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ABSTRACT

Previous hypergraph expansions are solely carried out on either ver-
tex level or hyperedge level, thereby missing the symmetric nature
of data co-occurrence, and resulting in information loss. To address
the problem, this paper treats vertices and hyperedges equally and
proposes a new hypergraph expansion named the line expansion
(LE) for hypergraphs learning. The new expansion bijectively in-
duces a homogeneous structure from the hypergraph by modeling
vertex-hyperedge pairs. Our proposal essentially reduces the hyper-
graph to a simple graph, which enables the existing graph learning
algorithms to work seamlessly with the higher-order structure. We
further prove that our line expansion is a unifying framework over
various hypergraph expansions. We evaluate the proposed LE on
five hypergraph datasets in terms of the hypergraph node classi-
fication task. The results show that our method could achieve at
least 2% accuracy improvement over the best baseline consistently.
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1 INTRODUCTION

This paper proposes a new hypergraph structure transformation,
namely line expansion (LE), for the problem of hypergraph learning.
Specifically, this paper focuses on hypergraph node classification.
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Figure 1: Bipartite Relation in Hypergraphs. Here, pink circles
v denotes vertices (or hypernodes) and dashed circles e denotes
hyperedges. They are treated equally in this paper.

The proposed LE is a topological mapping, transforming the hy-
pergraph into a homogeneous structure, while preserving all the
higher-order relations. LE allows all the existing graph learning
algorithms to work elegantly on hypergraphs.

The problem of hypergraph learning is important. Graph struc-
tured data are ubiquitous in practical machine/deep learning appli-
cations, such as social networks [10], protein networks [27], and
co-author networks [49]. Intuitive pairwise connections among
nodes are usually insufficient for capturing real-world higher-order
relations. For example, in co-author networks, the edges between
authors are created by whether they have co-authored a paper
or not. A simple graph structure cannot separate the co-author
groups for each paper. For another example, in biology, proteins
are bound by poly-peptide chains, thus their relations are natu-
rally higher-order. Hypergraphs allow modeling such multi-way
relations, where (hyper)edges can connect to more than two nodes.

However, the research on spectral graph theory for hypergraphs
is far less been developed [10]. Hypergraph learning was first in-
troduced in [49] as a propagation process on hypergraph structure,
however, [1] indicated that their Laplacian matrix is equivalent to
pairwise operation. Since then, researchers explored non-pairwise
relationships by developing nonlinear Laplacian operators [7, 28],
utilizing random walks [5, 10] and learning the optimal weights
[28, 29] of hyperedges. Essentially, most of these algorithms focus
on vertices, viewing hyperedges as connectors, and they explicitly
break the bipartite property of hypergraphs (shown in Figure 1).

Two types of deep learning models have been designed on hy-
pergraphs. [17] develops Chebyshev formula for hypergraph Lapla-
cians and proposed HGNN. Using a similar hypergraph Laplacian,
[46] proposes HyperGCN while [3] generalizes [26, 42] and de-
fines two neural hypergraph operators. However, this first line of
works all construct a simple weighted graph and lose high-order
information. A recent work HyperSage [2] generalizes the message
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passing neural networks (MPNN) [19] and uses two-stage message
passing functions [15] on hypergraphs. Based on the two-stage
procedure, UniGNN [25] generalizes GCN [26], GAT [42], GIN [45]
models to hypergraphs and AllSet [9] further unifies a whole class
of two-stage models with multiset functions. This type of models
are empirically more powerful than the first type, however, they
essentially treat the hypergraph as a bipartite graph and build two
message passing functions on the heterogeneous structure.

Different from previous works, we propose a novel hypergraph
learning model from a new perspective. We propose line expansion
(LE) for hypergraphs, which is a powerful bijective mapping from a
hypergraph structure to a homogeneous graph structure. Relying on
our LE mapping, all existing graph representation learning methods
[14, 24, 26, 42] can seamlessly and effortlessly work on hypergraphs.

Specifically, from the complex and heterogeneous hypergraph,
our LE can induce a simple graph structure (examples in Figure 2),
where the “node” is a vertex-hyperedge pair, and “edge” between
two “node”s are constructed if two “node”s share the same vertex
or hyperedge (w.l.o.g., we use concept “node” in simple graphs
and concept “vertex” in hypergraphs). It is interesting that the
new induced structure is isomorphic to the line graph of the star
expansion of the original hypergraph, which is (i) homogeneous (i.e.,
a graph where nodes have the same semantics) and (ii) symmetrical
with respect to the vertices and hyperedges. We further prove that
LE is also (iii) bijective, which means all high-order information is
preserved during the transformation, i.e., the hypergraph can be
recovered uniquely from the induced line expansion graph.

Therefore, to conduct hypergraph representation learning, we
first transform the hypergraph to the induced simple graph. Then,
features from hypergraph vertices are projected to node features
in the induced graph. Next, we apply graph learning algorithms
(i.e., graph convolutional network [26]) to obtain node representa-
tions. Finally, the node representations from the induced graph is
aggregated and back-projected to the original hypergraph vertices
for classification. The LE transformation is differentiable and the
overall learning process is end-to-end.

The proposed line expansion of hypergraphs is novel and infor-
mative. In the traditional formulations, the hyperedges are usually
transformed into cliques of edges (e.g., clique/star expansions [1])
or hypergraph cuts [49], or the learning solely depends on edge
connectivity (e.g., hyperedge expansions [37]). Differently, LE treats
vertices and hyperedges equally, thus preserving the nature of hy-
pergraphs. Note that, LE is also significantly different from other
hypergraph formulations, such as tensor based representation [34],
line graphs of hypergraphs [6], intersection graphs of hypergraphs
[32], or middle graphs of hypergraphs [12]. These formulations
either require strong constraints (e.g., uniform hypergraphs) or
result in heterogeneous topologies as well as other structures that
complicate practical usage. Previous formulations may restrict ap-
plicability of graph algorithms due to their special structures.

