts optimal resolution for each input image with
a resolution predictor. SAR [20] designs a dual-branch network
architecture with one analyzing low-resolution input features and
selecting high-resolution refined areas for the other in each layer.
Compared to these studies, our work proposes a novel computing
flow, ARAC supernet, to tackle spatial redundancy. By splitting the
input images into tiles, we select different sub-networks in supernet
based on their contents. ARAC supernet generally applies to popu-
lar CNN architectures like [20, 77, 95]. It is important to note that
works like SAR [20], CGNet [27, 28] and ASC [68, 72] are not fully
supported for practical speed-up by deep learning platforms and
require special hardware/framework support. In contrast, our work
can be effectively implemented on SOTA deep learning platforms
and realize latency speed-up.

2.2 Dynamic Inference

We divide SOTA studies on dynamic inference into two types based
on whether they are platform and SLO adaptive.

Platform- and SLO-Agnostic: Some works focus on modify-
ing or designing a single network with the dynamic mechanism.
Early-exist topology is proposed for CNNs ( [3], MSDNet [31],
and ZTW [79]). CNMMs [60] and RNP [45] design networks that
can be dynamically pruned. Skipnet [76] and BlockDrop [81] skip
blocks in ResNet based on inputs. Similarly, ConvNet-AIG [73] de-
termines whether to skip each layer based on estimated relevance,
and CoDiNet [75] optimizes layer skipping based on cross-image
similarity. LCCL [8] avoids computing zeros in feature maps by
predicting their locations. Other works develop network ensem-
bles for dynamic inference. Russian Doll Network [35] constructs a
nested network by embedding smaller sub-networks inside larger
ones. HNE [61] designs a hierarchical neural ensemble that allows
branch number adjustment. Slimmable networks [43, 89, 90] ad-
just filter numbers in layers for different inputs. CoE [94] pools
a collection of networks trained by mutually exclusive subsets in
a dataset. MoE [65] and CondConv [86] construct sub-networks
with mixture-of-experts and selects a combination of them for each
input. Overall, these works focus on training optimization and ar-
chitecture modifications. Their designs are hand-crafted without
considerations on adaptability to platforms and SLOs [41].
Platform- and SLO-Adaptive: In contrast, several works focus on
optimizing system-level performance on mobile and edge devices
under SLOs. Some works design adaptive frameworks for general
CNN . NestDNN [12] dynamically implements resource-accuracy
trade-off inside a compact multi-capacity model. ReForm [85] pro-
poses a resource-aware DNN reconfiguration framework based
on the ADMM algorithm. DMS [38] controls resource demand of
inference by adaptive pruning. PatDNN [53] designs an efficient
DNN framework based on kernel-pattern pruning. LegoDNN [19]
dynamically scales DNNs by switching retrained descendant blocks
in them. Other works develop adaptive framework by addressing
features in specific applications like video analytics (FlexDNN [13])
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Figure 1: Accuracy-latency trade-off comparison (Base Model:
ResNet50, ImageNet [7]), Jetson TX2.

and real-time (video) object detection (AdaVP [48], ApproxDet [84],
Remix [37], and [22]).

Compared to these works, our ARAC supernet implements a
dynamic mechanism by breaking inputs into tiles and processes
them with different compressed sub-networks based on spatial
redundancy (§4). Furthermore, we integrate ARAC supernet into
mobile and edge systems by designing an SLO-adaptive online
controller for on-device inference (§5). In other words, our work
also addresses adaptability to platforms and SLOs.

2.3 Observations

The accuracy-latency trade-offs of ARAC supernet and SOTA dy-
namic models are shown in Fig. 1. Both spatial-based works (MS-
GFNet [30], DRNet [95], MSDNet [31], CGNet [27, 28], and SAR [20])
and spatial-agnostic works (LegoDNN [19], DS-Net [43], HNE [61])
are included in the comparison. With the same inference latency,
the ARAC supernet outperforms SOTA methods by 1.22% to 2.07%
in top-1 accuracy. With the same top-1 accuracy, the ARAC supernet
takes 19.4% to 47.9% less time per inference. Most SOTA methods
on spatial redundancy do not implement practical speed-up [20].
The underlying reason is that they segment away operations on
redundant parts in a way that is not compatible with the interme-
diate mapping between layers. For example, SAR [20] (i.e., SOTA
pixel-level dynamic network) selects groups of refined patterns
from input features on each layer and runs operations on them
only. These patterns are irregular, and various patterns are gener-
ated per layer, making it impossible for computing efficiency on
GPUs [20]. In contrast, ARAC supernet jointly takes advantage of
spatially related operation reduction and dynamic inference. By
constructing multiple sub-networks with different sizes in the su-
pernet and splitting the CNN inference flow into spatial dimensions,
the ARAC supernet can adaptively adjust the computation of each
split-flow by selecting the proper sub-network inside the supernet.
Each split-flow executes as an independent micro network without
inter-dependency, i.e., the data flow from layer to layer occurs inside
each micro network only. Thus, each micro network can be loaded
to the GPU as one CNN model, and their operation reduction can
be effectively translated into latency speed-up. Note that, though
GFNet [30, 77] designs spatial-based CNN workflow where its oper-
ation reduction leads to real speed-up, its speed-up is limited due to
the sequential executions on a series of cropped images; similarly
for MSDNet [31].

We demonstrate the performance of two basic CNN acceleration
techniques in Fig. 2, where SOTA studies that apply to practical
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Figure 2: Performance of input resize and channel pruning (Base
Model: ResNet50, ImageNet [7]), Jetson TX2.

speed-up are built upon either of them. The first acceleration tech-
nique is to resize input image to different scales (Fig. 2 (a)). As more
detailed information is lost with down-scaling, the accuracy falls
below 50% with resolution 96. Even SOTA work on dynamic resolu-
tion, DRNet [95], keeps resolution options above 96. Consequently,
adjusting resolution alone cannot generate a wide range of latency
while preserving accuracy. The second acceleration technique is to
prune away channels in layers (Fig. 2 (b)), adopted by LegoDNN [19]
and DS-Net [43]. Note that channel pruning is different from weight
pruning; the latter requires special hardware support for acceler-
ation. As shown in Fig. 2 (b), though the accuracy does not drop
sharply with a few channels pruned away, there is no significant
latency reduction either. When more channels are pruned away,
latency greatly decreases, but accuracy also shows an obvious drop.

