m . . . .
e NeulLens: Spatial-based Dynamic Acceleration of Convolutional
Neural Networks on Edge

Tao Han
New Jersey Institute of Technology
Newark, NJ, USA
tao.han@njit.edu

Xueyu Hou*
New Jersey Institute of Technology
Newark, NJ, USA
xh29@njit.edu

Yongjie Guan®

New Jersey Institute of Technology
Newark, NJ, USA
yg274@njit.edu

ABSTRACT

Convolutional neural networks (CNNs) play an important role in
today’s mobile and edge computing systems for vision-based tasks
like object classification and detection. However, state-of-the-art
methods on CNN acceleration are trapped in either limited prac-
tical latency speed-up on general computing platforms or latency
speed-up with severe accuracy loss. In this paper, we propose a
spatial-based dynamic CNN acceleration framework, NeuLens, for
mobile and edge platforms. Specially, we design a novel dynamic
inference mechanism, assemble region-aware convolution (ARAC)
supernet, that peels off redundant operations inside CNN models as
many as possible based on spatial redundancy and channel slicing.
In ARAC supernet, the CNN inference flow is split into multiple
independent micro-flows, and the computational cost of each can be
autonomously adjusted based on its tiled-input content and applica-
tion requirements. These micro-flows can be loaded into hardware
like GPUs as single models. Consequently, its operation reduction
can be well translated into latency speed-up and is compatible with
hardware-level accelerations. Moreover, the inference accuracy can
be well preserved by identifying critical regions on images and
processing them in the original resolution with large micro-flow.
Based on our evaluation, NeuLens outperforms baseline methods
by up to 58% latency reduction with the same accuracy and by up
to 67.9% accuracy improvement under the same latency/memory
constraints.

CCS CONCEPTS

« Computing methodologies — Neural networks; « Human-
centered computing — Ubiquitous and mobile computing.

KEYWORDS

convolutional neural networks, dynamic inference, edge computing

ACM Reference Format:

Xueyu Hou*, Yongjie Guan®, and Tao Han. 2022. NeuLens: Spatial-based
Dynamic Acceleration of Convolutional Neural Networks on Edge. In The
28th Annual International Conference on Mobile Computing and Networking
(ACM MobiCom °22), October 17-21, 2022, Sydney, NSW, Australia. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3495243.3560528

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM MobiCom 22, October 17-21, 2022, Sydney, NSW, Australia

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9181-8/22/10...$15.00
https://doi.org/10.1145/3495243.3560528

1 INTRODUCTION

Computer vision related tasks usually require a large number of
computational resources [23]. Many studies focus on reducing the
computational cost of CNN inference. Some works propose light-
weight network architectures like MobileNets [25, 26, 63], Con-
denseNet [29], ShuffleNets [51, 93], and EfficientNet [71]. Other
studies compress existing networks by pruning [42, 44, 49, 50] or
quantization [32, 33, 57]. Recent works propose various ways that
allow dynamic computational cost adjustment of CNN inference [19,
43] (details in §2.2). Inspired by human’s vision where only a limited
portion of visual scene is processed by the visual system, recent
works dig into the potential of computational cost reduction based
on input spatial information by proposing specialized network ar-
chitectures [83, 88] or by designing computing flows compatible
with general CNN architectures [20, 77, 95]. In video streaming and
analytics, regions of interest (Rols) are determined by cross-frame
tracking (Edge-Assisted [47] and EIf [92]) or by low-resolution de-
tection (DDS [9]). By Rol-based encoding, the transmission data
sizes of offloaded frames are significantly reduced [47].

In this paper, we propose an adaptive framework, NeuLens, for
dynamic CNN inference acceleration on mobile and edge devices.
First, we design a novel dynamic mechanism, assemble region-
aware convolutional (ARAC) supernet (§4), that effectively reduces
inference cost with small accuracy loss. An ARAC supernet is a
spatial-split network ensemble. It adaptively selects sub-networks
with different sizes for split tiles of an image based on their rele-
vance to the final prediction. Furthermore, we design a lightweight
online controller, DEMUX (§5), that dynamically tunes per-tile
sub-network selection and the supernet’s configurations based on
service level objectives (SLOs) in real applications. Finally, we com-
prehensively evaluate ARAC supernet on different mobile/edge
platforms and various applications (§7). Based on our evaluation,
ARAC supernet achieves up to 67.9% accuracy improvement over
state-of-the-art (SOTA) dynamic inference methods under the same
latency/memory constraints (§7.2) and up to 1.23x higher accuracy
over SOTA model compression techniques with the same inference
latency (§7.4). In addition, applying ARAC supernet into continuous
object detection systems boosts the performance by up to 7.7x over
SOTA techniques [47] (§7.6).

We summarize the contributions of this paper as follows:
Development of a novel CNN acceleration mechanism for
mobile/edge computing platforms (§4). By exploiting spatial
and depth redundancy on images and in CNNs, we propose an
acceleration mechanism, ARAC supernet, that effectively reduces
the consumption of computing resources with slight accuracy re-
duction. Compared to existing acceleration works, ARAC supernet

“These authors contributed equally to this work.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F3495243.3560528&domain=pdf&date_stamp=2022-10-14

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

achieves the Pareto optimality on accuracy-latency trade-off. We
highlight the following advanced techniques in ARAC supernet:

e Construction of an ARAC supernet that generally applies to CNN
architectures (§4.1). By splitting an input image into tiles, the su-
pernet utilizes sub-networks with different compression levels to
analyze them. The outputs from the supernet are concatenated and
fed into the rest layers in the CNN model to compute the final re-
sults. Such structure allows the supernet to reduce spatial and depth
redundancy in computation without affecting the overall working
schemes of the original CNNs.

e Content-aware per-tile adjustment on computational cost in
ARAC supernet (§4.4). A compression guiding gate is designed
to effectively analyze the content in each tile and assign a sub-
network with proper compression level to analyze them in the
supernet. A labeling rule is proposed to automate the training set
generation for the compression guiding gate.

e Effective conversion from operation redundancy reduction to
on-device latency acceleration. In ARAC supernet, the computation
flow is split into multiple independent micro-flows. Based on the
content of its input (a tile), each micro-flow adjusts the operation
amount (compression level) in analyzing the input independently.
As each micro-flow is loaded into a device’s computing unit (e.g.,
GPU) like an individual neural network, its operation reduction is
directly converted into latency acceleration.

Design of a lightweight SLO-aware controller adaptive to
limited computing budgets on mobile/edge devices (§5). We
design an online lightweight controller, DEMUX, to tune ARAC
supernet based on user’s SLOs with neglectable overhead on mobile
and edge devices. Given customized options on the parameters of
an ARAC supernet, DEMUX adaptively selects the optimal set of
parameters and keeps high accuracy within the user’s SLOs.
Implementation of ARAC supernet and performance eval-
uation on different mobile/edge computing platforms and
for various vision applications (§6, 7). We comprehensively
evaluate the performance of ARAC supernet from several aspects
and proves its effectiveness in boosting the overall performance
in CNN-related applications on mobile/edge devices. We highlight
our evaluation results as follows:

e Outperforms SOTA techniques in dynamic inference and model
compression on mobile/edge devices by up to 67.9% (§7.2) and 1.23x
(§7.4), respectively.

e Improves overall performance of SOTA continuous object detec-
tion systems on edge by up to 7.7x (§7.6).

e Reduces end-to-end latency by almost 50% on a SOTA 3D objec-
tion detection system for mixed-reality devices (§7.8).

2 BACKGROUND AND MOTIVATION
2.1 Spatial Related Convolution

As demonstrated in [15, 83], there can be a considerable amount
of redundant pixels in an image that are irrelevant to accurate
recognition. Several works focus on reducing convolutional oper-
ations of redundant pixels. The majority of these works propose
spatial neural architectures. Compact networks are designed for
spatial-redundancy based operation reduction [15, 27, 28, 59, 68,
72, 74, 83]. Sequential networks are designed with multi-scale res-
olutions [11, 55, 87, 88]. CBAM [80] designs an attention module

187

Xueyu Hou*, Yongjie Guan®, and Tao Han

that can be inserted into CNNs. Other recent works propose spatial-
redundancy-based modifications on computing flows that can be
generally applied to popular CNN architectures rather than design-
ing new ones. GFNet [77, 30] dynamically processes a sequence
of crops on the image until prediction with sufficient confidence.
DRNet [95] predicts optimal resolution for each input image with
a resolution predictor. SAR [20] designs a dual-branch network
architecture with one analyzing low-resolution input features and
selecting high-resolution refined areas for the other in each layer.
Compared to these studies, our work proposes a novel computing
flow, ARAC supernet, to tackle spatial redundancy. By splitting the
input images into tiles, we select different sub-networks in supernet
based on their contents. ARAC supernet generally applies to popu-
lar CNN architectures like [20, 77, 95]. It is important to note that
works like SAR [20], CGNet [27, 28] and ASC [68, 72] are not fully
supported for practical speed-up by deep learning platforms and
require special hardware/framework support. In contrast, our work
can be effectively implemented on SOTA deep learning platforms
and realize latency speed-up.

2.2 Dynamic Inference

We divide SOTA studies on dynamic inference into two types based
on whether they are platform and SLO adaptive.

Platform- and SLO-Agnostic: Some works focus on modify-
ing or designing a single network with the dynamic mechanism.
Early-exist topology is proposed for CNNs ( [3], MSDNet [31],
and ZTW [79]). CNMMs [60] and RNP [45] design networks that
can be dynamically pruned. Skipnet [76] and BlockDrop [81] skip
blocks in ResNet based on inputs. Similarly, ConvNet-AIG [73] de-
termines whether to skip each layer based on estimated relevance,
and CoDiNet [75] optimizes layer skipping based on cross-image
similarity. LCCL [8] avoids computing zeros in feature maps by
predicting their locations. Other works develop network ensem-
bles for dynamic inference. Russian Doll Network [35] constructs a
nested network by embedding smaller sub-networks inside larger
ones. HNE [61] designs a hierarchical neural ensemble that allows
branch number adjustment. Slimmable networks [43, 89, 90] ad-
just filter numbers in layers for different inputs. CoE [94] pools
a collection of networks trained by mutually exclusive subsets in
a dataset. MoE [65] and CondConv [86] construct sub-networks
with mixture-of-experts and selects a combination of them for each
input. Overall, these works focus on training optimization and ar-
chitecture modifications. Their designs are hand-crafted without
considerations on adaptability to platforms and SLOs [41].
Platform- and SLO-Adaptive: In contrast, several works focus on
optimizing system-level performance on mobile and edge devices
under SLOs. Some works design adaptive frameworks for general
CNN . NestDNN [12] dynamically implements resource-accuracy
trade-off inside a compact multi-capacity model. ReForm [85] pro-
poses a resource-aware DNN reconfiguration framework based
on the ADMM algorithm. DMS [38] controls resource demand of
inference by adaptive pruning. PatDNN [53] designs an efficient
DNN framework based on kernel-pattern pruning. LegoDNN [19]
dynamically scales DNNs by switching retrained descendant blocks
in them. Other works develop adaptive framework by addressing
features in specific applications like video analytics (FlexDNN [13])



NeuLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on Edge

77 4

2 ARAC—
_ LegoDNN —
S DS-Net
g 74 MS-GFNet —
§ 73 DRNet —
<, HNE —
& MSDNet —
S 71
= CGNet

70 Original

0 SAR &

6
10 18 26 34 42 50 100
Average Inference Latency (ms)

Figure 1: Accuracy-latency trade-off comparison (Base Model:
ResNet50, ImageNet [7]), Jetson TX2.

and real-time (video) object detection (AdaVP [48], ApproxDet [84],
Remix [37], and [22]).