Further, this paper revisits the formulation of the standard star
or clique expansion and simple graph learning algorithms. We
conclude that they can be unified as special cases of LE. Empirically,
this paper demonstrates the effectiveness of LE on five real-world
hypergraphs. We apply the popular graph convolutional networks
(GCNss) [26] on LE as our method, and it consistently outperforms
several strong hypergraph learning baselines.
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The organization of the paper is as follows. In Section 2, we
introduce the general notations of hypergraphs and formulate our
problem. In Section 3, we propose line expansion of hypergraphs
and show some interesting properties. In Section 4, we generalize
GCNs to hypergraphs by line expansion. We evaluate line expansion
on three-fold experiments in Section 5. We conclude this paper and
provide proofs for our theoretical statements in the end.

2 PRELIMINARIES
2.1 Hypergraph Notations

Research on graph-structured deep learning [26, 42] stems mostly
from Laplacian matrix and vertex functions of simple graphs. Only
recently, learning on hypergraphs starts to attract attentions from
the community [2, 3, 9, 17].

Hypergraphs. Let Gy = (V, &) denote a hypergraph, with a
vertex set V and a edge set & c 2. A hyperedge e € & (we
also call it “edge” interchangeably in this paper) is a subset of V.
Given an arbitrary set S, let |S| denote the cardinality of S. A
simple graph is thus a special case of a hypergraph, with |e| = 2
uniformly, which is also called a 2-regular hypergraph. A hyperedge
e is said to be incident to a vertex v when v € e. One can represent a
hypergraph by a |'V|x|&| incidence matrix Hwith its entry h(v, e) =
1if v € e and 0 otherwise. For each vertex v € V and hyperdge
e € &,dw) = Yecg h(v,e) and §(e) = X,y h(v, e) denote their
degree functions, respectively. The vertex-degree matrix D, of a
hypergraph Gp is a |'V| X |V| matrix with each diagonal entry
corresponding to the node degree, and the edge-degree matrix D, is
|E| % |&], also diagonal, which is defined on the hyperedge degree.

2.2 Problem Setup

Following [3, 17], this paper studies the transductive learning prob-
lems on hypergraphs, specifically node classification, It aims to
induce a labeling f : V — {1,2,...,C} from the labeled data as
well as the geometric structure of the graph and then assigns a class
label to unlabeled vertices by transductive inference.

Specifically, given a hypergraph Gy = (V, &) with the labeled

vertex set 7 C V and the labels, we minimize the empirical risk,

1
* in— 0), ,
f a;%.rlr;nl(rl U;T.C(f(vt | 6),L(vt))

(1)

where L(v;) is the ground truth label for node v; and cross-entropy
error [26] is commonly applied in £(-).

Intuitively, node similarity implies similar labels on the same
graph. Given the symmetric structure of hypergraphs, we posit
that vertex similarity and edge similarity are equally important
in learning the labels. This work focuses on node classification
problems on hypergraphs, but it can be easily extended to other
hypergraph related applications, such as hyper-edge representation
(e.g., relation mining) by exploiting symmetry.

3 HYPERGRAPH LINE EXPANSION (LE)

Most well-known graph-based algorithms [20, 33] are defined for
graphs instead of hypergraphs. Therefore, in real-world applica-
tions, hypergraphs are often transformed into simple graphs [1, 49]
that are easier to handle.
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Figure 2: Various Hypergraph Expansions

3.1 Traditional Hypergraph Expansions
Two main ways of approximating hypergraphs by simple graphs
are the clique expansion [40] and the star expansion [50]. The clique
expansion algorithm (shown in left side of Fig. 2) constructs a graph
Ge = (V, &) from the original hypergraph by replacing each
hyperedge with a clique in the resulting graph (i.e., &c = {(©,0) |
u,v € e, e € &}), while the star expansion algorithm (shown in right
side of Fig. 2) constructs a new graph Gs = (Vs, Es) by viewing both
vertices and hyperedges as nodes in the resulting graph Vs = VUE,
where vertices and hyperedges are connected by their incident
relations (i.e., & = {(v,e) | v € e,v € V,e € E}). Note that, the
star expansion induces a heterogeneous graph structure.
Unfortunately, these two approximations cannot retain or well
represent the higher-order structure of hypergraphs. Let us con-
sider the co-authorship network, as Gy in Figure 2, where we view
authors as nodes (e.g., v1, v2) and papers as hyperedges (e.g., e1).
Then we immediately know that author 01 and v, have jointly writ-
ten one paper ej, and together with author v3, they have another
co-authored paper ey. This hierarchical and multi-way connection
is an example of higher-order relation. Assume we follow the clique
expansion, then we obviously miss the information of author ac-
tivity rate and whether the same persons jointly writing two or
more articles. Though researchers have remedially used weighted
edges [10, 28], the hyper-dependency still collapses or fuses into
linearity. Star expansion expresses the whole incidence informa-
tion, but the remaining heterogeneous structure (i) has no explicit
vertex-vertex link and (ii) is too complicated for those well-studied
graph algorithms, which are mostly designed for simple graphs.
One can summarize [23] that these two expansions are not good
enough for many real-world applications.

3.2 Our Line Expansion

Since the commonly used expansions cannot give a satisfactory
representation, we seek a new expansion that preserves all the
original higher-order relations, while presenting an easy-to-learn
graph structure. Motivated by the special symmetric structure of
hypergraphs that vertices are connected to multiple edges and edges
are conversely connected to multiple vertices, we treat vertices and
edges equally and propose hypergraph Line Expansion (LE).

The Line Expansion of the hypergraph Gy is constructed as
follows (shown in Fig. 2, bottom): (i) each incident vertex-hyperedge
pair is considered as a “line node”; (ii) “line nodes” are connected
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when they share the same vertex or hyperedge. Essentially, the
induced structure is a graph, where each vertex or each hyperedge
(from the original hypergraph) induces a clique (i.e., fully-connected
subgraph). We now formally define the line expansion, denoted G;.