2.4 Challenges

One way to take benefits of both input downscale and channel
pruning is shown in Fig. 3. We prepare four sub-networks with
different sizes (compressed on the first three blocks in ResNet-50
with four channel pruning levels). We split the original input image
into 3 X 3 tiles (78 X 78 pixels). We pair each tile with a sub-network
size and the tile is taken as input to the sub-network of the size.
All the outputs of the 3 X 3 tiles are concatenated and fed into the
last block in ResNet-50 to generate the final results of the whole
image. We exhaustively search over all the possible pairs for the four
images in this preliminary study, and we mark the optimal pairs!
of tiles and model sizes for each image in Fig. 3. As shown in Fig. 3,
the number of operations and latency are significantly reduced
without affecting prediction correctness. The success of such tile-
split CNN flow comes from two facts: First, there is no resolution
resize of the original image. While reducing sizes by several times,
the resolution-kept split-tile preserves detailed information. Second,
the method follows the intuition of human vision flow where the
critical parts are analyzed with high intensity and less critical parts
are analyzed with low intensity. The sub-networks of all the tiles
of an image are loaded independently as tiny models, and their
outputs are integrated to generate the image’s final predictions.
Sub-networks implement the variation of required computations
for the tiles with different sizes.

However, though the above preliminary study demonstrates
the benefits of tiling image input, there lie multiple challenges to
implementing such a beneficial inference flow: First, how to design
and prepare efficient and effective sub-networks with different sizes?

The optimal pairs refer to the pairs that generate correct labels with the smallest
number of operations.
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Figure 3: Observations on tiling image input.

We design a compact sub-network ensemble with channel-slicing,
called ARAC supernet (§4.1) where a smaller sub-network can be
directly extracted from the largest using channel-slicing. We jointly
train all the sub-networks together with an ensemble bootstrapping
scheme (§4.3). Second, it is impossible to exhaustively search over
all the possible pairs to find the optimal one in reality. We present
a lightweight guiding gate to autonomously select sub-networks
for tiles (§4.4). Third, how to apply the proposed inference flow to
real applications, especially satisfying service level objectives? We
propose a lightweight online controller for on-device inference
(§5). The controller tunes sub-network selection given latency and
memory constraints while preserving accuracy.

3 SYSTEM OVERVIEW

The proposed SLO-adaptive deep learning acceleration framework
for mobile and edge computing platforms, NeuLens, is shown in
Fig. 4. NeuLens contains a one-time offline stage and a lightweight
online stage. In the offline stage, a CNN model is modified into
an ARAC supernet (supernet generation in Fig 4); a compression
guiding gate is designed to select a sub-network for each tile of an
image (CGG design in Fig. 4); memory predictor, latency predictor,
and accuracy comparator are trained based on profiling data of
supernets (profiling in Fig. 4). In the online stage, a lightweight on-
line controller, DEMUX, is designed to find optimal parameters, i.e.,
tile size, layer number, and per-tile compression levels for ARAC
supernet. DEMUX adaptively selects these parameters based on the
contents of the tiles of an input image and service-level objectives
(SLOs). Based on input images’ contents and applications’ SLOs,
NeuLens splits an CNN inference computing flow into multiple
micro-flows and independently controls each micro-flow’s compu-
tational cost. In this way, NeuLens successfully amplify the benefits
of SOTA CNN acceleration techniques, ie., spatial-redundancy-
based computing-operation reduction and channel pruning. With
the proposed ARAC supernet technique, NeuLens is able to achieve
up to 67.9% accuracy improvement over state-of-the-art (SOTA)
dynamic inference methods under the same latency/memory con-
straints (§7.2) and up to 1.23% higher accuracy over SOTA model
compression techniques with the same inference latency(§7.4).

4 DESIGN OF ARAC SUPERNET

4.1 Workflow of ARAC Supernet

As shown in Fig. 5, the input image is split into k X k tiles. These
tiles are fed into ARAC supernet, and they are processed indepen-
dently in parallel. Based on their contents, they are processed by
different sub-networks in the supernet. The outputs of these tiles
from the supernet are concatenated and are further fed into the
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following layers (the layers in gray in Fig. 5) in the model. There
can be multiple ways to form such a model with ARAC supernet
(e.g., neural architecture search). In this paper, we modify existing
CNN models’ architectures (e.g., MobileNet [26], ResNet-50 [21],
Inception [69]) into architectures with ARAC supernets.

Given an existing CNN model with N layers, we modify the first
P layers (0 < P < N) into the ARAC supernet and keep the rest
(N — P) layers unchanged. In the supernet, we compress the first
(P — 1) layers with different compression levels using techniques
like channel pruning [42, 44, 49, 50] in this paper and we set R
different compression levels C = {c1, ....,cg} (0 < ¢1 < ... <cr £ 1),
which represents different ratios of output channels pruned away
in the first (P — 1) layers. Thus, given a compression level ¢;, the
number of output channels in each layer of the first (P — 1) layers
is:

d)=(1-¢;)-Df, V1<I<(P-1). (1)

where Dy is the original number of output channels, and d’ is the
channel number after compression. When ¢; = 0, we have d;’ =Dy,
which means that there is no output channel pruned away; when
¢i = 1, we have d? = 0, which means that all output channels are
pruned away (i.e., the whole (P — 1) layers are pruned away). A
high compression level represents that a large number of output
channels in the first (P — 1) layers are pruned, and vice versa. In
other words, A sub-network with a higher compression level has a
lower computational cost. Based on the content in each tile and the
latency requirements (details in §5), the system selects different
compression levels for them. Note that though an ARAC supernet
splits an image into tiles, the tiling will not hurt feature extraction
across multiple tiles in the original image. For example, given an
object’s key features across tiles, the supernet will process all the
corresponding tiles with relatively high computation. Following
the supernet, the extracted features from different tiles are fed into
the shared last layers, and the final results are generated based on
the information from all tiles (the original image). Furthermore,
as the construction of ARAC supernet does not break down the
outputs of the original model, ARAC supernet generally applies to
various CNN-based vision tasks (§7.7).

