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Abstract. Let Γ be an irreducible lattice in a product of two locally compact groups and assume
that Γ is densely embedded in a profinite group K. We give necessary conditions which imply that
the left translation action Γ y K is “virtually” cocycle superrigid: any cocycle w : Γ × K → ∆
with values in a countable group ∆ is cohomologous to a cocycle which factors through the map
Γ×K → Γ×K0, for some finite quotient group K0 of K. As a corollary, we deduce that any ergodic
profinite action of Γ = SL2(Z[S

−1]) is virtually cocycle superrigid and virtually W∗-superrigid, for
any finite nonempty set of primes S.

1. Introduction and statement of main results

The study of measure preserving actions of countable groups on standard probability spaces up
to orbit equivalence has witnessed an explosion of activity in the last 20 years (see the surveys
[Sh05,Po07b,Fu11,Ga10,Va10,Io13,Io18]). Recall that two probability measure preserving (p.m.p.)
actions Γ y (X,µ) and ∆ y (Y, ν) are called orbit equivalent (OE) if there is an isomorphism of
probability spaces θ : X → Y such that θ(Γ · x) = ∆ · θ(x), for almost every x ∈ X. If, in addition,
there is a group isomorphism δ : Γ → ∆ such that θ(g · x) = δ(g) · θ(x), for every g ∈ Γ and almost
every x ∈ X, then the actions are called conjugate.

The theory of orbit equivalence was initiated by H. Dye, in connection with the theory of von
Neumann algebras [MvN36]. He proved that any two ergodic p.m.p. actions of the group of integers
Z are orbit equivalent [Dy59]. In the early 1980s, this result was extended to show that all ergodic
p.m.p. actions of infinite amenable groups are orbit equivalent [OW80] (see also [CFW81]). In
contrast, it was shown in [Ep07] that any non-amenable group has uncountably many pairwise
non-orbit equivalent free ergodic p.m.p. actions (see also [Hj05,GP05, Io11a] for results addressing
various important classes of non-amenable groups).

Moreover, the non-amenable case revealed a striking rigidity phenomenon: within certain families
of actions of non-amenable groups, orbit equivalence implies conjugacy. The first OE rigidity
results were obtained by R. Zimmer for actions of higher rank lattices via his cocycle superrigidity
theorem [Zi84]. By building upon Zimmer’s work, A. Furman proved the remarkable fact that
generic ergodic p.m.p. actions Γ y (X,µ) of higher rank lattices (e.g., SLn(Z) y Tn, for n ≥ 3),
are OE superrigid [Fu99]: any free p.m.p. action which is OE to Γ y (X,µ) must be “virtually”
conjugate to it. Subsequently, numerous impressive OE superrigidity results were obtained in
[MS06,Po07a,Po08,Ki10,Io11b,PV11,Fu11,Ki11,PS12,Io17,TD20,CK15,Dr18a,GITD19,BTD18].

We highlight here the breakthrough work of S. Popa who used his deformation/rigidity theory
to prove that Bernoulli actions of property (T) and product groups are OE superrigid [Po07a,
Po08]. Popa derived this result from his seminal cocycle superrigidity theorem asserting that any
cocycle for such an action with values in a countable (more generally, Ufin, see Definition 2.5 in
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[Po07a]) group is cohomologous to a group homomorphism [Po07a,Po08]. Later on, techniques and
ideas from deformation/rigidity theory were used to prove several additional cocycle superrigidity
results in [Io11b,PV11,Fu11,PS12,TD20,Io17,Dr18a,GITD19,BTD18]. Notably, the second author
proved a cocycle superrigidity theorem for ergodic profinite actions Γ y (X,µ) of property (T)
groups [Io11b]. This shows that any cocycle for Γ y (X,µ) with values in a countable group is
virtually (i.e., after restricting to a finite index subgroup Γ0 < Γ and an ergodic component of
Γ0) cohomologous to a group homomorphism. Soon after, this result was generalized to compact
actions in [Fu11]. More recently, completing an analogy with Bernoulli actions, D. Gaboriau, R.
Tucker-Drob and the second author proved that separately ergodic profinite actions of product
groups are cocycle superrigid in the above sense [GITD19].

In this paper, we establish cocycle superrigidity results for profinite actions of a new class of groups
that arise as irreducible lattices in products of locally compact groups. This is in part motivated by
a question in [Th11] asking whether profinite actions of groups with property (τ), and in particular
the irreducible lattices SL2(Z[1/p]) for prime p, are cocycle superrigid (see Remark 1.1). Additional
motivation is provided, in view of the analogy between existing results for Bernoulli and profinite
actions, by a recent result in [BTD18], following earlier results in [PS12], showing that Bernoulli
actions of lattices in products of locally compact groups are cocycle superrigid.