Compared to these works, our ARAC supernet implements a
dynamic mechanism by breaking inputs into tiles and processes
them with different compressed sub-networks based on spatial
redundancy (§4). Furthermore, we integrate ARAC supernet into
mobile and edge systems by designing an SLO-adaptive online
controller for on-device inference (§5). In other words, our work
also addresses adaptability to platforms and SLOs.

2.3 Observations

The accuracy-latency trade-offs of ARAC supernet and SOTA dy-
namic models are shown in Fig. 1. Both spatial-based works (MS-
GFNet [30], DRNet [95], MSDNet [31], CGNet [27, 28], and SAR [20])
and spatial-agnostic works (LegoDNN [19], DS-Net [43], HNE [61])
are included in the comparison. With the same inference latency,
the ARAC supernet outperforms SOTA methods by 1.22% to 2.07%
in top-1 accuracy. With the same top-1 accuracy, the ARAC supernet
takes 19.4% to 47.9% less time per inference. Most SOTA methods
on spatial redundancy do not implement practical speed-up [20].
The underlying reason is that they segment away operations on
redundant parts in a way that is not compatible with the interme-
diate mapping between layers. For example, SAR [20] (i.e., SOTA
pixel-level dynamic network) selects groups of refined patterns
from input features on each layer and runs operations on them
only. These patterns are irregular, and various patterns are gener-
ated per layer, making it impossible for computing efficiency on
GPUs [20]. In contrast, ARAC supernet jointly takes advantage of
spatially related operation reduction and dynamic inference. By
constructing multiple sub-networks with different sizes in the su-
pernet and splitting the CNN inference flow into spatial dimensions,
the ARAC supernet can adaptively adjust the computation of each
split-flow by selecting the proper sub-network inside the supernet.
Each split-flow executes as an independent micro network without
inter-dependency, i.e., the data flow from layer to layer occurs inside
each micro network only. Thus, each micro network can be loaded
to the GPU as one CNN model, and their operation reduction can
be effectively translated into latency speed-up. Note that, though
GFNet [30, 77] designs spatial-based CNN workflow where its oper-
ation reduction leads to real speed-up, its speed-up is limited due to
the sequential executions on a series of cropped images; similarly
for MSDNet [31].

We demonstrate the performance of two basic CNN acceleration
techniques in Fig. 2, where SOTA studies that apply to practical

188

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

Accuracy Latency—— Accuracy Latency——

50 — 0, 50 —
- Z = 5
= o =X @
.65 3758 363 3758
Q o Qo [
s @ s <3
§ 50 25 g § 46 25 E
= g = ST
- - N
L 35 lZ.Si % 29 \‘12.5:
IS ERs . E]

2056 7296 112 168 2240

Image Resolution

(a)

12O 16 32 48 64 80
Channel Pruned Away (%)

(b)

Figure 2: Performance of input resize and channel pruning (Base
Model: ResNet50, ImageNet [7]), Jetson TX2.

speed-up are built upon either of them. The first acceleration tech-
nique is to resize input image to different scales (Fig. 2 (a)). As more
detailed information is lost with down-scaling, the accuracy falls
below 50% with resolution 96. Even SOTA work on dynamic resolu-
tion, DRNet [95], keeps resolution options above 96. Consequently,
adjusting resolution alone cannot generate a wide range of latency
while preserving accuracy. The second acceleration technique is to
prune away channels in layers (Fig. 2 (b)), adopted by LegoDNN [19]
and DS-Net [43]. Note that channel pruning is different from weight
pruning; the latter requires special hardware support for acceler-
ation. As shown in Fig. 2 (b), though the accuracy does not drop
sharply with a few channels pruned away, there is no significant
latency reduction either. When more channels are pruned away,
latency greatly decreases, but accuracy also shows an obvious drop.

2.4 Challenges

One way to take benefits of both input downscale and channel
pruning is shown in Fig. 3. We prepare four sub-networks with
different sizes (compressed on the first three blocks in ResNet-50
with four channel pruning levels). We split the original input image
into 3 X 3 tiles (78 X 78 pixels). We pair each tile with a sub-network
size and the tile is taken as input to the sub-network of the size.
All the outputs of the 3 X 3 tiles are concatenated and fed into the
last block in ResNet-50 to generate the final results of the whole
image. We exhaustively search over all the possible pairs for the four
images in this preliminary study, and we mark the optimal pairs!
of tiles and model sizes for each image in Fig. 3. As shown in Fig. 3,
the number of operations and latency are significantly reduced
without affecting prediction correctness. The success of such tile-
split CNN flow comes from two facts: First, there is no resolution
resize of the original image. While reducing sizes by several times,
the resolution-kept split-tile preserves detailed information. Second,
the method follows the intuition of human vision flow where the
critical parts are analyzed with high intensity and less critical parts
are analyzed with low intensity. The sub-networks of all the tiles
of an image are loaded independently as tiny models, and their
outputs are integrated to generate the image’s final predictions.
Sub-networks implement the variation of required computations
for the tiles with different sizes.

However, though the above preliminary study demonstrates
the benefits of tiling image input, there lie multiple challenges to
implementing such a beneficial inference flow: First, how to design
and prepare efficient and effective sub-networks with different sizes?

The optimal pairs refer to the pairs that generate correct labels with the smallest
number of operations.



ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

X 1 2 3 4
network size: I ]

Prediction: impala Prediction: impala
FLOPs: -57.4% FLOPs: -68.9%
Latency: -41.5% Latency: -49.2%
Prediction: ‘ff‘)"slti'r .

FLOPs: -77.6%

Latency: -61.7% Latency: -79.3%

Figure 3: Observations on tiling image input.

We design a compact sub-network ensemble with channel-slicing,
called ARAC supernet (§4.1) where a smaller sub-network can be
directly extracted from the largest using channel-slicing. We jointly
train all the sub-networks together with an ensemble bootstrapping
scheme (§4.3). Second, it is impossible to exhaustively search over
all the possible pairs to find the optimal one in reality. We present
a lightweight guiding gate to autonomously select sub-networks
for tiles (§4.4). Third, how to apply the proposed inference flow to
real applications, especially satisfying service level objectives? We
propose a lightweight online controller for on-device inference
(§5). The controller tunes sub-network selection given latency and
memory constraints while preserving accuracy.

3 SYSTEM OVERVIEW

The proposed SLO-adaptive deep learning acceleration framework
for mobile and edge computing platforms, NeuLens, is shown in
Fig. 4. NeuLens contains a one-time offline stage and a lightweight
online stage. In the offline stage, a CNN model is modified into
an ARAC supernet (supernet generation in Fig 4); a compression
guiding gate is designed to select a sub-network for each tile of an
image (CGG design in Fig. 4); memory predictor, latency predictor,
and accuracy comparator are trained based on profiling data of
supernets (profiling in Fig. 4). In the online stage, a lightweight on-
line controller, DEMUX, is designed to find optimal parameters, i.e.,
tile size, layer number, and per-tile compression levels for ARAC
supernet. DEMUX adaptively selects these parameters based on the
contents of the tiles of an input image and service-level objectives
(SLOs). Based on input images’ contents and applications’ SLOs,
NeuLens splits an CNN inference computing flow into multiple
micro-flows and independently controls each micro-flow’s compu-
tational cost. In this way, NeuLens successfully amplify the benefits
of SOTA CNN acceleration techniques, ie., spatial-redundancy-
based computing-operation reduction and channel pruning. With
the proposed ARAC supernet technique, NeuLens is able to achieve
up to 67.9% accuracy improvement over state-of-the-art (SOTA)
dynamic inference methods under the same latency/memory con-
straints (§7.2) and up to 1.23% higher accuracy over SOTA model
compression techniques with the same inference latency(§7.4).

4 DESIGN OF ARAC SUPERNET

4.1 Workflow of ARAC Supernet

As shown in Fig. 5, the input image is split into k X k tiles. These
tiles are fed into ARAC supernet, and they are processed indepen-
dently in parallel. Based on their contents, they are processed by
different sub-networks in the supernet. The outputs of these tiles
from the supernet are concatenated and are further fed into the

189

Xueyu Hou*, Yongjie Guan®, and Tao Han

following layers (the layers in gray in Fig. 5) in the model. There
can be multiple ways to form such a model with ARAC supernet
(e.g., neural architecture search). In this paper, we modify existing
CNN models’ architectures (e.g., MobileNet [26], ResNet-50 [21],
Inception [69]) into architectures with ARAC supernets.

Given an existing CNN model with N layers, we modify the first
P layers (0 < P < N) into the ARAC supernet and keep the rest
(N — P) layers unchanged. In the supernet, we compress the first
(P — 1) layers with different compression levels using techniques
like channel pruning [42, 44, 49, 50] in this paper and we set R
different compression levels C = {c1, ....,cg} (0 < ¢1 < ... <cr £ 1),
which represents different ratios of output channels pruned away
in the first (P — 1) layers. Thus, given a compression level ¢;, the
number of output channels in each layer of the first (P — 1) layers
is:

d)=(1-¢;)-Df, V1<I<(P-1). (1)

where Dy is the original number of output channels, and d’ is the
channel number after compression. When ¢; = 0, we have d;’ =Dy,
which means that there is no output channel pruned away; when
¢i = 1, we have d? = 0, which means that all output channels are
pruned away (i.e., the whole (P — 1) layers are pruned away). A
high compression level represents that a large number of output
channels in the first (P — 1) layers are pruned, and vice versa. In
other words, A sub-network with a higher compression level has a
lower computational cost. Based on the content in each tile and the
latency requirements (details in §5), the system selects different
compression levels for them. Note that though an ARAC supernet
splits an image into tiles, the tiling will not hurt feature extraction
across multiple tiles in the original image. For example, given an
object’s key features across tiles, the supernet will process all the
corresponding tiles with relatively high computation. Following
the supernet, the extracted features from different tiles are fed into
the shared last layers, and the final results are generated based on
the information from all tiles (the original image). Furthermore,
as the construction of ARAC supernet does not break down the
outputs of the original model, ARAC supernet generally applies to
various CNN-based vision tasks (§7.7).

