
Semi-supervised Hypergraph Node Classification
on Hypergraph Line Expansion

Chaoqi Yang

University of Illinois Urbana-Champaign

chaoqiy2@illinois.edu

Ruijie Wang

University of Illinois Urbana-Champaign

ruijiew2@illinois.edu

Shuochao Yao

George Mason University

shuochao@gmu.edu

Tarek Abdelzaher

University of Illinois Urbana-Champaign

zaher@illinois.edu

ABSTRACT
Previous hypergraph expansions are solely carried out on either ver-

tex level or hyperedge level, thereby missing the symmetric nature

of data co-occurrence, and resulting in information loss. To address

the problem, this paper treats vertices and hyperedges equally and

proposes a new hypergraph expansion named the line expansion
(LE) for hypergraphs learning. The new expansion bijectively in-

duces a homogeneous structure from the hypergraph by modeling

vertex-hyperedge pairs. Our proposal essentially reduces the hyper-

graph to a simple graph, which enables the existing graph learning

algorithms to work seamlessly with the higher-order structure. We

further prove that our line expansion is a unifying framework over

various hypergraph expansions. We evaluate the proposed LE on
five hypergraph datasets in terms of the hypergraph node classi-

fication task. The results show that our method could achieve at

least 2% accuracy improvement over the best baseline consistently.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning, Neural networks.

KEYWORDS
Hypergraph Learning; Hypergraph Expansion; Node Classification

ACM Reference Format:
Chaoqi Yang, RuijieWang, Shuochao Yao, and Tarek Abdelzaher. 2022. Semi-

supervised Hypergraph Node Classification on Hypergraph Line Expansion.

In Proceedings of the 31st ACM International Conference on Information and
Knowledge Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3511808.3557447

1 INTRODUCTION
This paper proposes a new hypergraph structure transformation,

namely line expansion (LE), for the problem of hypergraph learning.

Specifically, this paper focuses on hypergraph node classification.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00

https://doi.org/10.1145/3511808.3557447

Figure 1: Bipartite Relation in Hypergraphs. Here, pink circles

𝑣 denotes vertices (or hypernodes) and dashed circles 𝑒 denotes

hyperedges. They are treated equally in this paper.

The proposed LE is a topological mapping, transforming the hy-

pergraph into a homogeneous structure, while preserving all the

higher-order relations. LE allows all the existing graph learning

algorithms to work elegantly on hypergraphs.

The problem of hypergraph learning is important. Graph struc-

tured data are ubiquitous in practical machine/deep learning appli-

cations, such as social networks [10], protein networks [27], and

co-author networks [49]. Intuitive pairwise connections among

nodes are usually insufficient for capturing real-world higher-order

relations. For example, in co-author networks, the edges between

authors are created by whether they have co-authored a paper

or not. A simple graph structure cannot separate the co-author

groups for each paper. For another example, in biology, proteins

are bound by poly-peptide chains, thus their relations are natu-

rally higher-order. Hypergraphs allow modeling such multi-way

relations, where (hyper)edges can connect to more than two nodes.

However, the research on spectral graph theory for hypergraphs

is far less been developed [10]. Hypergraph learning was first in-

troduced in [49] as a propagation process on hypergraph structure,

however, [1] indicated that their Laplacian matrix is equivalent to

pairwise operation. Since then, researchers explored non-pairwise

relationships by developing nonlinear Laplacian operators [7, 28],

utilizing random walks [5, 10] and learning the optimal weights

[28, 29] of hyperedges. Essentially, most of these algorithms focus

on vertices, viewing hyperedges as connectors, and they explicitly

break the bipartite property of hypergraphs (shown in Figure 1).

Two types of deep learning models have been designed on hy-

pergraphs. [17] develops Chebyshev formula for hypergraph Lapla-

cians and proposed HGNN. Using a similar hypergraph Laplacian,

[46] proposes HyperGCN while [3] generalizes [26, 42] and de-

fines two neural hypergraph operators. However, this first line of

works all construct a simple weighted graph and lose high-order

information. A recent work HyperSage [2] generalizes the message

2352

https://doi.org/10.1145/3511808.3557447
https://doi.org/10.1145/3511808.3557447

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Chaoqi Yang, Ruijie Wang, Shuochao Yao, & Tarek Abdelzaher

passing neural networks (MPNN) [19] and uses two-stage message

passing functions [15] on hypergraphs. Based on the two-stage

procedure, UniGNN [25] generalizes GCN [26], GAT [42], GIN [45]

models to hypergraphs and AllSet [9] further unifies a whole class

of two-stage models with multiset functions. This type of models

are empirically more powerful than the first type, however, they

essentially treat the hypergraph as a bipartite graph and build two

message passing functions on the heterogeneous structure.

Different from previous works, we propose a novel hypergraph

learning model from a new perspective. We propose line expansion
(LE) for hypergraphs, which is a powerful bijective mapping from a

hypergraph structure to a homogeneous graph structure. Relying on

our LEmapping, all existing graph representation learning methods

[14, 24, 26, 42] can seamlessly and effortlessly work on hypergraphs.

Specifically, from the complex and heterogeneous hypergraph,

our LE can induce a simple graph structure (examples in Figure 2),

where the “node” is a vertex-hyperedge pair, and “edge” between

two “node”s are constructed if two “node”s share the same vertex

or hyperedge (w.l.o.g., we use concept “node” in simple graphs

and concept “vertex” in hypergraphs). It is interesting that the

new induced structure is isomorphic to the line graph of the star

expansion of the original hypergraph, which is (i) homogeneous (i.e.,

a graph where nodes have the same semantics) and (ii) symmetrical

with respect to the vertices and hyperedges. We further prove that

LE is also (iii) bijective, which means all high-order information is

preserved during the transformation, i.e., the hypergraph can be

recovered uniquely from the induced line expansion graph.

Therefore, to conduct hypergraph representation learning, we

first transform the hypergraph to the induced simple graph. Then,
features from hypergraph vertices are projected to node features

in the induced graph. Next, we apply graph learning algorithms

(i.e., graph convolutional network [26]) to obtain node representa-

tions. Finally, the node representations from the induced graph is

aggregated and back-projected to the original hypergraph vertices

for classification. The LE transformation is differentiable and the

overall learning process is end-to-end.

The proposed line expansion of hypergraphs is novel and infor-

mative. In the traditional formulations, the hyperedges are usually

transformed into cliques of edges (e.g., clique/star expansions [1])

or hypergraph cuts [49], or the learning solely depends on edge

connectivity (e.g., hyperedge expansions [37]). Differently, LE treats
vertices and hyperedges equally, thus preserving the nature of hy-

pergraphs. Note that, LE is also significantly different from other

hypergraph formulations, such as tensor based representation [34],

line graphs of hypergraphs [6], intersection graphs of hypergraphs

[32], or middle graphs of hypergraphs [12]. These formulations

either require strong constraints (e.g., uniform hypergraphs) or

result in heterogeneous topologies as well as other structures that

complicate practical usage. Previous formulations may restrict ap-

plicability of graph algorithms due to their special structures.

Further, this paper revisits the formulation of the standard star

or clique expansion and simple graph learning algorithms. We

conclude that they can be unified as special cases of LE. Empirically,

this paper demonstrates the effectiveness of LE on five real-world

hypergraphs. We apply the popular graph convolutional networks

(GCNs) [26] on LE as our method, and it consistently outperforms

several strong hypergraph learning baselines.

The organization of the paper is as follows. In Section 2, we

introduce the general notations of hypergraphs and formulate our

problem. In Section 3, we propose line expansion of hypergraphs

and show some interesting properties. In Section 4, we generalize

GCNs to hypergraphs by line expansion. We evaluate line expansion
on three-fold experiments in Section 5. We conclude this paper and

provide proofs for our theoretical statements in the end.

2 PRELIMINARIES
2.1 Hypergraph Notations
Research on graph-structured deep learning [26, 42] stems mostly

from Laplacian matrix and vertex functions of simple graphs. Only

recently, learning on hypergraphs starts to attract attentions from

the community [2, 3, 9, 17].

Hypergraphs. Let G𝐻 = (V, E) denote a hypergraph, with a

vertex set V and a edge set E ⊂ 2
V
. A hyperedge 𝑒 ∈ E (we

also call it “edge” interchangeably in this paper) is a subset of V .