Before stating our main result, we need to recall some terminology. Let G y (X,µ) be a p.m.p.
action of a locally compact second countable (l.c.s.c.) group G on a standard probability space
(X,µ). A sequence {An}n∈N of measurable subsets of X is said to be asymptotically invariant if
it satisfies lim

n→∞
supg∈Fµ(g · An4An) = 0, for every compact set F ⊂ G. The action G y (X,µ) is

called strongly ergodic if any asymptotically invariant sequence {An}n∈N is trivial, in the sense that
lim
n→∞

µ(An)(1 − µ(An)) = 0. For a l.c.s.c. group H, a measurable map w : G ×X → H is called a

cocycle if for all g, h ∈ G, we have that w(gh, x) = w(g, h · x)w(h, x), for almost every x ∈ X. Two
cocycles w1, w2 : G×X → H are cohomologous if there is a measurable map φ : X → H such that
for all g ∈ G, w1(g, x) = φ(g · x)w2(g, x)φ(x)

−1, for almost every x ∈ X. Finally, let Γ be a lattice
in G and mG/Γ be the unique G-invariant Borel probability measure of G/Γ. For a p.m.p. action

Γ
α
y (Y, ν), we denote by IndGΓ (α), the associated induced action G y (G/Γ × Y,mG/Γ × ν) (see

the beginning of Section 2 for the precise definition of induced actions).

Our main result shows that, under certain strong ergodicity assumptions, any cocycle of a profinite
action of a lattice in a product of locally compact groups is virtually cohomologous to a homomor-
phism.

Theorem A. Let Γ be a countable dense subgroup of a compact profinite group K and consider the

left translation action Γ
α
y (K,mK), where mK denotes the Haar measure of K. Write K = lim

←−
Kn

as an inverse limit of finite groups Kn, and let rn : K → Kn be the quotient homomorphism.

Suppose that Γ is a lattice in a product of two compactly generated l.c.s.c. groups G = G1 × G2.

Assume that the restrictions of IndGΓ (α) to G1 and G2 are strongly ergodic and ergodic, respectively.

Let w : Γ×K → ∆ be a cocycle with values in a countable group ∆.

Then there is an integer n such that w is cohomologous to a cocycle w′ : Γ ×K → ∆ of the form

w′ = w0 ◦ (idΓ × rn), for some cocycle w0 : Γ×Kn → ∆.

Next, we discuss two consequences of Theorem A. By [Io11b, Theorem B] any ergodic profinite
action of a finitely generated group Γ that has property (T) (or, more generally, has an infinite
normal subgroup with the relative property (T)) is virtually cocycle superrigid. As a consequence
of Theorem A, we obtain the first class of residually finite groups Γ not admitting infinite subgroups
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with the relative property (T) whose every ergodic profinite translation action is virtually cocycle
superrigid.

Corollary B. Let Γ = SL2(Z[S
−1]), for a finite nonempty set of primes S. Let Γ yα (X,µ) be an

ergodic profinite p.m.p. action. Write α as an inverse limit of actions Γ yαn (Xn, µn), with Xn

finite, and denote by rn : X → Xn the quotient map, for every n.

Let w : Γ×X → ∆ be a cocycle with values in a countable group ∆.

Then there is an integer n such that w is cohomologous to a cocycle w′ : Γ ×X → ∆ of the form

w′ = w0 ◦ (idΓ × rn), for some cocycle w0 : Γ×Xn → ∆.

Remark 1.1. In [Th11, Theorem 1.1], S. Thomas proved that if n ≥ 2 and S, T are sets of primes,
then the classification problem for the S-local torsion-free abelian groups of rank n is Borel reducible
to that for the T -local groups of rank n if and only if S ⊂ T . The proof of this result relies on
cocycle superrigidity results for profinite actions of Γ = SLn(Z[1/p]), for p prime. If n ≥ 3, the
proof of [Th11, Theorem 1.1] uses [Io11b, Theorem B], which can be applied as Γ has property (T).
On the other hand, if n = 2, then Γ does have property (T) and the proof of [Th11, Theorem 1.1]
is much more complicated and relies on Zimmer’s cocycle superrigidity theorem.

In this context, S. Thomas asked if the cocycle superrigidity theorem of [Io11b] holds for groups
Γ with property (τ). Corollary B gives a partial positive answer to this question in the case when
Γ = SL2(Z[S

−1]), for a finite set of primes S (for which property (τ) has been established in [LZ89]).
As explained in [Th11, footnote on page 3700 and Remark B.3], the case when S = {p} consists of
one prime can be used to considerably simplify the proof of [Th11, Theorem 1.1] for n = 2.

By using standard arguments (see [Io11b]), Theorem A and Corollary B imply that the actions
from their statements are virtually OE-superrigid. Our next result shows that the actions covered
by Corollary B are moreover virtually W∗-superrigid. Recall that a free ergodic p.m.p. action
Γ y (X,µ) is called W∗-superrigid if any free ergodic p.m.p. action ∆ y (Y, ν) giving rise to an
isomorphic von Neumann algebra, L∞(X) o Γ ∼= L∞(Y ) o∆, must be conjugate to it. The first
families of W∗-superrigid actions were discovered about 10 years ago [Pe10,PV10,Io11c]. Since then,
many other families of W∗-superrigid actions have been found (see the introduction of [Dr18b]).

By combining Corollary B with S. Popa and S. Vaes’ work [PV14] we obtain the following:

Corollary C. Let Γ y (X,µ) be any action as in Corollary B. Let ∆ y (Y, ν) be any free ergodic

p.m.p. action of a countable group ∆.