4.2 Intermediate Dimensions in Supernet

For a sub-network in ARAC supernet, the dimensions of input to
the (I + 1)-th layer are equal to those of output from the /-th layer.
The depth of output (i.e., the number of output channels) from a
layer is determined by the compression level as shown in Eq. 1.
For a layer I, the relationships between the output’s and input’s
spatial dimensions (height and width) are determined by the layer’s
configurations [24]:

w{":(wf—1)~sl—b~Al+Fl,
h;n=(hlo—l)~5[—b'Al+Fl.

@
®)

where b is a binary: If the tile is on the edge of the original image
and layer [ is a convolutional layer then b = 1, else b = 0; S; is stride;
Fy is filter size; A; is padding. As we split the input image into k X k
tiles and process them independently with different sub-networks
inside the supernet, the k X k outputs from the supernet need to
be concatenated together. To seamlessly concatenate them, the
spatial dimensions of each output are set to (W /k, H} /k), where
(W, Hp) are the spatial dimensions of input to the (P + 1)-th layer.
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Given (W /k, Hp /k), the intermediate spatial dimensions of inputs
and outputs in sub-networks of supernet can be determined by Eq. 2.
Consequently, we can obtain the spatial dimensions of each split tile,
denoted as (w'™, hi"). Further, we can determine the coordinates
of each tile on the original input image: x1. = 0, x2. = Win — Axip,
Xip = Xi—1; + Win = Axin (3 < i < k);y.1 =0, y.2 = hin — Ayin,
Yoj = Yj—1 + hin — Ayin (3 < j < k); where x;; refers to the x-
coordinate of the tile on the i-th row, y. j refers to the y-coordinate
of the tile on the j-th column, Axj, = (k - win, — Wj,)/(k — 1), and
Ayin = (k-hin —Hin)/(k—1). Note that the origin is on the top-left
corner of the original input data.

In ARAC supernet, each tile is processed independently by a
compression level. We denote the compression level for the tile
at position (i, j) (1 < i, j < k) as ¢; j. For convolutional layers in
supernet, the number of operations (multiply-accumulations) is
Olecono(cij) = (1 —cij)? F12 D} - wp-h] - Dj.For maxpool-
ing layers in supernet, the number of operations (comparisons) is
Olemaxpoot (¢i,j) = (1 —cij) - FI2 -D]_| - w} - h}. Thus, the total
number of operations of supernet with {c; j} can be obtained by:

K TR ZE L Onei)).

4.3 Training of Supernet

For a CNN model with N layers, we offline train R compressed
models with compression levels ¢; (1 < i < R). A straightforward
way is to train the R compressed models individually. However,
the models obtained in the such way do not share weights and
consume a large amount of memory on edge devices [90, 89, 43].
Thus, we form an ensemble of R models by channel slicing. We
denote the weights of layers in the model with compression level ¢q
as W; (1 < [ < N); For the other models with compression levels c;
(2 < i < R) in the ensemble, their weights in layer [ are W;[: (1 —
ci)/(l—c1)~D;’], 1 < I < N.In this way, the number of weights in an
ensemble of R models is equal to that in the model with compression
level ¢y, and the other models can be directly obtained by slicing
its weights on the channel dimension. To train the ensemble of R
(compressed) models, we utilize an ensemble bootstrapping scheme
similar to IEB [43]. The difference between ours and IEB is that:
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Instead of training randomly selected models, we train the models
with compression levels ranging from c3 to cg_ to predict the
soft label generated by the model with compression level ¢, i.e.,
L(Ye;» Ye,) (2 < i < R—1). The model with compression level ¢;
is trained to predict the ground-truth label, i.e., £(yc,, yg:). The
model with compression level cp is trained to predict the probability
accumulation of all the other models, i.e., R 1 Z 1 ycl Similar to
training a slimmable neural network [43], we train the ensemble of
R models together in each training iteration: We compute the losses
defined above individually for all models and accumulate their back-
propagation gradients together; Then, we update weights in the
ensemble. Note that the inputs to these models during training are
images in the training dataset without being split. Given the trained
ensemble of R models, a supernet with P layers can be obtained by
taking each model’s first P layers in the ensemble. The following
(N — P) layers are the same as those in the original CNN model.

4.4 Compression Guiding Gate

We design a compression guiding gate (CGG) at the entrance of an
ARAC supernet. A CGG selects the compression level for each split
image. Specifically, the CGG takes split images as inputs and gener-
ates compression levels for them. A CGG can be regarded as a classi-
fication model that classifies split images into different compression
levels. However, the images in the training dataset are labeled for
the original applications, and we do not have compression-level la-
bels for split images. Thus, we propose a Labeling Rule to generate
compression-level labels for the split images in the training dataset.
With the generated compression-level labels, we can train a CGG
with supervised learning techniques.

4.4.1 Labeling Rule: We refer to the original labels of images as
A-labels and the compression-level labels for split-images as C-labels.
Given compression levels {cy,...,cr} (c1 < ... < cg), we label all
split-images with C-labels in the training dataset. For the split-
images of an image, the labeling rule is: Initially, all the split-images
are processed by the sub-network with compression level c;. If its
final output does not match the A-label, then all the split-images are
labeled as cy; else we raise the compression level of each split-image
to ¢y respectively. If one’s final output does not match the A-label,
then the corresponding split-image is labeled as c;; else we raise
the compression level of it to c3. We repeat the match-label-raise
procedure until we reach compression level cg. Fig. 6 shows an
example of a labeling process given four compression levels.

4.4.2 CGG Architecture: Given an input image X, CGG generates
k X k one-hot R-length vectors {v}rxj. An element in the vector
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Figure 6: An example of Labeling Rule.

represents a compression level ¢; (1 < i < R). The final outputs of
CGG is {carg max v} kxk- The CGG processes the k X k split-images
of X in a batch. Denoting a split-image as x, we have an encoder
& and a feature-mapping function 7: v = ¥ (E(x)). For encoder
&, we utilize one convolutional layer and one maxpooling layer
to integrate spatial information. we utilize a fully connected layer
for feature-mapping function . The compression level choice is
obtained by applying arg max to the output vector of 7.

