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Abstract— Technology computer-aided design (TCAD) of
semiconductor devices relies on the numerical solution
of differential equations in devices. Recent advances in
quantum computing provide a new opportunity for TCAD
simulations to be performed on a quantum computer. Based
on a variational quantum algorithm, we develop a quantum-
computing-based method to solve quantum confinement
problems in semiconductor nanostructures. As the num-
ber of numerical discretization grid points for solving the
Schrödinger equation increases, the number of qubits
needed scales only logarithmically, ∼O[log(N)]. The method
is applied to solve quantum confinement problems at all
dimensions, which are related to confinement in a quantum
well, semiconductor nanowire, and semiconductor quan-
tum dot structures. The method can treat an anisotropic
band structure and electrostatic potential in semiconductor
nanostructures. We further show that the design of ansatz
plays an important role in the performance of the method in
terms of solution accuracy. The quantum-computing-based
method can compute the energies and wave functions of
both the ground and excited states with high accuracy.

Index Terms— Quantum computing, quantum confine-
ment, semiconductor simulation, technology computer-
aided design (TCAD), variational quantum algorithm (VQA).

I. INTRODUCTION

QUANTUM confinement plays an important role in many
semiconductor nanostructures and nanodevices [1].

For example, confinement in a quantum well and an FIN
field-effect transistor (FINFET) produces two-dimensional
(2-D) electron gas and can shift the threshold voltage and
affect gate capacitance. Quantum confinement in the cross
section of a nanowire must be considered to understand its
device characteristics. Semiconductor quantum dots, which are
confined in all dimensions, behave like artificial atoms and can
host qubits. To accurately describe the quantum confinement
in semiconductor device simulation, the Schrödinger equation
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can be numerically discretized and solved in semiconductor
device simulation [2].

More generally, technology computer-aided design (TCAD)
simulation of semiconductor devices relies on the numeri-
cal solution of differential equations [3]. For nanoelectronic
devices, the physical quantities of interest can vary in all
directions, which can necessitate three-dimensional (3-D) sim-
ulations. Numerical discretization for a 3-D simulation can
require a large number of discretization grid points Ngrid. For
example, if ∼100 grid points are used in each axis direction,
the total number of numerical grid points in a 3-D simulation
is Ngrid ∼ 106. The computational cost of TCAD simulations
implemented in a classical computer increases super-linearly
as a function of the number of grid points, Ngrid, which
results in excessively slow simulation as Ngrid increases. As an
example, solving a quantum confinement problem in a semi-
conductor nanostructure requires assessing the eigenvalues and
eigenstates of a discretized Hamiltonian, whose computational
cost increases faster than quadratic, >O(N2

grid). This scaling
behavior can lead to excessively large memory demand and
slow simulations, which hinders design efficiency.

In recent years, significant progress has been made in
quantum computing technologies [4], [5], [6]. In a quantum
computer, as the number of entangled qubits increases, the
dimensionality of its Hilbert space increases exponentially.
The exponentially large Hilbert space and massively parallel
operation through superposition and entanglement can lead
to a quantum advantage over classical algorithms for certain
computing tasks [4]. Here, we explore using quantum comput-
ing to solve quantum confinement problems in semiconductor
nanostructures. In the numerical solution of a quantum con-
finement problem, a key advantage is that the qubit number
scales only logarithmically with the number of numerical
grids, nqubit ∼ O[log (Ngrid)]. The advantage is especially
important when the number of numerical grids is large.

State-of-the-art quantum computers are noisy and limited
in qubit counts. A variational quantum algorithm (VQA) [7]
is compatible with noisy intermediate-scale quantum (NISQ)
[5] devices. The VQA is a quantum-classical hybrid method.
It consists of a quantum part, which prepares an ansatz
and measures a cost function, and a classical part, which
iteratively optimizes the ansatz parameters. The VQA has
previously been used to solve a variety of problems, including
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optimization and quantum chemistry problems [8], [9], [10].
It has also been applied to solve electrostatic and electro-
magnetic problems by numerical solution of Poisson’s equa-
tion [11] and Maxwell’s equation [12], respectively. Despite
the important progress, quantum-computing-based solutions
to electromagnetic problems have been limited to 1-D or
2-D with a specific form of ansatz. In addition to VQA,
quantum phase estimation techniques have also been used to
solve a quantum particle in a simple one-dimensional (1-D)
potential [13].

