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suffer from heavy corrosion caused by the perovskite material. To deal 
with this problem, the corrosion resistance of these TCs should be 
largely improved. Indeed, several methods have been developed during 
the past few years. For example, in 2018, Liu et al. modified AgNW TC by 
graphene and obtained PCE of 13.36 % in flexible PSCs [24]. Miao et al. 
modified AgNW TC by polyimide, and prepared flexible PSCs with PCE 
of 11.8 % [36]. But for both of the two works, device stability was not 
reported. PEDOT:PSS (PH1000) was used to modify Ag-grid, and helped 
to prepare PSCs with PCE of 14.52 %. However, it was seen to corrode 
Ag-grid due to its acidic nature and the redox reaction, which caused 
heavy decay in PCE (drop by 20 % within 24 h) [16]. Besides, Tang et al. 
protected AgNW by sol–gel derived ZnO and atomic-layer-deposited 
TiO2, and prepared flexible PSCs with PCE of 17.11 %, but again, the 
PCE dropped by 20 % in the first 24 h, even by 70 % within 50 h [37]. 
From above studies one can see that, corrosion has become a key issue 
that retards the application of AgNW TC in PSCs. To solve this problem, 
more efficient strategies should be explored. 

Nickel film was previously used in PSCs and less reaction was 
observed between it and the perovskite material [38]. Recently, nickel 
was used to prepare copper-nickel alloy and used as top electrode for 
PSCs, which benefited device stability [39]. Nickel electroplating was 
also used to modify AgNW TCs [40], which improved conductivity and 
corrosion resistance of the TCs. In 2020, with the help of Ni- 
electroplating, Cho et al. prepared perovskite nanoparticles basing 
light-emitting diodes on AgNW TCs [41]. However, such strategy has 
less been applied in PSCs. To make possible usage in efficient and stable 
PSCs, here in this article, a Ni electroplating involved three-step modi
fication strategy is proposed. At first, a thin layer of metal nickel is 
electroplated on the surface of AgNWs; Secondly, SnO2 quantum dots 
(SnO2 QDs) are imported to fill the voids between nanowires; At last, 
thin layer of ITO is sputtered on top. Then the modified TC is used as 
bottom electrode. The surface morphological properties and the opto
electronic performance of the transparent conductors are examined after 
each step modification. Effect of the modification on the power con
version properties of PSCs is carefully examined. 

2. Experimental section 

2.1. Materials and regents 

Silver nanowires precursor (AgNWs, 99.5 %) were purchased from 
Aladdin. 2, 2′, 7, 7′- tetrakis [N, N-di (4-methoxyphenyl)amino] - 9, 9′

-spirobifluorene (spiroOMeTAD, 99.86 %) was from Advanced Election 
Technology. Lead iodide (PbI2, 99.99 %), formamidinium iodide (FAI, 
99.5 %), methylammonium bromine (MABr), and methylammonium 
chlorine (MACl, 99.5 %) were bought from Xi’an Polymer Light Tech
nology Corp. Anhydrous N, N-dimethylformamide (DMF, 99.9 %), 
dimethyl sulfoxide (DMSO, 99.8 %), polymethylmethacrylate (PMMA, 
average Mw ≈ 350 000), chlorobenzene (CB, 99.8 %), 4-tert-butylpyr
idine (4-TBP, 96 %), and bis (trifluoromethane) sulfonamide lithium salt 
(Li-TFSI) were bought from Sigma. Boric acid (H3BO3, 99.5 %), ethyl
enediamine hydrochloride (C2H10Cl2N2, 99 %), nickel (II) chloride 
hexahydrate (NiCl2⋅6H2O), acetonitrile (AC, 99.8 %), tin (II) chloride 
dehydrate (SnCl2⋅2H2O, 98 %), ethanol (99 %), acetone (99 %), and 
isopropyl alcohol (IPA, 99 %) were purchased from Sinopharm 
(Shanghai). ITO target was bought from Beijing GoodWill Metallic 
Technology. 