Then L∞(X)oΓ ∼= L∞(Y )o∆ if and only if there exist finite index subgroups Γ0 < Γ and ∆0 < ∆,

a Γ0-invariant measurable set X0 ⊂ X and a ∆0-invariant measurable set Y0 ⊂ Y such that

• Γ y X is induced from Γ0 y X0,

• ∆ y Y is induced from ∆0 y Y0,
• Γ0 y X0 is conjugate to ∆0 y Y0, and
• [Γ : Γ0] = [∆ : ∆0].

Here, we say that an ergodic p.m.p. action ∆ y (Y, ν) is induced from an action ∆0 y Y0 if ∆0 < ∆
is a finite index subgroup, Y0 ⊂ Y is a ∆0-invariant measurable set and ν(gY0 ∩ Y0) = 0, for all
g ∈ ∆ \∆0.

2. Cocycle rigidity for induced actions

The goal of this section is to prove cocycle rigidity results for induced actions of translation actions.
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We start by recalling the construction of induced actions and cocycles. Let Γ be a lattice in a
l.c.s.c. group G. Let p : G/Γ → G be a Borel map such that p(gΓ) ∈ gΓ, for every g ∈ G. Define a
cocycle c : G×G/Γ → Γ by letting c(g, xΓ) = p(gxΓ)−1gp(xΓ), for every g ∈ G and xΓ ∈ G/Γ.

Let Γ yα (Y, ν) be a p.m.p. action and w : Γ × Y → ∆ be a cocycle, for a l.c.s.c. group ∆. Put

(Ỹ , ν̃) := (G/Γ× Y,mG/Γ × ν). Then the induced action α̃ := IndGΓ (α) of G on (Ỹ , ν̃) is defined by

the formula α̃(g)(xΓ, y) = (gxΓ, α(c(g, xΓ))y), and the induced cocycle w̃ : G × Ỹ → ∆ associated
to w is defined by the formula w̃(g, (xΓ, y)) = w(c(g, xΓ), y), for every g ∈ G, xΓ ∈ G/Γ and y ∈ Y .

We also recall that if Gy (X,µ) is a p.m.p. action of a l.c.s.c. group G on a probability space (X,µ)
and ∆ is a countable group, then the uniform distance between two cocycles w1, w2 : G×X → ∆
is given by

d(w1, w2) = sup
g∈G

µ({x ∈ X | w1(g, x) 6= w2(g, x)}).

The following result extends [Io11b, Lemma 2.1] to locally compact groups, with an identical proof.

Lemma 2.1 ([Io11b, Lemma 2.1]). Let Gy(X,µ) be an ergodic p.m.p. action of a l.c.s.c. group

G. Let ∆ be a countable group, and w1, w2 : G×X → ∆ be two cocycles such that d(w1, w2) < 1/8.

Then there is a measurable map φ : X → ∆ such that for all g ∈ G, w1(g, x) = φ(gx)w2(g, x)φ(x)
−1

for almost every x ∈ X. Moreover, µ({x ∈ X | φ(x) = 1∆}) > 3/4.

Assumption 2.2. Throughout this and the next section, we assume the following setting:

• Assume that Γ is a countable dense subgroup of a compact profinite group K = lim
←−

Kn,

where Kn is a finite group, for every n. Let rn : K → Kn be the quotient homomorphism.

• Let Γ
α
y (K,mK) be the left translation action.

• Assume that Γ is a lattice in a product of two l.c.s.c. groups G = G1 ×G2.

• Let G
α̃
y (X,µ) = (G/Γ×K,mG/Γ ×mK) be the induced action α̃ := IndGΓ (α).

• We define an actionK
σ
y (X,µ) which commutes with α̃ by letting σ(t)(xΓ, y) = (xΓ, yt−1).

For simplicity, we will use the notation zt−1 := σ(t)z, for every z ∈ X and t ∈ K.

The following theorem is the main result of this section.

Theorem 2.3. Let G0 be a closed subgroup of G such that the restriction of α̃ to G0 is ergodic.

Let w : G0 ×X → ∆ be a cocycle for the restriction of α̃ to G0 with values in a countable group ∆.

For every t ∈ K, define a cocycle wt : G0 ×X → ∆ by letting wt(g, x) = w(g, xt−1). Assume that

d(wt, w) < 1/32, for every t in a neighborhood V of the identity 1K of K.

Then there is an integer n such that w is cohomologous to a cocycle w′ : G0 ×X → ∆ of the form

w′(g, x) = w0(g, (idG/Γ × rn)(x)), for some cocycle w0 : G0 × (G/Γ×Kn) → ∆.

Proof. We follow closely the proof of [Fu11, Theorem 5.21]. By Lemma 2.1, wt is cohomologous to
w for every t ∈ V. Therefore, there is a measurable map ft : X → ∆ such that for all g ∈ G0,

(2.1) wt(g, x) = ft(gx)w(g, x)ft(x)
−1, for almost every x ∈ X.

Moreover, the map ft satisfies µ({x ∈ X | ft(x) = 1∆}) ≥ 3/4, for every t ∈ V.

