

RESEARCH ARTICLE | JUNE 28 2022

SnO₂ modified mesoporous ZrO₂ as efficient electron-transport layer for carbon-electrode based, low-temperature mesoscopic perovskite solar cells

De'en Guo; Jiao Ma; Siyuan Lin; Xiao Guo; Han Huang ; Deming Kong; Fuxin Xu; Yongli Gao ;
Wenhai Zhang; Yue Hu ; Conghua Zhou

Appl. Phys. Lett. 120, 263502 (2022)

<https://doi.org/10.1063/5.0087943>

View
Online

Export
Citation

CrossMark

Articles You May Be Interested In

Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells

Appl. Phys. Lett. (October 2021)

Uneven crystallization of lead halide perovskite in the carbon-electrode based, low-temperature mesoscopic perovskite solar cells

J. Appl. Phys. (November 2022)

500 kHz or 8.5 GHz?
And all the ranges in between.

Lock-in Amplifiers for your periodic signal measurements

Find out more

SnO₂ modified mesoporous ZrO₂ as efficient electron-transport layer for carbon-electrode based, low-temperature mesoscopic perovskite solar cells

Cite as: Appl. Phys. Lett. **120**, 263502 (2022); doi: 10.1063/5.0087943

Submitted: 11 February 2022 · Accepted: 12 June 2022 ·

Published Online: 28 June 2022

View Online

Export Citation

CrossMark

De'en Guo,¹ Jiao Ma,¹ Siyuan Lin,¹ Xiao Guo,¹ Han Huang,¹ Deming Kong,¹ Fuxin Xu,¹ Yongli Gao,² Wenhao Zhang,³ Yue Hu,³ and Conghua Zhou^{1,a)}

AFFILIATIONS

¹Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China

²Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

³Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

^{a)}Author to whom correspondence should be addressed: chzhou@csu.edu.cn

ABSTRACT

SnO₂ modified mesoporous ZrO₂ is used to replace the mesoporous TiO₂ layer and serves as a kind of mesoporous electron-transport layer during the low-temperature fabrication of mesoscopic perovskite solar cells that are based on carbon electrode. X-ray/ultraviolet photoelectron spectroscopy studies and electrical test observe that SnO₂ modification brought down the work function while increasing the conductivity of the mesoporous ZrO₂. Transient photovoltage/photocurrent decay curves, impedance spectroscopy, and photoluminescence mapping show that after the bottom layer of ZrO₂ is modified by SnO₂, the charge extraction process is accelerated while recombination is retarded. This modification helps to increase the power conversion efficiency from 4.70 (±0.85)% to 10.15 (±0.35)%, along with the optimized efficiency at 13.37% (AM1.5G, 100 mW/cm²) for the low-temperature devices. In addition, the effects of modification layers of SnO₂ on the power conversion properties are carefully studied. This study shows that SnO₂ modified mesoporous ZrO₂ could serve as an efficient electron-transport layer for the low-temperature mesoscopic devices.

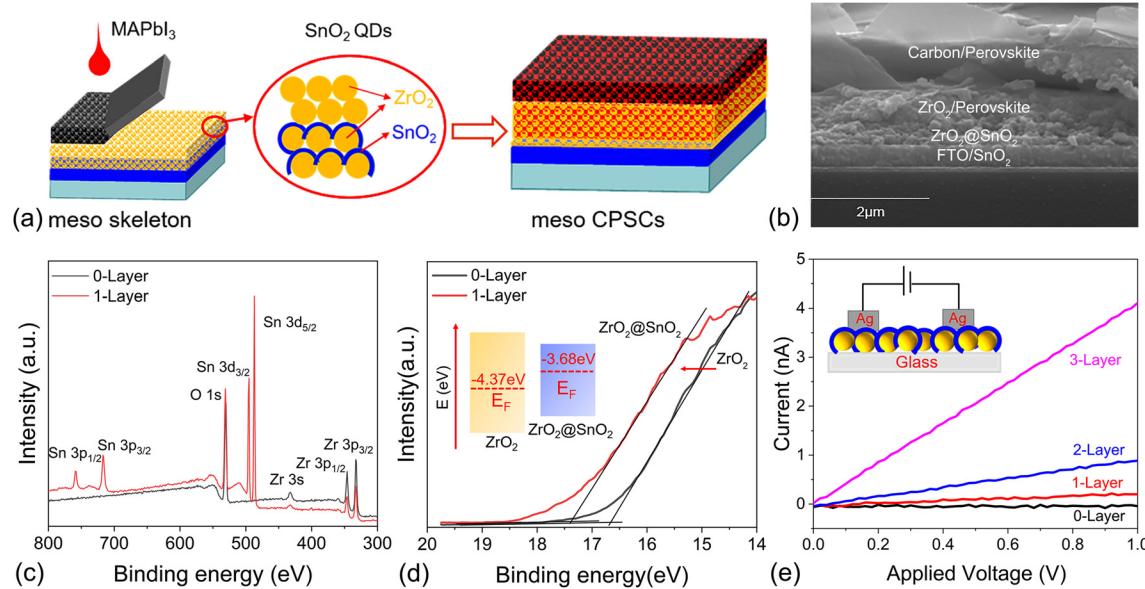
Published under an exclusive license by AIP Publishing. <https://doi.org/10.1063/5.0087943>