In this work, we develop a method to solve the quantum
confinement problems in nanostructures at all dimensions
based on the VQA. The method treats the electrostatic poten-
tial profiles and anisotropic band structures in semiconductor
nanostructures. We demonstrate the method by applying it
to calculate both the ground and excited states for 1-D,
2-D, and 3-D quantum confinement problems. Two types of
ansatzes with different expressive powers are examined, and
their performance in terms of accuracy and quantum circuit
depth is compared. Previous works of variational quantum
eigensolver in quantum chemistry [8], [9], [10] have been
implemented in a molecular orbital basis set and had a focus
on treating many-body effects. In contrast, this work applies
VQA to semiconductor nanostructure and device simulations,
in which the Schrödinger equation is solved with a numerical
discretization method and has a focus to treat semiconductor
material and device properties, such as confinement dimen-
sionality and band structure effects.

II. APPROACH

To solve the quantum confinement problem, the Schrödinger
equation is first discretized in a numerical grid by using the
finite difference (FD) method. The Hamiltonian is mapped
and decomposed to Pauli strings of qubits, whose expecta-
tion values can be measured in a quantum-computing-based
algorithm. The solution is achieved by a variational algorithm
approach. An ansatz is constructed through a quantum circuit,
whose energy is optimized iteratively as a function of the
ansatz parameters by coupling the quantum part to a classical
optimization algorithm to minimize the cost function. The
algorithm turns an eigenvalue problem into an optimiza-
tion problem. Sections II-A–II-C describes the equations and
Hamiltonian decomposition schemes for 1-D, 2-D, and 3-D
confinement problems, respectively. Section II-D describes the
design of ansatzes. The overall simulation flow is described in
Section II-E.

A. 1-D Quantum Confinement

To solve the quantum confinement problem, we first dis-
cretize the Schrödinger equation in a numerical grid by using
the FD method. Then, we decompose the discretized Hamil-
tonian into Pauli and projector strings, whose expectation
values can be measured on a quantum computer.

The 1-D Schrödinger equation under effective mass approx-
imation can be expressed as�

− �
2

2m∗
d2

dx2
+ U(x)

�
ψ(x) = Eψ(x). (1)

Fig. 1. Schematic of FD discretization of the wave function for a 1-D
confinement problem.

As shown in Fig. 1, for a 1-D quantum well with a width of L,
by applying a particle-in-a-box approximation to the potential
term U(x), the Schrödinger equation can be discretized as [2],
H1-Dψ = Eψ , where H1-D = T 1-D + U .

Here

T 1-D = t M N = t

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×N

(2)

and U = diag(u) where u is a vector of potential energy
at grid points, M N is a sparse N × N matrix with the
diagonal elements equal to 2 and first off-diagonal elements
equal to −1, the “tight binding” parameter t = (�2/(2m∗ a2)),
a = L/(N + 1) is the FD grid spacing, ψ is the discretized
wave vector at the numerical grids, and N is the number of
numerical grids. The value of N is taken as an exponent,
N = 2nx , where nx is an integer corresponding to the number
of qubits needed to represent the discretized wave vector.

By using a decomposition method proposed by Sato et al.
[11], as derived in the Appendix, the kinetic energy operator
can be expressed as

T1-D = t


2I ⊗nx − I ⊗nx − 1 ⊗ X − P+

N

�
I ⊗nx − 1 ⊗ X

�
PN

+P+
N



I ⊗nx −1
0 ⊗ X

�
PN

�
(3)

where PN = �N−1
i= 0 |(i + 1) mod N��i | is a cyclic shift

operator, I0 = |0��0| is the projector to the |0� state, and X
is the Pauli X operator. The cyclic shift operator PN can be
equivalently operated on the quantum state by using a quantum
circuit described in [11]. Table I lists the strings that need to be
measured to obtain the energy of a state, which is its expected
value of the Hamiltonian. It is noted that P+

N (I
⊗nx −1 ⊗ X)PN

and P+
N (I

⊗nx −1
0 ⊗ X)PN require the same cyclic shift and X

measurement of the last qubit, and their measurements can be
combined.