Given an arbitrary set S, let |S| denote the cardinality of S. A
simple graph is thus a special case of a hypergraph, with |𝑒 | = 2

uniformly, which is also called a 2-regular hypergraph. A hyperedge

𝑒 is said to be incident to a vertex 𝑣 when 𝑣 ∈ 𝑒 . One can represent a

hypergraph by a |V|×|E| incidence matrix Hwith its entryℎ(𝑣, 𝑒) =
1 if 𝑣 ∈ 𝑒 and 0 otherwise. For each vertex 𝑣 ∈ V and hyperdge

𝑒 ∈ E, 𝑑 (𝑣) = ∑
𝑒∈E ℎ(𝑣, 𝑒) and 𝛿 (𝑒) =

∑
𝑣∈V ℎ(𝑣, 𝑒) denote their

degree functions, respectively. The vertex-degree matrix D𝑣 of a
hypergraph G𝐻 is a |V| × |V| matrix with each diagonal entry

corresponding to the node degree, and the edge-degree matrixD𝑒 is
|E | × |E|, also diagonal, which is defined on the hyperedge degree.

2.2 Problem Setup
Following [3, 17], this paper studies the transductive learning prob-

lems on hypergraphs, specifically node classification, It aims to

induce a labeling 𝑓 : V → {1, 2, . . . ,𝐶} from the labeled data as

well as the geometric structure of the graph and then assigns a class

label to unlabeled vertices by transductive inference.

Specifically, given a hypergraph G𝐻 = (V, E) with the labeled

vertex set T ⊂ V and the labels, we minimize the empirical risk,

𝑓 ∗ = argmin

𝑓 (· |𝜃)

1

|T |
∑︁
𝑣𝑡 ∈T

L(𝑓 (𝑣𝑡 | 𝜃), 𝐿(𝑣𝑡)), (1)

where 𝐿(𝑣𝑡) is the ground truth label for node 𝑣𝑡 and cross-entropy

error [26] is commonly applied in L(·).
Intuitively, node similarity implies similar labels on the same

graph. Given the symmetric structure of hypergraphs, we posit

that vertex similarity and edge similarity are equally important

in learning the labels. This work focuses on node classification

problems on hypergraphs, but it can be easily extended to other

hypergraph related applications, such as hyper-edge representation

(e.g., relation mining) by exploiting symmetry.

3 HYPERGRAPH LINE EXPANSION (LE)
Most well-known graph-based algorithms [20, 33] are defined for

graphs instead of hypergraphs. Therefore, in real-world applica-

tions, hypergraphs are often transformed into simple graphs [1, 49]

that are easier to handle.

2353

Semi-supervised Hypergraph Node Classification on Hypergraph Line Expansion CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Figure 2: Various Hypergraph Expansions

3.1 Traditional Hypergraph Expansions
Two main ways of approximating hypergraphs by simple graphs

are the clique expansion [40] and the star expansion [50]. The clique
expansion algorithm (shown in left side of Fig. 2) constructs a graph

G𝑐 = (V, E𝑐) from the original hypergraph by replacing each

hyperedge with a clique in the resulting graph (i.e., E𝑐 = {(𝑢, 𝑣) |
𝑢, 𝑣 ∈ 𝑒, 𝑒 ∈ E}), while the star expansion algorithm (shown in right

side of Fig. 2) constructs a new graphG𝑠 = (V𝑠 , E𝑠) by viewing both
vertices and hyperedges as nodes in the resulting graphV𝑠 = V∪E,
where vertices and hyperedges are connected by their incident

relations (i.e., E𝑠 = {(𝑣, 𝑒) | 𝑣 ∈ 𝑒, 𝑣 ∈ V, 𝑒 ∈ E}). Note that, the
star expansion induces a heterogeneous graph structure.

Unfortunately, these two approximations cannot retain or well

represent the higher-order structure of hypergraphs. Let us con-

sider the co-authorship network, as G𝐻 in Figure 2, where we view

authors as nodes (e.g., 𝑣1, 𝑣2) and papers as hyperedges (e.g., 𝑒1).

Then we immediately know that author 𝑣1 and 𝑣2 have jointly writ-

ten one paper 𝑒1, and together with author 𝑣3, they have another

co-authored paper 𝑒2. This hierarchical and multi-way connection

is an example of higher-order relation. Assume we follow the clique

expansion, then we obviously miss the information of author ac-

tivity rate and whether the same persons jointly writing two or

more articles. Though researchers have remedially used weighted

edges [10, 28], the hyper-dependency still collapses or fuses into

linearity. Star expansion expresses the whole incidence informa-

tion, but the remaining heterogeneous structure (i) has no explicit

vertex-vertex link and (ii) is too complicated for those well-studied

graph algorithms, which are mostly designed for simple graphs.

One can summarize [23] that these two expansions are not good

enough for many real-world applications.

3.2 Our Line Expansion
Since the commonly used expansions cannot give a satisfactory

representation, we seek a new expansion that preserves all the

original higher-order relations, while presenting an easy-to-learn

graph structure. Motivated by the special symmetric structure of

hypergraphs that vertices are connected to multiple edges and edges
are conversely connected to multiple vertices, we treat vertices and
edges equally and propose hypergraph Line Expansion (LE).

The Line Expansion of the hypergraph G𝐻 is constructed as

follows (shown in Fig. 2, bottom): (i) each incident vertex-hyperedge

pair is considered as a “line node”; (ii) “line nodes” are connected

when they share the same vertex or hyperedge. Essentially, the

induced structure is a graph, where each vertex or each hyperedge

(from the original hypergraph) induces a clique (i.e., fully-connected

subgraph). We now formally define the line expansion, denoted G𝑙 .

3.2.1 Line Expansion. Let G𝑙 = (V𝑙 , E𝑙) denotes the graph induced
by the line expansion of hypergraph G𝐻 = (V, E). The node setV𝑙
of G𝑙 is defined by vertex-hyperedge pair {(𝑣, 𝑒) | 𝑣 ∈ 𝑒, 𝑣 ∈ V, 𝑒 ∈
E} from the original hypergraph. The edge set E𝑙 and adjacency
A𝑙 ∈ {0, 1} |V𝑙 |× |V𝑙 |

is defined by pairwise relation withA𝑙 (𝑢𝑙 , 𝑣𝑙) =
1 if either 𝑣 = 𝑣 ′ or 𝑒 = 𝑒 ′ for 𝑢𝑙 = (𝑣, 𝑒), 𝑣𝑙 = (𝑣 ′, 𝑒 ′) ∈ V𝑙 .

The construction of the line expansion follows the neighborhood

aggregation mechanism. For graph node representation learning,

researchers [14, 26] encode local structure by aggregating informa-

tion from a node’s immediate neighborhood. In line expansion, we
view the incidence of vertex-hyperedge as a whole and generalize

the “neighborhood” concept by defining that two line nodes are
neighbors when they contain the same vertex (vertex similarity) or the
same hyperedge (edge similarity). We argue that the line expansion
consequently preserves higher-order associations.

3.3 Entity Projection
In this section, we define the projection and back-projection matri-

ces for hypergraph entities (i.e., vertices and hyperedges) between

the topological map from G𝐻 = (V, E) to G𝑙 = (V𝑙 , E𝑙). In G𝑙 ,
each line node (𝑣, 𝑒) could be viewed as a vertex with hyperedge

context or a hyperedge with vertex context. In a word, the line
expansion creates information linkage in the higher-order space.

Vertex Projection Matrix. To scatter the information, a vertex

𝑣 ∈ V from the original hypergraph G𝐻 is mapped to a set of line

nodes {𝑣𝑙 = (𝑣, 𝑒) : 𝑒 ∈ E} ⊂ V𝑙 in the induced graph G𝑙 . We

introduce the vertex projection matrix P𝑣𝑒𝑟𝑡𝑒𝑥 ∈ {0, 1} |V𝑙 |× |V |
,

P𝑣𝑒𝑟𝑡𝑒𝑥 (𝑣𝑙 , 𝑣) =
{
1 if the vertex part of 𝑣𝑙 is 𝑣,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(2)

where each entry indicates whether the line node contains the

vertex.

To re-obtain the information of a vertex 𝑣 in G𝐻 , we aggregate
a set of line nodes in G𝑙 who shares the same vertex, for example

𝑣𝑙 = (𝑣, 𝑒). Since each line node 𝑣𝑙 = (𝑣, 𝑒) contains the edge context,
we consider using the reciprocal of edge size, i.e.,

1

𝛿 (𝑒) or
1

|𝑒 | (check
the definition of 𝛿 (·) and | · | in Section 2.1), as the weights for

aggregating the line nodes, such that if 𝛿 (𝑒) is smaller (meaning

that 𝑣 is important under the context of 𝑒), the corresponding line

node (𝑣, 𝑒) will contribute more to the aggregation.

