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Abstract: Van der Waals (vdW) epitaxial growth provides an efficient strategy to prepare het-
erostructures with atomically and electronically sharp interfaces. Herein, Pbl, was in situ ther-
mally deposited onto exfoliated thin—layered CrOCl nanoflakes in high vacuum to fabricate vdW
Pbl, /CrOCI heterostructures. Optical microscopy, atomic force microscopy, X—ray diffraction, and
temperature—dependent Raman spectroscopy were used to investigate the structural properties and
phonon behaviors of the heterostructures. The morphology of Pbl, films on the CrOCl substrate
obviously depended on the substrate temperature, changing from hemispherical granules to 2D
nanoflakes with flat top surfaces. In addition, anomalous blueshift of the A;, and A%, modes as the
temperature increased in Pbl, /CrOCI heterostructure was observed for the first time. Our results
provide a novel material platform for the vdW heterostructure and a possible method for optimizing
heterostructure growth behaviors.

Keywords: Pbl, /CrOCI heterostructure; vdW epitaxy; phonon behavior; temperature—dependent
Raman spectroscopy

1. Introduction

van der Waals (vdW) epitaxy provides an efficient strategy to prepare heterostructures
with atomically and electronically sharp interfaces [1-3]. The two—dimensional (2D)
vdW heterostructures can be synthesized via chemical vapor deposition / physical vapor
deposition (CVD/PVD), molecular beam epitaxy, or other synthesizing methods [4-7].
It is reported that 2D vdW heterostructures with different energy band alignments can
play a key role in the field of optoelectronic devices. Heterostructures with type—II band
alignment may be applied in photovoltaics and optoelectronics, while those with type—I
and type—III band alignment can be used for light—emitting and tunneling field —effect
transistors, respectively [8-10].

Layered lead iodide (Pbl,) consists of three atomic planes, which are bonded in the
sequence of I-Pb—I repeating units and stacked along the c—axis, as shown in Figure 1a.
It is reported that Pbl, exhibits strong light adsorption and emission with a band gap
continuously tunable with the number of layers, having an indirect band gap over 3.72 eV
for monolayer Pbl, and a direct band gap of 2.38 eV for multilayer Pbl, [11-13]. Het-
erostructures based on Pbl, exhibit good potential in optoelectronic applications, such as
2D-1D vdW heterostructure photodetector [14] and flexible or stretchable electronics [5].
In addition, Pbl; is an important precursor for perovskite luminescent materials [15]. Lay-
ered chromium oxide chloride (CrOCl) has D112h point group symmetry [16], and the
Cr-O layers sandwiched by Chlorine atom layers are coupled to each other by vdW forces,
as shown in Figure 1la. CrOCl is a kind of wide band gap P—type semiconductor with
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strong in—plane optical anisotropy and out—of—plane antiferromagnetic order [17-19]. In
low —temperature ranges, because of the similar crystal structure with CrSBr, CrOCl has a
temperature—dependent magnetic order structure and can exhibit three thermodynamic
transitions [20]. In our previous studies, vdW Pbl,—TMDCs (MoS; and MoSe;) were
fabricated through thermal deposition under high vacuum conditions and showed type—II
band alignment [21,22]. Different from the heterostructures formed between isotropic 2D
materials, photoelectric devices based on MoS; /CrOCl heterostructures have various appli-
cations, such as nonlinear optics in mid—IR band [18] and spin—dependent photoelectric
device [17], owing to the strong in—plane anisotropy and the out—of—plane antiferromag-
netic order of CrOCl. In addition, ultraviolet photoelectric detectors have attracted the
attention of researchers because of their potential applications in solar ultraviolet radiation
detection, environmental monitoring, and so on. Because of the wide band gap and high
thermal conductivity of CrOCl [18,23,24], Pbl, /CrOCI heterostructures have great potential
to be used in ultraviolet detectors and thermal transport devices in the future.
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Figure 1. Characterization of thin—layered CrOCl nanoflake. (a) Atom structure of Pbl,/CrOCl
heterostructure; (b) AFM image of layered CrOCl nanoflake with the thickness and crystal orientation
highlighted. The corresponding OM image is inserted at the right top corner; (¢) Raman spectra of
CrOCl nanoflake along the [010] direction and [100] direction, respectively. There is a strong in—plane
anisotropy of the Ay mode intensity. The atomic vibrations of A;,, A‘é, and Ag’, modes, and the polar
plot of Aé mode is inserted.