The potential energy operator U is diagonal. It can be
decomposed by Pauli string operators that consist of only I
and Z . For a Pauli string Bk = B1 ⊗ B2 ⊗ · · · Bn−1 ⊗ Bn,
where Bi ∈ {I, Z}, its decomposition coefficient is bk =
trace(U Bk)/N . Each Bi has two choices of I or Z , so there
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TABLE I
LIST OF STRINGS TO BE MEASURED FOR OBTAINING THE

EXPECTATION VALUE OF HAMILTONIAN

are together 2nx terms, U = �2nx

k=1 bk Bk. It is noted that the
diagonal vectors bk = diag(Bk) form a complete set {bk},
where k = 1, 2, . . . , 2nx , to decompose any potential profile
vector V = diag(U). Furthermore, only one measurement,
which measures Z of each qubit, Z⊗nx , is needed to obtain
the expectation value of every Pauli string in {Bk} because the
expectation value of I is always 1.

B. 2-D Quantum Confinement

We next consider the 2-D quantum confinement. Solving a
2-D quantum confinement problem is necessary for treating
quantum confinement in the cross section of a semiconductor
nanowire or in a quantum dot formed in a 2-D semiconductor.
By using the effective mass approximation, the Hamiltonian
can be expressed as

H2-D = −�
2

2

�
1

mx

∂2

∂x2
+ 1

m y

∂2

∂y2

�
+ U2-D(x, y) (4)

where mx(m y) is the effective mass along x(y) direction and
we consider a rectangular confinement problem with a particle-
in-a-2-D-box boundary condition for the confinement potential
U2−D(x, y). By using the FD method, the Hamiltonian can be
discretized to

H2-D = T 2-D + U2-D

= tx I N y ⊗ M N x + ty M N y ⊗ I N x + U2-D (5)

where tx = (�2/(2mxa2
x)) and ty = (�2/(2m ya2

y)) are tight
binding parameters along x- and y-directions, respectively,
Nx = 2nx and Ny = 2ny are the number of numerical grid

points along the x and y directions, respectively, MNx and
MNy are defining the form in (2), and IN is an identity matrix
in the size of N . The number of qubits required to solve this
problem is nq = nx + ny and the rectangular quantum well
width along the x and y directions are Wx = (Nx + 1)ax and
Wy = (Ny + 1)ay, respectively.

By applying the decomposition method by Sato et al., the
Hamiltonian matrix can be decomposed to

T2-D = I ⊗ny ⊗ T 1-D,N x + T 1-D,N y ⊗ I ⊗nx (6)

where T 1-D,Nx and T 1-D,Ny are in the form of decomposed
Hamiltonians for the 1-D cases in (3) with sizes of Nx × Nx

and Ny × Ny , respectively,

T1-D,Nx = tx



2I ⊗nx − I ⊗nx −1 ⊗ X − P+

Nx

�
I ⊗nx −1 ⊗ X

�
PNx

+P+
Nx



I nx −1
0 ⊗ X

�
PNx

�
(7)

and

T1-D,Ny = ty



2I ⊗ny − I ⊗ny− 1 ⊗ X − P+

Ny

�
I ⊗ny−1 ⊗ X

�
PNy

+P+
Ny



I

ny−1
0 ⊗ X

�
PNy

�
. (8)

Here, PNx and PNy are the cyclic shift operator in the size of
Nx and Ny respectively. By substituting (7) and (8) into (6),
the decomposed Hamiltonian is

T 2-D = �
2tx + 2ty

�
I ⊗(nx +ny) − tx I ⊗ny

⊗



I ⊗nx −1 ⊗ X − P+
Nx

�
I ⊗nx −1 ⊗ X

�
PNx

+P+
Nx



I nx −1
0 ⊗ X

�
PNx

�

−ty



I ⊗ny - 1 ⊗ X − P+

Ny

�
I ⊗ny− 1 ⊗ X

�
PNy

+P+
Ny



I

ny− 1
0 ⊗ X

�
PNy

�
⊗I ⊗nx . (9)

The potential operator U2-D = diag(u2-D) is a diagonal
matrix where u2-D is the potential energy at the 2-D numerical
grid. It can be decomposed using the same approach as
described in Section II-A for the 1-D case, which is the sum of
Pauli strings that only consists of I and Z Pauli operator. The
strings to measure the expectation value of H2-D are shown
in Table I.