2.2. Preparation of AgNW TC and the modification 

Before deposition of AgNWs, glass slides were ultrasonically cleaned 
in deionized water, acetone, deionized water, IPA each for 20 min, then 
dried in oven and further treated by UV/Ozone for 20 min. AgNW TCs 
were prepared by spin-coating AgNWs precursor on glass slide (2000 
rpm), being followed by annealing at 100 ◦C for 30 min in glove box 
filled with nitrogen. Modification was done by three steps: i) Thin layer 

nickel was electroplated on AgNWs using current of 15 mA for ~ 10 s. 
Digital source-meter (model 2400, Keithley) was used as the current- 
source. Electroplating solution with 1 mol/L NiCl2, 0.5 mol/L H3BO3, 
0.5 mol/L ethylenediamine hydrochloride was prepared in deionized 
water. Before electroplating, oxygen was expelled from the solution by 
nitrogen gas bubbling for 20 min. After nickel electroplating, the TC film 
was annealed at 100 ◦C for 30 min in vacuum oven. ii) SnO2 layer was 
deposited on nickel coated TCs by spin-coating SnO2QDs solution (0.1 
mol/L) at 3000 rpm for 30 s, followed by annealing at 150 ◦C for 60 min 
in air. iii) Thin layer of ITO (~60 nm in thickness) was sputtered to 
further upgrade the optoelectronic performance of the AgNW TCs. SnO2 
QDs were prepared by dissolving SnO2⋅2H2O in mixed solvents between 
ethanol and deionized water, with volume ratio of 5:1. It was stirred for 
48 h before usage and the concentration was adjusted to be 0.1 mol/L. 
ITO sputtering was done in PECVD (TRP450, SKY TECHNOLOGY 
DEVELOPMENT CO., Ltd. CHINESE ACADEMY OF SCIENCES), with 
Argon gas pressure of 0.6 Pa, and sputtering power of 50 W. 

2.3. Assembly of PSCs 

Before assembly of PSCs, the obtained AgNW TCs were ultrasonically 
cleaned in deionized water, IPA each for 10 min, dried in oven, and 
further treated by UV/Ozone in air for 10 min. SnO2 layer was coated on 
the TCs by spin coating the SnO2 quantum dots precursor by speed of 
3000 rpm for 30 s, being followed by annealing at 150 ◦C for 60 min in 
air and further treated by UV-Ozone for 20 min. Perovskite layer was 
prepared as following. Firstly, PbI2 solution (1.2 mol/L in mixed solvent 
between DMF and DMSO with volume ratio of 9.5:0.5) was spin-coated 
(2000 rpm, 30 s) on SnO2 film and annealed at 70 ◦C for 5 min in ni
trogen. Secondly, mixture solution of (FAI: MABr: MACl = 60 mg: 6 mg: 
8.2 mg, dissolved in 1 mL IPA) was spin-coating (2000 rpm, 30 s) on top 
of the PbI2 film, being followed by annealing at 145 ◦C for 20 min in air 
(RH≈ 35 %). This led to perovskite with possible formation of FAxMA1- 

xPb(ClyBr1-x-yIx)3. Then hole-transport layer was prepared by spin- 
coating SpiroOMeTAD solution at 3000 rpm for 30 s on top, followed 
by annealed at 85 ◦C for 5 min in nitrogen [19]. The spiroOMeTAD 
solution was prepared by dissolving 72.5 mg SpiroOMeTAD powder in 
1125 μL CB. 250 μL PMMA solution (0.48 mol/L, in CB), 18 μL Li-TFSI 
solution (1.81 mol/L, in acetonitrile), 29 μL 4-tBP were added as addi
tives. Finally, silver film (~100 nm) was thermally evaporated to serve 
as the top electrode. 

2.4. Material characterization and device performance evaluation 

UV–Visible transmittance spectrum of transparent conductors and 
PVSK films were measured by UV–vis spectrophotometer (TU-1800). To 
reflect the transmittance of the coated films on substrate, similar sub
strate is chosen as the reference. As such, a baseline is recorded by 
testing the transmittance of glass (or the substrate) in wavelength range 
of 300 ~ 1100 nm. Sheet resistance of transparent conductors was 
measured using four-point probe method (SDY-4D). Morphological 
properties of AgNWs based composite TCs, the surface and cross- 
sectional images of PVSK were characterized by atomic force micro
scope (AFM 5500, Agilent Technologies) and scanning electron micro
scopy (SEM, FE-SEM, MIRA3 LMU, TESCAN, equipped with EDS 
affiliate). Morphological properties of AgNWs are monitored by trans
mission Electron Microscope (TEM, Tecnai G2 F20, equipped with EDS 
affiliate) respectively. X-ray diffraction (XRD) (Advance D8 Bruker, 
Empyrean Alpha 1) was used to characterize the crystallization AgNWs 
of PVSK films. Photoluminescence (PL) of PVSK films was measured by 
Spectro-fluorimeter (F-4700, Hitachi). Current-voltage characteristics of 
perovskite solar cells were recorded by digital source-meter (model 
2400, Keithley) under simulated illumination (AM1.5G, 100 mW/cm2, 
Enlitech SS-F7-3A). The intensity was calibrated by standard silicon cell 
(SRC-1000-TC-QZ-N, Enlitech). External quantum efficiency (EQE) was 
measured by spectrum performance testing system (7-SCSpec, Beijing) 
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Above observation shows that Ni electroplating could obviously hinder 
the corrosion reaction between AgNW and perovksite, which benefits 
the power conversion processes. 