4.4.3 CGG Training: We label the split-images in the training
dataset by our Labeling Rule. We define the compression-level
loss function as: L = L(CGG(x),cqt(x)), where x is an split-
image, CGG(x) is softmax output of x, cg;(x) is one-hot encod-
ing of compression-level label of x. The image-recognition loss is
Lir = L(y(X), ygt), where y(X) is softmax output from the whole
model, yg; is one-hot encoding of ground-truth label. We optimize
CGG jointly by image-recognition loss and compression-level loss:

er]):z Lei @
where a controls the effect of the two losses. The back-propagations
of L(y(X),yys) to CGG’s parameters are implemented by gumbel-
softmax technique [34]. With the loss function (Eq. 4), the CGG
is trained to analyze the content of a split-image and selects a
compression level to it. The training of the CGG ensures the correct
output of the whole model (the first part in Eq. 4) while matching
the compression-level label (the second part in Eq. 4) as well. With
a higher @, the CGG tends to assign tiles with higher compression
levels for more significant computational cost reduction; with a
lower a, the CGG tends to assign tiles with lower compression
levels for higher accuracy. We set & = 0.7 in this paper.

LecoX)=(1-a)Lip+a

5 CNN INFERENCE W/ SUPERNET

A compression guiding gate (CGG) selects proper compression
levels in an ARAC supernet for tiles of an image. The selected
compression levels from CGG guarantee neglectable accuracy loss
with the smallest number of operations. However, CGG is SLO-
agnostic, i.e., it selects compression levels without consideration
of latency and memory constraints. Thus, we design another SLO-
adaptive component, compression-level gear (§5.2), to tune the
selected compression levels online to meet SLOs. Given candidate
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controllable parameters (P, k, C), a lightweight online controller,
DEMUX (§5.3), is designed to find the optimal set of controllable
parameters.

5.1 Problem Definition

As demonstrated in §4, an ARAC supernet contains the first P layers
of a CNN model with R compression levels; an input image is split
into k X k tiles and is processed by sub-networks in the supernet
independently. Thus, for CNN inference with ARAC supernet, we
can dynamically control: (1) the number of layers in the supernet,
P € P; (2) the number of tiles, k € %; (3) the compression levels
for the tiles, ¢; j € C, (1 < i, j < k). We denote compression-level
matrix for kXk tilesas Q = {c; j}1<; j<k- P, K, and C are candidate
values for P, k, and ¢; j. In general, optimizations of CNN inference
focus on three types of performance: (1) accuracy (Acc), (2) latency
(T), and (3) memory consumption (M). In this paper, we focus on
maximizing accuracy given latency and memory constraints (T and
M):

Acc(P,k,Q), 5

argP*r}}ﬁE* ce( ) (5)
s.t. T(Pk Q) <T, (6)
M(P,k,Q) < M. ()

As higher compression levels would reduce accuracy (Eq. 5) but
get lower latency/memory consumption (Eq. 6 and 7), the trade-off
exists in tuning compression level because high compression level
leads to low accuracy though latency and memory constraints are
satisfied. For the tiles of an input image, the ARAC supernet utilizes
different compression levels to process them. In other words, given
C compression levels and k X k tiles of an input image, there are
C**k combinations of compression level choices for all the tiles of
the image, which can be an extremely large number (e.g., 1, 953, 125
with C = 5 and k = 3). Thus, an efficient solution to Eq. 5 to 7 is
necessary rather than exhaustive search.

5.2 Compression-Level Gear

For k X k tiles of an image, CGG (§4.4) selects compression lev-
els for them. We denote the compression levels of the k X k tiles
selected by CGG as Qg = {cg) hi<ij<ko 08) € C. The inference
latency T(P, k, Qp) and memory consumption M(P, k, Q) are esti-
mated by latency and memory consumption predictors. When the
latency/memory constraints (Eq. 6 and 7) are violated, we adjust
compression levels of the k X k tiles with a compression-level gear
(CLG) by adaptively raising the compression levels of the k X k tiles.
There are different ways to adjust the compression levels. We de-
scribe the way that we empirically find effective (Fig. 12 (a) in §7.3),
which is referred to as confidence-based stepping (CS) method. As
CGG is trained in a supervised way (§4.4), its confidence indicates
the probability of being correctly identified with the compression
level. Thus, we design CLG based on the confidences to Q. Specifi-
cally, we set a confidence threshold 6 and a window length Aw.
The tiles with confidences lower than 6 are sorted by confidences
from low to high, and the Aw tiles are cyclically selected among
them. The CLG runs in loops until latency and memory constraints
(Eq. 6 and 7) are satisfied. In each loop, the CLG raises compression
levels of Aw tiles by one.
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5.3 DEMUX

We design DEMUX to find (P*, k*, Q) of Eq. 5 to 7. DEMUX is
consisted of five lightweight components: CGG (§4.4), CLG (§5.2),
latency predictor, memory predictor, and accuracy comparator.
The workflow of DEMUX is shown in Fig. 7. Given P € # and
k € K, CGG and CLG find the matrix of compression-levels Qp j
that satisfies Eq. 6 and 7 (§5.2). After finding all the matrices of
compression-levels {Qp 1.} pe p ke % the accuracy comparator se-
lects (P*, k*, Q%) from {P, k, Qp i } pe p ke %- We profile the comput-
ing latency and memory consumption with respect to the compres-
sion levels of sub-networks in supernet. We train lightweight linear
regression models to predict latency and memory for a supernet
with the compression levels of all the sub-networks in the supernet
as inputs. Note that the training of the linear regressors are one-time
work and generate small offline overhead, e.g., training time is less
than five minutes on a computer with CPU only (Intel i7-8700K).
For the rest layers following the supernet, we can simply record
their computing latency and memory consumption with respect to
the number of layers. The total latency/memory consumption is
obtained by combining the two parts. As shown in Fig. 8 (a), the
predicted latency and memory consumption match the measured
results with less than 5% error. To select the optimal set among
the sets of (P, k, Q) from CLG, We define degradation-score as the
averaged difference across k X k tiles between the compression
levels selected by CGG and the compression levels adjusted by
CLG. As shown in Fig. 8 (b), there is a strong correlation between
accuracy losses and degradation-scores. Thus, we can offline profile
the curves for each pair of (P, k) and regress a coefficient fp .. The
accuracy loss for each pair of (P, k) can be estimated by fp ;. and
we select (P*, k*, Q*) that has the lowest accuracy loss. Note that,
for all pairs of (P, k), we observe neglectable accuracy loss when
processing tiles with the compression levels selected by CGG.