In this article, we report our investigation on multilayered Pbl, /CrOCl vdW het-
erostructures. The heterostructures were fabricated via thermal deposition in high vacuum
and investigated ex situ using optical microscopy (OM), atomic force microscopy (AFM),
X—ray diffraction (XRD), and temperature—dependent Raman spectroscopy (TDRS). The
morphology of Pbl, film on CrOCl nanoflakes changed from granules to 2D nanoflakes
with flat and smooth top surfaces with increasing substrate temperature. Zoomed—in
AFM images show that triangular Pbl, nanoflakes grew on top with the [1100] direc-
tion along the CrOCI [010] direction, confirming epitaxy. Furthermore, we observed that
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the Aélz and A2 modes of Pbl, in heterostructure represented anomalous blueshift as the
temperature increased.

2. Experimental

Sample preparation: CrOCI nanoflakes were mechanically exfoliated using Scotch tape
from bulk crystals (Shanghai Prmat Technology Co., Ltd., Shanghai, China,
http:/ /www.prmat.com/ accessed on 15 September 2021) onto 300 nm SiO, /Si substrates.
Pbl, film was deposited on the CrOCl substrate by thermal evaporation under a pressure
of 1.0 x 107> Pa. There was a temperature—controlled k—cell at the bottom of the vacuum
system, loaded with Pbl, (Aldrich, Shanghai, China, 98+ %) powder. The CrOCI substrate
was placed on a heating stage in the vacuum chamber and heated using the resistive
method. Pbl, was evaporated at 498 K at a nominal rate of 1.2 nm/min, and the growth
time was fixed at 16 min. To improve the quality of the Pbl; film, the substrate temperature
was optimized.

Characterization: The morphologies and topography of Pbl, /CrOCI heterostructures
were characterized using OM (CaiKang DMM—200C, Shanghai, China) and AFM (Agilent,
Palo Alto, CA, USA) in the tapping mode [25,26]. XRD patterns were collected with a Bruker
D8 Advance diffractometer. Raman measurements were performed in the inVia Qontor
system (Renishaw, London, UK) using a 532 nm laser with a spot size of less than 1 pm and
1800 lines/mm grating [27,28]. During the temperature—dependent Raman spectroscopy
measurements, the samples were mounted in a programmable stage THMS600 (Linkam
Scientific Instrument, Salfords, UK) to control the sample temperatures. The measurements
were started from 80 K and increased to 300 K in steps of 10 K. At each step, the samples
were held for 5 min for temperature stability.

3. Results and Discussion

Owing to the small exfoliation energy of CrOCl of 0.2 J/m? [23], thin—layered
nanoflakes can be easily exfoliated from bulk crystals. Figure 1b shows a representa-
tive AFM image of the exfoliated thin—layered CrOCl nanoflake, and the corresponding
thickness was ~7 nm. The obvious layered fracture of exfoliated nanoflake confirmed the
low vdW force between the layers [18]. The roughness of the CrOCI nanoflake surface
was 0.41 nm, representing the positive air stability [29] and the cleanliness, which were
helpful for the interface coupling in Pbl, /CrOCl heterostructures. The corresponding OM
image is shown at the top right corner in Figure 1b. The fracture directions of the CrOCl
nanoflake represent two mutually perpendicular ones because the ideal tensile strength
was higher [30].