Let W ⊂ K be a neighborhood of 1K such that we have W 2 ⊂ V . Let t, s ∈ W and denote
F (x) = fts(x)

−1ft(xs
−1)fs(x). Using (2.1) twice, we obtain for all g ∈ G0

F (gx) = w(g, x)F (x)w(g, x)−1, for almost every x ∈ X.
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This implies that F−1({1∆}) is G0-invariant and has positive measure since fs, ft and fts take the
value 1∆ with probability at least 3/4. Thus µ(F−1({1∆})) = 1 by the ergodicity of α̃|G0

. Therefore,
for all s, t ∈W , we have

(2.2) fts(x) = ft(xs
−1)fs(x), for almost every x ∈ X.

Since the finite index subgroups Ln := ker(rn) < K form a basis of neighborhoods of 1K , there is
n such that Ln ⊂W . We claim that there is a measurable map φ : X → ∆ such that

ft(x) = φ(xt−1)φ(x)−1, for almost every (t, x) ∈ Ln ×X.

To prove the claim, let R ⊂ K be a system of representatives for the left cosets of K/Ln. Equation
(2.2) shows that fts(z, rx0) = ft(z, rx0s

−1)fs(z, rx0), for all r ∈ R, almost every x0, s, t ∈ Ln and
almost every z ∈ G/Γ. By making the substitution s = x−11 x0, we get that for all r ∈ R, almost
every x0, x1, t ∈ Ln and almost every z ∈ G/Γ we have

(2.3) ft(z, rx1) = ftx−1

1
x0
(z, rx0)fx−1

1
x0
(z, rx0)

−1.

By Fubini’s theorem we can find x0 ∈ Ln such that (2.3) holds for all r ∈ R, almost every
x1, t ∈ Ln and almost every z ∈ G/Γ. Define φ : X → ∆ by letting φ(z, rx1) = fx−1

1
x0
(z, rx0) for

all r ∈ R, x1 ∈ Ln, z ∈ G/Γ. Then (2.3) implies the claim.

Define the cocycle w′ : G0 ×X → ∆ by w′(g, x) = φ(gx)−1w(g, x)φ(x). Equation (2.1) combined
with the above claim implies that for every g ∈ G0, we have w′(g, xt−1) = w′(g, x), for almost
every t ∈ Ln and x ∈ X. By Fubini’s theorem we can find a map w0 : G0 × (G/Γ × Kn) → ∆
such that for all g ∈ G0, we have w

′(g, (x, y)) = w0(g, (x, rn(y))), for almost every (x, y) ∈ X. Then
for all g1, g2 ∈ G0, w̃0 satisfies the cocycle identity w0(g1g2, (x, y)) = w0(g1, g2(x, y))w0(g2, (x, y)),
for almost every (x, y) ∈ G/Γ × Kn. Moreover, if q = idG0

× idG/Γ × rn, then w0 ◦ q = w′,
(mG0

×mG/Γ ×mK)-almost everywhere. Since w′ is measurable, w0 is measurable. Hence, w0 is a
cocycle, which finishes the proof. �

The hypothesis of Theorem 2.3 requires that wt → w, as t → 1K , in the uniform metric. This
assumption is guaranteed by the following lemma:

Lemma 2.4. Assume that the restriction of α̃ to G1 is strongly ergodic and G2 is compactly

generated. Let w : G ×X → ∆ be a cocycle into a countable group ∆. For every t ∈ K, define a

cocycle wt : G×X → ∆ by letting wt(g, x) = w(g, xt−1).

Then d(wt|G2
, w|G2

) → 0, as t→ 1K .

Here, w|G2
denotes the restriction of w to G2 ×X.

The proof of this lemma follows closely [GTD16] (see also the proof of [GITD19, Lemma 3.1]).
Nevertheless, we include a detailed proof for the reader’s convenience.

Proof. Let S be a compact generating set for G2 and ε ∈ (0, 1). Since the restriction of α̃ to G1 is
strongly ergodic, there exist a compact set F ⊂ G1 and δ > 0 such that if A ⊂ X is any measurable
subset satisfying supg∈Fµ(g

−1A∆A) < δ, then either µ(A) < ε/4 or µ(A) > 1− ε/4.

For every t ∈ K and g ∈ G, define

At
g = {x ∈ X | w(g, x) = w(g, xt−1)}.

We claim that since ∆ is countable, for every compact set L ⊂ G we have that infg∈L µ(A
t
g) → 1,

as t → 1K . To justify this, note that the formula g · (x, ρ) = (gx, w(g, x)ρ) defines a measure
preserving near action G y (X × ∆, µ × c), where c denotes the counting measure of ∆. Let
π : G→ U(L2(X ×∆)) be the associated unitary representation. Since π is measurable, it must be
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continuous (see, e.g., [Zi84, Theorem B.3]). Let τ : K → U(L2(X ×∆)) be the continuous unitary
representation associated with the action K y (X ×∆, µ × c) given by t · (x, ρ) = (xt−1, ρ). Let
ξ = 1X×1∆ ∈ L2(X ×∆). Then ‖ξ‖2 = 1 and we have that

π(g)(ξ) = 1{(x,ρ)∈X×∆|w(g,g−1x)=ρ}, for every g ∈ G.