29 September 2023 14:54:03

Organic-inorganic hybrid perovskite solar cells (PSCs) have developed very fast since the pioneered work of Miyasaka *et al.*¹ The power conversion efficiency (PCE) has increased from 3.8% (AM1.5G, 100 mW cm⁻²) to the recorded 25.7%,¹⁻⁵ owing to the optimization on light-absorbing material,⁶ charge-transport material,⁷ device structure,⁸ and so on. Stability and cost are suggested to be the main bottlenecks for the practical mass application. Carbon materials are known by the high electrical conductivity and low price. Moreover, carbon electrode owns a work function near 5.0 eV and sound corrosion resistance. As such, PSCs based on carbon electrode (noting as CPSCs) have also developed quickly, and several structures have been proposed, including mesoscopic (meso CPSCs),⁹⁻¹² embedment,^{13,14} quasi-planar,¹⁵ and planar structures.^{16,17} In 2021, Xiao *et al.* applied acetamidine mixed perovskite to prepare the photoactive material and

achieved PCE higher than 18% in meso CPSCs.^{18,19} In 2019, Yang *et al.* modified TiO₂ with PbTiO₃ to prepare the electron-transport layer and achieved PCE of 16.37% in the embedment CPSCs.²⁰ In 2021, Wu and co-workers introduced a simple amphiphilic silane interfacial linkage strategy and achieved a PCE of 18.64% in planar CPSCs.²¹ Moreover, prolonged stability has also been demonstrated for the CPSCs. For example, Han's group tested the printable mesoscopic perovskite solar cell that filled with (5-AVA)_xMA_{1-x}PbI₃ at 55 °C ± 5 °C for more than 9000 h, but no significant degradation was observed.²²

Among these carbon-electrode based devices, meso CPSCs are unique for their architecture and air-compatible production procedures. However, they are usually fabricated in high temperatures (400–450 °C), partially due to the need to sinter TiO₂ (to obtain higher conductivity).

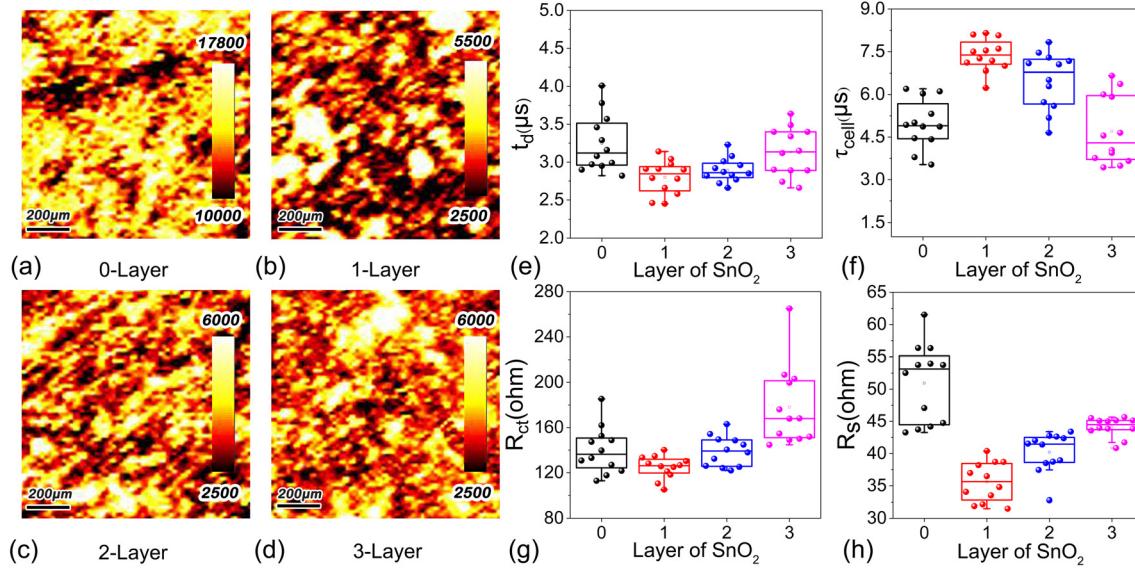

This process adds to the production period and the cost. To reduce the cost, low-temperature production is recommended, similar to that done in metal-electrode based PSCs and other types of CPSCs.^{23–27} Honestly, in our previous work, low-temperature preparation of meso CPSCs was realized with the architecture of “ITO/SnO₂/meso-TiO₂/meso-ZrO₂/carbon,” which was successfully produced in temperatures ≤ 150 °C.²⁸ However, during that work, TiO₂ was used as the mesoporous electron-transport layer (meso-ETL). Without high temperature (450 °C) sintering, the conductivity of TiO₂ was relatively low, which affected device efficiency. As a result, it is essential to explore a kind of meso-ETL that is compatible with low-temperature procedures. SnO₂ has been shown to be a kind of excellent electron-transport material that could be prepared in low temperatures.^{29–32} Here, in this article, SnO₂ is used to modify mesoporous ZrO₂, then replace the meso TiO₂ layer and serve as the meso ETL.