3.2.1 Line Expansion. Let G; = (‘V}, E;) denotes the graph induced
by the line expansion of hypergraph Gy = (V, &). The node set V;
of G is defined by vertex-hyperedge pair {(v,e) |v € e,v € V,e €
&} from the original hypergraph. The edge set &; and adjacency
A; e {0,1} [ViIXIVil is defined by pairwise relation with A;(uy, v;) =
1if eithero =0’ ore = ¢’ for u; = (v,e),0; = (v",€’) € V).

The construction of the line expansion follows the neighborhood
aggregation mechanism. For graph node representation learning,
researchers [14, 26] encode local structure by aggregating informa-
tion from a node’s immediate neighborhood. In line expansion, we
view the incidence of vertex-hyperedge as a whole and generalize
the “neighborhood” concept by defining that two line nodes are
neighbors when they contain the same vertex (vertex similarity) or the
same hyperedge (edge similarity). We argue that the line expansion
consequently preserves higher-order associations.

3.3 Entity Projection

In this section, we define the projection and back-projection matri-
ces for hypergraph entities (i.e., vertices and hyperedges) between
the topological map from Gg = (V,8E) to G; = (V1,&;). In Gy,
each line node (v, e) could be viewed as a vertex with hyperedge
context or a hyperedge with vertex context. In a word, the line
expansion creates information linkage in the higher-order space.

Vertex Projection Matrix. To scatter the information, a vertex
v € V from the original hypergraph Gg is mapped to a set of line
nodes {v; = (v,e) : e € &} C V; in the induced graph G;. We
introduce the vertex projection matrix Pyerrex € {0, 1}|‘Vz X1V,

1 if the vertex part of v; is o,

. @

Pyertex(v),0) = { otherwise

where each entry indicates whether the line node contains the
vertex.

To re-obtain the information of a vertex v in Gy, we aggregate
a set of line nodes in G; who shares the same vertex, for example
v; = (v, €). Since each line node v; = (v, e) contains the edge context,
we consider using the reciprocal of edge size, i.e., ﬁ or ﬁ (check
the definition of §(-) and | - | in Section 2.1), as the weights for
aggregating the line nodes, such that if §(e) is smaller (meaning
that v is important under the context of e), the corresponding line
node (v, e) will contribute more to the aggregation.

Vertex Back-projection Matrix. With this intuition, we fuse the

higher-order information by defining the vertex back-projection
e RIVIXIVI

. ’
matrix Py, ;..

1
5 [P
) if v is the vertex part of vy,

Z(v,e’)e(vl ﬁ
0

’
Poertex (v,9) =

otherwise.
®)
Similarly, we could also design edge projection and back-projection
i [ViIx|E] ’ |EX| V2]
matrices, Pegge € R and P dge € R , to exchange
information from edges in Gy to line nodes in G;.



CIKM 22, October 17-21, 2022, Atlanta, GA, USA

In fact, the uniqueness of topological inverse mapping from G;
to Gy is guaranteed by Theorem 1, where the complete information
of vertex v € V is re-obtained by aggregating all the distributed
parts (v,-) € V) from G.

THEOREM 1. From the line expansion graph, we can uniquely
recover the original hypergraph. Formally, the mapping ¢ from hy-
pergraph to line expansion (i.e., ¢ : Gg — Gy) is bijective.

3.4 Additional Properties of Line Expansion

In this section, we discuss additional properties of line expansion
(LE). First, we present an observation between characteristic ma-
trices from Gp and G;. Then, we connect our line expansion with
the line graph from graph theory, based on which, some sound
properties could be derived.

OBSERVATION 1. Let H be the incidence matrix of a hypergraph
GH. Dy and D, are the vertex and hyperedge degree matrices. Let
Pyertex and Pedge be the vertex and edge projection matrix, respec-
tively. Ay is the adjacency matrix of line expansion G;. Let H, =
[Poertex Peage| € {0, HVIXUVIHED it satisfies the following
equations,

D, H
HIH, = |7 De], @
H,H =2[+A;. (5)

In Observation 1, the left hand of both Eqn. (4) and Eqn. (5) are the
projection matrices, and the right hand of these two equations are
information respectively from the hypergraph and its line expansion.
Essentially, these equations quantify the transition from Gp to G.
For Eqn. (5), we are interested in the product of H,H;, leading to
two orders of self-loop, which would be useful in the analytical
aspects of line expansion (in Section 7.2).

THEOREM 2. For a hypergraph, its line expansion G is isomorphic
to the line graph of its star expansion L(Gs), where L(-) is a line
graph notation from graph theory.

Theorem 2 is the foundation of Theorem 1, which provides a
theoretical interpretation and enriches our expansion with sound
graph theoretical properties (readers could refer to line graph theory
[11]). That is why we name our formulation “line expansion”. Note
that the line expansion is significantly different from the “line graph
of hypergraph” discussed in [4, 6]. Instead, our line expansion is
the line graph of the star expansion. Thus, the proof of Theorem 2
is naturally established by the construction of line expansion.

Based on Theorem 2, we know that G; is homogeneous and has
the same connectivity with Gg. The number of new edges in G;
could be calculated as |&;| = Z”d(v)gd(v)fl) + Ze 5(6)55(6)71) and

line nodes as |V;| = M. In the worse case, for a fully-

connected k-regular hypergraph (k < |V|), |'V}| = ©(k|&E]|) and
[E1] = 6( kz—z |E1%), where © is the big Theta notation for the tightest
bound. However, many real hypergraphs are indeed sparse (e.g.,
degrees of vertices and hyperedges follow long-tailed distribution
[30], most of them have degree one, |'V| < |E] or |E] < |V]),
so that the scale could usually reduce to |V}| = @(m) and
&1l = o(VIIED.
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4 HYPERGRAPH REPRESENTATION
LEARNING

Transductive learning on graphs is successful due to the fast local-
ization and neighbor aggregation [14, 26, 42]. It is easy to define
the information propagation pattern upon simple structures. For
real-world cases, relationships among objects are usually more com-
plex than pairwise. Therefore, to apply these algorithms, we need
a succinct informative structure of the higher order relations.
Shown in Section 3, the bijective map from Gy = (V,&) to G; =
(V}, &;) equipped with four entity projectors (Pyerzex, P
Pedge > Pelzdge
graphs. With this powerful tool, it is possible to transfer the hyper-
graph learning problems into graph structures and address them by
using well-studied graph representation algorithms. Note that, this
work focuses on the generic hypergraphs without edge weights.