This implies that µ(At
g) = 〈τ(t)(π(g)ξ), π(g)ξ〉, for every g ∈ G and t ∈ K. Since π and τ are

continuous in the strong operator topology, the set {π(g)ξ | g ∈ L} ⊂ L2(X ×∆) is compact and
for every g ∈ G we have that 〈τ(t)(π(g)ξ), π(g)ξ〉 → 0, as t→ 1K . This easily implies the claim.

Next, the claim provides an open neighborhood U ⊂ K of 1K such for every t ∈ U we have

(2.4) µ(At
g) > 1− δ/2 for all g ∈ F and µ(At

h) > 1− ε/4 and for all h ∈ S.

Note that for any t ∈ K, g ∈ G1 and h ∈ G2 we have

(2.5) g−1At
h∆A

t
h ⊂ X \ (At

g ∩ h
−1At

g).

Indeed, first notice that the cocycle relation implies w(g, hx)w(h, x) = w(h, gx)w(g, x), for almost
every x ∈ X. Now, if we take x ∈ At

g∩h
−1At

g, then w(g, x) = w(g, xt−1) and w(g, hx) = w(g, hxt−1).

Therefore, x ∈ At
h if and only if w(h, x) = w(h, xt−1) if and only if w(h, gx) = w(h, gxt−1) if and

only if x ∈ g−1At
h. This proves (2.5).

For every g ∈ F, h ∈ G2 and t ∈ U , equations (2.4) and (2.5) imply that µ(g−1At
h∆A

t
h) < δ. By

our choice of δ, it follows that

(2.6) for all t ∈ U and h ∈ G2, either µ(A
t
h) < ε/4 or µ(At

h) > 1− ε/4.

We next claim that the set G′2 := {h ∈ G2 | µ(At
h) > 1 − ε/4, for all t ∈ U} is a subgroup of G2.

Note that for At
h1

∩ h−11 At
h2

⊂ At
h1h2

for every h1, h2 ∈ G2 and t ∈ K. Therefore, if h1, h2 ∈ G′2 and

t ∈ U , then µ(At
h1h2

) > µ(At
h1

∩ h−11 At
h2
) > 1− ε/2. Since 1− ε/2 > ε/4, relation (2.6) implies that

µ(At
h1h2

) > 1 − ε/4, which implies h1h2 ∈ G′2. Since A
t
h−1 = hAt

h and thus µ(At
h−1) = µ(Ah

t ), for
every g ∈ G and t ∈ K, this proves the claim.

Since S ⊂ G′2, G
′
2 is a group and S generates G2, we get that G′2 = G2. This proves the lemma. �

3. Proof of Theorem A

We assume the setting from Assumption 2.2. Let w : Γ × K → ∆ be a cocycle for α with
values into a countable group ∆. Let w̃ : G × X → ∆ be the induced cocycle for α̃ defined by
w̃(g, (xΓ, y)) = w(c(g, xΓ), y), for every g ∈ G, xΓ ∈ G/Γ and y ∈ K.

For every n, recall that rn : K → Kn denotes the quotient homomorphism and put Ln := ker(rn).
Define Xn := G/Γ×Kn and r̃n := idG/Γ × rn : X → Xn.

Since the restriction of α̃ to G1 is strongly ergodic, Lemma 2.4 implies there is a neighborhood V
of 1K in K such that d(w̃t|G2

, w̃|G2
) < 1/32, for any t ∈ V. Theorem 2.3 further implies that there

exist an integer n, a map φ : X → ∆ and a cocycle v : G2 ×Xn → ∆ such that

φ(gx)−1w̃(g, x)φ(x) = v(g, r̃n(x)), for all g ∈ G2 and for almost every x ∈ X.

Define the cocycle τ : G×X → ∆ by τ(g, x) = φ−1(gx)w̃(g, x)φ(x) for g ∈ G and x ∈ X. Note that

(3.1) τ(h, x) = v(h, r̃n(x)) for all h ∈ G2 and a.e. x ∈ X.

Therefore, for all g ∈ G1, h ∈ G2 and for almost every x ∈ X, we have

τ(g, hx)v(h, r̃n(x)) = v(h, r̃n(gx))τ(g, x),
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which is equivalent to

τ(g, hx) = v(h, r̃n(gx))τ(g, x)v(h, r̃n(x))
−1.

For all t ∈ K and g ∈ G define At
g = {x ∈ X | τ(g, x) = τ(g, xt−1)}. Since Ln = ker(rn), the set At

g

is G2-invariant, for every g ∈ G1, t ∈ Ln. Using that α|G2
is ergodic, At

g must be null or co-null, for
every g ∈ G1, t ∈ Ln.

Let F ⊂ G1 be a compact generating set. Then we can findN ≥ n such that At
g is non-null, for every

g ∈ F, t ∈ LN . The previous paragraph then implies that At
g is co-null, for every g ∈ F, t ∈ LN .

Since the set of g ∈ G1 such that At
g is co-null in X for all t ∈ LN is clearly a subgroup of G1 and

F generates G1, we get that At
g is co-null, for every g ∈ G1, t ∈ LN . Moreover, (3.1) shows that

At
g is co-null, for every g ∈ G2, t ∈ LN . Since G = G1 ×G2, it follows that A

t
g is co-null, for every

g ∈ G, t ∈ LN . This implies the existence of a cocycle τ0 : G×XN → ∆ such that

φ(gx)−1w̃(g, x)φ(x) = τ(g, x) = τ0(g, r̃N (x)), for all g ∈ G and for almost every x ∈ X.