To identify the accurate crystalline directions of CrOCl nanoflakes, Raman scattering
measurements were performed. Figure 1c shows two typical Raman spectra of CrOCl
nanoflake with the polarization of incident laser along the long straight edge (blue) and the
short straight edge (red) at room temperature. There are three peaks located at 207, 414, and
455 cm~! ascribed to the Aé, Aé, and Ag, modes of CrOC], respectively, in agreement with
previous works [17]. The corresponding atomic vibrations of these three optical phonon
modes were inserted. The Aé and Aé% modes belong to the out—of—plane vibration model
along the [001] direction, while the AZ’, mode belongs to the in—plane mode along the
[100] direction [17]. The relative intensity of these modes is totally different along the two
given directions. The difference in maximum intensity direction between the A;, and Ag,
modes might be caused by the electronic states involved in Raman scattering affected by
phonon energy [31]. The additional peak located at 300 cm~! arose from the strain inside
the SiO, /Si substrate [32]. It is reported that the crystalline orientations of low symmetry
2D materials, such as ReSy, b—As, and MoOj3, can be determined by angle—resolved
polarization Raman measurements [33-35]. The orientation of the Aé mode could be
decomposed to the components along the [001] and [100] directions, respectively [17,36].
The maximum intensity of the A;, mode existed while the incident light was parallel to

the [100] direction in polarized Raman spectra. The inserted intensity polar plot of the Aé
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mode in Figure 1c shows a period of 180° and maximum intensity along the short straight
edge, indicating that the long straight edge was along the [010] direction while the short
one was along the [100] direction. The Raman intensity mapping image of the A;, mode
in Figure S1 (Supplementary Materials) presents a uniform contrast, indicating that the
CrOClI nanoflake possessed a high crystalline degree. These results guarantee that the high
quality of the exfoliated CrOCI nanoflakes is suitable for our further investigations.

The structural properties of vertical Pbl, /CrOCI heterostructures were characterized
using AFM. Firstly, Pbl, was deposited onto the substrate maintained at room temperature.
Different from our previous reports on MoS, and MoSe; [21,22], Pbl, aggregated into
semispherical granules but not 2D flat films on CrOCl nanoflakes, as shown in the typical
AFM image in Figure 2a. The bright protrusions over the whole substrate surface indicate
that Pbl, had similar growth behaviors on CrOCl as those on SiO, at room temperature. It
is clearer in the zoomed —in AFM image from the white—dashed box area in Figure 2b. The
statistical grain sizes of Pbl, clusters on CrOCl and SiO, substrates were almost the same as
shown in green and red bars, respectively, in Figure 2g. The same is true for the nucleation
densities. The corresponding surface roughness was 1.25 and 1.55 nm, respectively. This
might be related to the large diffusion barrier that induced limited diffusion lengths of Pbl,
on both surfaces. Post—annealing would possibly improve the quality of the Pbl; films. The
as—deposited samples were sequentially annealed up to ~473 K in steps of ~50 K for 1 h at
each step. It was found that annealing at ~423 K caused the Pbl, on CrOCl to recrystallize
into a 2D form with an atomically flat top surface, as shown in Figure 2¢,d, while those
on SiO; were still in granule form but larger, as shown by the yellow bars in Figure 2g.
Post—annealing at ~473 K led to Pbl, desorption, while post—annealing at ~373 K had a less
obvious effect on the films, as shown in Figure S2. The corresponding surface roughness for
annealing at ~423 K was reduced to 0.53 and 0.96 nm on CrOCl and SiO;, respectively. The
still rough surface of Pbl, on CrOCl was ascribed to the single—layer deep (0.70 nm) pits,
as shown in the profile along the black line in Figure 2d. The statistical graph in Figure S3
shows that the number of pits in the post—annealed sample was significantly less than that
in the as—deposited sample. The above results confirm that the growth of Pbl, on CrOCl is
diffusion—limited at room temperature.