4.2 Intermediate Dimensions in Supernet

For a sub-network in ARAC supernet, the dimensions of input to
the (I + 1)-th layer are equal to those of output from the /-th layer.
The depth of output (i.e., the number of output channels) from a
layer is determined by the compression level as shown in Eq. 1.
For a layer I, the relationships between the output’s and input’s
spatial dimensions (height and width) are determined by the layer’s
configurations [24]:

w{":(wf—1)~sl—b~Al+Fl,
h;n=(hlo—l)~5[—b'Al+Fl.

@
®)

where b is a binary: If the tile is on the edge of the original image
and layer [ is a convolutional layer then b = 1, else b = 0; S; is stride;
Fy is filter size; A; is padding. As we split the input image into k X k
tiles and process them independently with different sub-networks
inside the supernet, the k X k outputs from the supernet need to
be concatenated together. To seamlessly concatenate them, the
spatial dimensions of each output are set to (W /k, H} /k), where
(W, Hp) are the spatial dimensions of input to the (P + 1)-th layer.



NeulLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on

Supernet generation

Edge

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

ACNN l Service-Level Objectives
Channel Slicing g Mobile/Edge Platforms
g o Proﬁlmg. Tile Size . T

Ensemble Bootstrap Training Memory v N ! — N ?

CGG Design [Latency Predictor r—— : !

Latency Compression j
Split Images] | [Accuracy Comparaforf=—=—=s—i DEMUX
Labeling Rulc ccuracyPLos_? i I ICNN w/ ARAC Supernet
er-Tile
Reco; mllo ICompressmn— Compression
Labels Level Labels Input Image

Joint Training

|

Onlim; Stage

Figure 4: NeuLens overview.

T
Offline Stage

5 Subnetwork

| selection r

O |2}

£ K‘ — :3

=0 A ’ &
o [ ?

= yet

2 I‘ .l [ e Concatenate Ly

3 = | I output (W NS

g » I Ly

§ Lyt

ARAC Supernet w/ subnetworks
Figure 5: Workflow of ARAC supernet.

Given (W /k, Hp /k), the intermediate spatial dimensions of inputs
and outputs in sub-networks of supernet can be determined by Eq. 2.
Consequently, we can obtain the spatial dimensions of each split tile,
denoted as (w'™, hi"). Further, we can determine the coordinates
of each tile on the original input image: x1. = 0, x2. = Win — Axip,
Xip = Xi—1; + Win = Axin (3 < i < k);y.1 =0, y.2 = hin — Ayin,
Yoj = Yj—1 + hin — Ayin (3 < j < k); where x;; refers to the x-
coordinate of the tile on the i-th row, y. j refers to the y-coordinate
of the tile on the j-th column, Axj, = (k - win, — Wj,)/(k — 1), and
Ayin = (k-hin —Hin)/(k—1). Note that the origin is on the top-left
corner of the original input data.

In ARAC supernet, each tile is processed independently by a
compression level. We denote the compression level for the tile
at position (i, j) (1 < i, j < k) as ¢; j. For convolutional layers in
supernet, the number of operations (multiply-accumulations) is
Olecono(cij) = (1 —cij)? F12 D} - wp-h] - Dj.For maxpool-
ing layers in supernet, the number of operations (comparisons) is
Olemaxpoot (¢i,j) = (1 —cij) - FI2 -D]_| - w} - h}. Thus, the total
number of operations of supernet with {c; j} can be obtained by:

K TR ZE L Onei)).

4.3 Training of Supernet

For a CNN model with N layers, we offline train R compressed
models with compression levels ¢; (1 < i < R). A straightforward
way is to train the R compressed models individually. However,
the models obtained in the such way do not share weights and
consume a large amount of memory on edge devices [90, 89, 43].
Thus, we form an ensemble of R models by channel slicing. We
denote the weights of layers in the model with compression level ¢q
as W; (1 < [ < N); For the other models with compression levels c;
(2 < i < R) in the ensemble, their weights in layer [ are W;[: (1 —
ci)/(l—c1)~D;’], 1 < I < N.In this way, the number of weights in an
ensemble of R models is equal to that in the model with compression
level ¢y, and the other models can be directly obtained by slicing
its weights on the channel dimension. To train the ensemble of R
(compressed) models, we utilize an ensemble bootstrapping scheme
similar to IEB [43]. The difference between ours and IEB is that:

190

Instead of training randomly selected models, we train the models
with compression levels ranging from c3 to cg_ to predict the
soft label generated by the model with compression level ¢, i.e.,
L(Ye;» Ye,) (2 < i < R—1). The model with compression level ¢;
is trained to predict the ground-truth label, i.e., £(yc,, yg:). The
model with compression level cp is trained to predict the probability
accumulation of all the other models, i.e., R 1 Z 1 ycl Similar to
training a slimmable neural network [43], we train the ensemble of
R models together in each training iteration: We compute the losses
defined above individually for all models and accumulate their back-
propagation gradients together; Then, we update weights in the
ensemble. Note that the inputs to these models during training are
images in the training dataset without being split. Given the trained
ensemble of R models, a supernet with P layers can be obtained by
taking each model’s first P layers in the ensemble. The following
(N — P) layers are the same as those in the original CNN model.

4.4 Compression Guiding Gate

We design a compression guiding gate (CGG) at the entrance of an
ARAC supernet. A CGG selects the compression level for each split
image. Specifically, the CGG takes split images as inputs and gener-
ates compression levels for them. A CGG can be regarded as a classi-
fication model that classifies split images into different compression
levels. However, the images in the training dataset are labeled for
the original applications, and we do not have compression-level la-
bels for split images. Thus, we propose a Labeling Rule to generate
compression-level labels for the split images in the training dataset.
With the generated compression-level labels, we can train a CGG
with supervised learning techniques.

4.4.1 Labeling Rule: We refer to the original labels of images as
A-labels and the compression-level labels for split-images as C-labels.
Given compression levels {cy,...,cr} (c1 < ... < cg), we label all
split-images with C-labels in the training dataset. For the split-
images of an image, the labeling rule is: Initially, all the split-images
are processed by the sub-network with compression level c;. If its
final output does not match the A-label, then all the split-images are
labeled as cy; else we raise the compression level of each split-image
to ¢y respectively. If one’s final output does not match the A-label,
then the corresponding split-image is labeled as c;; else we raise
the compression level of it to c3. We repeat the match-label-raise
procedure until we reach compression level cg. Fig. 6 shows an
example of a labeling process given four compression levels.

4.4.2 CGG Architecture: Given an input image X, CGG generates
k X k one-hot R-length vectors {v}rxj. An element in the vector



ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

€161 61 incorrect | ‘ci‘cicq
€160 ‘cpeqeq
c1C1Cq ‘c1cicq
correct |
€001 || crcpcn 16161 |[incorrect
€101 € || €101 Cq |ooe| CrCp 0y CIRC
€1C1C || €166 C1C1C (51
correct |
~
C3CC || cpc3cC C3C3Cy |- c3
oo (R CR lincorrect| 2, .,
€1c1C2 | | ‘c1‘c{ Co |eoe| ‘c{c1 C2 €1¢1C;
ccci || caepct cxC3°cq ‘cf
correct ]
P s 0
c5Cq C3 ‘el CIRE, ‘c) C3 C: . el e
riotie | | oo |eed| 2 ries |[nCOITECE] 2,2,
€1C6C |l c1¢1¢ €1¢1¢2
ez’ || czez’cq C3C4'c{ ‘c3'cq
yc c
<t ciich
€1C3°Cq

Unlabeled Split-Part Labeled Split-Part

Figure 6: An example of Labeling Rule.

represents a compression level ¢; (1 < i < R). The final outputs of
CGG is {carg max v} kxk- The CGG processes the k X k split-images
of X in a batch. Denoting a split-image as x, we have an encoder
& and a feature-mapping function 7: v = ¥ (E(x)). For encoder
&, we utilize one convolutional layer and one maxpooling layer
to integrate spatial information. we utilize a fully connected layer
for feature-mapping function . The compression level choice is
obtained by applying arg max to the output vector of 7.

4.4.3 CGG Training: We label the split-images in the training
dataset by our Labeling Rule. We define the compression-level
loss function as: L = L(CGG(x),cqt(x)), where x is an split-
image, CGG(x) is softmax output of x, cg;(x) is one-hot encod-
ing of compression-level label of x. The image-recognition loss is
Lir = L(y(X), ygt), where y(X) is softmax output from the whole
model, yg; is one-hot encoding of ground-truth label. We optimize
CGG jointly by image-recognition loss and compression-level loss:

er]):z Lei @
where a controls the effect of the two losses. The back-propagations
of L(y(X),yys) to CGG’s parameters are implemented by gumbel-
softmax technique [34]. With the loss function (Eq. 4), the CGG
is trained to analyze the content of a split-image and selects a
compression level to it. The training of the CGG ensures the correct
output of the whole model (the first part in Eq. 4) while matching
the compression-level label (the second part in Eq. 4) as well. With
a higher @, the CGG tends to assign tiles with higher compression
levels for more significant computational cost reduction; with a
lower a, the CGG tends to assign tiles with lower compression
levels for higher accuracy. We set & = 0.7 in this paper.

LecoX)=(1-a)Lip+a

5 CNN INFERENCE W/ SUPERNET

A compression guiding gate (CGG) selects proper compression
levels in an ARAC supernet for tiles of an image. The selected
compression levels from CGG guarantee neglectable accuracy loss
with the smallest number of operations. However, CGG is SLO-
agnostic, i.e., it selects compression levels without consideration
of latency and memory constraints. Thus, we design another SLO-
adaptive component, compression-level gear (§5.2), to tune the
selected compression levels online to meet SLOs. Given candidate

191

Xueyu Hou*, Yongjie Guan®, and Tao Han

controllable parameters (P, k, C), a lightweight online controller,
DEMUX (§5.3), is designed to find the optimal set of controllable
parameters.