’
vertex’

) fills the conceptual gap between hypergraphs and

4.1 Hypergraph Learning with Line Expansion

In this section, we generalize graph convolution networks (GCNs)
[26] to hypergraphs and introduce a new learning algorithm defined
on line expansion for hypergraph representation. Note that, on our
proposed structure, other graph representation algorithms could
be migrated similarly [22, 36, 41, 42].

4.1.1 Overall Pipeline. To address the transductive node classifi-
cation problems on hypergraphs, we organize the pipeline of our
proposed model as the following three steps.

e STEP1: vertices of the hypergraph is mapped to line nodes in the
induced graph. Specifically, we use the proposed vertex projection
matrix Pyertex to conduct feature mapping.

STEP2: we apply deep graph learning algorithms (e.g., GCNs) to
learn the representation for each line node.

STEP3: the learned representation is fused by the vertex back-
projection matrix P, ... in an inverse edge degree manner. The
vertex labels are predicted on the fused representation.

4.2 Convolution on Line Expansion

STEP 1: Feature Projection. Given the initial feature matrix X €
RIVIxdi (d; is input dimension) from Gy = (V, &), we transform
it into the features in G; = (V}, &;) by vertex projector Pyerrex,

HO = PoertexX € RIVilxd:, (6)

H(® s the initial node feature of the induced graph. This projection
essentially scatters features from vertex of Gy to feature vectors
of line nodes in G;. In line expansion (LE), a line node could be
adjacent to another line nodes that contain the same vertex (vertex
similarity) or the same hyperedge (edge similarity).

STEP 2: Convolution Layer. We then apply neighborhood feature
aggregation by graph convolution. By incorporating information
from both vertex-similar neighbors and hyperedge-similar neigh-
bors, the graph convolution is defined as (k = 0,1, ..., K),

(k+1) _ (k) oK) (k) o)
h - Z wehy,), 0% + Z wohi,) 0] (@)
4 v

(ve)

where hEI;)e) denotes the feature representation of line node (v, e)
in the k-th layer, o(-) is a non-linear activation function like ReLU
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[26] or LeakyReLU [42]. ) is the transformation parameters for
layer k. Two hyper-parameters wy, we are employed to balance
vertex similarity and edge similarity. Specifically, in Eqn. (7), the
first term (i.e., 3¢ WehEI;)e,)) convolves information from neighbors
who share the same hyperedges, whereas the second term (ie.,
(k)
v Woh

(v.e)
the same vertices.
Eqn. (7) can be written in matrix version by using the parame-

terized adjacency matrix(In experiment, we use the wy = we = 1),

) convolves information from neighbors who share

we u=(ve), vy=(0,¢), 0=0,
Aj(upo) =4 wo  up=(vye), vy=(0',¢'), e=¢, (8)
0 otherwise,

and adopt the renormalized trick [26] with the adjustment two-
SO VRV | .
orders of self-loop: 21 + Dl_%AlDl_% — D; 2A;D; ? (here, A} =
2I+Ajand Dy = 2 Aj(;j))- Eqn. (7) can be re-written as,
SO VR |

H*D = 5 (D, 24D, 2HPe® | k=0,1,....K. (9

In real practice, we do not bother to calculate the adjacency A;
directly. An efficient trick is to use Eqn. (5).

STEP 3: Representation Back-projection. After K layers, HK)
is the final node representation on the induced graph, from which
we could derive fused representation for vertices in Gpy. Specifically,

we use the back-projector P, ., .,

Y=P,, HE cRrlVxd,

vertex (10)
where d, is the dimension of output representation. Note that, in
this work, we focus on the node classification task. However, due to
the symmetry of vertex and edge, this work also sheds some light
on the applications of learning hyper-edges (e.g., relation mining)
by using P.gge. Pédge. We leave it to future work.

In sum, the complexity of 1-layer convolution is of O(|&;|d;d,),
since the convolution operation could be efficiently implemented

as the product of a sparse matrix with a dense matrix.

4.3 Unifying Hypergraph Expansion

As discussed in Section 3.1, for hypergraphs, common practices of-
ten collapse the higher order structure into simple graph structures
by attaching weights on edges, and then the vertex operators are
solely applied onto the remaining topology. Therefore, the inter-
changeable and complementary nature between nodes and edges
are generally missing [31].

THEOREM 3. Line expansion is a generalization of clique expansion
and star expansion. The convolution operator on LE is a generalization
of simple graph convolution.

In this work, instead of designing a local vertex-to-vertex op-
erator [3, 17, 48, 49], we treat the vertex-hyperedge relation as a
whole. Therefore, the neighborhood convolution on line expansion
is equivalent to exchanging information simultaneously across ver-
tices and hyperedges. Our proposed line expansion (LE) is powerful
in that it unifies clique and star expansions, as well as simple graph
cases, stated in Theorem 3. We formulate different hypergraph
expansions and provide the proof in Section 7.2.
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4.4 Acceleration: Neighborhood Sampling

For practical usage, we further accelerate the proposed model by
neighborhood sampling. As is mentioned, the runtime complexity
of our model is proportional to the number of connected edges,
|&;l, of line expansion. Real-world hypergraphs are usually sparse,
however, most of them often have vertices with large degrees, which
would probably lead to a large or dense line expansion substructure.