The fabrication process of the low-temperature meso CPSCs is shown in Fig. 1(a). The structure of “FTO/SnO₂/meso-ZrO₂@SnO₂/meso-ZrO₂/carbon” is adopted. For comparison, the device is also prepared using meso TiO₂ as ETL.²⁸ Details about the preparation procedures are referred to the experimental section shown in the [supplementary material](#). Two points are worthy to note: (i) In order to harvest photo-generated charge carriers, two-layer ETLs are adopted: one is the compact layer and the other is the mesoporous layer. The usage of meso ETL is to increase the contact area between the active layer and the charge-extraction layer. During the past years, meso-TiO₂ was used in most. Herein, such layer is replaced by SnO₂ modified meso-ZrO₂ (or noted by meso-ZrO₂@SnO₂). Such layer is obtained by spin-coating SnO₂ quantum dots (QDs) solution on top of the ZrO₂ blocking layer. To examine the effect of the number of modifying layers on device performance, the number of the modification layers is changed from 0 to 3. After that, two more layers of meso

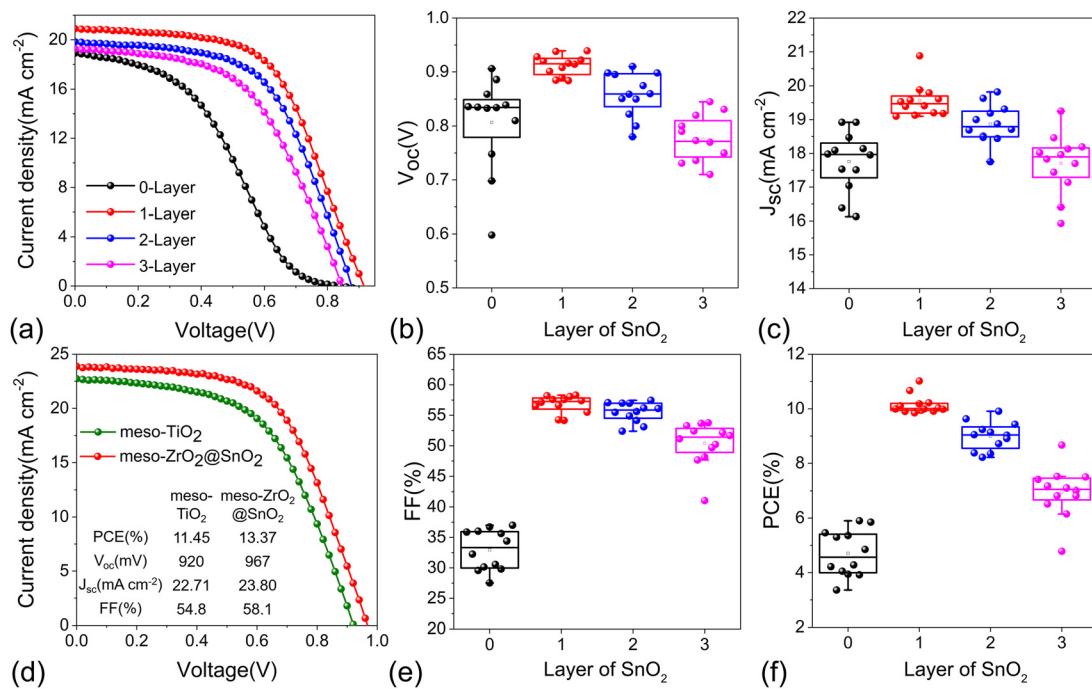
ZrO₂ layers are spin-coated on top to prepare the blocking layer (between the bottom ETL and top carbon electrode). (ii) The carbon electrode is prepared using ZrO₂ inorganic sols, instead of TiO₂ sols.²⁸ This could avoid the photocatalytic effect brought by TiO₂.³³ Discussion on this topic will be detailed in a forthcoming work. Cross section morphological properties of meso CPSCs are studied by scanning electron microscope (SEM), along with element distribution maps (EDS). Typical cross-section image is shown in Fig. 1(b). Clearly, layered skeleton can be distinguished, such as meso-ZrO₂@SnO₂, meso-ZrO₂, and carbon electrode. After uploading of perovskite crystallites, the three layers are united, which facilitates the power conversion processes.

EDS mapping shows a similar result. Elements of I and Pb distribute throughout the mesoporous layers covering SnO₂, ZrO₂, and carbon electrode, indicating that the perovskite precursor can penetrate to the bottom of the mesoporous skeleton. It is observed that the number of modification layers brings less effect on the distribution of perovskite in the device. Crystallographic characteristics of the devices are studied by x-ray diffraction (XRD), as shown in Fig. S2. Peaks at around 14.23°, 20.13°, 23.61°, 28.30°, 31.75°, 40.56°, and 43.16° can be observed, corresponding to facet planes of (110), (112), (111), (004), (310), (202), and (212) of (5-AVA)_x(MA)_{1-x}PbI₃, respectively.²⁸ No prominent peak is observed for PbI₂, implying that perovskite crystallization could be harvested in the mesoporous skeleton.