bL2/CrOCI

(e) PbI2/CrOCl

Figure 2. Cont.
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Figure 2. Surface morphology evolution of Pbl, /CrOCI heterostructures fabricated with different
conditions. (a) AFM image of Pbl, films deposited at room temperature; (b) zoomed—in AFM image
of Pbl, /CrOCl from the white box area in figure; (a,c) AFM images of Pbl, films annealed at 423 K
after deposition; (d) zoomed—in AFM image of Pbl, /CrOCl from the white box area in figure (c,e)
AFM image of Pbl, films deposited at 423 K; (f) zoomed—in AFM image of Pbl, /CrOCI from the
white box area in figure; (e,g) distribution of Pbl, granule size for three samples; (h) corresponding
line profiles across the CrOCl edges in the three samples. The histograms and profiles with green,
blue, and red indicate the samples deposited at room temperature, annealed after deposition, and
deposited at 423 K, respectively.

To realize the vdW epitaxy of Pbl, on CrOCI, the substrate temperature was kept at
423 K during the deposition. As shown in the AFM image in Figure 2e,f, 2D films with
a surface roughness of 0.74 nm with some triangular features on top were prepared on
CrOCl, while the larger and isolated Pbl, islands were prepared on SiO,, as shown in the
blue bars in Figure 2g. The corresponding line profile shows that the triangular features
had thicknesses of 0.70 nm, the same as that of the single—layer Pbl,. Some of them
have thicknesses of multiples of 0.70 nm, meaning multilayers. The size of Pbl, islands is
much larger than those in the previous two cases, as shown in Figure 2g. Interestingly, the
triangular features show an obvious orientation preference. Figure S4 shows the statistical
diagram of the orientation of Pbl, on CrOCl in triangular islands. We define the included
angle between one side of the triangular island and the [010] direction of CrOCI as the
twist angle. The statistical diagram shows 180° intervals, which is similar to the case of
the highly oriented Pbl, on mica observed by Debjit Ghoshal et al. [37], indicating the
existence of vdW epitaxy here. Such uniform orientation of Pbl, nanoflakes ensures they
merge into a single—crystalline flake on CrOCl during the growth process. According to
the crystal structure of triangular and hexagonal single—crystal Pbl, nanoflakes fabricated
using the PVD method [38,39], the sides of the Pbl, triangular nanoflakes on CrOCl could
be determined to be [1100]. Thus, the epitaxial relationship between Pbl, and CrOCl could
be determined to be that the [1100] direction of Pbl, was parallel to the [010] direction
of the CrOCl nanoflake. The lattice spacing values of Pbl, in [1100] and [1120] were 4.56
and 3.95 nm, respectively, and those for CrOCl in [010] and [100] were 3.25 and 3.94 nm,
respectively. The atomic model built according to the above results in Figure 1a shows
that the lattice mismatch was 0.21% and 0.25% along the CrOC1 [010] and [100] directions,
respectively, which were small enough, justifying our proposed atomic model.

As the substrate temperature increases, the molecules gain thermal energy to merge
into larger particles [40]. The statistical results in Figure 2g show that the average grain
sizes of the as—deposited Pbl; on CrOCl and SiO, were 41.16 and 50.58 nm, respectively.
Upon annealing at 423 K, the average grain size of Pbl, on SiO; increased to 70.65 nm,
while that deposited at 423 K enlarged to 130.54 nm. This can be further demonstrated
in the line profiles across the CrOCl edges for the three cases, as shown in Figure 2h. For
the first two cases, the line profiles look smooth because the Pbl; films on both sides were
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compact. For the last case, the line profile shows ~22 nm bumps because Pbl, nucleated into
larger clusters with an exposed SiO, surface. According to the good epitaxial relationship
between Pbl, and CrOCl, we speculate that there were no interfaces or stacking layers
which might trap or aggregate defect trapping during the fabrication process.