On simple graphs, [21] proposes neighbor sampling for high-
degree vertices, which randomly samples a few neighbors to ap-
proximate the aggregation of all neighbors through an unbiased
estimator. This paper adopts neighborhood sampling techniques
to hypergraph regime and mitigates the potential computational
problems in real applications. Since our graph convolution involves
both vertex similarity and edge similarity information, we design
two threshold, §, and J,, for two neighboring sets, separately.

We use NE(v, e) to denote the hyperedge neighbor set of line
node (v, e). Essentially, NE(v, e) contains line nodes with same hy-
peredge context e. Similarly, we use Ny (v, e) as the vertex neighbor
set, which contains line nodes with v as the vertex part. For a line
node with high “edge degree’, i.e., [Ng (v, €)| > d¢, we would ran-
domly sample &, elements from Ng (v, e) to approximate the overall
hyperedge neighboring information. Specifically, the first term in

Eqn. (7), ie, Xe wehglz’)e,), is approximated by,

i=5,
(k) _ INg(v @) (k)

D ek = 5 D, wehipuy (D)

e i=1: e;~NE(v.e)

Similarly, when [Ny (v, e)| > &y, we would sample §, elements
from Ny (v, e) for the convolution,
i=5,

W AL

k) _ INv(ve)l
Zwvh(v,’e) R o (12

o 2 i=1: v;~Nv (v,e)
In sum, by adopting the neighbor sampling into hypergraphs, we
could effectively reduce the receptive field and prevent the computa-
tional problem incurred by high-degree vertices. In the experiments,
we empirically show that the running time of our model is compa-
rable to state of the art baselines after sampling.

5 EXPERIMENTS

We comprehensively evaluated the proposed line expansion (LE)
with the following experiments and released the implementations!:
o Real-world hypergraph node classification.

e Special case: simple graph node classification.

e Ablation study on the choice of w, and wy.

We name our proposed hypergraph learning approach as LEgen.

5.1 Hypergraph Node Classification

The main experiment is demonstrated on five real-world hyper-
graphs with four traditional and four SOTA hypergraph learning
methods. The metric is classification accuracy.

Hypergraph Datasets. The first dataset 20Newsgroups contains
16,242 articles with binary occurrence values of 100 words. Each
word is regarded as a hyperedge and the news articles are vertices.

!https://github.com/ycq091044/LEGCN
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Table 1: Statistics of Hypergraph Datasets

Dataset Vertices Hyperedges Features Class Labelrate Training/ Validation / Test
20News 16,242 100 100 4 0.025 400/7,921/ 7,921
Mushroom 8,124 112 112 2 0.006 50/ 4,062 / 4,062
Zoo 101 42 17 7 0.650 66/~-/35
ModelNet40 12,311 12,321 2048 40 0.800 9,849 /1,231/ 1,231
NTU2012 2,012 2,012 2048 67 0.800 1,608 / 202 / 202

Table 2: Structural Complexity Comparison of Baselines and Line Expansion (before and after sampling)

Dataset ‘ * of the clique expansion graph ‘ * of its line expansion (before) ‘ * of its line expansion (after)
‘ Node Exp.edge Exp. density ‘ Line node Line edge Density ‘ Line node Line edge Density
20News 16,242 26,634,200 2.0e-1 64,363 34,426,427 1.6e-2 64,363 240,233 1.2e-4
Mushroom 8,124 6,964,876 2.1e-1 40,620 11,184,292 1.2e-2 40,620 81,532 9.9e-5
Zoo 101 5,050 1.0e-0 1,717 62,868 4.3e-2 1,717 16,171 1.1e-2
ModelNet40 | 12,311 68,944 9.1e-4 61,555 317,083 1.7e-4 61,555 310,767 1.6e-4
NTU2012 2,012 10,013 4.9e-3 10,060 48,561 9.6e-4 10,060 48,561 9.6e-4

Exp. edge is given by the clique expansion, and Exp. density is computed by 2|E|/|V|(|V| - 1) [13].

The next two datasets are from the UCI Categorical Machine Learn-
ing Repository [16]: Mushroom, Zoo. For these two, a hyperedge is
created by all data points which have the same value of categorical
features. We follow the same setting from [23] for 20Newsgroups,
Mushroom, Zoo (which does not have validate set due to the small
scale). Other two are from computer vision/graphics area: Princeton
CAD ModelNet40 [44] and National Taiwan University (NTU) 3D
dataset [8]. Though semi-supervised learning usually requires a
small training set, we copy the same settings from the original pa-
per [17] and use 80% of the data as training and the remaining 20%
is split into validation and test. The construction of hypergraphs
also follows [17]. Each CAD model is regarded as a vertex. The for-
mation of hyperedges is by applying MVCNN [39] on CAD models
and then for each model, we assume that its 10 nearest models form
a hyperedge. The initial vertex features are given by GVCNN repre-
sentations [18]. Basic statistics of datasets are reported in Table 1.
The graph structure of clique expansion, the line expansion before
and after neighbor sampling are reported in Table 2.

Baselines. We select the following baselines.

o Logistic Regression (LR) works as a standard baseline, which only
uses independent feature information.

Cliqueg - and Stargen are developed by applying GCN on the
clique or star expansions of the hypergraphs.

H-NCut [49], equivalent to iH-NCut [28] with uniform hyperedge
cost, is a generalized spectral method for hypergraphs. This paper
considers H-NCut as another baseline.

LHCN [4] considers the concept of line graph of a hypergraph,
however, it irreversibly transforms into a weighted graph.
Hyper-Conv [3] and HGNN [17] are two recent models, which
uses hypergraph Laplacians to build the convolution operators.
HyperGCN [46] approximates each hyperedge by a set of pairwise
edges connecting the vertices of the hyperedge.