6 IMPLEMENTATION

The implementation of ARAC supernet is as follows:
Testbeds: For on-device inference evaluations, we choose three
heterogeneous mobile/edge devices: Jetson TX2; Xiaomi 6 Plus;
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Alienware 17 R3. The first device runs Linux Ubuntu 18.04 LTS; The
second device runs Android 10.0; The third device runs Windows10.
Base CNN models, datasets, and framework: We mainly eval-
uate on two most important applications on mobile and edge sys-
tems: (1) Image Classification: We build ARAC supernet based on
three popular CNN models (ResNet50 [21], MobileNetV3 [25], and
Inception-V3 [69]) and we use ImageNet dataset [7]; (2) Object
Detection: We build ARAC supernet based on the most commonly
used model (YOLOv3 [58]) and we use COCO dataset [46]. We use
Pytorch framework [56]. We also evaluate on nine other vision
applications in §7.7,

Baselines: We select three SOTA methods that outperform the
others in Fig. 1: (i) DS-Net [43] adjusts filter numbers in layers by
channel slicing for different inputs. The key difference between
the proposed ARAC supernet and DS-Net is that we split an image
into small tiles and process them respectively with different com-
pressed sub-networks, but DS-Net processes an image as a whole;
(if) MS-GFNet [30] dynamically processes a sequence of crops on
the image until prediction with sufficient confidence. Though MS-
GFNet designs spatial-based CNN workflow where its operation
reduction leads to real speed-up, its speed-up is limited due to
the sequential executions; (iii) LegoDNN [19] dynamically scales
DNNs by switching retrained descendant blocks in them. It offline
generates sets of blocks by filter pruning. It takes an image as a
whole and processes it with adaptively selected block scales. Note
that DS-Net and LegoDNN are the SOTA methods for dynamic in-
ference without spatial-redundancy based acceleration; MS-GFNet
is the SOTA method with spatial-redundancy based acceleration.
We also compare ARAC supernet with SOTA model compression
techniques in §7.4.

Candidate controllable parameters: We set three tile sizes (k)
by splitting images into 2 X 2, 3 X 3, and 4 X 4 tiles. We set five com-
pression levels (R = 5) with compression ratios {0, 0.25,0.5,0.75, 1}.
Note that compression ratio represents the ratio of channels pruned
away, e.g., all channels are pruned away with a compression ratio
equaling to 1. For ResNet50, we set three layer number options
in supernet: two blocks (11 layers), three blocks (23 layers), and
four blocks (41 layers). For MobileNet-V3, we set two-layer number
options in supernet: eight layers and 13 layers. For Inception-V3,
we set three layer number options in supernet: seven layers, after
the first Inception module and after the second Inception module.
For YOLO-V3, we set three layer number options in supernet: after
the first, the second, and the third residual block.
Hyper-parameters in CLG: We study the effects of the two hyper-
parameters in CLG (§5.2). We empirically find the optimal settings
are: Aw = 2 for 2 X 2 tile split, Aw = 4 for 3 x 3 tile split, Aw =5
for 4 x 4 tile split; and 6 = 0.5.

Compression guiding gate: The convolutional layer of the en-
coder in CGG (§4.4) is Conv2d(3, 64, kernel=(7, 7), stride=(4, 4)). The
input tile is resized to 28 X 28 resolution. We train one CGG general
to all tile sizes and layer numbers in supernet. The compression-
level prediction accuracy (ground-truth labels generated by the
labeling rule in §4.4.1) is 82.6% for ResNet50, 79.5% for MobileNet-
V3, 85.7% for Inception-V3, 75.8% for YOLO-V3.

Offline training: We train supernet (§4.3) on two NVIDIA RTX
A6000 GPUs. We adopt the fast training approach in [19] to train
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Figure 9: Accuracy v.s. Latency (Jetson TX2).

the sub-networks in the ARAC supernet. For image classification,
it takes 17h for ResNet50 based supernet, 13.4h for MobileNet-V3
based supernet, and 23.6h for Inception-V3 based supernet. For
object detection, it takes 37.5h for YOLO-V3. For all the supernets,
the pre-trained weights in their base models are used as the initial
weights in training. We train the compression guiding gate (§4.4) on
the same platform and it takes 10.5h to train.
Online overhead: We measure the overhead of CGG (§4.4) and
DEMUX (§5.3). On Jetson TX2 and Alienware 17 R3, the overhead
of CGG and DEMUX is 0.88ms to 1.87ms. On Xiaomi 6 plus, the
overhead of CGG and DEMUX is 4.7ms to 7.2ms.

7 EVALUATION

7.1 Accuracy v.s. Latency

The accuracy v.s. latency curves with different base models are
shown in Fig. 9. The latency is measured on Jetson TX2 and av-
eraged over 200 times inferences. With the same latency, ARAC
supernet outperforms SOTA methods by 0.46% to 76.5% accuracy
improvement. With the same accuracy, ARAC supernet outper-
forms SOTA methods by 2.5% to 58% latency reduction. Compared
to ARAC supernet, MS-GFNet [30] shows relatively sharper drop
in accuracy when low latency. It is mainly due to the cut-off of its
focus sequence, and MS-GFNet mainly relies on the low-resolution
glance stage for predictions with low latency. In addition, due to
its sequential exiting scheme, GFNet can only be applied to image
classification application [77, 30]. The sequential scheme of GFNet
cannot tackle with detection of multiple objects in the same image.
Thus, we only compare ARAC supernet with LegoDNN and DS-
Net in object detection applications. Compared to ARAC supernet,
DS-Net [43] and LegoDNN [19] can only adjust computational cost
at image-level. The regional awareness of ARAC supernet brings
up to 46.2% latency reduction with the same accuracy compared to
DS-Net and LegoDNN.