Finally, this together with Lemma 3.1 below implies the existence of a cocycle w0 : Γ ×KN → ∆
and a measurable map φ0 : K → ∆ such that w(g, x) = φ0(gx)w0(g, rN (x))φ0(x)

−1 for all g ∈ Γ
and for almost every x ∈ K. This finishes the proof. �

We end this section with the following well-known result, whose proof we include for reader’s
convenience.

Lemma 3.1. Let Γ be a lattice of a l.c.s.c. group G. Let Γ
α
y (X,µ) and Γ

β
y (X0, µ0) be p.m.p.

actions such that there is a measurable onto map π : X → X0 satisfying π(gx) = gπ(x), for all

g ∈ Γ and almost every x ∈ X. Denote by Gy(X̃, µ̃) and Gy(X̃0, µ̃0) the induced actions of G
associated to α and β, respectively.

Let w : Γ × X → ∆ be a cocycle into a countable group ∆ and denote by w̃ : G × X̃ → ∆
the induced cocycle of w. Assume w̃ is cohomologous to a cocycle w̃′ : G × X̃ → ∆ of the form

w̃′(g, x̃) = w̃0(g, (idG/Γ × π)(x̃)), for some cocycle w̃0 : G× X̃0 → ∆.

Then w is cohomologous to a cocycle w′ : Γ×X → ∆ of the form w′(γ, x) = w0(γ, π(x)), for some

cocycle w0 : Γ×X0 → ∆.

Proof. Let p : G/Γ → G be a Borel map such that p(gΓ) ∈ gΓ, for every g ∈ G. Define the cocycle
c : G×G/Γ → Γ by c(g, z) = p(gz)−1gp(z) for all g ∈ G and every z ∈ G/Γ. Recall that for every

g ∈ G and x̃ = (z, x) ∈ X̃ = G/Γ×X we have gx̃ = (gz, c(g, z)x) and w̃(g, x̃) = w(c(g, z), x).

Let φ̃ : X̃ → ∆ be a measurable map such that

(3.2) w̃(g, x̃) = φ̃(gx̃)w̃0(g, (idG/Γ × π)(x̃))φ̃(x̃)−1,

for all g ∈ G and for almost every x̃ = (z, x) ∈ X̃.

By Fubini’s theorem we can find z = hΓ ∈ G/Γ, with h ∈ G, and a co-null subset G0 ⊂ G such that
for all g ∈ G0, the identity (3.2) holds for almost every x ∈ X. Remark that there exists g0 ∈ G
such that g0Γh

−1 ⊂ G0. Indeed, this holds for any g0 belonging to the co-null set ∩γ∈ΓG0hγ
−1.

For any γ ∈ Γ, denote γh = g0γh
−1 ∈ G0 and γh = c(γh, hΓ) ∈ Γ. Note that γh(hΓ, x) = (g0Γ, γhx)

and w̃(γh, (hΓ, x)) = w(γh, x), for every x ∈ X. Moreover, γh = p(g0Γ)
−1g0γh

−1p(hΓ).

Since g−1p(gΓ) ∈ Γ for all g ∈ G, it follows that the map γ → γh is a bijection of Γ. Hence, we can
define a map v0 : Γ×X0 → ∆ by letting v0(γh, x0) = w̃0(γ

h, (hΓ, x0)). Define also some measurable
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maps φ : X → ∆ and ψ : X → ∆ by letting φ(x) = φ̃(g0Γ, x) and ψ(x) = φ̃(hΓ, x)−1φ̃(g0Γ, x).
Therefore, for all γ ∈ Γ and almost every x ∈ X we have

w(γh, x) = w̃(γh, (hΓ, x))

= φ̃(γh(hΓ, x))w̃0(γ
h, (idG/Γ × π)(hΓ, x))φ̃(hΓ, x)−1

= φ̃(g0Γ, γhx)w̃0(γ
h, (hΓ, π(x)))ψ(x)φ̃(g0Γ, x)

−1

= φ(γhx)v0(γh, π(x))ψ(x)φ(x)
−1.

Since the map γ → γh is a bijection of Γ, we obtain that φ(γx)−1w(γ, x)φ(x) = v0(γ, π(x))ψ(x) for
all γ ∈ Γ and almost every x ∈ X. By taking γ = 1Γ, if follows that ψ(x) = v0(1Γ, π(x))

−1. Define
the map w0 : Γ×X0 → ∆ by w0(γ, x0) = v0(γ, x0)v0(1Γ, x0)

−1. Therefore, the map w′ : Γ×X → ∆
defined by w′(γ, x) = w0(γ, π(x)) is a cocycle cohomologous to w. In particular, w′ is measurable,
thus w0 is measurable. Hence, w0 is a cocycle, which finishes the proof. �

4. Proof of Corollaries B and C

Let Γ = SL2(Z[S
−1]), where S is a finite nonempty set of primes. Then Γ is a lattice in G = G1×G2,

where G1 = SL2(R) and G2 =
∏

p∈S SL2(Qp). Fix a positive integerm with no prime factors from S.