Surface chemical properties and work function of the meso-ZrO₂ are characterized by x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS). As shown in Fig. 1(c), before the SnO₂ modification, peaks belong to Zr and O exist. After the modification (one-layer), new peaks at 495.3 and 486.8 eV appear, which belong to Sn3d_{3/2} and Sn3d_{5/2}, respectively, implying SnO₂QDs have been mounted on ZrO₂. According to the UPS study [Fig. 1(d)], the work function of


FIG. 1. (a) Schematic of the preparation process of low-temperature, mesoscopic CPSCs using SnO₂ modified meso-ZrO₂ as the electron-transport layer. (b) Cross-sectional SEM image of meso CPSC after filling of perovskite. (c) X-ray photoelectron spectroscopy of meso-ZrO₂ and meso-ZrO₂@SnO₂ thin layers. (d) Ultraviolet photoelectron spectroscopy of ZrO₂ and ZrO₂@SnO₂. (e) Current–voltage curve of meso-ZrO₂ modified by different layers of SnO₂.

4.37 eV could be recorded for ZrO_2 . After the SnO_2 modification, it shifts upward to 3.68 eV. Such shift could be well-understood, since SnO_2 is known to be a N-type semiconductor. To better illustrate the electrical properties, the conductivity of the SnO_2 modified meso- ZrO_2 is measured by current–voltage scanning using architecture shown in Fig. 1(e). Clearly, the conductivity of meso- ZrO_2 increases after the modification of SnO_2 .


The effect of the SnO_2 modification on the charge extraction properties is studied. Photoluminescence (PL) mapping is performed on devices by monitoring the spatial distribution of luminescence wavelength of 765 nm (according to $\text{CH}_3\text{NH}_3\text{I}$, or MA based perovskite).³⁴ From Fig. 2(a), one can see that before the SnO_2 modification on ZrO_2 , PL signal with intensity higher than 10 000 (upmost to 17 500) is seen on the most part of the tested area. After one-layer SnO_2 is coated, the PL intensity is weakened by $\sim 70\%$, with the upmost intensity lowering down to 5500. A similar distribution is observed when more layers of SnO_2 are coated. According to the XRD studies, crystallization behavior of perovskite is not affected by the modification layers, and, thus, the lowered PL intensity is ascribed to the improved charge extraction behavior across the interface between perovskite and meso ETL.^{35–37} For comparison, time-resolved photoluminescence (TRPL) spectra are recorded on half-devices, where the top carbon electrode is peeled off. Typical TRPL curves are shown in Fig. S3(d), the fitted lifetime (τ) is collected in Table S1. The averaged τ is 68.30, 17.38, 17.65, and 17.95 ns for the modification at 0, 1, 2, and 3 layers, respectively. The reduced lifetime is also ascribed to the accelerated charge extraction, coinciding well with the PL mapping test.^{38,39}

Charge-extraction and recombination dynamics of the meso CPSCs device are further studied by transient photocurrent/photovoltage (TPC/TPV) decay curves, and impedance spectroscopy (IS), typical TPC/TPV curves, and the Nyquist plots are seen in Fig. S3. Charge

transition time (t_d) and lifetime (τ_{cell}) of photo-generated charge carriers, series resistance (R_s), and interfacial charge transfer resistance (R_{ct}) are reduced from TPC/TPV curves and Nyquist plots and collected in Figs. 2(e)–2(h), respectively. When ZrO_2 is not modified, the transition time (t_d) is $3.24 (\pm 0.37) \mu\text{s}$, and after modified by one layer SnO_2 , it decreases to $2.79 (\pm 0.22) \mu\text{s}$, though it increases slightly to $2.89 (\pm 0.15)$ and $3.13 (\pm 0.31) \mu\text{s}$ for the two and three layer modification, respectively. On the contrary, the lifetime (τ_{cell}) is $4.96 (\pm 0.85) \mu\text{s}$ before modification; after one-layer SnO_2 modification, it increases to $7.38 (\pm 0.56) \mu\text{s}$, though it drops little after more layer modifications. As such, charge-extraction is accelerated, while recombination is retarded. The accelerated extraction could also be reflected by the evolution of series resistance (R_s) and charge-transfer resistance (R_{ct}). As for R_s , it is $50.94 (\pm 6.08) \Omega$ before modification while decreasing to $35.62 (\pm 3.04) \Omega$ after one-layer modification. As for R_{ct} , it is $139.92 (\pm 20.67) \Omega$ before modification while dropping to $124.97 (\pm 10.03) \Omega$ after one-layer modification. These results show that SnO_2 modified mesoporous ZrO_2 (or meso- ZrO_2 @ SnO_2) can serve as efficient ETL. After SnO_2 modification, the contact between perovskite crystallites and ETL is strengthened, which benefits the charge-extraction and recombination processes. It is noted that ion migration might also affect the measurement. It is well-known that ion migration is caused by defects and electrical stress in the device. Due to ion migration behavior, ion accumulation could happen, and then which leads to more defects and higher capacitance⁴⁰ affects aforementioned tests. However, as to ion migration itself, it usually happens in time-scale of seconds according to previous studies,^{41,42} which is much slower than the charge-extraction and recombination processes. Accordingly, ion migration itself might bring less effect to these tests. On the contrary, lifetime (τ_{cell}) derived from TPV reflects the recombination of photogenerated charge carriers in full device.^{43–45} It differs