7.2 Latency/Memory Constraints

We evaluate the accuracy of the ARAC supernet and the baseline
methods under various latency and memory constraints, as shown
in Fig. 10. We implement on three platforms: Jetson TX2 (Fig. 10
(a) to (d)), Xiaomi 6 Plus (Fig. 10 (e) to (h)), Alienware R17 (Fig. 10
(i) to (1)). Under the same latency and memory constraint, ARAC
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Figure 10: Accuracy under latency/memory constraints.

supernet outperforms the baseline methods by 0.06% to 67.9% ac-
curacy improvement with the four base CNN models across the
three platforms. Especially, ARAC supernet achieves high accuracy
improvement over the baseline methods when latency constraints
are stringent, by 2.2% to 67.9%. Due to the sequential execution
of MS-GFNet [30], its performance becomes similar to the spatial-
agnostic methods (DS-Net [43] and LegoDNN [19]). The success
of ARAC supernet in preserving high accuracy under stringent
constraints is because it can wisely select regions that are crucial
to correct predictions and these regions can be analyzed with high
resolution even under stringent conditions.

7.3 Ablation Study

We have the following controllable parameters in the ARAC super-
net: (1) candidate layer numbers in the supernet; (2) candidate tile
sizes in splitting an image; (3) candidate compression levels of sub-
networks. Their default settings are described in §6. We elaborate
on the principle of how to set these parameters here. The selection
of these parameters is determined by two rules: First, different value
of the parameter generates a significant change in performance. Sec-
ond, the overhead of DEMUX with the given options is trivial. For
example, when selecting candidate layer numbers in the supernet
for ResNet-50, we vary the layer number options from one to five,
as shown in Fig. 11. Though increasing the layer number options
above three does not show a significant performance change, it
generates around twice the overhead for DEMUX. Thus, we set
three layer number options for ResNet-50. The settings of tile sizes
and compression levels are determined similarly. Overall, given a
new model, a similar one-time procedure can be applied to find a
group of settings for an ARAC supernet.
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We study the effect of the starting layer of the ARAC supernet.
We observe that starting the supernet from an intermediate layer
demonstrates poorer performance (e.g., 0.2% to 2.7% accuracy re-
duction under the same inference latency for a ResNet-50 based
ARAC supernet). The reason is that the spatial dimensions of the
feature maps in a CNN model decrease with the increase of lay-
ers. For example, the input’s spatial dimensions to ResNet-50 are
224 x 224, the input feature’s spatial dimensions to the 12-th layer
in ResNet-50 are only 14 X 14. Such a low-dimension indicates a lack
of spatial redundancy on the intermediate features. Thus, starting
the ARAC supernet from the intermediate layer (especially from
a very deep layer in a model) lowers its performance compared to
starting from the input layer.

We observe the performance of ARAC supernet with different
settings of CLG in Fig. 12. In Fig. 12 (a), we compare different
compression-level adjustment methods regarding the performance
under different latency constraints (memory constraint= 100MB).
The CS method (details in §5.2) is compared to two other potential
methods, i.e., uniform (increasing the compression levels of all the
tiles together) and min (increasing the compression level of the
tile with the lowest compression level). Overall, the CS method
outperforms them by up to 2.0% to 4.5%, respectively. In Fig. 12 (b),
we observe the effect of the hyper-parameter, confidence threshold
(0f), on the performance of ARAC supernet. While more tiles are
selected to be tuned by the CLG with a higher confidence thresh-
old, it is risky to tune more than needed. Under the same latency
constraint, the accuracy with 07 = 0.75 is up to 0.67% lower than
that with 0¢ = 0.5; the latency constraints under 30ms cannot be
satisfied with 6 = 0.25 due to lack of tunable tiles when constraints
are violated.
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It is important to note that, though these hyper-parameters have
an effect on the performance of ARAC supernet, their effects are
trivial except for the compression-level adjustment methods in
Fig. 12 (a). On the one hand, it justifies the rationality of the design
of the ARAC supernet in §4 and the CLG in §5.2. On the other hand,
it demonstrates the robustness of the ARAC supernet against the
hyper-parameter settings, which reduces the potential engineering
work in applying ARAC supernet in practice.

7.4 ARAC and Model Compression Techniques

As a dynamic inference technique, we have shown that ARAC su-
pernet outperforms SOTA works in §7.1. We further illustrate the
relationship between ARAC supernet and existing model compres-
sion techniques. Unlike dynamic inference, model compression
techniques target generating one compressed model with the low-
est computational cost and the highest accuracy [39, 1, 40]. We
specifically compare ARAC supernet with SOTA model compres-
sion techniques that apply to latency acceleration on general deep
learning platforms. We demonstrate that: (1) ARAC supernet, by
exploiting spatial redundancy on images, outperforms SOTA model
compression techniques; (2) ARAC supernet is complementary to
model compression techniques and can collaboratively boost the
performance with them.