5.1 Problem Definition

As demonstrated in §4, an ARAC supernet contains the first P layers
of a CNN model with R compression levels; an input image is split
into k X k tiles and is processed by sub-networks in the supernet
independently. Thus, for CNN inference with ARAC supernet, we
can dynamically control: (1) the number of layers in the supernet,
P € P; (2) the number of tiles, k € %; (3) the compression levels
for the tiles, ¢; j € C, (1 < i, j < k). We denote compression-level
matrix for kXk tilesas Q = {c; j}1<; j<k- P, K, and C are candidate
values for P, k, and ¢; j. In general, optimizations of CNN inference
focus on three types of performance: (1) accuracy (Acc), (2) latency
(T), and (3) memory consumption (M). In this paper, we focus on
maximizing accuracy given latency and memory constraints (T and
M):

Acc(P,k,Q), 5

argP*r}}ﬁE* ce( ) (5)
s.t. T(Pk Q) <T, (6)
M(P,k,Q) < M. ()

As higher compression levels would reduce accuracy (Eq. 5) but
get lower latency/memory consumption (Eq. 6 and 7), the trade-off
exists in tuning compression level because high compression level
leads to low accuracy though latency and memory constraints are
satisfied. For the tiles of an input image, the ARAC supernet utilizes
different compression levels to process them. In other words, given
C compression levels and k X k tiles of an input image, there are
C**k combinations of compression level choices for all the tiles of
the image, which can be an extremely large number (e.g., 1, 953, 125
with C = 5 and k = 3). Thus, an efficient solution to Eq. 5 to 7 is
necessary rather than exhaustive search.

5.2 Compression-Level Gear

For k X k tiles of an image, CGG (§4.4) selects compression lev-
els for them. We denote the compression levels of the k X k tiles
selected by CGG as Qg = {cg) hi<ij<ko 08) € C. The inference
latency T(P, k, Qp) and memory consumption M(P, k, Q) are esti-
mated by latency and memory consumption predictors. When the
latency/memory constraints (Eq. 6 and 7) are violated, we adjust
compression levels of the k X k tiles with a compression-level gear
(CLG) by adaptively raising the compression levels of the k X k tiles.
There are different ways to adjust the compression levels. We de-
scribe the way that we empirically find effective (Fig. 12 (a) in §7.3),
which is referred to as confidence-based stepping (CS) method. As
CGG is trained in a supervised way (§4.4), its confidence indicates
the probability of being correctly identified with the compression
level. Thus, we design CLG based on the confidences to Q. Specifi-
cally, we set a confidence threshold 6 and a window length Aw.
The tiles with confidences lower than 6 are sorted by confidences
from low to high, and the Aw tiles are cyclically selected among
them. The CLG runs in loops until latency and memory constraints
(Eq. 6 and 7) are satisfied. In each loop, the CLG raises compression
levels of Aw tiles by one.



NeuLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on Edge

[ Input Image )—’{ Compression Guiding Gate ] [Service Level Objectives]

Compression N
levels of tiles | Qo Satisfied?| =
a;
B Latenc: %>
Latency Predictor| Y

Split Numbers
P Memory Predicto: CHIoLY
Layer Numbers|t Compression
P| levels of tiles
Compression-Level Gear

Figure 7: DEMUX.

DEMUX

S 42 12 —
5 = o || P=ak=3—
2, R
M 4.5 >
= é 2 8fl P=3,k=3— 4
2 a3 P=3,k=
s 3 28 & o A4
£ é : R
15 i é 1o 8 ot
g 5 g e <
£ g
g0 — 0= 0
3 = 0.01 0.1 1 10

2 4 .
Number of Blocks in Supernet Degradation Score

(a)
Figure 8: Predictor observations: (a) prediction errors of latency
and memory (k € {3,4}, R = 4), (b) Accuracy Loss v.s. Degradation
Score. (Base Model: ResNet50, ImageNet [7])

5.3 DEMUX

We design DEMUX to find (P*, k*, Q) of Eq. 5 to 7. DEMUX is
consisted of five lightweight components: CGG (§4.4), CLG (§5.2),
latency predictor, memory predictor, and accuracy comparator.
The workflow of DEMUX is shown in Fig. 7. Given P € # and
k € K, CGG and CLG find the matrix of compression-levels Qp j
that satisfies Eq. 6 and 7 (§5.2). After finding all the matrices of
compression-levels {Qp 1.} pe p ke % the accuracy comparator se-
lects (P*, k*, Q%) from {P, k, Qp i } pe p ke %- We profile the comput-
ing latency and memory consumption with respect to the compres-
sion levels of sub-networks in supernet. We train lightweight linear
regression models to predict latency and memory for a supernet
with the compression levels of all the sub-networks in the supernet
as inputs. Note that the training of the linear regressors are one-time
work and generate small offline overhead, e.g., training time is less
than five minutes on a computer with CPU only (Intel i7-8700K).
For the rest layers following the supernet, we can simply record
their computing latency and memory consumption with respect to
the number of layers. The total latency/memory consumption is
obtained by combining the two parts. As shown in Fig. 8 (a), the
predicted latency and memory consumption match the measured
results with less than 5% error. To select the optimal set among
the sets of (P, k, Q) from CLG, We define degradation-score as the
averaged difference across k X k tiles between the compression
levels selected by CGG and the compression levels adjusted by
CLG. As shown in Fig. 8 (b), there is a strong correlation between
accuracy losses and degradation-scores. Thus, we can offline profile
the curves for each pair of (P, k) and regress a coefficient fp .. The
accuracy loss for each pair of (P, k) can be estimated by fp ;. and
we select (P*, k*, Q*) that has the lowest accuracy loss. Note that,
for all pairs of (P, k), we observe neglectable accuracy loss when
processing tiles with the compression levels selected by CGG.

6 IMPLEMENTATION

The implementation of ARAC supernet is as follows:
Testbeds: For on-device inference evaluations, we choose three
heterogeneous mobile/edge devices: Jetson TX2; Xiaomi 6 Plus;

192

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

Alienware 17 R3. The first device runs Linux Ubuntu 18.04 LTS; The
second device runs Android 10.0; The third device runs Windows10.
Base CNN models, datasets, and framework: We mainly eval-
uate on two most important applications on mobile and edge sys-
tems: (1) Image Classification: We build ARAC supernet based on
three popular CNN models (ResNet50 [21], MobileNetV3 [25], and
Inception-V3 [69]) and we use ImageNet dataset [7]; (2) Object
Detection: We build ARAC supernet based on the most commonly
used model (YOLOv3 [58]) and we use COCO dataset [46]. We use
Pytorch framework [56]. We also evaluate on nine other vision
applications in §7.7,

Baselines: We select three SOTA methods that outperform the
others in Fig. 1: (i) DS-Net [43] adjusts filter numbers in layers by
channel slicing for different inputs. The key difference between
the proposed ARAC supernet and DS-Net is that we split an image
into small tiles and process them respectively with different com-
pressed sub-networks, but DS-Net processes an image as a whole;
(if) MS-GFNet [30] dynamically processes a sequence of crops on
the image until prediction with sufficient confidence. Though MS-
GFNet designs spatial-based CNN workflow where its operation
reduction leads to real speed-up, its speed-up is limited due to
the sequential executions; (iii) LegoDNN [19] dynamically scales
DNNs by switching retrained descendant blocks in them. It offline
generates sets of blocks by filter pruning. It takes an image as a
whole and processes it with adaptively selected block scales. Note
that DS-Net and LegoDNN are the SOTA methods for dynamic in-
ference without spatial-redundancy based acceleration; MS-GFNet
is the SOTA method with spatial-redundancy based acceleration.
We also compare ARAC supernet with SOTA model compression
techniques in §7.4.

Candidate controllable parameters: We set three tile sizes (k)
by splitting images into 2 X 2, 3 X 3, and 4 X 4 tiles. We set five com-
pression levels (R = 5) with compression ratios {0, 0.25,0.5,0.75, 1}.
Note that compression ratio represents the ratio of channels pruned
away, e.g., all channels are pruned away with a compression ratio
equaling to 1. For ResNet50, we set three layer number options
in supernet: two blocks (11 layers), three blocks (23 layers), and
four blocks (41 layers). For MobileNet-V3, we set two-layer number
options in supernet: eight layers and 13 layers. For Inception-V3,
we set three layer number options in supernet: seven layers, after
the first Inception module and after the second Inception module.
For YOLO-V3, we set three layer number options in supernet: after
the first, the second, and the third residual block.
Hyper-parameters in CLG: We study the effects of the two hyper-
parameters in CLG (§5.2). We empirically find the optimal settings
are: Aw = 2 for 2 X 2 tile split, Aw = 4 for 3 x 3 tile split, Aw =5
for 4 x 4 tile split; and 6 = 0.5.

Compression guiding gate: The convolutional layer of the en-
coder in CGG (§4.4) is Conv2d(3, 64, kernel=(7, 7), stride=(4, 4)). The
input tile is resized to 28 X 28 resolution. We train one CGG general
to all tile sizes and layer numbers in supernet. The compression-
level prediction accuracy (ground-truth labels generated by the
labeling rule in §4.4.1) is 82.6% for ResNet50, 79.5% for MobileNet-
V3, 85.7% for Inception-V3, 75.8% for YOLO-V3.

Offline training: We train supernet (§4.3) on two NVIDIA RTX
A6000 GPUs. We adopt the fast training approach in [19] to train



ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

DS-Net — MS-GFNet— LegoDNN—
ARAC Supernet — Original Model

10 20 30 40 50
Average Inference
Latency (ms)
(a) ResNet-50

-
=
)|
=

N

.
1}

=
>
&)
hed
n

Top-1 Accuracy (%
~
wn
(=)
o0
wn

Top-1 Accuracy (%)
~

74
73

D
=)

55 7 85 10
Average Inference
Latency (ms)
(b) MobileNet-V3

2

L 5
< 7

377.5 | nas
: S

3 76 v s 33
< <
745 - 5235
o

]

S

4.
7 14

20 40 60 80 100
Average Inference

Latency (ms)
(d) YOLO-V3

3
40 55 70 85 100
Average Inference

Latency (ms)
(c) Inception-V3
Figure 9: Accuracy v.s. Latency (Jetson TX2).

the sub-networks in the ARAC supernet. For image classification,
it takes 17h for ResNet50 based supernet, 13.4h for MobileNet-V3
based supernet, and 23.6h for Inception-V3 based supernet. For
object detection, it takes 37.5h for YOLO-V3. For all the supernets,
the pre-trained weights in their base models are used as the initial
weights in training. We train the compression guiding gate (§4.4) on
the same platform and it takes 10.5h to train.
Online overhead: We measure the overhead of CGG (§4.4) and
DEMUX (§5.3). On Jetson TX2 and Alienware 17 R3, the overhead
of CGG and DEMUX is 0.88ms to 1.87ms. On Xiaomi 6 plus, the
overhead of CGG and DEMUX is 4.7ms to 7.2ms.