C. 3-D Quantum Confinement

To understand semiconductor quantum dots, it is neces-
sary to solve a 3-D quantum confinement problem. The
Hamiltonian under the effective mass approximation can be
expressed as

H3-D = −�
2

2

�
1

mx

∂2

∂x2
+ 1

m y

∂2

∂y2
+ 1

mz

∂2

∂z2

�
+ U3-D



�
r
�

(10)

where mz is the effective mass in the z-direction. With
a particle-in-a-box boundary condition for the confinement
potential U3−D(

�
r ), FD discretization results in a Hamiltonian

of H3-D = T3-D + U3-D, and

T3-D = I ⊗(nz+ny) ⊗ T 1-D,N x +I ⊗nz ⊗ T 1-D,N y ⊗ I ⊗nx

+T 1-D,N z ⊗ I ⊗(ny+nx) (11)
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where T 1-D,z takes the same form as (3)

T 1-D,z = tz



2I ⊗nz − I ⊗nz− 1 ⊗ X − P+

Nz

�
I ⊗nz− 1 ⊗ X

�
PNz

+P+
Nz



I nz− 1
0 ⊗ X

�
PNz

�
(12)

and the binding parameter tz = (�2/(2mza2
z )). The number of

grid points along the z-direction is Nz = 2nz . By substitut-
ing (7), (8), and (12) into (11), we obtain

T 3-D = �
2tx + 2ty + 2tz

�
I ⊗n − tx I ⊗(nz+ny)

⊗



I ⊗nx −1 ⊗ X − P+
Nx

�
I ⊗nx −1 ⊗ X

�
PNx

+P+
Nx



I nx −1
0 ⊗ X

�
PNx

�
− ty I ⊗nz

⊗




I ⊗ny−1 ⊗ X − P+
Ny

�
I ⊗ny−1 ⊗ X

�
PNy

+P+
Ny



I

ny−1
0 ⊗ X

�
PNy

�
⊗I ⊗nx

−tz



I ⊗nz−1 ⊗ X − P+

Nz

�
I ⊗nz−1 ⊗ X

�
PNz

+P+
Nz



I nz−1
0 ⊗ X

�
PNz

�
⊗I ⊗(ny+nx). (13)

The potential operator U3-D = diag(u3-D) is diagonal, and
it can be decomposed to Pauli strings consisting of I and Z
elements as described before.

The decomposed Hamiltonian consists of the terms of Pauli
strings and projection operators, as listed in Table I. Pauli
string measurements on an ansatz state render the expectation
values of the decomposed Pauli strings, and the expectation
value of the cost function of the Ansatz state is computed as
the weighted sum of the expectation values of the Pauli strings.
As the confinement dimensionality increases from 1-D to 3-D,
the number of Pauli strings that need to be measured increases.

D. Construction of Ansatz

The accuracy and performance of a VQA depend on the
construction and choice of an ansatz. A parameterized ansatz is
a high-dimensional approximator to the solution sought, whose
expressive power depends on its quantum circuit structure
[14], [15]. Two types of hardware-efficient ansatz circuits are
designed. These ansatzes only require two-qubit entangling
gates between nearest neighboring qubits, which can be effi-
ciently implemented even in a quantum processor with linear
chain connectivity between qubits. Fig. 2(a) and (b) shows one
stage of ansatz 1 and ansatz 2, respectively. In each stage of
ansatz 1, a single-qubit gate of Y rotational operation Ry(θi, j)
for the i th stage and j th qubit, where θi, j is the rotational
angle parameter, 1 ≤ i ≤ ns , and 0 ≤ j ≤ nqubit − 1, ns is
the total number of stages and nqubit is the total number of
qubits. After the single-qubit rotation, a series of (nqubit − 1)
CNOT gates are applied. Ansatz 1 is similar to the ansatz used
in [12]. Its parameter vector θ = θi j has a size of ns × nqubit.

Alternatively, ansatz 2 is designed to have the same num-
ber of two-qubit CNOT gates per stage as ansatz 1, but
two times more trainable single-qubit gates in each stage.
The goal is to improve the expressive power of the ansatz
with a small hardware cost per stage. The CNOT gates are
applied in a two-step, even-odd pattern, as shown in Fig. 2(b).
A Y -rotational gate is applied to each qubit before the CNOT

Fig. 2. Two types of ansatz circuits. (a) Quantum circuit of Ansatz 1.
(b) Quantum circuit of Ansatz 2. The blocks in the dashed box repeat
ns stages with (a) y rational gate angle parameter θi,j for the ith stage
and jth qubit and (b) angle parameters θi,j and θ	

i,j for the ith stage and jth
qubit. The angle parameters in the ansatz are optimized in the variational
quantum simulations.

operations. Its training parameter vector, θ = {θi j, θ
	
i j }, has

2nqubit parameters per stage, while that of ansatz 1 is nqubit

per stage. In typical quantum hardware, single-qubit quantum
gates are much faster and less noisy than two-qubit quantum
gates, so ansatz 2 only adds a small hardware overhead per
stage, as compared to ansatz 1.