Figure 3a shows the XRD patterns taken from the three kinds of samples. The positions
of diffraction peaks are basically the same. The peak located at 11.5° belongs to the (001)
plane of the CrOCl nanoflake [17]. The high intensity of this peak in the samples of Pbl,
films deposited at room temperature was caused by the high coverage of exfoliated CrOCI
nanoflake. The other characteristic peaks located at 12.6°, 25.4°, and 38.7° belong to the
(001), (002), and (003) crystal planes of 2H—phase Pbl,, respectively, in agreement with
previous studies [11]. Different from our previous reports [22], all three peaks appear much
broader, maybe ascribed to the smaller thickness of the deposited Pbl,. According to the
well—known Debye—Scherrer formula [41],

0944

~ Beost @

where D is the grain size, A is the wavelength of the scattered radiation, j is the width—width

at half maxima of the diffraction peak, and 0 is the scattering angle, the average Pbl, thick-
ness in the three cases are calculated to be 10 & 2 nm.
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Figure 3. XRD patterns (a) and typical Raman spectra (b) of Pbl, /CrOCl heterostructure in three cases.

Figure 3b shows the typical normalized Raman spectra of Pbl, /CrOCI heterostructure
in the above three cases, as well as that of pure Pbl, on SiO, /Si substrate (solid green curve).
The peaks were observed at 70, 95, and 110 cm !, corresponding to the E¢ (in—plane), Ag,
(out—of—plane), and A2 (longitudinal acoustic mode) modes of Pbl,, respectively [42,43].
Different from the E; and Aé modes belonging to optical phonon modes, the A2 mode is a
kind of non—Raman—active acoustic mode with vibration along the [001] direction, which
is hard to observe most times [44]. However, because the deposited Pbl, films have the
interlayer restoring force, which results in the nonzero frequencies, the A2 mode could be
observed at the backscattering Raman configuration [44,45]. Because the out—of—plane
phonon intensity decreased faster than the in—plane phonon intensity as the thickness
increased, the ratio of Raman intensity (I (Aé)/ I (Eg)) could be used to quickly determine
the thicknesses of the Pbl, films [46]. The ratios for the three cases were 1.83, 2.10, and
1.54, respectively, consistent with the above discussions. The fitted phonon mode positions
and widths of the three samples are summarized in Table 1. It can be seen that the mode
positions in all the Pbl, samples were basically the same, but the mode peak widths for the
last case were obviously smaller than the others, confirming the improved crystal quality.
Therefore, the peak intensity of A2 mode increased in the last case.
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Table 1. Phonon mode information of Pbl, /CrOCI heterostructure and Pbl,.
Peak Position (cm~—1) Peak Width (cm~1)
Phonon PbI,/CrOCl1 PbI,/CrOCl1 Pbl,/CrOCl1 PbI,/CrOCl1 PbI,/CrOCl1 Pbl,/CrOCl
Modes (Deposited (Annealed (Deposited Pbl,/SiO, (Deposited (Annealed (Deposited Pbl,/SiO,
at RT) at 423 K) at423 K) at RT) at 423 K) at423 K)
Eg 70.0 70.5 71.8 70.1 10.7 9.6 8.0 8.3
Al 95.4 95.3 95.1 95.1 9.2 8.9 8.0 8.8
A§ 110.2 109.9 109.9 109.8 18.0 18.7 15.6 17.0

TDRS measurements were performed on the Pbl, /CrOCI vdW heterostructure with
the highest quality to demonstrate the possible substrate effect. Four selected spectra are
shown in Figure 4a. The peak positions of Pbl, are basically unchanged through the whole
temperature range, especially for the Aé mode. However, the A2 mode displays an obvious
enhancement in intensity as the temperature increases. The measured peak positions of the
Eg, Aé, and A2 modes as functions of temperature are plotted in Figure 4b—d, respectively.
The E; mode exhibits linear redshift, while the A2 mode shows linear blueshift as the
temperature increases. The abnormal blueshift of the Aé mode at temperatures above 260 K
could have come from the slip between Pbl, and CrOCl substrate induced by thermal
expansion mismatch, similar to previous reports [43,47]. The E; mode moved from 74.3 to
71.4 cm~!, while the Aé mode moved from 96.2 to 95.6 cm ! over the whole temperature
range, indicating the temperature dependence of the E; mode was stronger than that of the
A; mode. The temperature dependence of the Raman mode position could be fitted by the
Gruneisen model [48]:

w=wq+xT 2)

where wy is the peak position extended to 0 K and x is the first—order temperature

coefficient. The first—order temperature coefficients are calculated to be XE, Pbi2/Croct _