7 EVALUATION

7.1 Accuracy v.s. Latency

The accuracy v.s. latency curves with different base models are
shown in Fig. 9. The latency is measured on Jetson TX2 and av-
eraged over 200 times inferences. With the same latency, ARAC
supernet outperforms SOTA methods by 0.46% to 76.5% accuracy
improvement. With the same accuracy, ARAC supernet outper-
forms SOTA methods by 2.5% to 58% latency reduction. Compared
to ARAC supernet, MS-GFNet [30] shows relatively sharper drop
in accuracy when low latency. It is mainly due to the cut-off of its
focus sequence, and MS-GFNet mainly relies on the low-resolution
glance stage for predictions with low latency. In addition, due to
its sequential exiting scheme, GFNet can only be applied to image
classification application [77, 30]. The sequential scheme of GFNet
cannot tackle with detection of multiple objects in the same image.
Thus, we only compare ARAC supernet with LegoDNN and DS-
Net in object detection applications. Compared to ARAC supernet,
DS-Net [43] and LegoDNN [19] can only adjust computational cost
at image-level. The regional awareness of ARAC supernet brings
up to 46.2% latency reduction with the same accuracy compared to
DS-Net and LegoDNN.

7.2 Latency/Memory Constraints

We evaluate the accuracy of the ARAC supernet and the baseline
methods under various latency and memory constraints, as shown
in Fig. 10. We implement on three platforms: Jetson TX2 (Fig. 10
(a) to (d)), Xiaomi 6 Plus (Fig. 10 (e) to (h)), Alienware R17 (Fig. 10
(i) to (1)). Under the same latency and memory constraint, ARAC

193

Xueyu Hou*, Yongjie Guan®, and Tao Han

Jetson TX2 Xiaomi 6 plus Alienware 17 R3

\ DS-Net — MS-GFNet ——  LegoDNN —— ARAC Supernet —— \
o\? 77 ;\?76 e 77 //—o
= 76 %175 Z 76
£ £ £
275 2 74 Z 75
Q Q Qo
< <73 = 74
& & &

73 S 72 S 73

€ 70 25 30 35 402 A1 02 03 04 055 e 22 28 34 40

Latency Constraint (ms) Latency Constraint (s) Latency Constraint (ms)
. (a) ResNet-50 (100MB) __ (e) ResNet-50 (100MB) _ 60) ResNet-50 (100MB
< 76 e Sl /__.—.—J
5735 /._‘ 76 3735
g E £
3 71 3 69 3 71
3 3
S8 <66 “68.5
a o
o
=

0 75 100 125 ISOFo 665 6 7 8
Latency Constraint (ms) Latency Constraint (ms)
(f) MobileNet-V3 (30MB)  (j) MobileNet-V3 (30MB)

9 3 79

66 6 7 8

Latency Constraint (ms)
(b) MobileNet-V3 (30MB)
79 &

715 /"/‘
76

745
73

50 60 70 80 90 02 03 0.4 0.5 0.6 70 40 50 60 70
Latency Constraint (ms) Latency Constraint (s) Latency Constraint (ms)
(c) Inception-V3 (300MB)  (g) Inception-V3 (260MB) (k) Inception-V3 (300MB)

52 2 52

o

op-1 \/;‘\ccuraczl (%
]
\?\\
Accuracy (%
~ ~
P
\%

p-1

73

Top-1 Accuracy (%)

5
" 425 425 0425
S = S
S 33 ® 33 ® 33
z z =
£235 5235 23,
14 1 1
30 45 60 75 90 0.1 03 05 04 09 24 37 50 63 76

Latency Constraint (ms)
(d) YOLO-V3 (500MB)

Latency Constraint (s)
(h) YOLO-V3 (450MB)

Latency Constraint (ms)
(1) YOLO-V3 (500MB)

Figure 10: Accuracy under latency/memory constraints.

supernet outperforms the baseline methods by 0.06% to 67.9% ac-
curacy improvement with the four base CNN models across the
three platforms. Especially, ARAC supernet achieves high accuracy
improvement over the baseline methods when latency constraints
are stringent, by 2.2% to 67.9%. Due to the sequential execution
of MS-GFNet [30], its performance becomes similar to the spatial-
agnostic methods (DS-Net [43] and LegoDNN [19]). The success
of ARAC supernet in preserving high accuracy under stringent
constraints is because it can wisely select regions that are crucial
to correct predictions and these regions can be analyzed with high
resolution even under stringent conditions.

7.3 Ablation Study

We have the following controllable parameters in the ARAC super-
net: (1) candidate layer numbers in the supernet; (2) candidate tile
sizes in splitting an image; (3) candidate compression levels of sub-
networks. Their default settings are described in §6. We elaborate
on the principle of how to set these parameters here. The selection
of these parameters is determined by two rules: First, different value
of the parameter generates a significant change in performance. Sec-
ond, the overhead of DEMUX with the given options is trivial. For
example, when selecting candidate layer numbers in the supernet
for ResNet-50, we vary the layer number options from one to five,
as shown in Fig. 11. Though increasing the layer number options
above three does not show a significant performance change, it
generates around twice the overhead for DEMUX. Thus, we set
three layer number options for ResNet-50. The settings of tile sizes
and compression levels are determined similarly. Overall, given a
new model, a similar one-time procedure can be applied to find a
group of settings for an ARAC supernet.



NeuLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on Edge

Layer{23} — Layer{23, 41} — Layer{l11, 23, 41, 47}
Layer{l1, 23,41} — Layer{11,17,23,32,41} —
77 o 4
g g &
S 3
g s
g 76 32
< 2
— o
: 7!
= ( >
75 S
5 15 25 35 12 3 4 5
Average Inference Latency (ms) Number of Options

Figure 11: Accuracy v.s. Inference Latency under different layer
number options in ARAC supernet. (Base Model: ResNet50, Ima-
geNet [7]), Jetson TX2.

CS — Min. — =0.5 —6,-025
Uniform 0r-0.75 —

g 77 S 7 e

> 76 >

5 : 76

375 375

Q Q

< <

=74 /./ — 74

f=9 o

(=] (=}

=73 =73

20 25 30 35 40 20 25 30 35 40
Latency Constraint (ms) Latency Constraint (ms)
(a) Compression-Level Adjustment (b) Confidence Threshold
Figure 12: Accuracy v.s. Inference Latency under different hyper-
parameters in Compression-Level Gate. (Base Model: ResNet50, Ima-
geNet [7]), Jetson TX2.

We study the effect of the starting layer of the ARAC supernet.
We observe that starting the supernet from an intermediate layer
demonstrates poorer performance (e.g., 0.2% to 2.7% accuracy re-
duction under the same inference latency for a ResNet-50 based
ARAC supernet). The reason is that the spatial dimensions of the
feature maps in a CNN model decrease with the increase of lay-
ers. For example, the input’s spatial dimensions to ResNet-50 are
224 x 224, the input feature’s spatial dimensions to the 12-th layer
in ResNet-50 are only 14 X 14. Such a low-dimension indicates a lack
of spatial redundancy on the intermediate features. Thus, starting
the ARAC supernet from the intermediate layer (especially from
a very deep layer in a model) lowers its performance compared to
starting from the input layer.

We observe the performance of ARAC supernet with different
settings of CLG in Fig. 12. In Fig. 12 (a), we compare different
compression-level adjustment methods regarding the performance
under different latency constraints (memory constraint= 100MB).
The CS method (details in §5.2) is compared to two other potential
methods, i.e., uniform (increasing the compression levels of all the
tiles together) and min (increasing the compression level of the
tile with the lowest compression level). Overall, the CS method
outperforms them by up to 2.0% to 4.5%, respectively. In Fig. 12 (b),
we observe the effect of the hyper-parameter, confidence threshold
(0f), on the performance of ARAC supernet. While more tiles are
selected to be tuned by the CLG with a higher confidence thresh-
old, it is risky to tune more than needed. Under the same latency
constraint, the accuracy with 07 = 0.75 is up to 0.67% lower than
that with 0¢ = 0.5; the latency constraints under 30ms cannot be
satisfied with 6 = 0.25 due to lack of tunable tiles when constraints
are violated.

194

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

It is important to note that, though these hyper-parameters have
an effect on the performance of ARAC supernet, their effects are
trivial except for the compression-level adjustment methods in
Fig. 12 (a). On the one hand, it justifies the rationality of the design
of the ARAC supernet in §4 and the CLG in §5.2. On the other hand,
it demonstrates the robustness of the ARAC supernet against the
hyper-parameter settings, which reduces the potential engineering
work in applying ARAC supernet in practice.

7.4 ARAC and Model Compression Techniques

As a dynamic inference technique, we have shown that ARAC su-
pernet outperforms SOTA works in §7.1. We further illustrate the
relationship between ARAC supernet and existing model compres-
sion techniques. Unlike dynamic inference, model compression
techniques target generating one compressed model with the low-
est computational cost and the highest accuracy [39, 1, 40]. We
specifically compare ARAC supernet with SOTA model compres-
sion techniques that apply to latency acceleration on general deep
learning platforms. We demonstrate that: (1) ARAC supernet, by
exploiting spatial redundancy on images, outperforms SOTA model
compression techniques; (2) ARAC supernet is complementary to
model compression techniques and can collaboratively boost the
performance with them.

Comparison: We compare ARAC supernet with SOTA model com-
pression techniques that keep high accuracy with effective latency
reduction. While each type of technique includes a series of works
(e.g., over 20 methods in channel pruning), we select the one that
shows the Pareto optimality on accuracy-latency trade-off. Specifi-
cally, for channel pruning, we select PruneNet [39]; for early-exit,
we select ZTW [79]; for low-rank decomposition, we select [40].
The comparison is shown in Fig. 13, where the performance of the
original model is also marked. Overall, benefit from the spatial-
redundancy reduction, ARAC supernet achieves the highest accu-
racy with the same latency, i.e., by 1.1% to over 6.9% higher accuracy
(ResNet-50) and by 8.8% to 1.23X higher accuracy (YOLO-V3). Cor-
respondingly, it achieves the lowest latency with the same accuracy,
i.e., by 60.2% (ResNet-50) and by 3.4% to 18.4% (YOLO-V3) latency
reduction compared to channel pruning. Besides the performance
improvement, the comparison in Fig. 13 also shows another advan-
tage over the model compression techniques, higher granularity
in tuning accuracy-latency tradeoff. As an ARAC supernet splits
the original input image into small tiles and prepares different lev-
els of compressed sub-networks to process them, the accuracy v.s.
latency curve generated by ARAC supernet demonstrates higher
granularity than model compression techniques. For example, in
Fig. 13 (a), in the latency range of 18ms to 34ms, there are only
two points on the curve generated by channel pruning, but there
are eight points on the curve generated by ARAC supernet. The
higher granularity of ARAC supernet largely improves its adaptiv-
ity to dynamic conditions like changing contention on devices, i.e.,
the performance of inference can be adaptively tuned by ARAC
supernet according to the device conditions (details in §7.5).
Integration: In Fig. 14 (a), we show the performance of ARAC
supernet that integrates with low-rank decomposition [40]. The
integration follows the same procedure described in §4 besides that,
the sub-network with different compression levels is formed by



ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

ARAC Supernet —— Channel Pruning ——
Low Rank Decomposition Resolution Scaling
Early-Exit —— Original Model

.