E. Simulation Procedure

The overall simulation flow is shown in Fig. 3.

1) First, the quantum confinement problem is discretized
by using a numerical discretization method, and the
Hamiltonian is decomposed as discussed above.

2) By applying an ansatz quantum circuit to an initial state
of |00, . . . , 00 >, an ansatz state ψ̃(θ) is prepared with
an ansatz parameter vector of θ .
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Fig. 3. Simulation flowchart for the quantum variational method to solve
the quantum confinement problem in semiconductor. The dashed yellow
boxes are for calculating excited states only by using the VQD method.
The steps in the dashed red box are run in Qiskit and the rest steps are
run on a classical computer.

3) The expectation value of Hamiltonian is measured for
the prepared ansatz state, which characterizes the energy
of the state.

4) To obtain the ground state, the cost function can be
simply defined as the energy in step (3), which is a
function of the rotational angle parameters

Ẽ(θ) = �
ψ̃(θ) | H | ψ̃(θ)�. (14)

The definition of the cost function for calculating the
excited states will be discussed later.

5) In a classical computer, the parameter vector for the
ground state is optimized by minimizing the energy

θ0 = argminθ (E(θ)). (15)

The optimization problem is treated as an unconstrained
nonlinear optimization problem, in which the cost function
is minimized by using a gradient descent algorithm, such
as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
The optimization is performed iteratively by inputting the
parameter obtained in step (5) back to step (2) until a specified
convergence condition of the cost function is reached.

The rotational angle parameters θ of the ansatzes can be
initialized stochastically for multiple runs, and the solution can
be taken as the one that achieved the minimal value of the cost
function. In this work, we create a pool of constant initializa-
tion parameters, θ = θ01 where θ0 ∈ {1, 1.5, 2} rad, and the
solution is obtained as the one that achieves the smallest cost
function. Although more advanced initialization strategies such
as noisy restarts [16] can be used, this simple initialization
approach is already sufficient for the cases studied here.

Calculation of the excited state requires redefining the cost
function. A variational quantum deflation (VQD) algorithm is
used [17]. The cost function in step (4) is constructed as the
expectation value of the energy plus a penalty term of the
overlap

F(θk) = �
ψ̃(θ k) | H | ψ̃(θ k

� +
k−1�
i= 0

ci
�
ψ̃(θ k)/ψ̃(θ i)

�
(16)

where θ k is the ansatz parameters to be calculated for the kth
excited state, and ci is an empirical parameter that determines
the relative weights of the energy and overlap in the cost
function. The dashed boxes in Fig. 3 show the additional steps
for the VQD algorithm. It measures the overlap between the
ansatz state and all lower energy states. Minimizing F(θ k)
with regard to the parameter vector θ k can be viewed as
minimizing the energy in the subspace which is orthogonal
to ψ(θ i ) with 0 ≤ i ≤ k − 1 [17]. Compared to the ground
state, whose energy landscape Ẽ(θ) is defined in (14), the
cost function F(θ k) in (16) has a more complex landscape.
Its first term minimizes the energy, and the second term
penalizes the overlap and drives the ansatz toward the subspace
orthogonal to the lower energy states. The choice of the
empirical coefficients ci influences the relative weights of these
two terms and the cost function landscape.

The proposed algorithm for solving the quantum confine-
ment problems in semiconductors is implemented in IBM
Qiskit by using its statevector simulator backend [18]. IBM
Qiskit is an open-source framework for quantum computing
that supports Python [18]. We implement the Ansatz circuits
and obtain the expectation values of the Pauli strings and the
overlap values from the Qiskit statevector simulator backend,
from which the cost function is calculated. The iterative
optimization by using the BFGS algorithm is implemented by
using the Scipy optimization library.

III. RESULTS AND DISCUSSION

In this section, we present the results obtained by the
proposed method for 1-D, 2-D, and 3-D quantum confinement
problems, quantify the error of solutions, and investigate the
choice of ansatz on the accuracy of the results.