Vertex Back-projection Matrix. With this intuition, we fuse the

higher-order information by defining the vertex back-projection
matrix P′𝑣𝑒𝑟𝑡𝑒𝑥 ∈ R |V |×|V𝑙 |

,

P′𝑣𝑒𝑟𝑡𝑒𝑥 (𝑣, 𝑣𝑙) =


1

𝛿 (𝑒)∑
(𝑣,𝑒′) ∈V𝑙

1

𝛿 (𝑒′)
if 𝑣 is the vertex part of 𝑣𝑙 ,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3)

Similarly, we could also design edge projection and back-projection
matrices, P𝑒𝑑𝑔𝑒 ∈ R |V𝑙 |× |E |

and P′
𝑒𝑑𝑔𝑒

∈ R |E |×|V𝑙 |
, to exchange

information from edges in G𝐻 to line nodes in G𝑙 .

2354

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Chaoqi Yang, Ruijie Wang, Shuochao Yao, & Tarek Abdelzaher

In fact, the uniqueness of topological inverse mapping from G𝑙
to G𝐻 is guaranteed by Theorem 1, where the complete information

of vertex 𝑣 ∈ V is re-obtained by aggregating all the distributed

parts (𝑣, ·) ∈ V𝑙 from G𝑙 .

Theorem 1. From the line expansion graph, we can uniquely
recover the original hypergraph. Formally, the mapping 𝜙 from hy-
pergraph to line expansion (i.e., 𝜙 : G𝐻 → G𝑙) is bijective.

3.4 Additional Properties of Line Expansion
In this section, we discuss additional properties of line expansion

(LE). First, we present an observation between characteristic ma-

trices from G𝐻 and G𝑙 . Then, we connect our line expansion with

the line graph from graph theory, based on which, some sound

properties could be derived.

Observation 1. Let H be the incidence matrix of a hypergraph
G𝐻 . D𝑣 and D𝑒 are the vertex and hyperedge degree matrices. Let
P𝑣𝑒𝑟𝑡𝑒𝑥 and P𝑒𝑑𝑔𝑒 be the vertex and edge projection matrix, respec-
tively. A𝑙 is the adjacency matrix of line expansion G𝑙 . Let H𝑟 =[
P𝑣𝑒𝑟𝑡𝑒𝑥 , P𝑒𝑑𝑔𝑒

]
∈ {0, 1} |V𝑙 |×(|V |+|E |) , it satisfies the following

equations,

H⊤
𝑟 H𝑟 =

[
D𝑣 H
H⊤ D𝑒

]
, (4)

H𝑟H⊤
𝑟 = 2I + A𝑙 . (5)

In Observation 1, the left hand of both Eqn. (4) and Eqn. (5) are the

projection matrices, and the right hand of these two equations are

information respectively from the hypergraph and its line expansion.
Essentially, these equations quantify the transition from G𝐻 to G𝑙 .
For Eqn. (5), we are interested in the product of H𝑟H⊤

𝑟 , leading to

two orders of self-loop, which would be useful in the analytical

aspects of line expansion (in Section 7.2).

Theorem 2. For a hypergraph, its line expansion G𝑙 is isomorphic
to the line graph of its star expansion 𝐿(G𝑠), where 𝐿(·) is a line
graph notation from graph theory.

Theorem 2 is the foundation of Theorem 1, which provides a

theoretical interpretation and enriches our expansion with sound

graph theoretical properties (readers could refer to line graph theory

[11]). That is why we name our formulation “line expansion”. Note

that the line expansion is significantly different from the “line graph

of hypergraph” discussed in [4, 6]. Instead, our line expansion is

the line graph of the star expansion. Thus, the proof of Theorem 2

is naturally established by the construction of line expansion.

Based on Theorem 2, we know that G𝑙 is homogeneous and has

the same connectivity with G𝐻 . The number of new edges in G𝑙
could be calculated as |E𝑙 | =

∑
𝑣 𝑑 (𝑣) (𝑑 (𝑣)−1)

2
+

∑
𝑒 𝛿 (𝑒) (𝛿 (𝑒)−1)

2
and

line nodes as |V𝑙 | =
∑

𝑣 𝑑 (𝑣)+
∑

𝑒 𝛿 (𝑒)
2

. In the worse case, for a fully-

connected 𝑘-regular hypergraph (𝑘 ≪ |V|), |V𝑙 | = Θ(𝑘 |E |) and
|E𝑙 | = Θ(𝑘2

2
|E |2), whereΘ is the big Theta notation for the tightest

bound. However, many real hypergraphs are indeed sparse (e.g.,

degrees of vertices and hyperedges follow long-tailed distribution

[30], most of them have degree one, |V| ≪ |E| or |E | ≪ |V|),
so that the scale could usually reduce to |V𝑙 | = Θ(|V |+|E |

2
) and

|E𝑙 | = 𝑂 (|V||E |).

4 HYPERGRAPH REPRESENTATION
LEARNING

Transductive learning on graphs is successful due to the fast local-

ization and neighbor aggregation [14, 26, 42]. It is easy to define

the information propagation pattern upon simple structures. For

real-world cases, relationships among objects are usually more com-

plex than pairwise. Therefore, to apply these algorithms, we need

a succinct informative structure of the higher order relations.

Shown in Section 3, the bijective map from G𝐻 = (V, E) to G𝑙 =
(V𝑙 , E𝑙) equipped with four entity projectors (P𝑣𝑒𝑟𝑡𝑒𝑥 , P′𝑣𝑒𝑟𝑡𝑒𝑥 ,
P𝑒𝑑𝑔𝑒 , P′𝑒𝑑𝑔𝑒) fills the conceptual gap between hypergraphs and

graphs. With this powerful tool, it is possible to transfer the hyper-

graph learning problems into graph structures and address them by

using well-studied graph representation algorithms. Note that, this

work focuses on the generic hypergraphs without edge weights.

4.1 Hypergraph Learning with Line Expansion
In this section, we generalize graph convolution networks (GCNs)
[26] to hypergraphs and introduce a new learning algorithm defined

on line expansion for hypergraph representation. Note that, on our

proposed structure, other graph representation algorithms could

be migrated similarly [22, 36, 41, 42].

4.1.1 Overall Pipeline. To address the transductive node classifi-

cation problems on hypergraphs, we organize the pipeline of our

proposed model as the following three steps.

• STEP1: vertices of the hypergraph is mapped to line nodes in the

induced graph. Specifically, we use the proposed vertex projection
matrix P𝑣𝑒𝑟𝑡𝑒𝑥 to conduct feature mapping.

• STEP2: we apply deep graph learning algorithms (e.g., GCNs) to

learn the representation for each line node.

• STEP3: the learned representation is fused by the vertex back-
projection matrix P′𝑣𝑒𝑟𝑡𝑒𝑥 in an inverse edge degree manner. The

vertex labels are predicted on the fused representation.

4.2 Convolution on Line Expansion
STEP 1: Feature Projection. Given the initial feature matrix X ∈
R |V |×𝑑𝑖

(𝑑𝑖 is input dimension) from G𝐻 = (V, E), we transform
it into the features in G𝑙 = (V𝑙 , E𝑙) by vertex projector P𝑣𝑒𝑟𝑡𝑒𝑥 ,

H(0) = P𝑣𝑒𝑟𝑡𝑒𝑥X ∈ R |V𝑙 |×𝑑𝑖 . (6)

H(0)
is the initial node feature of the induced graph. This projection

essentially scatters features from vertex of G𝐻 to feature vectors

of line nodes in G𝑙 . In line expansion (LE), a line node could be

adjacent to another line nodes that contain the same vertex (vertex
similarity) or the same hyperedge (edge similarity).

STEP 2: Convolution Layer.We then apply neighborhood feature

aggregation by graph convolution. By incorporating information

from both vertex-similar neighbors and hyperedge-similar neigh-

bors, the graph convolution is defined as (𝑘 = 0, 1, . . . , 𝐾),

ℎ
(𝑘+1)
(𝑣,𝑒) = 𝜎

(∑︁
𝑒′
𝑤𝑒ℎ

(𝑘)
(𝑣,𝑒′)Θ

(𝑘) +
∑︁
𝑣′
𝑤𝑣ℎ

(𝑘)
(𝑣′,𝑒)Θ

(𝑘)
)
, (7)

where ℎ
(𝑘)
(𝑣,𝑒) denotes the feature representation of line node (𝑣, 𝑒)

in the 𝑘-th layer, 𝜎 (·) is a non-linear activation function like ReLU

2355

Semi-supervised Hypergraph Node Classification on Hypergraph Line Expansion CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

[26] or LeakyReLU [42]. Θ(𝑘)
is the transformation parameters for

layer 𝑘 . Two hyper-parameters 𝑤𝑣,𝑤𝑒 are employed to balance

vertex similarity and edge similarity. Specifically, in Eqn. (7), the

first term (i.e.,

∑
𝑒′ 𝑤𝑒ℎ

(𝑘)
(𝑣,𝑒′)) convolves information from neighbors

who share the same hyperedges, whereas the second term (i.e.,∑
𝑣′ 𝑤𝑣ℎ

(𝑘)
(𝑣′,𝑒)) convolves information from neighbors who share

the same vertices.