—(144 +£0.05) x 102 em 1 K1, x flb”/ CroCl = _(6.48 & 0.05) x 1073 cm—1 K~ (only

extracting the measured data at a temperature range below 240 K) and X Pbi2/CrOCt _

(1.48 + 0.06) x 1072 cm~! K1, respectively. For comparison to a prev1ous study of
Pbl,/SiO2/Si [43] (x £, PbI2 — _180 x 1072 ecm™! K}, XPW =—060 x 1002 cm 1 K1

X /I; bI2 — _0.10 x 10~ cm_1 K1), the first—order Coeff1C1ents of the A1 and A2 modes in

PbIz /CrOCl heterostructure obviously increased. The interfering factor of the tempera-

ture dependence of the Raman peak position could be attributed to anharmonic phonon-
phonon coupling, thermal expansion, and the substrate effect [49-51]. The increase of
the first—order coefficient in the Aé mode and the abnormal blueshift of the A2 mode
position could have originated from the increase in the number of up—conversion chan-
nels in the anharmonic phonon-phonon coupling, which could be induced by the CrOCl
substrate, but more research is needed to prove this [52,53]. The peak widths of the Eq, A;,,
and A2 modes broadened as the temperature increased, originating from the anharmonic
phonon—phonon coupling [54,55], as shown in Figure S5. In addition, Figure 4e shows
the temperature dependence of the Ag mode of the CrOCl substrate. In agreement with
previous studies [17,23], the A3 mode exhibits redshift as the temperature increases, and

the fitted first—order temperature coefficient is )( CrOCl = _(1.89 £ 0.04) x 1072 em~ 1 K1
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Figure 4. Temperature—dependent Raman spectra of Pbl, /CrOCl heterostructure. (a) Selected and
normalized Raman spectra of Pbl, /CrOCI heterostructure at selected temperatures. Temperature
dependence of peak position of Eg (b), Aé (c) and A2 (d) modes in Pbl,. (e) Temperature dependence
of peak position of Ag mode in CrOCL. The solid red lines represent the linear fitting results.

4. Conclusions

In summary, the investigation of multilayered Pbl,/CrOCI vdW heterostructures
was reported in this paper. The morphology of Pbl; films on CrOCl nanoflakes changed
from granules to oriented 2D nanoflakes with flat and smooth top surfaces while being
fabricated at an elevated substrate temperature of 423 K. In addition, both the Aé and A2
modes in Pbl; showed anomalous blueshift as the temperature increased in the Pbl, /CrOCl
heterostructure in the temperature—dependent Raman spectra.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/cryst13010104 /s1, Figure S1: Raman intensity mapping image of
Agl mode of exfoliated CrOCl nanoflake, Figure S2: AFM images of PbI2 films annealed at 373 K (a)
and 473 K (c) after deposited at room temperature. (b,d) The corresponding high—resolution images
from the white square area inside the figure (a,c), respectively, Figure S3: AFM image of Pbl, /CrOCl
heterostructure which deposited at room temperature (a) and annealed after deposited (b), the
number of grain and defects are highlighted inside either, Figure S4: (a) AFM image of Pbl, /CrOCl
heterostructure deposited at 423 K, the triangular islands show the same orientation. (b) Statistical
diagram of the orientation of Pbl, triangular islands. (c) Phase image of Pbl, /CrOCI heterostructure
showing triangular islands, the [-1100] direction of Pbl, mostly along the [010] direction of CrOCl
nanoflake, Figure S5: FWMH of E; (a), Aélz (b) and A%, (c) modes at temperature dependent Raman
spectra. Each FWMH is linearly broadened as the temperature increasing.
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