We first examine the results of 1-D quantum confinement,
as shown in Fig. 4. We consider, for example, a confinement
potential u(x) = u0sin(πx/L), as shown in Fig. 4(a). The
simulated probability distribution, which is the magnitude
square of the discretized wave function, is compared between
the proposed method and the exact solution by direct diago-
nalization of the Hamiltonian matrix. Fig. 4(b) shows that the
proposed method calculates the ground wave state accurately,
in the presence of different magnitudes of the electrostatic
potential in the quantum well. We further calculated and
compare the first excited wave state. As shown in Fig. 4(c),
the VQD method can accurately calculate the first excited
wave state. As the potential peak u0 at the quantum well
center increases, the probability peak of the ground state at
the center of the quantum well reduces. In comparison, its
impact on the first excited state is smaller due to its already low
probability density at the quantum well center. Fig. 4(d) shows
that the method can achieve high accuracy for eigen-energy
calculations at various potential amplitudes in the quantum
well. We also tested an asymmetric confinement potential
u(x) = u0cos(πx/L) with 0 ≤ x ≤ L, and the results (not
presented here) similarly show high accuracy.

To quantify calculation accuracy, the error of a wave state
can be quantified as

errorψ = 1 − ���ψ̃/ψ̂ ���2
(17)
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Fig. 4. 1-D quantum confinement. (a) Normalized confinement potential
u(x)/u0 = sin(πx/L) versus position 0 ≤ x ≤ L normalized to the spacing
a0 = 0.2 nm, where the quantum well width is L = (N + 1)a0. Here
N = 2nqubit = 32 numerical grid points in the 1-D quantum well, where
nqubit = 5 is the number of qubits needed to represent the discretized
wave vector ψ = [ψi]1≤i≤N. The simulated probability ρi = |ψi|2 versus
the normalized position of (b) ground state and (c) first excited mode
for different potential amplitudes u0 values. The electron effective mass
is meff = 0.19. (d) Ground and first excited state energies versus u0.
In (b)–(d), the lines are from the quantum-computing-based method, and
the dots are the exact solutions by using an eigenvalue solver of the
Hamiltonian matrix. The ansatz 1 as shown in Fig. 2(a) is used with ns =
5 stages.

and the relative error of energy can be expressed as

εr =
��Ẽ − Ê

��
Ê

× 100% (18)

where ψ̃ is the normalized wave vector and Ẽ is the
energy solved by the proposed quantum variational method,

and ψ̂ is the normalized wave vector and Ê is the energy
solved by directly diagonalizing the Hamiltonian. For the
ground state in Fig. 4(b) at u0 = 0, the error of the wave
function is errorψ ≈ 6 × 10−5 and the relative error of energy
is εr ≈ 0.3%. For the first excited state in Fig. 4(c) at u0 = 0,
the error of the wave function is errorψ ≈ 8 × 10−5 and
the relative error of energy is εr ≈ 0.3%. The stochastic
optimization results in variations of accuracy within the same
order of magnitude.

Next, we apply the method to 2-D quantum confinement
problems. Fig. 5(a) and (b) shows the probability distribution
calculated by the proposed method for the ground state and the
first excited state, respectively. Both states can be accurately
calculated. Here, ansatz 1 with ns = 8 stages is used, and
its accuracy will be further quantified later as the choice of
ansatzes is investigated. Fig. 5(a) and (b) shows a simple case
of an isotropic band structure, mx = m y which results in tx =
ty , and a square quantum well, Wx = Wy . For the ground
state in Fig. 5(a), the error of the wave function is errorψ ≈
4 × 10−5 and the relative error of energy is εr ≈ 0.03%.
For the first excited state in Fig. 5(b), errorψ ≈ 3 × 10−4 and
εr ≈ 0.2%. It is noted that the first excited state of the modeled
problem has a twofold degeneracy, and the VQD algorithm can

Fig. 5. 2-D quantum confinement: Pseudocolor plot of probability ρi.j =
|ψi,j|2 at potential energy u = 0 for (a) lowest eigenmode and (b) second
eigenmode with mx = my. Here, nx = ny = 4 and the grid spacings along
both directions are equal, which results in Nx = Ny = 16 numerical grid
points along x- and y-directions in a square quantum well, and ψi,j is the
discretized wave function with 0 ≤ i ≤ Nx −1 and 0 ≤ j ≤ Ny −1. (c) and
(d) Counterparts of (a) and (b) but with different effective mass values
along x and y, mx = 0.19m0 and my = 0.98m0, where the normalization
value m0 can be regarded as free electron mass. Ansatz 1 is used with
ns = 8 stages.

converge to any superposition state of these twofold degenerate
states.