Eqn. (7) can be written in matrix version by using the parame-

terized adjacency matrix(In experiment, we use the𝑤𝑣 = 𝑤𝑒 = 1),

A𝑙 (𝑢𝑙 , 𝑣𝑙) =


𝑤𝑒 𝑢𝑙 = (𝑣, 𝑒), 𝑣𝑙 = (𝑣 ′, 𝑒 ′), 𝑣 = 𝑣 ′,
𝑤𝑣 𝑢𝑙 = (𝑣, 𝑒), 𝑣𝑙 = (𝑣 ′, 𝑒 ′), 𝑒 = 𝑒 ′,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(8)

and adopt the renormalized trick [26] with the adjustment two-

orders of self-loop: 2I + D𝑙−
1

2A𝑙D𝑙−
1

2 → D̃𝑙
− 1

2 Ã𝑙 D̃𝑙
− 1

2
(here, Ã𝑙 =

2𝐼 + A𝑙 and D̃𝑙 (𝑖𝑖) =
∑
𝑗 Ã𝑙 (𝑖 𝑗)). Eqn. (7) can be re-written as,

H(𝑘+1) = 𝜎
(
D̃𝑙

− 1

2 Ã𝑙 D̃𝑙
− 1

2H(𝑘)Θ(𝑘)
)
, 𝑘 = 0, 1, . . . , 𝐾 . (9)

In real practice, we do not bother to calculate the adjacency A𝑙
directly. An efficient trick is to use Eqn. (5).

STEP 3: Representation Back-projection. After 𝐾 layers, H(𝐾)

is the final node representation on the induced graph, from which

we could derive fused representation for vertices in G𝐻 . Specifically,
we use the back-projector P′𝑣𝑒𝑟𝑡𝑒𝑥 ,

Y = P′𝑣𝑒𝑟𝑡𝑒𝑥H
(𝐾) ∈ R |V |×𝑑𝑜 , (10)

where 𝑑𝑜 is the dimension of output representation. Note that, in

this work, we focus on the node classification task. However, due to

the symmetry of vertex and edge, this work also sheds some light

on the applications of learning hyper-edges (e.g., relation mining)

by using P𝑒𝑑𝑔𝑒 , P′𝑒𝑑𝑔𝑒 . We leave it to future work.

In sum, the complexity of 1-layer convolution is of 𝑂 (|E𝑙 |𝑑𝑖𝑑𝑜),
since the convolution operation could be efficiently implemented

as the product of a sparse matrix with a dense matrix.

4.3 Unifying Hypergraph Expansion
As discussed in Section 3.1, for hypergraphs, common practices of-

ten collapse the higher order structure into simple graph structures

by attaching weights on edges, and then the vertex operators are

solely applied onto the remaining topology. Therefore, the inter-

changeable and complementary nature between nodes and edges

are generally missing [31].

Theorem 3. Line expansion is a generalization of clique expansion
and star expansion. The convolution operator on LE is a generalization
of simple graph convolution.

In this work, instead of designing a local vertex-to-vertex op-

erator [3, 17, 48, 49], we treat the vertex-hyperedge relation as a

whole. Therefore, the neighborhood convolution on line expansion

is equivalent to exchanging information simultaneously across ver-

tices and hyperedges. Our proposed line expansion (LE) is powerful
in that it unifies clique and star expansions, as well as simple graph

cases, stated in Theorem 3. We formulate different hypergraph

expansions and provide the proof in Section 7.2.

4.4 Acceleration: Neighborhood Sampling
For practical usage, we further accelerate the proposed model by

neighborhood sampling. As is mentioned, the runtime complexity

of our model is proportional to the number of connected edges,

|E𝑙 |, of line expansion. Real-world hypergraphs are usually sparse,

however, most of them often have vertices with large degrees, which

would probably lead to a large or dense line expansion substructure.

On simple graphs, [21] proposes neighbor sampling for high-

degree vertices, which randomly samples a few neighbors to ap-

proximate the aggregation of all neighbors through an unbiased

estimator. This paper adopts neighborhood sampling techniques

to hypergraph regime and mitigates the potential computational

problems in real applications. Since our graph convolution involves

both vertex similarity and edge similarity information, we design

two threshold, 𝛿𝑒 and 𝛿𝑣 , for two neighboring sets, separately.

We use N𝐸 (𝑣, 𝑒) to denote the hyperedge neighbor set of line

node (𝑣, 𝑒). Essentially, N𝐸 (𝑣, 𝑒) contains line nodes with same hy-

peredge context 𝑒 . Similarly, we useN𝑉 (𝑣, 𝑒) as the vertex neighbor
set, which contains line nodes with 𝑣 as the vertex part. For a line

node with high “edge degree", i.e., |N𝐸 (𝑣, 𝑒) | > 𝛿𝑒 , we would ran-

domly sample 𝛿𝑒 elements fromN𝐸 (𝑣, 𝑒) to approximate the overall

hyperedge neighboring information. Specifically, the first term in

Eqn. (7), i.e.,

∑
𝑒′ 𝑤𝑒ℎ

(𝑘)
(𝑣,𝑒′) , is approximated by,∑︁

𝑒′
𝑤𝑒ℎ

(𝑘)
(𝑣,𝑒′) ≈

|N𝐸 (𝑣, 𝑒) |
𝛿𝑒

𝑖=𝛿𝑒∑︁
𝑖=1: 𝑒′

𝑖
∼N𝐸 (𝑣,𝑒)

𝑤𝑒ℎ
(𝑘)
(𝑣,𝑒′

𝑖
) . (11)

Similarly, when |N𝑉 (𝑣, 𝑒) | > 𝛿𝑣 , we would sample 𝛿𝑣 elements

from N𝑉 (𝑣, 𝑒) for the convolution,∑︁
𝑣′
𝑤𝑣ℎ

(𝑘)
(𝑣′,𝑒) ≈

|N𝑉 (𝑣, 𝑒) |
𝛿𝑣

𝑖=𝛿𝑣∑︁
𝑖=1: 𝑣′

𝑖
∼N𝑉 (𝑣,𝑒)

𝑤𝑣ℎ
(𝑘)
(𝑣′

𝑖
,𝑒) . (12)

In sum, by adopting the neighbor sampling into hypergraphs, we

could effectively reduce the receptive field and prevent the computa-

tional problem incurred by high-degree vertices. In the experiments,

we empirically show that the running time of our model is compa-

rable to state of the art baselines after sampling.

5 EXPERIMENTS
We comprehensively evaluated the proposed line expansion (LE)
with the following experiments and released the implementations

1
:

• Real-world hypergraph node classification.

• Special case: simple graph node classification.

• Ablation study on the choice of𝑤𝑒 and𝑤𝑣 .

We name our proposed hypergraph learning approach as LE𝐺𝐶𝑁 .

5.1 Hypergraph Node Classification
The main experiment is demonstrated on five real-world hyper-

graphs with four traditional and four SOTA hypergraph learning

methods. The metric is classification accuracy.

Hypergraph Datasets. The first dataset 20Newsgroups contains
16,242 articles with binary occurrence values of 100 words. Each

word is regarded as a hyperedge and the news articles are vertices.

1
https://github.com/ycq091044/LEGCN

2356

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Chaoqi Yang, Ruijie Wang, Shuochao Yao, & Tarek Abdelzaher

Table 1: Statistics of Hypergraph Datasets

Dataset Vertices Hyperedges Features Class Label rate Training / Validation / Test

20News 16,242 100 100 4 0.025 400 / 7,921 / 7,921

Mushroom 8,124 112 112 2 0.006 50 / 4,062 / 4,062

Zoo 101 42 17 7 0.650 66 / – / 35

ModelNet40 12,311 12,321 2048 40 0.800 9,849 / 1,231 / 1,231

NTU2012 2,012 2,012 2048 67 0.800 1,608 / 202 / 202

Table 2: Structural Complexity Comparison of Baselines and Line Expansion (before and after sampling)

Dataset * of the clique expansion graph * of its line expansion (before) * of its line expansion (after)

Node Exp. edge Exp. density Line node Line edge Density Line node Line edge Density

20News 16,242 26,634,200 2.0e-1 64,363 34,426,427 1.6e-2 64,363 240,233 1.2e-4

Mushroom 8,124 6,964,876 2.1e-1 40,620 11,184,292 1.2e-2 40,620 81,532 9.9e-5

Zoo 101 5,050 1.0e-0 1,717 62,868 4.3e-2 1,717 16,171 1.1e-2

ModelNet40 12,311 68,944 9.1e-4 61,555 317,083 1.7e-4 61,555 310,767 1.6e-4

NTU2012 2,012 10,013 4.9e-3 10,060 48,561 9.6e-4 10,060 48,561 9.6e-4

Exp. edge is given by the clique expansion, and Exp. density is computed by 2 |𝐸 |/ |𝑉 | (|𝑉 | − 1) [13].