£ 76 // ==

S -

il

s 74 7

3 /

< L .

w72

&

= ,

70 17 &
10 18 26 34 42 50 40 52 64 76 88 100

Average Inference Latency (ms)
(a) ResNet-50

Average Inference Latency (ms)
(b) YOLO-V3

Figure 13: Comparison w/ model compression techniques.

ARAC—  LRD int-ARAC —
int8/-ARAC —
ARACW/LRD — int4-Original Model
Original Model int8-Original Model
77 77
* S
=76 =76
5 g il
£75 275
= 133
8 o
<74 / <74 f
i &
§ 73 273
72 72
10 18 26 34 42 50 0 4 8 12 16 20

Average Inference Latency (ms) Average Inference Latency (ms)

(a) ARAC w/ Low Rank Decomposition (b) Low-Precision ARAC
Figure 14: ARAC supernet: (a) with low rank decomposition, and
(b) in low precision.
low-rank decomposition rather than channel pruning. As shown
in Fig. 14 (a), the ARAC supernet with low-rank decomposition
(dashed red curve) raises the accuracy by 1.1% compared to basic
low-rank decomposition. Its performance is 2% lower than the
ARAC supernet with channel pruning (solid red curve), which
justifies the rationality of utilizing channel pruning to generate an
ARAC supernet in our design (§4).
Low-Precision: Like other studies on model compression and
dynamic inference, ARAC supernet is also a technique that is com-
plementary to the studies on low-precision. As shown in Fig. 14 (b),
we integrate low-precision technique [1] into ARAC supernet and
reduce the precision of weights in ARAC supernet to int8 and int4.
The performance of (low-precision) ARAC is compared with that
of the original low-precision model (marked in star symbols). Simi-
lar to the float32 results, ARAC supernet realizes a wide range of
accuracy and latency trade-offs above the original (low-precision)
model, which proves the complementarity between ARAC supernet
and low-precision technique. Note that most studies on DNN model
design [21, 25, 58] and compression [39, 40, 79] keep in the original
precision (float32) because the generation of low-precision model
suffers from high engineering complexity including configuration
calibration procedure, sensitivity to training settings, and frequent
tuning of hyper-parameters during training [1, 52, 67]

7.5 ARAC under Background Loads

We examine the performance of ARAC supernet under background
loads by changing the running conditions of the device with a
GPU-intensive application (Gaussian Elimination in the Rodinia
Benchmark Suite [4]), which is widely used by mobile computing
evaluation [84]. For the latency and memory predictors in DE-
MUX (§5.3), we can easily modify and train them to predict under
varying system contention (memory bandwidth and CPU/GPU

195

Xueyu Hou*, Yongjie Guan®, and Tao Han

Channel Pruning — LegoDNN ——
ARAC Supernet —
No Background No Background
0 | Contention |Applications| Contention |Applications

Processing Latency (ms)
D W B

0 50

100 150 200 250 300 350 400
i Images
Figure 15: Performance comparison under dynamic device con-

tention (ResNet-50 [21], Jetson TX2, 30ms latency constraint).

usage) by adding them as inputs [84]. In Fig 15, we show the perfor-
mance comparison of ARAC supernet and two baseline methods,
LegoDNN [19] and channel pruning [39]. As shown in Fig. 15, all
three methods are adaptive to the changing contention on the device
and keep most of their inference execution within the latency con-
straint (30ms). The processing latency of ARAC supernet fluctuates
in a wide range (under 30ms) because it is a content-aware method
that makes an individual decision on how much computation is
assigned to each image according to its content. We also observe
that, the average accuracy of ARAC supernet is 1.5% higher than
that of LegoDNN and 2.8% higher than that of channel-pruning in
the test.

7.6 ARAC in Continuous Object Detection

Recent works on continuous object detection [5, 36, 47, 84] exploit
the temporal correlation between consecutive frames and reduce
the overall computation of video streams by combining model
detection with tracking algorithms [47, 84]. In contrast, ARAC su-
pernet, by modifying the detection model’s computation directly,
reduces computation per frame in video streams. In general, apply-
ing ARAC supernet into a continuous object detection system: (1)
significantly reduces model inference latency in processing a frame
(Fig. 16); (2) increases the system’s adaptivity to various conditions
like cross-frame similarity, sampling rate (FPS), and processing
deadline (Fig. 18). We implement three continuous object detection
systems: offloading (all frames are processed by the detection model
on the server), Edge-Assisted [47], and local [84]. The detection
model is YOLO-V3, the server is with RTX 2070, and the local device
is Jetson TX2. The network is WiFi 2.4GHz. As shown in Fig. 16,
with ARAC supernet, the end-to-end latencies of processing a frame
with the detection model show a significant reduction (36.0% to
54.1%) in all three systems.

We further demonstrate how ARAC supernet contributes to the
overall performance of a continuous object detection system in two
videos. Video-1 and Video-2 are two one-hour videos taken on the
side of a vehicle at 60FPS. As shown in Fig. 17, with different mov-
ing speeds (Video-1: at 45 to 70 mph, Video-2: at around 20mph),
the similarities (SSIM) of the two videos deviates from each other.
In Fig. 18 (a), we observe the accuracy trend along with different
sampling rate (latency constraint= 30ms). As ARAC supernet re-
duces computation in the detection model, it allows more frames to
be processed within a fixed period. Thus, the systems with ARAC
supernet show high adaptivity to the increase of sampling rate. For
example, the accuracy of offloading with ARAC supernet keeps the
highest in all cases. In contrast, the accuracy of Edge-Assisted is
up to 88.5% lower than that of offloading with ARAC supernet. In



NeuLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on Edge

100 1,0‘ Video-1 Video2 —— |
g b 0.8 >—2
=75 = = : —T
g z 2 < 06—t
550 gz = Z
5 z < ©x 0.4
m 25 0.2
o
5 mm BN B9 |
i Edge- 0 10 20 30 40 50 60 70
. Offloading ASSIgSt 4 Local . FPS L.
Figure 16: Detection model Figure 17: Cross-frame simi-
latency. larity.
Offloading w/ ARAC (Video-1) Edge-Assisted (Video-1) —
Local w/ ARAC (Video-1) Edge-Assisted w/ ARAC (Video-1) —
Offloading w/ ARAC (Video-2) Edge-Assisted (Video-2)
Local w/ ARAC (Video-2) Edge-Assisted w/ ARAC (Video-2)
1.0 1.0
085 7 0.85 —s
0.7 07
2055 2055
4 4
0. 7 0
0.25 0.25
0.1 s 0.1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
FPS Latency Constraint (ms)

(a) IoU v.s. FPS (b) IoU v.s. Constraint

Figure 18: Performance comparison of continuous object detection.

Fig. 18 (b), we observe the performance (IoU as metric [47]) under
different per-frame latency constraints. Specifically, the detection
results of a frame are required to be obtained within a latency
constraint once a frame is sampled 2. To satisfy a small latency
constraint, the low-accuracy detection results can be frequently
generated by the tracker. Consequently, Edge-Assisted has poor
performance with small latency constraints on videos with low
similarity (e.g., Video-1). For example, for Video-1, its IoU is < 0.4
when the latency constraint is less than 40ms. In contrast, offload-
ing with ARAC supernet outperforms Edge-Assisted by up to 1.25%
when the latency constraints are 30 and 40ms. Local with ARAC
supernet also achieves comparable performance with Edge-Assisted
in Fig. 18 (b). When the server has poorer GPU (e.g., GTX 1070),
local with ARAC supernet even outperforms Edge-Assisted by up
to 95% when the latency constraint is 30ms. We also observe that
the combination of ARAC supernet with Edge-Assisted achieves
the highest performance in all cases. Compared to Edge-Assisted,
the Edge-Assisted with ARAC supernet increases accuracy by up
to 1.25x and 7.7X in Fig. 18 (a) and (b), respectively.

7.7 ARAC in Various Vision Applications

Besides image classification and object detection, we also evaluate
the performance of ARAC supernet in other vision applications,
including action recognition [16], traffic accident detection [2], ab-
normal activity detection [10], traffic sign recognition [66], flower
classification [82], vehicle detection [64], fall detection [6], vehicle
make and model recognition [70]. As shown in Fig. 19, ARAC su-
pernet achieves the highest accuracy under the same constraints
in all applications. Reducing computation based on spatial redun-
dancy allows ARAC supernet to preserve high accuracy with lower
latency and less memory consumption.

2Such latency constraint is common in real applications because the detection
results are often utilized by other applications like augmented reality [18] and au-
tonomous driving [14].

196

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

[DS-Net — LegoDNN —— ARAC Supernet—— Channel Pruning — |

8 — 95 — 93
SS9 < 90 < 90
o > 2 >
s 876 S 85— 2 85
= 3 5
£8n 3 80 3 80
<< < <

7%0 100 120140 160 750 60 70 8090
Latency Constraint (ms) Latency Constraint (ms)

%)) Traffic Accident (c) Vehicle Detection
(400MB)
96

7040 55 70 85 100

Latency Constraint (ms)
(a) Action Recognition 1
(500MB) etection (430MB)

GTX1070

AUC (%)

6112 14 16 18 20
Latency Constraint (s)

2
7280360 440 520 600
Latency Constraint (ms)

12 3 45
Latency Constraint (s)

(d]% Abnormal Activity (e) Fall Detection (f) Fall Detection
etection (800MB) (500MB) (500MB)
96 9%

Z <9 ‘/0/” = 93 > <
R £ 92" 2
E 3 L E

153 Q
R 90 2 91 3

85560 65 70 75 %0 50 60 70 80 %60 75 90 105120

Latency Constraint (ms)  Latency Constraint (ms) Latency Constraint (ms)
(g) Traffic Sign (h) Flower Classification (i) Vehicle Make
Recognition (30%\/[B) (30MB) Recognition (70MB)

Figure 19: Accuracy under latency/memory constraints in 9 differ-

ent vision applications.

Input Image/Frame
YOLO-V3 based
Compression levels of tiles

ARAC Supernet

Compression Guiding Gate

Detection results

Wireless Network

HoloLens 2 Edge Server

Figure 20: DeepMix [18] w/ ARAC supernet.

7.8 Evaluation on Mixed-Reality Platform

We implement ARAC supernet on the SOTA Mixed-Reality platform
for 3D object detection, DeepMix [17, 18], as shown in Fig. 20.
DeepMix implements 3D object detection based on detection results
of 2D object detection models like YOLO [18]. We run CGG on
the MR device (HoloLens), and only the tiles with a compression
ratio higher than 0 are sent to the edge server (Alienware 17 R3)
for processing. Neglecting computing tiles with zero compression
ratio only causes less than 4.7% accuracy loss. The server then
sends the detection results (bounding boxes and objects’ classes)
back to the MR device. We observe that both transmission latency
and computing latency on the server is significantly reduced with
ARAC supernet under different network conditions. As shown in
Fig. 21, ARAC supernet reduces end-to-end latency by 32.2% to
49.3% compared to the original DeepMix implementation under
different network conditions. The data processing latency on the
server is reduced by 50.7%, and the data transmission latency is
reduced by 56.5% to 66.7%. The overhead of the computing guiding
gate on the MR device is less than 4.2ms.