FIG. 2. (a)–(d) Photoluminescence (PL) mapping of meso CPSCs using SnO_2 modified mesoporous ZrO_2 (noted by meso- ZrO_2 @ SnO_2) as ETL (all mappings were taken from the substrate side). The effect of the SnO_2 modification layer on (e) transition time (t_d) and (f) lifetime (τ_{cell}) of photogenerated charge carrier in the low-temperature devices. The effect of the modification layer of SnO_2 on (g) charge transfer resistance (R_{ct}) and (h) series resistance (R_s) of the low-temperature mesoscopic perovskite solar cells based on carbon electrode.

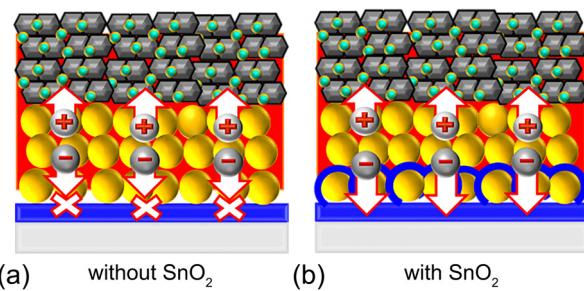


FIG. 3. (a) Effect of the modification layer of SnO_2 on current-density voltage characteristics of low-temperature meso CPSCs (AM 1.5 G, 100 mW cm^{-2} , test area is 0.0514 cm^2 , recorded by reverse scan). Statistics on performance parameters (reverse scans): (b) V_{oc} , (c) J_{sc} , (e) FF, and (f) PCE. (d) Typical current-density voltage (J - V) curves of devices using TiO_2 or meso ZrO_2 @ SnO_2 as meso ETL.

from the “lifetime (τ)” measured from TRPL. However, when the charge-transport layer is used, lifetime (τ) could also be affected by the interfacial charge-extraction process. Smaller τ usually implies quicker extraction process, given that similar perovskite is monitored.^{32,46,47} The accelerated charge-extraction and reduced charge recombination are beneficial for the power conversion processes. Typical current density-voltage (JV) curves are shown in Fig. 3(a). When there is no meso ETL, the “S-shape” JV curve appears, showing that the charge extraction process is highly retarded. In fact, ZrO_2 is a kind of insulator that could not serve as ETL. The observed JV curve is due to the possible contact between PVK and the compact SnO_2 ETL, since the ZrO_2 layer is mesoporous. Then, after the bottom layer of ZrO_2 is modified by SnO_2 , meso ETL is provided, and normal JV curves appear, indicating that the fluent extraction process happens. For a detailed comparison, all of the four performance parameters are collected and shown in Figs. 3(b), 3(c), 3(e), and 3(f) and Table S2, including open-circuit voltage (V_{oc}), short-circuit current density (J_{sc}), fill factor (FF), and power conversion efficiency (PCE). One can see that SnO_2 modification could upgrade all of the four parameters, while one-layer modification comes out with the optimized performance. Typically, after one-layer SnO_2 modification, V_{oc} increases from $806 (\pm 86)$ mV, J_{sc} increases from $17.75 (\pm 0.89)$ to $19.55 (\pm 0.48)$ mA cm^{-2} , FF rises from $32.95 (\pm 3.34)\%$ to $56.78 (\pm 1.44)\%$, and PCE upgrades from $4.70 (\pm 0.85)\%$ to $10.15 (\pm 0.35)\%$ [statistical histogram on PCE is shown in Fig. S4(a)]. In addition, examination of Figs. 2 and 3 shows that when charge extraction is accelerated (seeing lower t_{d} and lower R_{ct}), higher J_{sc} is harvested; when recombination is retarded (seeing increased τ_{cell}), higher V_{oc} is the resultant. Such phenomenon is, indeed, similar to that

observed before,^{48–50} depicting close relation between these parameters. It is worthy to note that as the modification layer increases, slight decline is seen in performance parameters. One possible reason rises from the fact of that more modification layers make the thicker SnO_2 layer, which reduces the porosity of the ETL, and the contact between perovskite and the ETL. However, more studies are needed in the future.