The next two datasets are from the UCI Categorical Machine Learn-

ing Repository [16]: Mushroom, Zoo. For these two, a hyperedge is
created by all data points which have the same value of categorical

features. We follow the same setting from [23] for 20Newsgroups,

Mushroom, Zoo (which does not have validate set due to the small

scale). Other two are from computer vision/graphics area: Princeton
CAD ModelNet40 [44] and National Taiwan University (NTU) 3D
dataset [8]. Though semi-supervised learning usually requires a

small training set, we copy the same settings from the original pa-

per [17] and use 80% of the data as training and the remaining 20%

is split into validation and test. The construction of hypergraphs

also follows [17]. Each CAD model is regarded as a vertex. The for-

mation of hyperedges is by applying MVCNN [39] on CAD models

and then for each model, we assume that its 10 nearest models form

a hyperedge. The initial vertex features are given by GVCNN repre-

sentations [18]. Basic statistics of datasets are reported in Table 1.

The graph structure of clique expansion, the line expansion before

and after neighbor sampling are reported in Table 2.

Baselines. We select the following baselines.

• Logistic Regression (LR) works as a standard baseline, which only

uses independent feature information.

• Clique𝐺𝐶𝑁 and Star𝐺𝐶𝑁 are developed by applying GCN on the

clique or star expansions of the hypergraphs.

• H-NCut [49], equivalent to iH-NCut [28] with uniform hyperedge

cost, is a generalized spectral method for hypergraphs. This paper

considers H-NCut as another baseline.
• LHCN [4] considers the concept of line graph of a hypergraph,

however, it irreversibly transforms into a weighted graph.

• Hyper-Conv [3] and HGNN [17] are two recent models, which

uses hypergraph Laplacians to build the convolution operators.

• HyperGCN [46] approximates each hyperedge by a set of pairwise

edges connecting the vertices of the hyperedge.

Experimental Setting. In the experiment, we set𝑤𝑣 = 𝑤𝑒 = 1 for

our model (computation of the adjacency matrix is by Eqn. (5)). All

hyperparameters are selected: GCN with 2 hidden layers and 32

units, 50 as training epochs, 𝛿1 = 𝛿2 = 30 as sampling thresholds,

Adam as the optimizer, 2𝑒−3 as learning rate, 5𝑒−3 as weight decay,
0.5 as dropout rate, and 1.5𝑒−3 as the weight for 𝐿2 regularizer.

Note that hyperparameters might vary for different datasets, and

we specify the configurations per dataset in code appendix. All the

experiments are conducted 5 times (to calculate mean and standard

deviation) with PyTorch 1.4.0 and mainly finished in a 18.04 LTS

Linux server with 64GB memory, 32 CPUs and 4 GTX-2080 GPUs.

Result Analysis.As shown in Table 3, overall ourmodel beat SOTA

methods on all datasets consistently. Basically, every model works

better than LR, which means transductive feature sharing helps

in the prediction. The performances of traditional Clique𝐺𝐶𝑁 and

Star𝐺𝐶𝑁 are not as good as SOTA hypergraph learning baselines.

H-Ncut method depends on linear matrix factorization and it also

cannot beat graph convolution methods, which are more robust

and effective with non-linearity. The remaining four are all graph

based deep learning methods, and in essence, they approximate the

original hypergraph as a weighted graph and then utilize vertex

functions on the flattened graph. The result shows that Our LE𝐺𝐶𝑁
is more effective in terms of learning representation and could beat

them by 2% consistently over all datasets.

Discussion of Complexity.We also report the running time com-

parison in Table 3, which already include the neighbor sampling

time in our model. Basically, our model is also efficient compared

to some state-of-the-arts, especially on 20News, ModelNet40 and

NTU2012, which demonstrates that neighbor sampling does make

our proposed model less expensive. Let us investigate this in depth.

SOTA hypergraph baselines operate on a flattened hypergraph

(identical to clique expansion) with designed edge weights. We

calculate the number of edges and density for them, denoted as Exp.

edge and Exp. density. As shown in Table 2, we find that the scale

of line expansion before sampling is within 5 times of the flattened

topology, except for Zoo (flattened topology is a complete graph).

However, after sampling the neighbors, line expansion structure

has been significantly simplified, and we could also observe that for

most of the datasets, the density of the LE graph is much smaller

(∼ 1

1000
) than the flattened clique expansion graph.

2357

Semi-supervised Hypergraph Node Classification on Hypergraph Line Expansion CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 3: Accuracy and Running Time Comparison on Real-world Hypergraphs (%)

Model 20News Mushroom Zoo ModelNet40 NTU2012

LR 72.9 ± 0.7 81.6 ± 0.1 74.3 ± 0.0 59.0 ± 2.8 37.5 ± 2.1

Star𝐺𝐶𝑁 68.8 ± 0.4 91.8 ± 0.3 95.2 ± 0.0 90.0 ± 0.0 79.1 ± 0.0

Clique𝐺𝐶𝑁 69.0 ± 0.3 90.0 ± 0.6 94.8 ± 0.3 89.7 ± 0.4 78.9 ± 0.8

H-NCut [49] 72.8 ± 0.5 87.7 ± 0.2 87.3 ± 0.5 91.4 ± 1.1 74.8 ± 0.9

LHCN [4] 69.1 ± 0.4 (37.6s) 90.2 ± 0.3 (18.4s) 55.8 ± 0.1 (1.8s) 90.2 ± 0.2 (145.1s) 79.9 ± 0.5 (27.4s)

Hyper-Conv [3] 73.1 ± 0.7 (72.6s) 93.7 ± 0.6 (10.6s) 93.1 ± 2.3 (0.8s) 91.1 ± 0.8 (63.1s) 79.4 ± 1.3 (6.3s)

HGNN [17] 74.3 ± 0.2 (74.2s) 93.1 ± 0.5 (16.1s) 92.0 ± 2.8 (0.8s) 91.7 ± 0.4 (61.0s) 80.0 ± 0.7 (5.6s)

HyperGCN [46] 73.6 ± 0.3 (147.8s) 92.3 ± 0.3 (30.23s) 93.1 ± 2.3 (1.1s) 91.4 ± 0.9 (86.5s) 80.4 ± 0.7 (9.7s)

LE𝐺𝐶𝑁 75.6 ± 0.2 (38.6s) 95.2 ± 0.1 (18.9s) 97.0 ± 0.0 (2.8s) 94.1 ± 0.3 (85.9s) 83.2 ± 0.2 (9.9s)

Table 4: Statistics of Citation Networks

Dataset Nodes Edges Features Class Label rate

Cora 2,708 5,429 1,433 7 0.052

Citeseer 3,327 4,732 4,732 6 0.036

Pubmed 19,717 44,338 500 3 0.003

5.2 Simple Graph Node Classification
Since simple graphs are a special case of hypergraphs, 2-regular

hypergraph, we apply line expansion to simple graphs to empiri-

cally verify our Theorem 3 and show that applying graph learning

algorithm on line expansion can achieve comparable results.

Datasets. Cora dataset has 2,708 vertices and 5.2% of them have

class labels. Nodes contain sparse bag-of-words feature vectors

and are connected by a list of citation links. Another two datasets,

Citeseer and Pubmed, are constructed similarly [38]. We follow the

setting from [47] and show statistics in Table 4.

Common Graph-based Methods. We consider the popular deep

end-to-end learning methods GCN [26] and well-known graph

representation methods SpectralClustering (SC) [33], Node2Vec

[20], DeepWalk [36] and LINE [41]. We first directly apply these

methods on the simple graphs. Then, we apply them on the line ex-

pansion of the simple graph, named LE(·) , for example, LE𝑁𝑜𝑑𝑒2𝑉𝑒𝑐 .
Note that, GCNs could input both features and the graph structure

(i.e., adjacency matrix), whereas other methods only use structural

information.

Result Analysis. The accuracy results of node classification for

three citation networks are shown in Table 5. The experiment

clearly demonstrates that LE shows comparable results in graph

node classification tasks. Specifically for those non-end-to-end

methods, they consistently outperform the original algorithm on

simple graphs. The reason might be that LE enriches the plain

structure by providing a finer-grained structure and makes nodes

edge-dependent, whichmight explain the improvement in structure-

based non-end-to-end models. End-to-end GCNs can reach a much

higher accuracy compared to other baselines. We observe that

LE𝐺𝐶𝑁 tie with original GCN on the three datasets.