The method can also be applied to a non-isotropic band
structure with mx �= m y . We performed the simulation for a
non-isotropic band structure with mx = 0.19m0 and m y =
0.98m0 for the same quantum confinement, as shown in

Fig. 5(c) and (d). The ground state has a similar probability
density. Due to different effective mass values along x and y,
the twofold degeneracy of the first excited state is removed.
The first excited state has two density peaks along the heavier
effective mass direction, which is y-direction. It is found that
for this non-isotropic band structure, the quantum variation
algorithm can still accurately calculate the eigenenergy and
eigenstates for both the ground and excited states. The error
of the wave function is errorψ ≈ 1 × 10−5 and the relative
error of energy is εr ≈ 0.03% for the ground state in Fig. 5(c),
and the errors for the first excited state in Fig. 5(d) are
errorψ ≈ 2 × 10−7 and εr ≈ 1 × 10−3%.

A 3-D confinement in a quantum dot structure is investi-
gated next. Fig. 6(a) and (b) show the probability distribution
of the ground and first excited states, respectively, by using
the proposed method. For the ground state, the error of the
wave function is errorψ ≈ 3 × 10−5, and the relative error
of energy is εr ≈ 0.01%. For the first excited state, the error
of the wave function is errorψ ≈ 4 × 10−6, and the relative
error of energy is εr ≈ 2 × 10−3%. The results indicate high
accuracy of both the energy levels and eigen-energy states for
both the ground and excited states for solving a 3-D quantum
confinement problem.
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Fig. 6. 3-D quantum confinement: Slice plot of probability ρi.j,k = |ψi,j,k|2
at potential energy u = 0 for (a) lowest eigenmode and (b) second
eigenmode. Here nx = ny = nz = 3, which results in Nx = Ny = Nz =
8 numerical grid points along x-, y-, and z-directions, and ψi,j,k is the
discretized wave function with 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1, and
0 ≤ k ≤ Nz − 1. Ansatz 1 is used with ns = 6 stages.

Fig. 7. Comparison of accuracy between two types of ansatzes: error
of simulated energy of the ground state versus the number of ansatz
stages ns for (a) 1-D confinement with nx = 5, (b) 2-D confinement with
nx = ny = 4, and (c) 3-D confinement with nx = ny = nz = 3. The solid
lines with circles are for Ansatz 1 in Fig. 2(a), and the diamond dash-dot
lines are for Ansatz 2 in Fig. 2(b).

To examine how the design of ansatz impacts the accu-
racy of the method, the accuracy values of the simulated
ground state energy are plotted as a function of the number
of the ansatz stages in Fig. 7. We compare ansatz 1 and
ansatz 2, as defined in Fig. 2(a) and (b), respectively. These
two ansatzes have an equal number of two-qubit quantum gates
per stage. As the number of stages increases, the accuracy
monotonically improves for both ansatzes in 1-D confinement,
as shown in Fig. 7(a). This is, however, not the case for
ansatz 1 in 2-D and 3-D quantum confinement, as shown in
Fig. 7(b) and (c), respectively. In all dimensions, Ansatz 2
shows improved accuracy over Ansatz 1, which can allow a
shallower circuit depth. This is important for implementation
on NISQ devices that have a short coherence time. A larger
number of trainable single qubit gates per stage of Ansatz 2
improves its expressive power for describing the quantum
states.

To obtain the expectation value of the Hamiltonian in a
quantum hardware device within a measurement sampling
error of �, each quantum circuit, which consists of the
ansatz circuit and a Pauli string measuring circuit, needs

to be run for Nshots ∼ O(1/�2) times. The number of
universal quantum gates in a quantum circuit is limited by
the implementation of the shift operator, which scales as
Ngates ∼ O(n2) ∼ O(log(N)2) [11]. The number of Pauli
strings decomposed from the Hamiltonian as shown in Table I,
NPauli, is independent n. The total complexity, therefore, scales
as ∼ O(Nshots Ngate N Pauli), which is ∼ O((1/�2) log(N)2).