Experimental Setting. In the experiment, we set w, = we = 1 for
our model (computation of the adjacency matrix is by Eqn. (5)). All
hyperparameters are selected: GCN with 2 hidden layers and 32
units, 50 as training epochs, §; = §2 = 30 as sampling thresholds,
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Adam as the optimizer, 2e~3 as learning rate, 5¢~> as weight decay,
0.5 as dropout rate, and 1.5¢~3 as the weight for L, regularizer.
Note that hyperparameters might vary for different datasets, and
we specify the configurations per dataset in code appendix. All the
experiments are conducted 5 times (to calculate mean and standard
deviation) with PyTorch 1.4.0 and mainly finished in a 18.04 LTS
Linux server with 64GB memory, 32 CPUs and 4 GTX-2080 GPUs.

Result Analysis. As shown in Table 3, overall our model beat SOTA
methods on all datasets consistently. Basically, every model works
better than LR, which means transductive feature sharing helps
in the prediction. The performances of traditional Cliques-p and
Stargen are not as good as SOTA hypergraph learning baselines.
H-Ncut method depends on linear matrix factorization and it also
cannot beat graph convolution methods, which are more robust
and effective with non-linearity. The remaining four are all graph
based deep learning methods, and in essence, they approximate the
original hypergraph as a weighted graph and then utilize vertex
functions on the flattened graph. The result shows that Our LEgcn
is more effective in terms of learning representation and could beat
them by 2% consistently over all datasets.

Discussion of Complexity. We also report the running time com-
parison in Table 3, which already include the neighbor sampling
time in our model. Basically, our model is also efficient compared
to some state-of-the-arts, especially on 20News, ModelNet40 and
NTU2012, which demonstrates that neighbor sampling does make
our proposed model less expensive. Let us investigate this in depth.
SOTA hypergraph baselines operate on a flattened hypergraph
(identical to clique expansion) with designed edge weights. We
calculate the number of edges and density for them, denoted as Exp.
edge and Exp. density. As shown in Table 2, we find that the scale
of line expansion before sampling is within 5 times of the flattened
topology, except for Zoo (flattened topology is a complete graph).
However, after sampling the neighbors, line expansion structure
has been significantly simplified, and we could also observe that for
most of the datasets, the density of the LE graph is much smaller
(~ ﬁ) than the flattened clique expansion graph.
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Table 3: Accuracy and Running Time Comparison on Real-world Hypergraphs (%)

Model ‘ 20News Mushroom Zoo ModelNet40 NTU2012

LR 729 £ 0.7 81.6 £ 0.1 743 £ 0.0 59.0 +£ 2.8 375+ 2.1
Stargen 68.8 £ 0.4 91.8 £ 0.3 95.2 £ 0.0 90.0 £ 0.0 79.1 £ 0.0
CliqueGCN 69.0 £ 0.3 90.0 £ 0.6 948 £ 0.3 89.7 £ 0.4 78.9 £ 0.8
H-NCut [49] 72.8 £0.5 87.7 £ 0.2 87.3+£0.5 914 £ 1.1 74.8 £ 0.9
LHCN [4] 69.1+0.4(37.6s)  90.2+ 0.3 (184s)  55.8 +0.1(1.8s) 90.2 + 0.2 (145.1s)  79.9 + 0.5 (27.4s)
Hyper-Conv [3] | 73.1£0.7 (72.6s)  93.7 0.6 (10.6s)  93.1+23(0.8s) 91.1+0.8(63.1s)  79.4 + 1.3 (6.3s)
HGNN [17] 743 +0.2(74.2s)  93.1+0.5 (16.1s)  92.0 £ 2.8 (0.8s) 917 + 0.4 (61.0s)  80.0 = 0.7 (5.65)
HyperGCN [46] | 73.6 0.3 (147.8s) 923 +0.3(30.23s) 93.1+23 (1.1s) 914+ 0.9 (86.5s)  80.4 + 0.7 (9.7s)

LEgen

75.6 % 0.2 (38.65)

95.2 + 0.1 (18.95)

97.0 + 0.0 (2.85)

94.1 + 0.3 (85.95)

83.2 + 0.2 (9.95)

Table 4: Statistics of Citation Networks

Dataset ‘ Nodes Edges Features Class Labelrate
Cora 2,708 5,429 1,433 7 0.052

Citeseer 3,327 4,732 4,732 6 0.036

Pubmed | 19,717 44,338 500 3 0.003

5.2 Simple Graph Node Classification

Since simple graphs are a special case of hypergraphs, 2-regular
hypergraph, we apply line expansion to simple graphs to empiri-
cally verify our Theorem 3 and show that applying graph learning
algorithm on line expansion can achieve comparable results.

Datasets. Cora dataset has 2,708 vertices and 5.2% of them have
class labels. Nodes contain sparse bag-of-words feature vectors
and are connected by a list of citation links. Another two datasets,
Citeseer and Pubmed, are constructed similarly [38]. We follow the
setting from [47] and show statistics in Table 4.

Common Graph-based Methods. We consider the popular deep
end-to-end learning methods GCN [26] and well-known graph
representation methods SpectralClustering (SC) [33], Node2Vec
[20], DeepWalk [36] and LINE [41]. We first directly apply these
methods on the simple graphs. Then, we apply them on the line ex-
pansion of the simple graph, named LE ., for example, LE Noge2vec-
Note that, GCNs could input both features and the graph structure
(i.e., adjacency matrix), whereas other methods only use structural
information.

Result Analysis. The accuracy results of node classification for
three citation networks are shown in Table 5. The experiment
clearly demonstrates that LE shows comparable results in graph
node classification tasks. Specifically for those non-end-to-end
methods, they consistently outperform the original algorithm on
simple graphs. The reason might be that LE enriches the plain
structure by providing a finer-grained structure and makes nodes
edge-dependent, which might explain the improvement in structure-
based non-end-to-end models. End-to-end GCNs can reach a much
higher accuracy compared to other baselines. We observe that
LEGgcN tie with original GCN on the three datasets.

5.3 Ablation Study on on w, and w,
In this section, we conduct ablation studies on w, and we. Since

only the fraction 12 matters, we symmetrically choose %Z =
0, 0.1, 0.2, 0.5, 1, 2, 5, 10, o0 and calculate the test accuracy.