5.3 Ablation Study on on𝑤𝑒 and𝑤𝑣
In this section, we conduct ablation studies on 𝑤𝑣 and 𝑤𝑒 . Since

only the fraction
𝑤𝑒

𝑤𝑣
matters, we symmetrically choose

𝑤𝑒

𝑤𝑣
=

0, 0.1, 0.2, 0.5, 1, 2, 5, 10,∞ and calculate the test accuracy.

Table 5: Graph Node Classification Accuracy (%)

Model Cora Citeseer Pubmed

SC 53.3 ± 0.2 50.8 ± 0.7 55.2 ± 0.4

Planetoid 75.0 ± 0.9 64.0 ± 1.3 76.7 ± 0.6

ICA 74.5 ± 0.6 63.4 ± 0.6 72.9 ± 1.0

Node2Vec 66.3 ± 0.3 46.2 ± 0.7 71.6 ± 0.5

DeepWalk 62.8 ± 0.6 45.7 ± 1.2 63.4 ± 0.4

LINE 27.7 ± 1.1 30.8 ± 0.2 53.5 ± 0.8

GCN 82.6 ± 0.7 70.5 ± 0.3 78.2 ± 0.6

LE𝑆𝐶 56.9 ± 0.2 50.7 ± 0.2 71.9 ± 0.7

LE𝑃𝑙𝑎𝑛𝑒𝑡𝑜𝑖𝑑 76.6 ± 0.4 66.0 ± 0.7 77.0 ± 0.2

LE𝐼𝐶𝐴 72.7 ± 0.4 68.6 ± 0.5 73.3 ± 0.7

LE𝑁𝑜𝑑𝑒2𝑉𝑒𝑐 74.3 ± 0.4 46.2 ± 0.1 74.3 ± 0.4

LE𝐷𝑒𝑒𝑝𝑊𝑎𝑙𝑘 68.3 ± 0.1 50.4 ± 0.4 68.0 ± 0.8

LE𝐿𝐼𝑁𝐸 51.7 ± 0.2 34.9 ± 0.5 57.5 ± 0.3

LE𝐺𝐶𝑁 82.3 ± 0.5 70.4 ± 0.3 78.7 ± 0.4

20News
Mushroom

Zoo
ModelNet40

NTU2012

Te
st

 A
cc

ur
ac

y
(%

)

𝑤!/𝑤"
0 0.1 0.2 0.5 1 2 5 ∞10

70

75

80

85

90

95

Figure 3: Ablation Study on 𝑤𝑒

𝑤𝑣

Figure 3 provides some intuitions on how to select proper 𝑤𝑣
and 𝑤𝑒 in real hypergraph tasks. We can conclusion that these

hypergraphs have different sensitivities and preferences for𝑤𝑒 and

𝑤𝑣 . However, we do find all the curves follow a first-rise-and-then-

down pattern, meaning that it is beneficial to aggregate information

from both edge-similar and vertex-similar neighbors. Specifically,

we find that for hypergraphs with fewer hyperedges, e.g., 20News

and Mushroom, the peak appears before
𝑤𝑒

𝑤𝑣
= 1, and for hyper-

graphs with sufficient hyperedges, e.g., ModelNet40 and NTU2012,

the peak appears after
𝑤𝑒

𝑤𝑣
= 1. Therefore, one empirical guide for

practical usage is to set smaller𝑤𝑒 when there are fewer hyperedges

2358

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Chaoqi Yang, Ruijie Wang, Shuochao Yao, & Tarek Abdelzaher

𝐾" 𝐾#,"

Figure 4: The Exception of Whitney’s Theorem

and set larger𝑤𝑒 , vice versa. After all, using the binary version (i.e.,

𝑤𝑒 = 𝑤𝑣 = 1) seems to be a simple and effective choice.

6 CONCLUSION AND FUTUREWORKS
In this paper, we proposed a new hypergraph transformation, Line
Expansion (LE), which can transform the hypergraph into simple ho-

mogeneous graph in an elegant way, without loss of any structure

information. With LE, we extend the graph convolution networks

(GCNs) to hypergraphs and show that the extended model outper-

forms strong baselines on five real-world datasets.

A possible future direction is to exploit the hypergraph sym-

metry and apply LE for edge learning in complex graphs. Another

interesting extension is to extend line expansion to directed graphs,

where the relations are not reciprocal. In future works, we will

further evaluate our model on large hypergraphs, such as DBLP or

Yelp, against recent two-stage type hypergraph learning baselines,

such as AllSet [9], which could be one limitation of the paper.

7 PROOFS
7.1 Proof of Theorem 1
First, we posit without proof that the hypergraph G𝐻 has one-to-

one relation with its star expansion G𝑠 . To prove the bijectivity

of mapping 𝜙 : G𝐻 → G𝑙 , we can instead prove the bijectivity

between G𝑠 and G𝑙 . Our proof will be based on the Whitney graph

isomorphism theorem [43] below.

Theorem 4. (Whitney Graph Isomorphism Theorem.) Two con-
nected graphs are isomorphic if and only if their line graphs are
isomorphic, with a single exception: 𝐾3, the complete graph on three
vertices, and the complete bipartite graph 𝐾1,3, which are not isomor-
phic but both have 𝐾3 as their line graph.

Definition 1. (Maximum Independent set.) A maximum inde-
pendent set is an independent node set (no two of which are adjacent)
of largest possible size for a given graph G.

Proof. For the star expansion of the hypergraph, it could be un-

connected when subsets of the vertices are only incident to subsets

of the hyperedges. In that case, we could consider the expansion

as a union of several disjoint connected components and apply the

proof on each component. Below, we mainly discuss the case when

G𝑠 is connected.
The proof consists of two parts. First, we show that for the class of

star expansion graphs, Theorem 4 holds without exception. Second,

we show how to recover the star expansion G𝑠 (equivalently, the
original hypergraph G𝐻) from G𝑙 .

First, for the exception in Whitney’s theorem, it is obvious that

𝐾3 (in Figure 4) cannot be the star expansion of any hypergraph.

Figure 5: The construction from 𝐺𝑙 to 𝐺𝑠

Therefore, for star expansion graphs (with is also a bipartite repre-

sentation of the hypergraph), Theorem 4 holds without exception.

Second, given a line graph topology, we know from Theorem 4

immediately that the original bipartite structure is unique. We now

provide a construction from G𝑙 to G𝑠 . Given a line graph structure,

we first find a maximum independent set (in Definition 1) and color

them in red (shown in Figure 5 (a)). [35] proves that the maximum

independent node could be found in polynomial time.

Since every vertex and every hyperedge from G𝑠 spans a clique
in 𝐿(G𝑠), let us think about the line node in the induced graph

(which is Fig. 5.(b) here), which is potentially a vertex-hyperedge

pair. Therefore, each node (𝑣, 𝑒) must be connected to exactly two

cliques: one spanned by vertex 𝑣 and one spanned by hyperedge 𝑒 .

Essentially, we try to project these cliques back to original vertex

or hyperedges in 𝐺𝑠 . In fact, for each colored node, we choose one

of two cliques connected to it so as to make sure: i) the selected

cliques have no intersections (there are two choices. In this case,

choose 1-edge cliques or 0-edge cliques) and ii) the set of cliques

cover all nodes in the topology, shown in Fig. 5 (b).

For any given line graph topology (of a star expansion graph),

we could always find the set of 1-edge cliques or the set of 0-edge

cliques that satisfies i) and ii), guaranteed by Definition 1. Con-

ceptually, due to the bipartite nature, one set will be the cliques

spanned by original hyperedges and another set will be the cliques

spanned by original vertices. Either will work for us. Note that the

set of 1-edge cliques also includes two size-1 clique, denoted as 𝑣4
and 𝑣5 in Fig. 5 (b). They seem to only connect to one 1-edge clique,

i.e, 𝑒3 clique, however, they are actually size-1 cliques spanned by

the original vertices which belongs to only one hyperedge.

The recovery of the star expansion G𝑠 is as follows: First, find a

maximum independent set. Second, choose the set of 1-edge clique

and transform each selected clique as a hyperedge. Then, the vertex

set is created two-folded: i) a clique with 0 on its edges is a vertex in

G𝐻 ; ii) nodes only connected to one 1-edge clique are also vertices.

By the symmetry of hypergraph, the vertex set and the hyperedge

set can also be flipped, but the resulting topology is isomorphic. □

7.2 Proof of Theorem 3
We first formulate the clique, star and our line expansion adjacency

matrices and then show the unification evidence.