Comparison: We compare ARAC supernet with SOTA model com-
pression techniques that keep high accuracy with effective latency
reduction. While each type of technique includes a series of works
(e.g., over 20 methods in channel pruning), we select the one that
shows the Pareto optimality on accuracy-latency trade-off. Specifi-
cally, for channel pruning, we select PruneNet [39]; for early-exit,
we select ZTW [79]; for low-rank decomposition, we select [40].
The comparison is shown in Fig. 13, where the performance of the
original model is also marked. Overall, benefit from the spatial-
redundancy reduction, ARAC supernet achieves the highest accu-
racy with the same latency, i.e., by 1.1% to over 6.9% higher accuracy
(ResNet-50) and by 8.8% to 1.23X higher accuracy (YOLO-V3). Cor-
respondingly, it achieves the lowest latency with the same accuracy,
i.e., by 60.2% (ResNet-50) and by 3.4% to 18.4% (YOLO-V3) latency
reduction compared to channel pruning. Besides the performance
improvement, the comparison in Fig. 13 also shows another advan-
tage over the model compression techniques, higher granularity
in tuning accuracy-latency tradeoff. As an ARAC supernet splits
the original input image into small tiles and prepares different lev-
els of compressed sub-networks to process them, the accuracy v.s.
latency curve generated by ARAC supernet demonstrates higher
granularity than model compression techniques. For example, in
Fig. 13 (a), in the latency range of 18ms to 34ms, there are only
two points on the curve generated by channel pruning, but there
are eight points on the curve generated by ARAC supernet. The
higher granularity of ARAC supernet largely improves its adaptiv-
ity to dynamic conditions like changing contention on devices, i.e.,
the performance of inference can be adaptively tuned by ARAC
supernet according to the device conditions (details in §7.5).
Integration: In Fig. 14 (a), we show the performance of ARAC
supernet that integrates with low-rank decomposition [40]. The
integration follows the same procedure described in §4 besides that,
the sub-network with different compression levels is formed by
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low-rank decomposition rather than channel pruning. As shown
in Fig. 14 (a), the ARAC supernet with low-rank decomposition
(dashed red curve) raises the accuracy by 1.1% compared to basic
low-rank decomposition. Its performance is 2% lower than the
ARAC supernet with channel pruning (solid red curve), which
justifies the rationality of utilizing channel pruning to generate an
ARAC supernet in our design (§4).
Low-Precision: Like other studies on model compression and
dynamic inference, ARAC supernet is also a technique that is com-
plementary to the studies on low-precision. As shown in Fig. 14 (b),
we integrate low-precision technique [1] into ARAC supernet and
reduce the precision of weights in ARAC supernet to int8 and int4.
The performance of (low-precision) ARAC is compared with that
of the original low-precision model (marked in star symbols). Simi-
lar to the float32 results, ARAC supernet realizes a wide range of
accuracy and latency trade-offs above the original (low-precision)
model, which proves the complementarity between ARAC supernet
and low-precision technique. Note that most studies on DNN model
design [21, 25, 58] and compression [39, 40, 79] keep in the original
precision (float32) because the generation of low-precision model
suffers from high engineering complexity including configuration
calibration procedure, sensitivity to training settings, and frequent
tuning of hyper-parameters during training [1, 52, 67]

7.5 ARAC under Background Loads

We examine the performance of ARAC supernet under background
loads by changing the running conditions of the device with a
GPU-intensive application (Gaussian Elimination in the Rodinia
Benchmark Suite [4]), which is widely used by mobile computing
evaluation [84]. For the latency and memory predictors in DE-
MUX (§5.3), we can easily modify and train them to predict under
varying system contention (memory bandwidth and CPU/GPU
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Figure 15: Performance comparison under dynamic device con-

tention (ResNet-50 [21], Jetson TX2, 30ms latency constraint).

usage) by adding them as inputs [84]. In Fig 15, we show the perfor-
mance comparison of ARAC supernet and two baseline methods,
LegoDNN [19] and channel pruning [39]. As shown in Fig. 15, all
three methods are adaptive to the changing contention on the device
and keep most of their inference execution within the latency con-
straint (30ms). The processing latency of ARAC supernet fluctuates
in a wide range (under 30ms) because it is a content-aware method
that makes an individual decision on how much computation is
assigned to each image according to its content. We also observe
that, the average accuracy of ARAC supernet is 1.5% higher than
that of LegoDNN and 2.8% higher than that of channel-pruning in
the test.

7.6 ARAC in Continuous Object Detection

Recent works on continuous object detection [5, 36, 47, 84] exploit
the temporal correlation between consecutive frames and reduce
the overall computation of video streams by combining model
detection with tracking algorithms [47, 84]. In contrast, ARAC su-
pernet, by modifying the detection model’s computation directly,
reduces computation per frame in video streams. In general, apply-
ing ARAC supernet into a continuous object detection system: (1)
significantly reduces model inference latency in processing a frame
(Fig. 16); (2) increases the system’s adaptivity to various conditions
like cross-frame similarity, sampling rate (FPS), and processing
deadline (Fig. 18). We implement three continuous object detection
systems: offloading (all frames are processed by the detection model
on the server), Edge-Assisted [47], and local [84]. The detection
model is YOLO-V3, the server is with RTX 2070, and the local device
is Jetson TX2. The network is WiFi 2.4GHz. As shown in Fig. 16,
with ARAC supernet, the end-to-end latencies of processing a frame
with the detection model show a significant reduction (36.0% to
54.1%) in all three systems.

We further demonstrate how ARAC supernet contributes to the
overall performance of a continuous object detection system in two
videos. Video-1 and Video-2 are two one-hour videos taken on the
side of a vehicle at 60FPS. As shown in Fig. 17, with different mov-
ing speeds (Video-1: at 45 to 70 mph, Video-2: at around 20mph),
the similarities (SSIM) of the two videos deviates from each other.
In Fig. 18 (a), we observe the accuracy trend along with different
sampling rate (latency constraint= 30ms). As ARAC supernet re-
duces computation in the detection model, it allows more frames to
be processed within a fixed period. Thus, the systems with ARAC
supernet show high adaptivity to the increase of sampling rate. For
example, the accuracy of offloading with ARAC supernet keeps the
highest in all cases. In contrast, the accuracy of Edge-Assisted is
up to 88.5% lower than that of offloading with ARAC supernet. In
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Figure 18: Performance comparison of continuous object detection.

Fig. 18 (b), we observe the performance (IoU as metric [47]) under
different per-frame latency constraints. Specifically, the detection
results of a frame are required to be obtained within a latency
constraint once a frame is sampled 2. To satisfy a small latency
constraint, the low-accuracy detection results can be frequently
generated by the tracker. Consequently, Edge-Assisted has poor
performance with small latency constraints on videos with low
similarity (e.g., Video-1). For example, for Video-1, its IoU is < 0.4
when the latency constraint is less than 40ms. In contrast, offload-
ing with ARAC supernet outperforms Edge-Assisted by up to 1.25%
when the latency constraints are 30 and 40ms. Local with ARAC
supernet also achieves comparable performance with Edge-Assisted
in Fig. 18 (b). When the server has poorer GPU (e.g., GTX 1070),
local with ARAC supernet even outperforms Edge-Assisted by up
to 95% when the latency constraint is 30ms. We also observe that
the combination of ARAC supernet with Edge-Assisted achieves
the highest performance in all cases. Compared to Edge-Assisted,
the Edge-Assisted with ARAC supernet increases accuracy by up
to 1.25x and 7.7X in Fig. 18 (a) and (b), respectively.