Table 5: Graph Node Classification Accuracy (%)

Model ‘ Cora Citeseer Pubmed
SC 533+0.2 50.8+0.7 552+04
Planetoid 75009 64.0+13 76.7+0.6
ICA 745+ 0.6 634+06 729+1.0
Node2Vec 663+03 46.2+0.7 71.6+05
DeepWalk 628 +0.6 457+12 634+04
LINE 27.7+1.1 30.8+0.2 535+0.8
GCN 826 +£0.7 705+03 78.2+0.6
LEsc 569 +0.2 50702 71.9+0.7
LEplaneroid | 76.6 0.4 66.0+0.7 77.0 £ 0.2
LErca 727 +04 68.6+05 73307
LENodezVee | 743 £04 462+0.1 743 +04
LEDeepwalk | 683 £0.1 50.4+04 68.0+0.8
LELINE 517402 34905 57.5+0.3
LEGeN 823+05 704+03 78704

95 : ~ ;

90

—8— 20News —— Zoo —o— NTU2012

Mushroom —8— ModelNet40

85 1

80

Test Accuracy (%)

75 4

70

We /Wy

Figure 3: Ablation Study on %:

Figure 3 provides some intuitions on how to select proper wy,
and we in real hypergraph tasks. We can conclusion that these
hypergraphs have different sensitivities and preferences for w, and
wy. However, we do find all the curves follow a first-rise-and-then-
down pattern, meaning that it is beneficial to aggregate information
from both edge-similar and vertex-similar neighbors. Specifically,
we find that for hypergraphs with fewer hyperedges, e.g., 20News
and Mushroom, the peak appears before %Z = 1, and for hyper-
graphs with sufficient hyperedges, e.g., ModelNet40 and NTU2012,
the peak appears after %Z = 1. Therefore, one empirical guide for
practical usage is to set smaller w, when there are fewer hyperedges
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3 Ki3

Figure 4: The Exception of Whitney’s Theorem

and set larger we, vice versa. After all, using the binary version (i.e.,
We = Wy = 1) seems to be a simple and effective choice.

6 CONCLUSION AND FUTURE WORKS

In this paper, we proposed a new hypergraph transformation, Line
Expansion (LE), which can transform the hypergraph into simple ho-
mogeneous graph in an elegant way, without loss of any structure
information. With LE, we extend the graph convolution networks
(GCNis) to hypergraphs and show that the extended model outper-
forms strong baselines on five real-world datasets.

A possible future direction is to exploit the hypergraph sym-
metry and apply LE for edge learning in complex graphs. Another
interesting extension is to extend line expansion to directed graphs,
where the relations are not reciprocal. In future works, we will
further evaluate our model on large hypergraphs, such as DBLP or
Yelp, against recent two-stage type hypergraph learning baselines,
such as AllSet [9], which could be one limitation of the paper.

7 PROOFS
7.1 Proof of Theorem 1

First, we posit without proof that the hypergraph Gy has one-to-
one relation with its star expansion Gs. To prove the bijectivity
of mapping ¢ : Gy — Gj, we can instead prove the bijectivity
between G5 and Gj. Our proof will be based on the Whitney graph
isomorphism theorem [43] below.

THEOREM 4. (Whitney Graph Isomorphism Theorem.) Two con-
nected graphs are isomorphic if and only if their line graphs are
isomorphic, with a single exception: K3, the complete graph on three
vertices, and the complete bipartite graph K1 3, which are not isomor-
phic but both have K3 as their line graph.

DEFINITION 1. (Maximum Independent set.) A maximum inde-
pendent set is an independent node set (no two of which are adjacent)
of largest possible size for a given graph G.

Proor. For the star expansion of the hypergraph, it could be un-
connected when subsets of the vertices are only incident to subsets
of the hyperedges. In that case, we could consider the expansion
as a union of several disjoint connected components and apply the
proof on each component. Below, we mainly discuss the case when
Gs is connected.

The proof consists of two parts. First, we show that for the class of
star expansion graphs, Theorem 4 holds without exception. Second,
we show how to recover the star expansion Gs (equivalently, the
original hypergraph Gg) from G;.

First, for the exception in Whitney’s theorem, it is obvious that
K3 (in Figure 4) cannot be the star expansion of any hypergraph.
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(2)

(b)

Vs

Figure 5: The construction from G; to Gs

Therefore, for star expansion graphs (with is also a bipartite repre-
sentation of the hypergraph), Theorem 4 holds without exception.
Second, given a line graph topology, we know from Theorem 4
immediately that the original bipartite structure is unique. We now
provide a construction from Gj to Gs. Given a line graph structure,
we first find a maximum independent set (in Definition 1) and color
them in red (shown in Figure 5 (a)). [35] proves that the maximum
independent node could be found in polynomial time.

Since every vertex and every hyperedge from Gs spans a clique
in L(Gs), let us think about the line node in the induced graph
(which is Fig. 5.(b) here), which is potentially a vertex-hyperedge
pair. Therefore, each node (v, e) must be connected to exactly two
cliques: one spanned by vertex v and one spanned by hyperedge e.
Essentially, we try to project these cliques back to original vertex
or hyperedges in G;. In fact, for each colored node, we choose one
of two cliques connected to it so as to make sure: i) the selected
cliques have no intersections (there are two choices. In this case,
choose 1-edge cliques or 0-edge cliques) and ii) the set of cliques
cover all nodes in the topology, shown in Fig. 5 (b).

For any given line graph topology (of a star expansion graph),
we could always find the set of 1-edge cliques or the set of 0-edge
cliques that satisfies i) and ii), guaranteed by Definition 1. Con-
ceptually, due to the bipartite nature, one set will be the cliques
spanned by original hyperedges and another set will be the cliques
spanned by original vertices. Either will work for us. Note that the
set of 1-edge cliques also includes two size-1 clique, denoted as vy
and vs in Fig. 5 (b). They seem to only connect to one 1-edge clique,
i.e, e3 clique, however, they are actually size-1 cliques spanned by
the original vertices which belongs to only one hyperedge.