Clique and Star Expansion Adjacency. Given a hypergraph

G𝐻 = (V, E), consider the clique expansion G𝑐 = (V, E𝑐). For

2359

Semi-supervised Hypergraph Node Classification on Hypergraph Line Expansion CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

each pair (𝑢, 𝑣) ∈ E𝑐 ,

A𝑐 (𝑢, 𝑣) =
𝑤𝑐 (𝑢, 𝑣)√︁
𝑑𝑐 (𝑢)

√︁
𝑑𝑐 (𝑣)

, (13)

where in standard clique expansion, we have,

𝑤𝑐 (𝑢, 𝑣) =
∑︁

ℎ(𝑢, 𝑒)ℎ(𝑣, 𝑒), (14)

𝑑𝑐 (𝑢) =
∑︁

ℎ(𝑢, 𝑒) (𝛿 (𝑒) − 1) . (15)

For the same hypergraph G𝐻 = (V, E), star expansion gives

G𝑠 = (V𝑠 , E𝑠). We adopt adjacency formulation from [1], formally,

A𝑠 (𝑢, 𝑣) =
∑︁
𝑒∈𝐸

ℎ(𝑢, 𝑒)ℎ(𝑣, 𝑒)
𝛿 (𝑒)2

√︁∑
𝑒 ℎ(𝑢, 𝑒)

√︁∑
𝑒 ℎ(𝑣, 𝑒)

. (16)

Line Expansion Adjacency. To analyze the adjacency relation

on line expansion, we begin by introducing some notations. Let

us use ℎ
(𝑘)
(𝑣,𝑒) (in short, ℎ𝑘𝑣𝑒) to denote the representation of line

node (𝑣, 𝑒) ∈ 𝑉𝑙 at the 𝑘-th layer. The convolution operator on line
expansion, in main text Eqn. (7), can be presented,

ℎ𝑘+1𝑣𝑒 =
𝑤𝑒

∑
𝑒′ ℎ

𝑘
𝑣𝑒′ +𝑤𝑣

∑
𝑣′ ℎ

𝑘
𝑣′𝑒

𝑤𝑒 (𝑑 (𝑣) − 1) +𝑤𝑣 (𝛿 (𝑒) − 1) . (17)

We augment Eqn. (17) by applying 2-order self-loops (mentioned

in Section 4.2), and it yields,

ℎ𝑘+1𝑣𝑒 =
𝑤𝑒

∑
𝑒′ ℎ

𝑘
𝑣𝑒′ +𝑤𝑣

∑
𝑣′ ℎ

𝑘
𝑣′𝑒

𝑤𝑒𝑑 (𝑣) +𝑤𝑣𝛿 (𝑒)
. (18)

The above operator is defined on the induced graph, we equivalently

convert it into the hypergraph domain by back-projector P′𝑣𝑒𝑟𝑡𝑒𝑥 .
Formally, assume 𝑥𝑘𝑢 as the converted representation for vertex 𝑢

in hypergraph, Eqn. (18) can be written as,

𝑥𝑘+1𝑢 =

∑
𝑒 ℎ(𝑢, 𝑒) 1

𝛿 (𝑒)
𝑤𝑣

∑
𝑢′ 𝑥

𝑙
𝑢′+𝑤𝑒

∑
𝑢 𝑥

𝑙
𝑢

𝑤𝑣𝛿 (𝑒)+𝑤𝑒𝑑 (𝑢)∑
𝑒 ℎ(𝑢, 𝑒) 1

𝛿 (𝑒)
. (19)

After organizing the equation, we calculate that for each hyper-

graph vertex pair (𝑢, 𝑣) ∈ V ×V , they are adjacent by,

A𝑙 (𝑢, 𝑣) =
∑
𝑒

𝑤𝑣ℎ (𝑢,𝑒)ℎ (𝑣,𝑒)
𝛿 (𝑒) (𝑤𝑣𝛿 (𝑒)+𝑤𝑒𝑑 (𝑢))∑
𝑒 ℎ(𝑢, 𝑒) 1

𝛿 (𝑒)
, (20)

or by the following form after symmetric re-normalization,

A𝑙 (𝑢, 𝑣) =

∑
𝑒

𝑤𝑣ℎ (𝑢,𝑒)ℎ (𝑣,𝑒)
𝛿 (𝑒)

√
𝑤𝑣𝛿 (𝑒)+𝑤𝑒𝑑 (𝑢)

√
𝑤𝑣𝛿 (𝑒)+𝑤𝑒𝑑 (𝑣)√︃∑

𝑒 ℎ(𝑢, 𝑒) 1

𝛿 (𝑒)

√︃∑
𝑒 ℎ(𝑣, 𝑒) 1

𝛿 (𝑒)

. (21)

Unifying Star and Clique Expansion.We start by considering

the clique expansion graph with weighting function,

𝑤𝑐 (𝑢, 𝑣) =
∑︁
𝑒∈𝐸

ℎ(𝑢, 𝑒)ℎ(𝑣, 𝑒)
(𝛿 (𝑒) − 1)2

. (22)

Note that this is equivalent to vanish Eqn. (14) by a factor of

1

(𝛿 (𝑒)−1)2 . We plug the value into Eqn. (15), then adjacency of clique

expansion transforms into,

A𝑐 (𝑢, 𝑣) =
∑
𝑒
ℎ (𝑢,𝑒)ℎ (𝑣,𝑒)
(𝛿 (𝑒)−1)2 .√︃∑

𝑒 ℎ(𝑢, 𝑒) 1

𝛿 (𝑒)−1

√︃∑
𝑒 ℎ(𝑣, 𝑒) 1

𝛿 (𝑒)−1

. (23)

Note that when we set𝑤𝑒 = 0 (no message passing from hyperedge-

similar neighbors). The higher-order relation of line expansion, in
Eqn. (21) degrades into,

A𝑙 (𝑢, 𝑣) =
∑
𝑒
ℎ (𝑢,𝑒)ℎ (𝑣,𝑒)

𝛿 (𝑒)2√︃∑
𝑒 ℎ(𝑢, 𝑒) 1

𝛿 (𝑒)

√︃∑
𝑒 ℎ(𝑣, 𝑒) 1

𝛿 (𝑒)

. (24)

Eqn. (24) is exactly the adjacency of star expansion in Eqn. (16), and

Eqn. (23) (adjacency of clique expansion) is the 1-order self-loop

form of the degraded line expansion.
Unifying Simple Graph Adjacency. The convolution operator

[26] on a simple graph can be briefly present,

A(𝑢, 𝑣) =
∑
𝑒 ℎ(𝑢, 𝑒)ℎ(𝑣, 𝑒)√︁
𝑑 (𝑢)

√︁
𝑑 (𝑣)

. (25)

A graph could be regarded as a 2-regular hypergraph, where hy-

peredge 𝑒 has exactly two vertices, i.e., 𝛿 (𝑒) = 2 and each pair of

vertices (𝑢, 𝑣) ∈ V ×V has at most one common edge. Plugging

the value into Eqn. (24), and it yields,

A𝑙 (𝑢, 𝑣) =
∑
𝑒 ℎ(𝑢, 𝑒)ℎ(𝑣, 𝑒)
2

√︁
𝑑 (𝑢)

√︁
𝑑 (𝑣)

. (26)

Comparing Eqn. (25) and (26), the only difference is a scaling factor

2, which could be absorbed into filter Θ.

7.3 Proof of Observation 1
First, we have (use P𝑣 to denote P𝑣𝑒𝑟𝑡𝑒𝑥 and P𝑒 for P𝑒𝑑𝑔𝑒):

H⊤
𝑟 H𝑟 =

[
P⊤𝑣
P⊤𝑒

] [
P𝑣P𝑒

]
=

[
P⊤𝑣 P𝑣 P⊤𝑣 P𝑒
P⊤𝑒 P𝑣 P⊤𝑒 P𝑒

]
=

[
D𝑣 H
H⊤ D𝑒

]
, (27)

where the last equality is easy to verify since i) P⊤𝑣 P𝑣 implies the

vertex degree matrix, which is D𝑣 . ii) P⊤𝑒 P𝑒 implies the hyperedge

degree matrix, which is D𝑒 ; iii) P⊤𝑣 P𝑒 implies the vertex-hyperedge

incidence, which is H.
For Eqn. (5), each row of H𝑟 is a 0/1 vector of size |V| + |E| with

each dimension indicating a vertex or a hyperedge. Therefore, the

vector has exactly two 1s, which is due to that a line node contains

exactly one vertex and one hyperedge.