Photo-stability is examined by quasi maximum power point tracking 
(Q-MPPT, noting “quasi” is used here). As shown in Fig. 8(a), similar 
behavior appears between the two devices. Storage stability is also 
examined, the result is shown in Fig. 8 (b). A parameter of “T80” is 
defined to record the time for device efficiency shrinks to 80 % of the 
initial value. To make meaningful comparison between current work 
and those previously published, and for detailed analysis, PCE and 
storage stability of PSCs (using AgNW TC as bottom electrode) are 
collected, and shown in Fig. 8(c) and Table 2, respectively. For example, 
Lu and coworkers modified AgNW TCs by graphene-oxide sheets in 
2019, and obtained PCE of 9.62 % in PSCs, though the stability was not 
reported [58]. Tang et al. modified AgNWs by sol–gel derived ZnO and 
atomic-layer-deposited (ALD) TiO2 in 2018, and prepared flexible PSCs 
with PCE of 17.11 %, but T80 was <24 h [37]. In 2020, Ko et al. prepared 
AgNWs TC with orthogonally arranged AgNWs and modified the 
network by PH1000, which helped to prepared a kind of ultrothin and 
flexible PSC with PCE of 15.18 % and T80 of 500 h [59]. However, Ma 

et al. also used PH1000 to modify the AgNWs TC, but observed relative 
poor stability (T80 of about 24 h), by which they ascribed to the possible 
corroison of PH1000 to AgNWs [16]. For current study, T80 of 432 h is 
obtained. The improved efficiency and stability is appealing for the 
application of AgNWs in PSCs. The prolonged stability is due to the 
improved corroision resistance by Ni electroplating, and partially by the 
sputtered ITO. Anyway, slight decrease is observed in Fig. 8 (b), which is 
due to the following two aspects: i) The uneven covering of Ni on AgNWs 
which makes it possible for contact between AgNWs and perovskite. 
Honestly, this could be reflected from the TEM images shown in Fig. 2. 
As a result, more studies are needed to improve the electroplating 
technique itself. ii) Decomposition of the perovskite layer itself, this 
could be reflected in FTO basing devices. However, the main cause of the 
PCE drop comes from the potential corrosion. This could be reflected by 
the ratio of PCE between devices basing on AgNW TC and FTO [Fig. 8 
(b)]. As shown in Fig. S10, the flexible AgNW TC comes out with better 
flexibility than ITO based commercial flexible TC. The modification 
strategy is also efficient for AgNW TC grown on plastic (like PET) sub
strate. As such, flexible PSCs are also prepared, and an initial PSC of 9.2 
% is observed. The problem mainly comes from the rough surface of 
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PET. Further improvement on the flexible TC is on the way. 

4. Conclusion 

In summary, nickel electroplating is observed to improve both oxi
dization and corrosion resistance of AgNW TCs, and renders it possible 
for the application in PSCs where highly corrosive material like halide 
perovskite material is used. An initial PCE of 18.37 % and T80 of 432 h 
have been obtained when using Ni modified AgNW TC as substrate. In 
more, Ni modification is found to benefit charge transfer and recombi
nation processes, and also the storage-stability of PSCs, which make such 
AgNW TC possible substrate for PSCs. 
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Appendix A. Supplementary data 

See supplemental information for XRD patterns of AgNW TC 
(Fig. S1), effect of nickel electroplating time on the optoelectronic 
properties of AgNW TCs (Fig. S2), adhesion tests (Fig. S3), comparison 
on the optoelectronic properties of TCs (Fig. S4), cross-sectional images 
for electrodes (Figure. S5), cross-sectional SEM images of PSCs (Fig. S6), 
dark JV curves (Fig. S7), low-frequency region Nyquist plots (Fig. S8), 
equivalent circuits for IS study (Fig. S9), bending test on flexible TCs and 
typical JV curves of flexible PSCs basing on AgNW TC (Fig. S10). 

Supplementary data to this article can be found online at https://doi.org 
/10.1016/j.apsusc.2022.155250. 
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