The performance of the low-temperature meso CPSCs based on meso- ZrO_2 @ SnO_2 is comparable to that based on meso- TiO_2 . Typical JV curves are shown in Fig. 3(d), while corresponding performance parameters and PCE histogram are shown in Figs. S4(b) and S5. Meso- ZrO_2 @ SnO_2 based devices come out with slightly higher PCEs, with the optimized value of 13.37% (reverse scan) compared to

FIG. 4. (a) and (b) Schematics showing the effect of SnO_2 modification on the contact and electron-extraction process between the interface of perovskite crystallite and ETL.

11.45% of meso-TiO₂ devices. From Fig. S5, one can see that the main contribution is from V_{oc} . TPV study (shown in Fig. S6) observes longer lifetime in the case of meso-ZrO₂ @ SnO₂. Thus, lower recombination is reduced. The reduced recombination might arise from difference between the TiO₂ and SnO₂. Usually, it is suggested that SnO₂ owns lower conduction band bottom than TiO₂.^{29,51} Accordingly, one may expect higher V_{oc} in meso TiO₂ devices, which differs from current study. As a result, other causes should be considered. It is well-known that, to obtain high crystallinity in TiO₂ nanoparticles, high temperature annealing ($\sim 450^{\circ}\text{C}$) is usually needed. Without such high temperature treatment, there exists risk of presence relative higher surface defects. In contrast, low-temperature processed SnO₂ has helped to obtain high V_{oc} near 1000 mV in low temperature planar CPSCs,¹⁷ and V_{oc} even higher than 1200 mV in metal-electrode based PSCs. Therefore, the reduced recombination might arise from the reduced surface defect.

To explain the observations relating to SnO₂ modification, schematics are shown in Figs. 4(a) and 4(b). When there is no meso ETL, incomplete contact is obtained between perovskite crystallites and ETL, leading to hindered electron-extraction. After the bottom ZrO₂ layer is modified with SnO₂, the contact is strengthened, ensuring effective electron-extraction and power conversion processes. Storage-stability is also tracked by storing the device in open air (relative humidity of 40%–50%, without encapsulation). As shown in Fig. S7, after 3000-h storage in the open air, no apparent decline is seen in efficiency. Moreover, slight increase is observed in the first few day storage, which relates to the slow coarsening process of perovskite grains in the mesoporous framework.¹⁷

Honestly, performance parameters of the currently studied low-temperature processed meso CPSCs are relatively lower than counter devices prepared by high temperature procedures.¹⁹ The main problem lies on the lower V_{oc} and FF. In addition, hysteresis is observed (shown in Fig. S8), which is caused by defects.⁴⁰ These problems are relating to the relatively poor crystallinity of perovskite in the confined structure, and, thus, more studies are needed.

In summary, SnO₂ modified meso ZrO₂ is used to be a kind of mesoporous ETL for the low-temperature mesoscopic PSCs based on carbon electrode. With the combination of PL mapping, TRPL, TPC/TPV, and IS studies, it is shown that SnO₂ modification could accelerate electron-extraction while retard recombination, which helps to obtain a conversion efficiency of 13.37% (reverse scan) (AM1.5G, 100 mW cm⁻²) and storage-stability up to 3000 h for the low-temperature devices. As a result, SnO₂ modified meso ZrO₂ could serve as an efficient ETL.

See the [supplementary material](#) for the device preparation and characterization; cross-sectional SEM image and corresponding element distribution maps (EDS) (Fig. S1); x-ray diffraction patterns (Fig. S2); typical TPC/TPV decay curves; Nyquist plots and time-resolved PL (Fig. S3); statistic histogram on PCEs (Fig. S4); statistics of performance parameters (Fig. S5); TPV decay curves for devices based on meso-TiO₂ and meso-ZrO₂ @ SnO₂ (Fig. S6); storage-stability (Fig. S7); hysteresis index (Fig. S8); fitted time constant from TRPL (Table S1); and statistics on performance parameters (Table S2).

C.Z. acknowledges the financial support of the National Scientific Foundation of China (NSFC, No. 61774170) and Hunan Provincial Natural Science Foundation (No. 2020JJ4759). Y.G.

acknowledges support from the National Science Foundation, United States (NSF, No. DMR-1903962).

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

De'en Guo: Investigation (lead); Methodology (lead); Writing – original draft (lead). **Jiao Ma:** Methodology (supporting). **Siyuan Lin:** Methodology (supporting). **Xiao Guo:** Formal analysis (supporting). **Han Huang:** Formal analysis (equal). **Deming Kong:** Formal analysis (supporting); Investigation (supporting); Visualization (supporting). **Fuxin Xu:** Formal analysis (supporting). **Yongli Gao:** Formal analysis (supporting). **Wenhao Zhang:** Formal analysis (supporting). **Yue Hu:** Formal analysis (supporting). **Conghua Zhou:** Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Writing – original draft (equal).

DATA AVAILABILITY

The data that support the findings of this study are available within the article and its [supplementary material](#).