For the (𝑖, 𝑗)-th entry ofH𝑟H⊤
𝑟 , it is calculated by the dot product

of row 𝑖 (line node 𝑖) and row 𝑗 (line node 𝑗) of H𝑟 . If 𝑖 = 𝑗 , then

this entry will be 2 (dot product of the same 0/1 vector with two

1s). If 𝑖 ≠ 𝑗 , the result will be 0 if line node 𝑖 and line node 𝑗 has

no common vertex or hyperedge and be 1 if they share vertex or

hyperedge (the corresponding dimension gives 1 and 0 for other

dimensions, summing to 1). In sum, H𝑟H⊤
𝑟 is equal to the adjacency

A𝑙 with 2-order self-loops, quantitatively,

H𝑟H⊤
𝑟 = 2I + A𝑙 . (28)

ACKNOWLEDGEMENTS
This work was in part supported by DARPA award HR001121C0165,

DoD Basic Research Office award HQ00342110002, NSF grants IIS-

2107200 and CPS-2038658.

2360

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Chaoqi Yang, Ruijie Wang, Shuochao Yao, & Tarek Abdelzaher

REFERENCES
[1] Sameer Agarwal, Kristin Branson, and Serge J. Belongie. 2006. Higher order

learning with graphs. In Machine Learning, Proceedings of the Twenty-Third Inter-
national Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006.
17–24.

[2] Devanshu Arya, Deepak K Gupta, Stevan Rudinac, and Marcel Worring. 2020.

Hypersage: Generalizing inductive representation learning on hypergraphs. arXiv
preprint arXiv:2010.04558 (2020).

[3] Song Bai, Feihu Zhang, and Philip H. S. Torr. 2019. Hypergraph Convolution and

Hypergraph Attention. CoRR abs/1901.08150 (2019).

[4] Sambaran Bandyopadhyay, Kishalay Das, andMNarasimhaMurty. 2020. Line Hy-

pergraph Convolution Network: Applying Graph Convolution for Hypergraphs.

arXiv preprint arXiv:2002.03392 (2020).
[5] Abdelghani Bellaachia and Mohammed Al-Dhelaan. 2013. Random walks in hy-

pergraph. In International Conference on Applied Mathematics and Computational
Methods.

[6] Jean-Claude Bermond, Marie-Claude Heydemann, and Dominique Sotteau. 1977.

Line graphs of hypergraphs I. Discrete Mathematics 18, 3 (1977), 235–241.
[7] T-H Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi Zhang. 2018.

Spectral properties of hypergraph laplacian and approximation algorithms. Jour-
nal of the ACM (JACM) 65, 3 (2018), 1–48.

[8] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. 2003. On visual

similarity based 3D model retrieval. In Computer graphics forum. Wiley Online

Library, 223–232.

[9] Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. 2021. You are allset:

A multiset function framework for hypergraph neural networks. arXiv preprint
arXiv:2106.13264 (2021).

[10] Uthsav Chitra and Benjamin J. Raphael. 2019. Random Walks on Hypergraphs

with Edge-Dependent Vertex Weights. In Proceedings of the 36th International
Conference onMachine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA. 1172–1181.

[11] Fan RK Chung and Fan Chung Graham. 1997. Spectral graph theory. American

Mathematical Soc.

[12] EJ Cockayne, ST Hedetniemi, and DJ Miller. 1978. Properties of hereditary

hypergraphs and middle graphs. Canad. Math. Bull. 21, 4 (1978), 461–468.
[13] Thomas F Coleman and Jorge J Moré. 1983. Estimation of sparse Jacobianmatrices

and graph coloring blems. SIAM journal on Numerical Analysis 20, 1 (1983), 187–
209.

[14] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-

lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In

Advances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain.
3837–3845.

[15] Yihe Dong, Will Sawin, and Yoshua Bengio. 2020. HNHN: Hypergraph Networks

with Hyperedge Neurons. arXiv preprint arXiv:2006.12278 (2020).
[16] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[17] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-

pergraph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 3558–3565.

[18] Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and Yue Gao. 2018. Gvcnn:

Group-view convolutional neural networks for 3d shape recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. 264–272.

[19] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[20] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[21] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[22] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning

on Graphs: Methods and Applications. IEEE Data Eng. Bull. 40, 3 (2017), 52–74.
[23] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram.

2013. The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited.

In Advances in Neural Information Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013. 2427–2435.

[24] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks

on graph-structured data. arXiv preprint arXiv:1506.05163 (2015).
[25] Jing Huang and Jie Yang. 2021. Unignn: a unified framework for graph and

hypergraph neural networks. arXiv preprint arXiv:2105.00956 (2021).
[26] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26.
[27] Steffen Klamt, Utz-Uwe Haus, and Fabian Theis. 2009. Hypergraphs and cellular

networks. PLoS computational biology 5, 5 (2009), e1000385.

[28] Pan Li and Olgica Milenkovic. 2017. Inhomogeneous hypergraph clustering with

applications. In Advances in Neural Information Processing Systems. 2308–2318.
[29] Pan Li and Olgica Milenkovic. 2018. Submodular hypergraphs: p-laplacians,

cheeger inequalities and spectral clustering. arXiv preprint arXiv:1803.03833
(2018).

[30] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. 2021. Tail-GNN: Tail-Node

Graph Neural Networks. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 1109–1119.

[31] Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan

Günnemann, and Michael M. Bronstein. 2018. Dual-Primal Graph Convolutional

Networks. CoRR abs/1806.00770 (2018).

[32] Ranjan N Naik. 2018. On Intersection Graphs of Graphs and Hypergraphs: A

Survey. arXiv preprint arXiv:1809.08472 (2018).
[33] Andrew Y Ng, Michael I Jordan, and Yair Weiss. 2002. On spectral clustering:

Analysis and an algorithm. In Advances in neural information processing systems.
849–856.

[34] Xavier Ouvrard, Jean-Marie Le Goff, and Stéphane Marchand, Maillet. 2017. Adja-

cency and tensor representation in general hypergraphs part 1: e-adjacency tensor

uniformisation using homogeneous polynomials. arXiv preprint arXiv:1712.08189
(2017).

[35] Vangelis Th Paschos. 2010. Combinatorial optimization and theoretical computer
science: interfaces and perspectives. Vol. 24. John Wiley & Sons.

[36] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[37] Li Pu and Boi Faltings. 2012. Hypergraph learning with hyperedge expansion.

In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 410–425.

[38] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[39] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015.

Multi-view convolutional neural networks for 3d shape recognition. In Proceed-
ings of the IEEE international conference on computer vision. 945–953.

[40] Liang Sun, Shuiwang Ji, and Jieping Ye. 2008. Hypergraph spectral learning for

multi-label classification. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 668–676.

[41] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. International World Wide Web

Conferences Steering Committee, 1067–1077.

[42] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018.

[43] Hassler Whitney. 1992. Congruent graphs and the connectivity of graphs. In

Hassler Whitney Collected Papers. Springer, 61–79.
[44] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou

Tang, and Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumet-

ric shapes. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 1912–1920.

[45] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
[46] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and Partha

Talukdar. 2018. HyperGCN: Hypergraph Convolutional Networks for Semi-

Supervised Classification. arXiv preprint arXiv:1809.02589 (2018).
[47] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. 2016. Revisiting semi-

supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861
(2016).

[48] Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and T.-H. Hubert Chan. 2017.

Re-revisiting Learning on Hypergraphs: Confidence Interval and Subgradient

Method. In Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. 4026–4034.

[49] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learning with

Hypergraphs: Clustering, Classification, and Embedding. In Advances in Neural
Information Processing Systems 19, Proceedings of the Twentieth Annual Conference
on Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 4-7, 2006. 1601–1608.

[50] Jason Y Zien, Martine DF Schlag, and Pak K Chan. 1999. Multilevel spectral hy-

pergraph partitioning with arbitrary vertex sizes. IEEE Transactions on computer-
aided design of integrated circuits and systems 18, 9 (1999), 1389–1399.

2361

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Hypergraph Notations
	2.2 Problem Setup

	3 Hypergraph Line Expansion (LE)
	3.1 Traditional Hypergraph Expansions
	3.2 Our Line Expansion
	3.3 Entity Projection
	3.4 Additional Properties of Line Expansion

	4 Hypergraph Representation Learning
	4.1 Hypergraph Learning with Line Expansion
	4.2 Convolution on Line Expansion
	4.3 Unifying Hypergraph Expansion
	4.4 Acceleration: Neighborhood Sampling

	5 Experiments
	5.1 Hypergraph Node Classification
	5.2 Simple Graph Node Classification
	5.3 Ablation Study on on we and wv

	6 Conclusion and Future Works
	7 Proofs
	7.1 Proof of Theorem 1
	7.2 Proof of Theorem 3
	7.3 Proof of Observation 1

	References