The proposed method illustrates the promising potential
of using VQA to solve quantum confinement problems in
semiconductor nanostructures at all dimensions. The following
issues need to be further investigated in future studies. First,
the method is implemented and tested in an IBM Qiskit QASM
simulator [19]. Physical NISQ devices today are noisy and
limited in the number of qubits. Rapid advances in quantum
computing hardware can alleviate this problem. Future work
is also needed to understand and improve the performance of
the algorithm on noisy NISQ devices. Second, the method is
illustrated in a rectangular shape of confinement, its extension
to other shapes of conferment needs to be further explored.
Third, self-consistent electrostatic potential has not yet been
incorporated. A variational quantum method to solve the
Poisson equation has been reported recently [11]. Coupling
the solution of the Schrödinger equation with the Poisson
equation can treat self-consistent electrostatics. Fourth, the
qubit number scales logarithmically with the number of
numerical grids, nqubit ∼ O(log (Ngrid)) in the proposed
method. The number of quantum gates needed for prepar-
ing the ansatz states scale linearly with the qubit number
nqubit. As the number of qubits increases in a physical
quantum device, quantum fidelity decreases, which are likely
to require a larger number of measurements and quantum
error mitigation schemes. These limitations need to be further
investigated.

IV. CONCLUSION

In summary, a quantum-computing-based method to solve
quantum confinement problems in semiconductor nanostruc-
tures at all dimensions is developed. The method is based
on a VQA and treats electrostatic potential and anisotropic
semiconductor band structure. It solves quantum confinement
problems related to a quantum well, nanowire, and quan-
tum dot structures with high accuracy. As the number of
the numerical discretization grids N increases, the quantum
resource in terms of the qubit count scales only logarithmically
∼O(log (N)). By properly constructing an ansatz quantum
circuit with a larger number of single-qubit gates but the same
number of hardware-demanding two-qubit gates per stage,
a higher solution accuracy can be achieved with a shallower
ansatz circuit.

APPENDIX

The operator T̂ 1−D = −(�2/2m∗)(d2/dx2) is discretized
to (2) in the main text. To prove (3)

T1-D = t


2I ⊗nx − I ⊗nx −1 ⊗ X − P+

N

�
I ⊗nx −1 ⊗ X

�
PN

+ P+
N



I ⊗nx − 1
0 ⊗ X

�
PN

�
.
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We compute the right-hand side (RHS) of the equation and
show it is equal to (2). Reference [11, eq. (18)] shows

Aperiodic

= I ⊗nx −1 ⊗ (I − X)+ P−1
N

�
I ⊗nx −1 ⊗ (I − X)

�
PN

= I ⊗nx − I ⊗nx −1 ⊗ X + I ⊗nx − P−1
N

�
I ⊗nx −1 ⊗ X

�
PN

= 2I ⊗nx − I ⊗nx −1 ⊗ X − P+
N

�
I ⊗nx −1 ⊗ X

�
PN (A1)

where the shift operator PN is unitary so that P−1
N = P+

N , and

Aperiodic =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · −1

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

−1 · · · 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×N

.

The last term in the RHS of (3) is

P+
N



I ⊗nx −1
0 ⊗ X

�
PN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 1

0 0 0
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 0 0

1 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×N

.

(A2)

By substituting (A1) and (A2) to the RHS of (3), we obtain

RHS = t



Aperiodic + P+
N



I ⊗nx − 1
0 ⊗ X

�
PN

�

= t

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

N×N

which is equal to the left-hand side of (3) T1−D, as expressed
in (2).

In the case of 2-D, the operator T̂ 2−D =
(−(�2/2m∗)(d2/dx2)) + (−(�2/2m∗)(d2/dy2)). With
finite-difference discretization, the first term is essentially
the 1-D case along the x-direction, and it is discretized to
I ⊗n y ⊗ T 1-D,N x . The second term is the discretization along
the y direction, which results in T 1-D,N y ⊗ I ⊗nx , Therefore,
the operator T̂ 2−D is discretized to

T 2-D = I ⊗n y ⊗ T 1D,N x +T 1-D,N y ⊗ I ⊗nx

which is (6) in the text. The same scheme can be extended to
the case of 3-D

T 3-D = I ⊗(nz+ny) ⊗ T1-D,N x + I ⊗nz ⊗ T 1-D,N y ⊗ I ⊗nx

+ T 1-D,N z ⊗ I ⊗(ny+nx).
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