REFERENCES

- 1A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, *J. Am. Chem. Soc.* **131**(17), 6050 (2009).
- 2C. Zuo, H. J. Bolink, H. Han, J. Huang, D. Cahen, and L. Ding, *Adv. Sci.* **3**(7), 1500324 (2016).
- 3H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, and M. G. Kim, *Nature* **598**(7881), 444 (2021).
- 4See <https://www.nrel.gov/pv/cell-efficiency.html> for information about the best research-cell efficiency chart.
- 5Q. Chen, L. Chen, F. Y. Ye, T. Zhao, F. Tang, A. Rajagopal, Z. Jiang, S. L. Jiang, A. K. Y. Jen, Y. Xie, J. H. Cai, and L. W. Chen, *Nano Lett.* **17**(5), 3231 (2017).
- 6S. Liu, Y. Guan, Y. Sheng, Y. Hu, Y. Rong, A. Mei, and H. Han, *Adv. Energy Mater.* **10**(13), 1902492 (2020).
- 7Q. Jiang, X. Zhang, and J. You, *Small* **14**(31), 1801154 (2018).
- 8L. Meng, J. You, T.-F. Guo, and Y. Yang, *Acc. Chem. Res.* **49**(1), 155 (2016).
- 9Y. Rong, X. Hou, Y. Hu, A. Mei, L. Liu, P. Wang, and H. Han, *Nat. Commun.* **8**(1), 14555 (2017).
- 10Y. Xiong, X. Zhu, A. Mei, F. Qin, S. Liu, S. Zhang, Y. Jiang, Y. Zhou, and H. Han, *Sol. RRL* **2**(5), 1800002 (2018).
- 11J. Du, S. Liu, J. Wu, W. Zhang, W. Zhang, A. Mei, Y. Rong, Y. Hu, and H. Han, *Sol. RRL* **4**(12), 2000455 (2020).
- 12X. Chen, Y. Xia, Q. Huang, Z. Li, A. Mei, Y. Hu, T. Wang, R. Cheacharoen, Y. Rong, and H. Han, *Adv. Energy Mater.* **11**(18), 2100292 (2021).
- 13Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang, and S. Yang, *Energy Environ. Sci.* **7**(10), 3326 (2014).
- 14K. Yan, Z. Wei, J. Li, H. Chen, Y. Yi, X. Zheng, X. Long, Z. Wang, J. Wang, and J. Xu, *Small* **11**(19), 2269 (2015).
- 15Z. Yu, B. Chen, P. Liu, C. Wang, C. Bu, N. Cheng, S. Bai, Y. Yan, and X. Zhao, *Adv. Funct. Mater.* **26**(27), 4866 (2016).
- 16X. Meng, J. Zhou, J. Hou, X. Tao, S. H. Cheung, S. K. So, and S. Yang, *Adv. Mater.* **30**(21), 1706975 (2018).
- 17J. Yan, S. Lin, X. Qiu, H. Chen, K. Li, Y. Yuan, M. Long, B. Yang, Y. Gao, and C. Zhou, *Appl. Phys. Lett.* **114**(10), 103503 (2019).
- 18X. Xiao, Y. Chu, C. Zhang, Z. Zhang, Z. Qiu, C. Qiu, H. Wang, A. Mei, Y. Rong, G. Xu, Y. Hu, and H. Han, *Fundam. Res.* **1**(4), 385 (2021).
- 19S. Liu, D. Zhang, Y. Sheng, W. Zhang, Z. Qin, M. Qin, S. Li, Y. Wang, C. Gao, Q. Wang, Y. Ming, C. Liu, K. Yang, Q. Huang, J. Qi, Q. Gao, K. Chen, Y. Hu, Y. Rong, X. Lu, A. Mei, and H. Han, *Fundam. Res.* **2**(2), 276 (2022).

²⁰Y. Yang, Z. Liu, W. K. Ng, L. Zhang, H. Zhang, X. Meng, Y. Bai, S. Xiao, T. Zhang, and C. Hu, *Adv. Funct. Mater.* **29**(1), 1806506 (2019).

²¹T. Tian, J.-X. Zhong, M. Yang, W. Feng, C. Zhang, W. Zhang, Y. Abdi, L. Wang, B.-X. Lei, and W.-Q. Wu, *Angew. Chem. Int. Ed.* **60**(44), 23735 (2021).

²²A. Y. Mei, Y. S. Sheng, Y. Ming, Y. Hu, Y. G. Rong, W. H. Zhang, S. L. Luo, G. R. Na, C. B. Tian, X. M. Hou, Y. L. Xiong, Z. H. Zhang, S. Liu, S. Uchida, T. W. Kim, Y. B. Yuan, L. J. Zhang, Y. H. Zhou, and H. W. Han, *Joule* **4**(12), 2646 (2020).

²³C. Zhou and S. Lin, *Sol. RRL* **4**(2), 1900190 (2020).

²⁴H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du, and T. Ma, *J. Phys. Chem. C* **119**(9), 4600 (2015).

²⁵Z. Wei, H. Chen, K. Yan, and S. Yang, *Angew. Chem. Int. Ed.* **53**(48), 13239 (2014).