The recovery of the star expansion G is as follows: First, find a
maximum independent set. Second, choose the set of 1-edge clique
and transform each selected clique as a hyperedge. Then, the vertex
set is created two-folded: i) a clique with 0 on its edges is a vertex in
GH; ii) nodes only connected to one 1-edge clique are also vertices.
By the symmetry of hypergraph, the vertex set and the hyperedge
set can also be flipped, but the resulting topology is isomorphic. O

7.2 Proof of Theorem 3

We first formulate the clique, star and our line expansion adjacency
matrices and then show the unification evidence.

Clique and Star Expansion Adjacency. Given a hypergraph
Gy = (V, &), consider the clique expansion G, = (V, &;). For
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each pair (u,0) € &,

C(u’ U)
Ac(u,0) = W—, (13)
Vdc(u)\/dc(u)
where in standard clique expansion, we have,
we(u,0) = Z h(u, e)h(v,e), (14)
de(u) = Z h(u,e)(5(e) — 1). (15)

For the same hypergraph Gy = (V, &), star expansion gives
Gs = (Vs, Es). We adopt adjacency formulation from [1], formally,

h(u, e)h(v, e)
As( > ): .
o e;E 5(e)2 X e h(u, )X h(v,€)

Line Expansion Adjacency. To analyze the adjacency relation
on line expansion, we begin by introducing some notations. Let

(16)

us use hEI;)e) (in short, hK,) to denote the representation of line
node (v, e) € Vj at the k-th layer. The convolution operator on line

expansion, in main text Eqn. (7), can be presented,
k+1 _ We Der hﬁe’ + Wy Dy h]zj’e
Y we(d(v) — 1) + wy(8(e) = 1)
We augment Eqn. (17) by applying 2-order self-loops (mentioned
in Section 4.2), and it yields,
We Zer hE, +wo Ty HE,
wed(v) + wyd(e)

(17)

k+1 _
hve -

(18)

The above operator is defined on the induced graph, we equivalently
convert it into the hypergraph domain by back-projector P, .., ...
Formally, assume xllf as the converted representation for vertex u

in hypergraph, Eqn. (18) can be written as,

1 Wo X xi,+we Du xi
e (&) 56y S 5e) rwed ()
S hle) 5t

After organizing the equation, we calculate that for each hyper-
graph vertex pair (u,0) € V XV, they are adjacent by,

k+1 _
xu

(19)

wyh(u,.e)h(v,e)
Ay(u,0) = € 5(5)(Wv5(6)+‘fed<”)) ’ (20)
Ze h(u, e) m
or by the following form after symmetric re-normalization,
Le a(e)\/%5(e;:vziz,:i)h\(/u;ja(e)wuwed(u)
Ay(u,0) = . (1)

VZe h(w.0) 5oy [ Ze (0. 0) 515

Unifying Star and Clique Expansion. We start by considering
the clique expansion graph with weighting function,

B h(u, e)h(v, e)
w0 = 2 e -1

Note that this is equivalent to vanish Eqn. (14) by a factor of
We plug the value into Eqn. (15), then adjacency of clique

(22)

1
(8(e)-1)*"
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expansion transforms into,
h(u,e)h(v,e)
Ze (3(e)1)?
Ve h(w0) 5 Ze o0 53

Note that when we set w, = 0 (no message passing from hyperedge-
similar neighbors). The higher-order relation of line expansion, in
Eqn. (21) degrades into,

Ac(u,0) =

(23)

h(u,e)h(v,e)
Ze 5(e)?

JEe w0 5t e he. 05

Eqn. (24) is exactly the adjacency of star expansion in Eqn. (16), and
Eqn. (23) (adjacency of clique expansion) is the 1-order self-loop
form of the degraded line expansion.

A;(u,0) =

(24)

Unifying Simple Graph Adjacency. The convolution operator
[26] on a simple graph can be briefly present,

2Ze h(u,e)h(v, e)

Vdw)d@)

A graph could be regarded as a 2-regular hypergraph, where hy-
peredge e has exactly two vertices, i.e., §(e) = 2 and each pair of
vertices (u,0) € V XV has at most one common edge. Plugging
the value into Eqn. (24), and it yields,

Yeh(u,e)h(v,e)
2d(w)\d(o)

Comparing Eqn. (25) and (26), the only difference is a scaling factor
2, which could be absorbed into filter ©.

A(u,v) = (25)

Aj(u,0) = (26)

7.3 Proof of Observation 1

First, we have (use P, to denote Pyertex and P, for Pedge):

T P p,pP, P,P D H
II II — v P 0+ 0 v+e [
r Hr = PeT [ oF e] = PeTPv PeTPe] = [HT De] . (27)

where the last equality is easy to verify since i) P} P, implies the
vertex degree matrix, which is Dy, ii) P] P, implies the hyperedge
degree matrix, which is De; iii) P} P, implies the vertex-hyperedge
incidence, which is H.

For Eqn. (5), each row of H, is a 0/1 vector of size |'V|+|E| with
each dimension indicating a vertex or a hyperedge. Therefore, the
vector has exactly two 1s, which is due to that a line node contains
exactly one vertex and one hyperedge.

For the (i, j)-th entry of H,H]', it is calculated by the dot product
of row i (line node i) and row j (line node j) of H,. If i = j, then
this entry will be 2 (dot product of the same 0/1 vector with two
1s). If i # j, the result will be 0 if line node i and line node j has
no common vertex or hyperedge and be 1 if they share vertex or
hyperedge (the corresponding dimension gives 1 and 0 for other
dimensions, summing to 1). In sum, H,H]! is equal to the adjacency
A with 2-order self-loops, quantitatively,

HH =2[+A;. (28)
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