Denote Γ(m) := ker(Γ → SL2(Z/mZ)) and consider the left translation action Gy (G/Γ(m), µm),
where µm is the unique G-invariant Borel probability measure on G/Γ(m). Let πm be the associated
Koopman unitary representation of G on L2

0(G/Γ(m)) = L2(G/Γ(m))	 C1G/Γ(m). Finally, let

π = ⊕{m| p-m,∀p∈S} πm

be the direct sum of all such representations πm. The proof of Corollary B relies essentially on the
following well-known fact.

Theorem 4.1. The restrictions of π to G1 and G2 have spectral gap.

For the reader’s convenience, we indicate below how this result follows from the literature. Assuming
Theorem 4.1, we will now prove Corollary B.

Proof of Corollary B. We will first prove the conclusion when Γ yα (X,µ) is a left translation
action Γ y lim

←−
Γ/Γ(mn), for some sequence of positive integers {mn} containing no prime factors

from S and satisfying mn | mn+1, for all n. In this case, the induced action IndGΓ (α) is isomorphic
to the left translation action G y lim

←−
G/Γ(mn). Since the Koopman representation of G on

L2
0(lim←−

G/Γ(mn)) is isomorphic to a subrepresentation of π, Theorem 4.1 implies that restrictions

of IndGΓ (α) to G1 and G2 are strongly ergodic. Thus, in this case, the conclusion of Corollary B
follows from Theorem A.

In general, assume that α is the inverse limit of a sequence of p.m.p. actions Γ y (Xn, µn) with Xn

finite, for every n. Denote by rn : X → Xn the Γ-equivariant quotient map. Since α is ergodic, we
may assume that Xn = Γ/Γn, where {Γn}n is a descending chain of finite index subgroups of Γ.

By a result of Serre [Se70], Γ has the congruence subgroup property: any finite index subgroup of
Γ contains Γ(m), for some positive integer m having no prime factors from S. Thus, we can find
a sequence of positive integers {mn} such that mn contains no primes factors from S, mn | mn+1,
and Γ(mn) ⊂ Γn, for all n. Consider the profinite group K = lim

←−
Kn, where Kn = Γ/Γ(mn). For

every n, let qn : K → Kn be the quotient homomorphism and denote Ln = ker(qn). Since the
action Γ y (X,µ) is a quotient of the left translation action Γ y (K,mK), we may identify it with
the left translation Γ y (K/M,mK/M ), for some closed subgroup M < K.
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Let w : Γ × K/M → ∆ be a cocycle with values into a countable group ∆. Define a cocycle
w̃ : Γ×K → ∆ by letting w̃(g, x) = w(g, xM). Since the conclusion holds for the action Γ y K by
the above, w̃ is cohomologous to a cocycle which factors through idΓ × qn0

, for some n0 ≥ 1. Thus,
we can find a homomorphism δ : Γ(mn0

) → ∆ and a measurable map ϕ : Ln0
→ ∆ such that

(4.1) w(g, xM) = ϕ(gx)δ(g)ϕ(x)−1, for all g ∈ Γ(mn0
) and almost every x ∈ Ln0

.

For h ∈ Ln0
, consider the set Sh = {x ∈ Ln0

| ϕ(xh) = ϕ(x)}. Since lim
h→1K

mK(Sh) = mK(Ln0
) > 0,

we can find n1 ≥ n0 such that mK(Sh) > 0, for all h ∈ Ln1
. Now, if h ∈ M ∩ Ln0

, then (4.1)
implies that Sh ⊂ Ln0

is invariant under the left translation action of Γ(mn0
). Since Γ(mn0

) < Ln0

is dense and Sh is not null, we conclude that mK(Ln0
\Sh) = 0, for all h ∈M ∩Ln1

. In particular,
we have that ϕ(xh) = ϕ(x), for almost every x ∈ Ln1

, for all h ∈ M ∩ Ln1
. Thus, the restriction

of ϕ to Ln1
factors through the quotient map Ln1

→ Ln1
/(M ∩ Ln1

). Using the identification
Ln1

/(M ∩ Ln1
) ≡ Ln1

M/M , it follows that we can find a measurable map ψ : Ln1
M/M → ∆ such

that ϕ(x) = ψ(xM), for almost every x ∈ Ln1
. By equation (4.1) we thus have that

(4.2) w(g, xM) = ψ(gxM)δ(g)ψ(xM)−1, for all g ∈ Γ(mn1
) and almost every x ∈ Ln1

.

This implies that w is cohomologous to a cocycle v : Γ ×K/M → ∆ satisfying v(g, x) = δ(g), for
all g ∈ Γ(mn1

) and almost every x ∈ Ln1
M/M .