7.9 Cross-Domain and Multi-Scale Performance

We evaluate the performance of the compression guiding gate
(CGQG) that is trained on one domain (e.g., a dataset) but is applied to



ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

— 60 S
g 2 o) é Data Trans.
> ~ é
945 = <
§ = i = Data Process
=] = =
= = (Server)

:; L —— S
g Data Process
—g 15 (MR device)
m

WiFi-2.4G WiFi-5G  LTE

Figure 21: LateOncv of DeepMix w/ and w/o ARAC supernet.

Accuracy Reduction |
(%)
=

NRCIR IR
LORO q\O \\1 Qi C:;‘G\i@qo <
oV 0 o O G K\
Figure 22: Cross-domam performance (Base Model: YOLO-V3, Jet-

son TX2, memory constraint= 500MB, latency constraint= 75ms).
[ARAC M Channel-Pruning ] [ARAC B Channel-Pruning ]

§ 78 48
g 77 e 40
276 B3
[_é‘ 7 Large Medium Small 24 Large Medium Small

(a) ImageNet (b) COCO

Figure 23: Multi-scale observation: (a) ResNet-50, (b) YOLO-V3.

another domain (e.g., another dataset). Besides COCO dataset [46],
we include four other datasets that are collected on various loca-
tions and with different contents: VID [62], UA [78] (high-way
traffic in China), VIRAT [54] (on-campus), and GSV [91] (google
street view). As shown in Fig. 22, applying a CGG from another
domain generates an accuracy reduction of < 10% in most cross-
domain cases, which indicates the transferability of the CGG. Note
that the poor cross-domain performance between GSV and VID is
due to the large difference between the two datasets’ contents. In
practice, a common deep learning solution is to train the model
on large datasets like ImageNet and COCO, then to finetune the
model on the customized dataset to make the model adaptive to the
specific application.

We observe the accuracy distribution of ARAC supernets regard-
ing the sizes of objects in images. For the ImageNet dataset (image
classification), we group objects into large, medium, and small size
as > 70%, between 40% and 70%, < 40% area of the whole image,
respectively. For the COCO dataset (object detection), we group
objects into large, medium, and small size as > 50%, between 25%
and 50%, < 25% area of the whole image, respectively. As shown in
Fig. 23, ARAC supernet outperforms channel-pruning in all sizes.
Especially, it shows significant accuracy improvement on small-size
objects by 0.6% (image classification) and 12% (object detection).
The underlying reason is that the recognition on small objects is
easily affected by other pixels of the image when processed by
spatial-agnostic inference like channel-pruning. As ARAC supernet
adaptively allocates the computation on different pixels in an image,
it prevents interference from redundant pixels on the final results.

8 DISCUSSION

o Training overhead of ARAC supernet: In Table 1, we compare the
training time of the ARAC supernet with channel-pruning [39]

197

Xueyu Hou*, Yongjie Guan®, and Tao Han

ARAC Supernet Channel-Pruning | Original Model
(five levels+CGG) (four levels)
27.5h 67h \ 218h

Table 1: Comparison of training time (base model: ResNet-50).

Example images

Original output Brittany spaniel Lynx Spider monkey Albatross
ARAC output English setter Persian cat Titi Mink
Ground truth English setter Persian cat Titi Mink

Figure 24: Image examples from ImageNet validation dataset [7],
original model: ResNet-50 [21].

and the original model. We utilize ResNet-50 as the base model
and train on ImageNet dataset [7]. As ARAC supernet integrates
sub-networks with different compression levels and trains them
together with one loss function (§4.3), the sharing of model parame-
ters among sub-networks allows all sub-networks to converge syn-
chronously. The channel-pruned model with different compression
levels can only be trained individually. Thus, compared to channel-
pruning [39], the ARAC supernet can finish training within less
than 50% of the training time for channel-pruning.

e Online Overhead: We observe the latency breakdown of the end-to-
end processing latency with ARAC supernet. Overall, the average
overhead of CGG and DEMUX (including CLG) is less than 7.3% of
the total execution latency.

o Accuracy improvement by ARAC supernet: As our approach makes
the network focus on processing regions in an image that contain
key features related to the vision task, the side-effect of redundant
pixels is weaken or eliminated, which is equivalent to strengthen
the effects of key-feature pixels on the final output. For cases when
the side-effect from redundant pixels are so strong that the original
network is misled to a wrong output, the ARAC supernet may
help the model to remove the side-effect and output correct results.
We show four such examples in Fig. 24. Similar observations are
reported by [95] and [43].

9 CONCLUSION

In this paper, we proposed a spatial-based dynamic CNN accel-
eration framework, NeuLens, adaptive to users’ SLOs for mobile
and edge platforms. A novel dynamic inference mechanism, ARAC
supernet, was presented. Splitting image into tiles can adaptively
select computational cost for each tile and ensure speed-up on
general platforms. We also proposed an online controller to tune
ARAC supernet based on users’ SLOs with neglectable overhead
on mobile/edge devices. NeuLens outperforms baseline methods
by up to 58% latency reduction with the same accuracy and by up
to 67.9% accuracy improvement under the same latency/memory
constraints. Significant performance improvements are observed
in mobile vision applications like continuous object detection and
3D object detection for MR devices.

10 ACKNOWLEDGEMENTS

We sincerely thank our anonymous shepherd and reviewers for
their valuable comments. This work is partially supported by the US
National Science Foundation under Grant No. 2147821, No. 2147623,
No. 2047655, and No. 2049875.



NeuLens: Spatial-based Dynamic Acceleration of Convolutional Neural Networks on Edge

REFERENCES

(1]

(2]

(6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

[23]

AmirAli Abdolrashidi et al. “Pareto-optimal quantized resnet is mostly 4-bit”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 3091-3099.

Aman Kumar Agrawal et al. “Automatic traffic accident detection system
using ResNet and SVM”. In: 2020 Fifth International Conference on Research
in Computational Intelligence and Communication Networks (ICRCICN). IEEE.
2020, pp. 71-76

Tolga Bolukbasi et al. “Adaptive neural networks for efficient inference”. In:
International Conference on Machine Learning. PMLR. 2017, pp. 527-536.
Shuai Che et al. “Rodinia: A benchmark suite for heterogeneous computing”.
In: 2009 IEEE international symposium on workload characterization (ISWC).
Teee. 2009, pp. 44-54.

Tiffany Yu-Han Chen et al. “Glimpse: Continuous, Real-Time Object Recog-
nition on Mobile Devices”. In: Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems, SenSys 2015, Seoul, South Korea, Novem-
ber 1-4, 2015. Ed. by Junehwa Song, Tarek F. Abdelzaher, and Cecilia Mas-
colo. ACM, 2015, pp. 155-168. por: 10.1145/2809695.2809711. URL: https:
//doi.org/10.1145/2809695.2809711.

Sagar Chhetri et al. “Deep learning for vision-based fall detection system:
Enhanced optical dynamic flow”. In: Computational Intelligence 37.1 (2021),
pp. 578-595.

Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009
IEEE conference on computer vision and pattern recognition. leee. 2009, pp. 248
255.

Xuanyi Dong et al. “More is less: A more complicated network with less
inference complexity”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 5840-5848.

Kuntai Du et al. “Server-driven video streaming for deep learning inference”. In:
Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication. 2020, pp. 557-570.

Shikha Dubey, Abhijeet Boragule, and Moongu Jeon. “3d resnet with ranking
loss function for abnormal activity detection in videos”. In: 2019 International
Conference on Control, Automation and Information Sciences (ICCAIS). IEEE.
2019, pp. 1-6

Gamaleldin Elsayed, Simon Kornblith, and Quoc V Le. “Saccader: Improving ac-
curacy of hard attention models for vision”. In: Advances in Neural Information
Processing Systems 32 (2019).

Biyi Fang, Xiao Zeng, and Mi Zhang. “Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision”. In: Proceedings of the
24th Annual International Conference on Mobile Computing and Networking.
2018, pp. 115-127.

Biyi Fang et al. “FlexDNN: Input-adaptive on-device deep learning for efficient
mobile vision”. In: 2020 IEEE/ACM Symposium on Edge Computing (SEC). IEEE.
2020, pp. 84-95

Di Feng et al. “A review and comparative study on probabilistic object detection
in autonomous driving”. In: IEEE Transactions on Intelligent Transportation
Systems (2021).

Michael Figurnov et al. “Spatially adaptive computation time for residual net-
works”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 1039-1048.

Deeptha Girish, Vineeta Singh, and Anca Ralescu. “Understanding action recog-
nition in still images”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. 2020, pp. 370-371.

Yongjie Guan et al. “DeepMix: A Real-time Adaptive Virtual Content Reg-
istration System with Intelligent Detection”. In: IEEE INFOCOM 2021-IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE. 2021, pp. 1-2

Yongjie Guan et al. “DeepMix: Mobility-aware, Lightweight, and Hybrid 3D
Object Detection for Headsets”. In: arXiv preprint arXiv:2201.08812 (2022).
Rui Han et al. “LegoDNN: block-grained scaling of deep neural networks for
mobile vision”. In: Proceedings of the 27th Annual International Conference on
Mobile Computing and Networking. 2021, pp. 406-419.

Yizeng Han et al. “Spatially adaptive feature refinement for efficient inference”.
In: IEEE Transactions on Image Processing 30 (2021), pp. 9345-9358.

Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770—
778.

Seonyeong Heo et al. “Real-time object detection system with multi-path neural
networks”. In: 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE. 2020, pp. 174-187.

Xueyu Hou and Tao Han. “TrustServing: A quality inspection sampling ap-
proach for remote DNN services”. In: 2020 17th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON). IEEE. 2020,

pp- 1-9.

198

[24]

[25]
[26]

[27]

[30]
[31]
(32]

(33]

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

Xueyu Hou et al. “Distredge: Speeding up convolutional neural network in-
ference on distributed edge devices”. In: 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE. 2022, pp. 1097-1107.
Andrew Howard et al. “Searching for mobilenetv3”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2019, pp. 1314-1324.
Andrew G Howard et al. “Mobilenets: Efficient convolutional neural networks
for mobile vision applications”. In: arXiv preprint arXiv:1704.04861 (2017).
Weizhe Hua et al. “Boosting the performance of cnn accelerators with dynamic
fine-grained channel gating”. In: Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. 2019, pp. 139-150.