7.7 ARAC in Various Vision Applications

Besides image classification and object detection, we also evaluate
the performance of ARAC supernet in other vision applications,
including action recognition [16], traffic accident detection [2], ab-
normal activity detection [10], traffic sign recognition [66], flower
classification [82], vehicle detection [64], fall detection [6], vehicle
make and model recognition [70]. As shown in Fig. 19, ARAC su-
pernet achieves the highest accuracy under the same constraints
in all applications. Reducing computation based on spatial redun-
dancy allows ARAC supernet to preserve high accuracy with lower
latency and less memory consumption.

2Such latency constraint is common in real applications because the detection
results are often utilized by other applications like augmented reality [18] and au-
tonomous driving [14].
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Figure 20: DeepMix [18] w/ ARAC supernet.

7.8 Evaluation on Mixed-Reality Platform

We implement ARAC supernet on the SOTA Mixed-Reality platform
for 3D object detection, DeepMix [17, 18], as shown in Fig. 20.
DeepMix implements 3D object detection based on detection results
of 2D object detection models like YOLO [18]. We run CGG on
the MR device (HoloLens), and only the tiles with a compression
ratio higher than 0 are sent to the edge server (Alienware 17 R3)
for processing. Neglecting computing tiles with zero compression
ratio only causes less than 4.7% accuracy loss. The server then
sends the detection results (bounding boxes and objects’ classes)
back to the MR device. We observe that both transmission latency
and computing latency on the server is significantly reduced with
ARAC supernet under different network conditions. As shown in
Fig. 21, ARAC supernet reduces end-to-end latency by 32.2% to
49.3% compared to the original DeepMix implementation under
different network conditions. The data processing latency on the
server is reduced by 50.7%, and the data transmission latency is
reduced by 56.5% to 66.7%. The overhead of the computing guiding
gate on the MR device is less than 4.2ms.

7.9 Cross-Domain and Multi-Scale Performance

We evaluate the performance of the compression guiding gate
(CGQG) that is trained on one domain (e.g., a dataset) but is applied to
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another domain (e.g., another dataset). Besides COCO dataset [46],
we include four other datasets that are collected on various loca-
tions and with different contents: VID [62], UA [78] (high-way
traffic in China), VIRAT [54] (on-campus), and GSV [91] (google
street view). As shown in Fig. 22, applying a CGG from another
domain generates an accuracy reduction of < 10% in most cross-
domain cases, which indicates the transferability of the CGG. Note
that the poor cross-domain performance between GSV and VID is
due to the large difference between the two datasets’ contents. In
practice, a common deep learning solution is to train the model
on large datasets like ImageNet and COCO, then to finetune the
model on the customized dataset to make the model adaptive to the
specific application.

We observe the accuracy distribution of ARAC supernets regard-
ing the sizes of objects in images. For the ImageNet dataset (image
classification), we group objects into large, medium, and small size
as > 70%, between 40% and 70%, < 40% area of the whole image,
respectively. For the COCO dataset (object detection), we group
objects into large, medium, and small size as > 50%, between 25%
and 50%, < 25% area of the whole image, respectively. As shown in
Fig. 23, ARAC supernet outperforms channel-pruning in all sizes.
Especially, it shows significant accuracy improvement on small-size
objects by 0.6% (image classification) and 12% (object detection).
The underlying reason is that the recognition on small objects is
easily affected by other pixels of the image when processed by
spatial-agnostic inference like channel-pruning. As ARAC supernet
adaptively allocates the computation on different pixels in an image,
it prevents interference from redundant pixels on the final results.

8 DISCUSSION

o Training overhead of ARAC supernet: In Table 1, we compare the
training time of the ARAC supernet with channel-pruning [39]
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ARAC Supernet Channel-Pruning | Original Model
(five levels+CGG) (four levels)
27.5h 67h \ 218h

Table 1: Comparison of training time (base model: ResNet-50).

Example images

Original output Brittany spaniel Lynx Spider monkey Albatross
ARAC output English setter Persian cat Titi Mink
Ground truth English setter Persian cat Titi Mink

Figure 24: Image examples from ImageNet validation dataset [7],
original model: ResNet-50 [21].

and the original model. We utilize ResNet-50 as the base model
and train on ImageNet dataset [7]. As ARAC supernet integrates
sub-networks with different compression levels and trains them
together with one loss function (§4.3), the sharing of model parame-
ters among sub-networks allows all sub-networks to converge syn-
chronously. The channel-pruned model with different compression
levels can only be trained individually. Thus, compared to channel-
pruning [39], the ARAC supernet can finish training within less
than 50% of the training time for channel-pruning.

e Online Overhead: We observe the latency breakdown of the end-to-
end processing latency with ARAC supernet. Overall, the average
overhead of CGG and DEMUX (including CLG) is less than 7.3% of
the total execution latency.

o Accuracy improvement by ARAC supernet: As our approach makes
the network focus on processing regions in an image that contain
key features related to the vision task, the side-effect of redundant
pixels is weaken or eliminated, which is equivalent to strengthen
the effects of key-feature pixels on the final output. For cases when
the side-effect from redundant pixels are so strong that the original
network is misled to a wrong output, the ARAC supernet may
help the model to remove the side-effect and output correct results.
We show four such examples in Fig. 24. Similar observations are
reported by [95] and [43].

9 CONCLUSION

In this paper, we proposed a spatial-based dynamic CNN accel-
eration framework, NeuLens, adaptive to users’ SLOs for mobile
and edge platforms. A novel dynamic inference mechanism, ARAC
supernet, was presented. Splitting image into tiles can adaptively
select computational cost for each tile and ensure speed-up on
general platforms. We also proposed an online controller to tune
ARAC supernet based on users’ SLOs with neglectable overhead
on mobile/edge devices. NeuLens outperforms baseline methods
by up to 58% latency reduction with the same accuracy and by up
to 67.9% accuracy improvement under the same latency/memory
constraints. Significant performance improvements are observed
in mobile vision applications like continuous object detection and
3D object detection for MR devices.
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