We are now in position to apply an argument from the proof of [Io11b, Theorem B]. Let Γ y
(X,µ) be an ergodic profinite p.m.p. action, Γ′ < Γ a finite index subgroup, X ′ ⊂ X a Γ′-ergodic
component, v : Γ ×X → ∆ a cocycle and δ : Γ′ → ∆ a homomorphism such that v(g, x) = δ(g),
for all g ∈ Γ′ and almost every x ∈ X ′. Then parts 5 and 6 from the proof of [Io11b, Theorem B]
show that there exists a finite Γ-invariant measurable partition {Ai}

`
i=1 of X such that the map

v(g, ·) : Ai → ∆ is constant, for all g ∈ Γ and 1 ≤ i ≤ `.

Since Γ(mn1
) < Ln1

is a dense subgroup, Ln1
M/M ⊂ K/M is an ergodic component of the

left translation action of Γ(mn1
). The previous paragraph thus implies the existence of a finite

Γ-invariant measurable partition {Ai}
`
i=1 of X = K/M such that the map v(g, ·) : Ai → ∆ is

constant, for all g ∈ Γ and 1 ≤ i ≤ `. Moreover, [Io11b, Lemma 1.4] implies that we can find a
positive integer n such that Ai is of the form r−1n (Y ), for some subset Y ⊂ Xn, for every 1 ≤ i ≤ `.
This means that v factors through the map idΓ × rn, which finishes the proof. �

Proof of Theorem 4.1. We will deduce this result from [GMO08] by following closely the proce-
dure from [Lu94, Section 6.3]. Denote by P the set of all primes. LetH = SL2(R)×(

∏′
p∈P SL2(Qp)),

where
∏′

p∈P SL2(Qp) = {(xp) ∈
∏

p∈P SL2(Qp) | xp ∈ SL2(Zp) for all but finitely many primes p}

denotes the restricted product of SL2(Qp), p ∈ P. Note that H coincides with SL2(A), where A is
the Adèle ring of Q. Consider the diagonal embedding of Λ = SL2(Q) into H. Then Λ < H is a
lattice. Consider the left translation action H y (H/Λ, µΛ), where µΛ is the unique H-invariant
Borel probability measure on H/Λ, and denote by ρ the associated Koopman unitary representation
of H on L2

0(H/Λ).

Letm be a positive integer with no prime factors from S. Writem = pt11 ...p
tk
k , where p1, ..., pk ∈ P\S

and t1, ..., tk ≥ 1. For every p ∈ P \ S, we define an open subgroup Kp < SL2(Zp) as follows. If

p /∈ {p1, ..., pk}, let Kp = SL2(Zp). If p = pi, for 1 ≤ i ≤ k, let Kp = ker(SL2(Zp) → SL2(Zp/p
ti
i Zp)).

Then Km :=
∏

p∈P\SKp is an open compact subgroup of
∏′

p∈P\S SL2(Qp).

We claim that GKmΛ = H. By the Strong Approximation Theorem (see, e.g., [LS03]) the diagonal
embedding of Λ into

∏′
p∈P SL2(Qp) is dense. This implies that SL2(R)Λ is dense in H. Since GKm

is an open subgroup of H which contains SL2(R), it follows that GKmΛ = (GKm)(SL2(R)Λ) = H.
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Since G and Km commute, the subspace L2
0(H/Λ)

Km ⊂ L2
0(H/Λ) of ρ(Km)-invariant vectors is

ρ(G)-invariant. On the other hand, L2
0(H/Λ)

Km can be identified with L2
0(Km\H/Λ) Since we

have H = GKmΛ, the G-space Km\H/Λ is isomorphic to the G-space G/(G ∩KmΛ). Now, it is
easy to see that G ∩ KmΛ = Γ(m). By combining these facts, it follows that πm, the Koopman
representation of G on L2

0(G/Γ(m)), is isomorphic to the restriction of ρ|G to L2
0(H/Λ)

Km .

In conclusion, πm is isomorphic to a subrepresentation of ρ|G, for every positive integer m having no
prime factors from S. Thus, π is isomorphic to a subrepresentation of ⊕∞1 ρ|G. Now, by [GMO08,
Theorem 1.11] there is some s <∞ such that the positive definite function H 3 g 7→ 〈ρ(g)ξ, η〉 ∈ C
belongs to Ls(H), for all ξ, η belonging to a dense subspace of L2

0(H/Λ). Hence, if N ≥ s/2 is an
integer, then ρ⊗N is contained is a multiple of the left regular representation of H. In combination
with the above, we conclude that π⊗N is contained is a multiple of the left regular representation
of G. Hence, the restriction of π to any non-amenable subgroup of G has spectral gap. Since G1

and G2 are non-amenable, this implies the conclusion. �

Proof of Corollary C. Let Γ y (X,µ) be a free ergodic profinite p.m.p. action of Γ =
SL2(Z[S

−1]). As is well known, Γ is measure equivalent to a direct product of |S| non-abelian
free groups (see, e.g., [DHI19, Remark 1.2] and the references therein). By [PV14, Theorem 1.3]
we get that Γ is Cartan rigid. Thus, if ∆ y (Y, ν) is any free ergodic p.m.p. action such that
L∞(X)o Γ ∼= L∞(Y )o∆, then the actions Γ y (X,µ) and ∆ y (Y, ν) are orbit equivalent. The
conclusion of Corollary C now follows from Corollary B through standard arguments (see the proofs
of [Io11b, Theorem A] and [GITD19, Corollary C]). �
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