Weizhe Hua et al. “Channel gating neural networks”. In: Advances in Neural
Information Processing Systems 32 (2019).

Gao Huang et al. “Condensenet: An efficient densenet using learned group
convolutions”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018, pp. 2752-2761.

Gao Huang et al. “Glance and Focus Networks for Dynamic Visual Recognition”.
In: arXiv preprint arXiv:2201.03014 (2022).

Gao Huang et al. “Multi-scale dense networks for resource efficient image
classification”. In: arXiv preprint arXiv:1703.09844 (2017).

Itay Hubara et al. “Binarized neural networks”. In: Advances in neural informa-
tion processing systems 29 (2016).

Benoit Jacob et al. “Quantization and training of neural networks for efficient
integer-arithmetic-only inference”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, pp. 2704-2713.

Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with
gumbel-softmax”. In: arXiv preprint arXiv:1611.01144 (2016).

Borui Jiang and Yadong Mu. “Russian Doll Network: Learning Nested Networks
for Sample-Adaptive Dynamic Inference”. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. 2021, pp. 336-344.

Junchen Jiang et al. “Chameleon: scalable adaptation of video analytics”. In:
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, SSGCOMM 2018, Budapest, Hungary, August 20-25, 2018. Ed. by
Sergey Gorinsky and Janos Tapolcai. ACM, 2018, pp. 253-266. DoI: 10.1145/
3230543.3230574. URL: https://doi.org/10.1145/3230543.3230574.

Shiqi Jiang et al. “Flexible high-resolution object detection on edge devices with
tunable latency”. In: Proceedings of the 27th Annual International Conference on
Mobile Computing and Networking. 2021, pp. 559-572.

Woochul Kang, Daeyeon Kim, and Junyoung Park. “Dms: Dynamic model
scaling for quality-aware deep learning inference in mobile and embedded
devices”. In: IEEE Access 7 (2019), pp. 168048-168059.

Ashish Khetan and Zohar Karnin. “Prunenet: Channel pruning via global
importance”. In: arXiv preprint arXiv:2005.11282 (2020).

Yong-Deok Kim et al. “Compression of deep convolutional neural networks for
fast and low power mobile applications”. In: arXiv preprint arXiv:1511.06530
(2015).

Stefanos Laskaridis et al. “SPINN: synergistic progressive inference of neural
networks over device and cloud”. In: Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking. 2020, pp. 1-15.

Yann LeCun, John Denker, and Sara Solla. “Optimal brain damage”. In: Advances
in neural information processing systems 2 (1989).

Changlin Li et al. “Dynamic slimmable network”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 8607-8617.

Hao Li et al. “Pruning filters for efficient convnets”. In: arXiv preprint arXiv:1608.08710

(2016).

Ji Lin et al. “Runtime neural pruning”. In: Advances in neural information
processing systems 30 (2017).

Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European
conference on computer vision. Springer. 2014, pp. 740-755.

Luyang Liu, Hongyu Li, and Marco Gruteser. “Edge assisted real-time object
detection for mobile augmented reality”. In: The 25th Annual International
Conference on Mobile Computing and Networking. 2019, pp. 1-16.

Miaomiao Liu, Xianzhong Ding, and Wan Du. “Continuous, real-time object
detection on mobile devices without offloading”. In: 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS). IEEE. 2020, pp. 976-986.
Zhuang Liu et al. “Learning efficient convolutional networks through network
slimming”. In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 2736-2744.

Zhuang Liu et al. “Rethinking the value of network pruning”. In: arXiv preprint
arXiv:1810.05270 (2018).

Ningning Ma et al. “Shufflenet v2: Practical guidelines for efficient cnn archi-
tecture design”. In: Proceedings of the European conference on computer vision
(ECCV). 2018, pp. 116-131.

Jeffrey L McKinstry et al. “Discovering low-precision networks close to full-

precision networks for efficient embedded inference”. In: arXiv preprint arXiv:1809.04191

(2018).



ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[77]

[78]

Wei Niu et al. “Patdnn: Achieving real-time dnn execution on mobile devices
with pattern-based weight pruning”. In: Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 2020, pp. 907-922.

Sangmin Oh et al. “A large-scale benchmark dataset for event recognition in
surveillance video”. In: CVPR 2011. IEEE. 2011, pp. 3153-3160.

Athanasios Papadopoulos, Pawel Korus, and Nasir Memon. “Hard-attention
for scalable image classification”. In: Advances in Neural Information Processing
Systems 34 (2021).

Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024-8035. URL:
http://papers.neurips.cc/paper/9015- pytorch- an-imperative- style- high-
performance-deep-learning-library.pdf.

Mohammad Rastegari et al. “Xnor-net: Imagenet classification using binary
convolutional neural networks”. In: European conference on computer vision.
Springer. 2016, pp. 525-542.

Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In:
arXiv preprint arXiv:1804.02767 (2018).

Mengye Ren et al. “Sbnet: Sparse blocks network for fast inference”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 8711-8720

Adria Ruiz and Jakob Verbeek. “Adaptative inference cost with convolutional
neural mixture models”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2019, pp. 1872-1881.

Adria Ruiz and Jakob Verbeek. “Anytime inference with distilled hierarchi-
cal neural ensembles”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. 11. 2021, pp. 9463-9471.

Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”.
In: International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211-252.
DOI: 10.1007/511263-015-0816-y.

Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bottlenecks”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 4510-4520

Jun Sang et al. “An improved YOLOv2 for vehicle detection”. In: Sensors 18.12
(2018), p. 4272

Noam Shazeer et al. “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer”. In: arXiv preprint arXiv:1701.06538 (2017).
Johannes Stallkamp et al. “The German traffic sign recognition benchmark: a
multi-class classification competition”. In: The 2011 international joint conference
on neural networks. IEEE. 2011, pp. 1453-1460.

Qigong Sun et al. “Effective and fast: A novel sequential single path search for
mixed-precision quantization”. In: arXiv preprint arXiv:2103.02904 (2021).
Wenyu Sun et al. “A 112-765 GOPS/W FPGA-based CNN Accelerator using
Importance Map Guided Adaptive Activation Sparsification for Pix2pix Ap-
plications”. In: 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC). 2020,
pp. 1-4. por: 10.1109/A-SSCC48613.2020.9336115.

Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2015, pp. 1-9.
Faezeh Tafazzoli, Hichem Frigui, and Keishin Nishiyama. “A large and diverse
dataset for improved vehicle make and model recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition workshops. 2017,
pp- 1-8.

Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for con-
volutional neural networks”. In: International conference on machine learning.
PMLR. 2019, pp. 61056114

Chen Tang et al. “Adaptive Pixel-wise Structured Sparse Network for Efficient
CNNs”. In: arXiv preprint arXiv:2010.11083 (2020).

Andreas Veit and Serge Belongie. “Convolutional networks with adaptive
inference graphs”. In: Proceedings of the European Conference on Computer
Vision (ECCV). 2018, pp. 3-18.

Thomas Verelst and Tinne Tuytelaars. “Dynamic convolutions: Exploiting
spatial sparsity for faster inference”. In: Proceedings of the ieee/cvf conference
on computer vision and pattern recognition. 2020, pp. 2320-2329.

Huanyu Wang et al. “CoDiNet: Path Distribution Modeling with Consistency
and Diversity for Dynamic Routing”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (2021).

Xin Wang et al. “Skipnet: Learning dynamic routing in convolutional networks”.
In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,
pp. 409-424

Yulin Wang et al. “Glance and focus: a dynamic approach to reducing spa-
tial redundancy in image classification”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 2432-2444.

Longyin Wen et al. “‘UA-DETRAC: A new benchmark and protocol for multi-
object detection and tracking”. In: Computer Vision and Image Understanding
193 (2020), p. 102907.

199

[79]

[80]

(81]

[84]

(85]

(6]

(8]

(89]

[90]

[91]

[94]

[95]

Xueyu Hou*, Yongjie Guan®, and Tao Han

Maciej Wolczyk et al. “Zero Time Waste: Recycling Predictions in Early Exit
Neural Networks”. In: Advances in Neural Information Processing Systems 34
(2021).

Sanghyun Woo et al. “Cbam: Convolutional block attention module”. In: Pro-
ceedings of the European conference on computer vision (ECCV). 2018, pp. 3—
19.

Zuxuan Wu et al. “Blockdrop: Dynamic inference paths in residual networks”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2018, pp. 8817-8826

Xiaoling Xia, Cui Xu, and Bing Nan. “Inception-v3 for flower classification”.
In: 2017 2nd international conference on image, vision and computing (ICIVC).
IEEE. 2017, pp. 783-787

Zhenda Xie et al. “Spatially adaptive inference with stochastic feature sampling
and interpolation”. In: European conference on computer vision. Springer. 2020,
pp- 531-548.

Ran Xu et al. “ApproxDet: content and contention-aware approximate object
detection for mobiles”. In: Proceedings of the 18th Conference on Embedded
Networked Sensor Systems. 2020, pp. 449-462.

Zirui Xu et al. “Reform: Static and dynamic resource-aware dnn reconfigura-
tion framework for mobile device”. In: Proceedings of the 56th Annual Design
Automation Conference 2019. 2019, pp. 1-6.

Brandon Yang et al. “Condconv: Conditionally parameterized convolutions for
efficient inference”. In: Advances in Neural Information Processing Systems 32
(2019).

Le Yang et al. “Resolution adaptive networks for efficient inference”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 2369-2378

Jaehyoung Yoo et al. “RaScaNet: Learning Tiny Models by Raster-Scanning
Images”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, pp. 13673-13682.

Jiahui Yu and Thomas S Huang. “Universally slimmable networks and improved
training techniques”. In: Proceedings of the IEEE/CVF international conference
on computer vision. 2019, pp. 1803-1811.

Jiahui Yu et al. “Slimmable neural networks”. In: arXiv preprint arXiv:1812.08928
(2018).

AR. Zamir and M. Shah. Image Geo-localization Based on Multiple Nearest
Neighbor Feature Matching using Generalized Graphs. 2014. por: 10.1109/TPAML
2014.2299799.

Wuyang Zhang et al. “Elf: accelerate high-resolution mobile deep vision with
content-aware parallel offloading”. In: Proceedings of the 27th Annual Interna-
tional Conference on Mobile Computing and Networking. 2021, pp. 201-214.
Xiangyu Zhang et al. “Shufflenet: An extremely efficient convolutional neural
network for mobile devices”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, pp. 6848-6856.

Yikang Zhang, Zhuo Chen, and Zhao Zhong. “Collaboration of experts: Achiev-
ing 80% top-1 accuracy on imagenet with 100m flops”. In: arXiv preprint
arXiv:2107.03815 (2021).

Mingjian Zhu et al. “Dynamic Resolution Network”. In: Advances in Neural
Information Processing Systems 34 (2021).