²⁶H. Zhang, Y. Li, S. Tan, Z. Chen, K. Song, S. Huang, J. Shi, Y. Luo, D. Li, and Q. Meng, *J. Colloid Interface Sci.* **608**(3), 3151 (2022).

²⁷S. N. Vijayaraghavan, J. Wall, L. Li, G. Xing, Q. Zhang, and F. Yan, *Mater. Today Phys.* **13**, 100204 (2020).

²⁸T. Shi, S. Lin, M. Fang, D. Kong, Y. Yuan, Y. Gao, B. Yang, H. Han, and C. Zhou, *Appl. Phys. Lett.* **117**(16), 163501 (2020).

²⁹G. Yang, C. Chen, F. Yao, Z. Chen, Q. Zhang, X. Zheng, J. Ma, H. Lei, P. Qin, L. Xiong, W. Ke, G. Li, Y. Yan, and G. Fang, *Adv. Mater.* **30**(14), 1706023 (2018).

³⁰L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, and G. Fang, *Adv. Funct. Mater.* **28**(35), 1802757 (2018).

³¹W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, and Y. Yan, *J. Am. Chem. Soc.* **137**(21), 6730 (2015).

³²J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Gratzel, and A. Hagfeldt, *Energy Environ. Sci.* **8**(10), 2928 (2015).

³³G. Liu, B. Yang, B. Liu, C. Zhang, S. Xiao, Y. Yuan, H. Xie, D. Niu, J. Yang, Y. Gao, and C. Zhou, *Appl. Phys. Lett.* **111**(15), 153501 (2017).

³⁴Z. Shao, J. Xiao, X. Guo, S. You, Y. Zhang, M. Li, F. Song, C. Zhou, H. Xie, Y. Gao, J. Sun, and H. Huang, *Curr. Appl. Phys.* **36**, 27 (2022).

³⁵J. Wei, F. Guo, X. Wang, K. Xu, M. Lei, Y. Liang, Y. Zhao, and D. Xu, *Adv. Mater.* **30**(52), 1805153 (2018).

³⁶K. Deng, Q. Chen, and L. Li, *Adv. Funct. Mater.* **30**(46), 2004209 (2020).

³⁷P. Zhu, S. Gu, X. Luo, Y. Gao, S. Li, J. Zhu, and H. Tan, *Adv. Energy Mater.* **10**(3), 1903083 (2020).

³⁸Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, and J. You, *Nat. Energy* **2**(1), 16177 (2017).

³⁹D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, and S. Liu, *Nat. Commun.* **9**, 3239 (2018).

⁴⁰Y. Yuan and J. Huang, *Acc. Chem. Res.* **49**(2), 286 (2016).

⁴¹J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fanga, and J. Huang, *Phys. Chem. Chem. Phys.* **18**(44), 30484 (2016).

⁴²J. Zhang, C. Li, M. Chen, and K. Huang, *J. Phys. D: Appl. Phys.* **54**(4), 044002 (2021).

⁴³Y. Shao, Y. Yuan, and J. Huang, *Nat. Energy* **1**, 15001 (2016).

⁴⁴B. Chen, Z. Yu, K. Liu, X. Zheng, Y. Liu, J. Shi, D. Spronk, P. N. Rudd, Z. Holman, and J. Huang, *Joule* **3**(1), 177 (2019).

⁴⁵Y. Chen, N. Li, L. Wang, L. Li, Z. Xu, H. Jiao, P. Liu, C. Zhu, H. Zai, M. Sun, W. Zou, S. Zhang, G. Xing, X. Liu, J. Wang, D. Li, B. Huang, Q. Chen, and H. Zhou, *Nat. Commun.* **10**, 1112 (2019).

⁴⁶Q. Cao, Y. Li, H. Zhang, J. Yang, J. Han, T. Xu, S. Wang, Z. Wang, B. Gao, J. Zhao, X. Li, X. Ma, S. M. Zakeeruddin, W. E. I. Sha, X. Li, and M. Graetzel, *Sci. Adv.* **7**(28), eabg0633 (2021).

⁴⁷Y. Hu, Z. Zhang, A. Mei, Y. Jiang, X. Hou, Q. Wang, K. Du, Y. Rong, Y. Zhou, G. Xu, and H. Han, *Adv. Mater.* **30**(11), 1705786 (2018).

⁴⁸H. Chen, K. Li, H. Liu, Y. Gao, Y. Yuan, B. Yang, and C. Zhou, *Org. Electron.* **61**, 119 (2018).

⁴⁹G. Liu, B. Yang, H. Chen, Y. Zhao, H. Xie, Y. Yuan, Y. Gao, and C. Zhou, *Appl. Phys. Lett.* **115**(21), 213501 (2019).

⁵⁰Q.-Q. Chu, B. Ding, J. Peng, H. Shen, X. Li, Y. Liu, C.-X. Li, C.-J. Li, G.-J. Yang, and T. P. White, *J. Mater. Sci. Technol.* **35**(6), 987 (2019).

⁵¹A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, and Y. Yang, *Science* **345**(6194), 295 (2014).