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Nonlinear Optical Spectroscopy is a well-developed field with theoretical and experimental advances that 
have benefited multiple disciplines, including chemistry, biology, and physics. However, for the accurate 
interpretation of the corresponding multi-dimensional spectra, there is a need for precise quantum 
dynamical simulations based on model Hamiltonians. In this article, we present the initial release 
of our code, QuDPy (Quantum Dynamics in Python), which provides a robust numerical platform for 
performing quantum dynamics simulations based on model systems, including open quantum systems. 
A distinguishing feature of our approach is the ability to specify various high-order optical response 
pathways in the form of double-sided Feynman diagrams through a straightforward input syntax. This 
syntax outlines the time-ordering of ket-sided or bra-sided optical interactions acting on the time-
evolving density matrix of the system. We utilize the quantum dynamics capabilities of QuTip to simulate 
the spectral response of complex systems, allowing us to compute virtually any n-th order optical 
response of the model system. To illustrate the utility of our approach, we provide a series of example 
calculations.

Program summary
Program Title: QuDPy
CPC Library link to program files: https://doi .org /10 .17632 /5xm9pm24cz .1
Developer’s repository link: https://github .com /sa -shah /QuDPy
Licensing provisions: MIT License
Programming language: Python (v3.7)
Supplementary material: Available as Google Colab Files.

Example 1: https://tinyurl .com /y3j5jmmr
Example 2: https://tinyurl .com /37vwntn5

External packages:

• QuTip (v.4.7) and dependencies i.e. Numpy, Matplotlib (https://qutip .org/)
• UFSS Automatic Diagram Generator (https://github .com /peterarose /ufss)

Nature of problem: Accurate quantum simulations of complex systems are required in order to understand 
and interpret multi-dimensional ultrafast spectroscopic signals. This code provides an open-source/multi-
platform method that facilitates the generation of higher-order non-linear optical responses for an 
arbitrary molecular or material system given a model input Hamiltonian and bath model.
Solution method: We use the double-sided Feynman diagram method [1, 2] to generate (symbolically) 
a set of response functions corresponding to the nth order non-linear response of the system to a 
series of laser pulses using the UFSS package [3] We then perform a series of accurate quantum 
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dynamics calculations using the QuTip package [4] to generate the numerical response and spectra which 
correspond to specific experimental conditions.
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1. Introduction

Nonlinear, ultrafast spectroscopy has emerged as a powerful ex-
perimental tool for probing coherent, light-induced processes in 
the condensed phase [1–6]. This technique prepares a sequence of 
ultra-narrow (in time) optical pulses with specific phase-matching 
conditions that induce a macroscopic polarization response. This 
polarization is directly linked to the time evolution of the sample 
under investigation. By varying the time intervals between phase-
matched pulses, a multi-dimensional map correlating absorption 
at one time with emission at a later time can be developed. Com-
paring the experimental signals against robust theoretical models 
offers tremendous insight into the inner quantum dynamics of a 
complex system.

The field is mature, with two textbook-level works generally 
considered introductions [7,8]. However, setting up and performing 
accurate quantum simulations of complex systems and interact-
ing with the thermal environment has largely been the domain 
of theoretical groups. Consequently, the community lacks a univer-
sal, portable code for conducting such simulations. We present our 
implementation of a general platform for computing the ultrafast 
optical response for a generalized system that can be described 
as a model Hamiltonian in contact with a dissipative environ-
ment. Our platform can simulate various molecular and condensed 
matter systems with finite-dimensional model Hamiltonians. These 
Hamiltonians can represent physical and chemical systems where 
the Hilbert space of interest is finite-dimensional, and all other de-
grees of freedom constitute a bath for this subsystem. Examples 
include quasi-particles in condensed matter and chemical systems 
such as phonons, excitons, polaritons, polarons, etc. The platform 
offers simulation capabilities across a broad spectral range (from 
NMR to UV-Vis), encompassing various electronic, vibrational, and 
rotational transitions. Our code, written in Python 3, leverages the 
open-source QuTip quantum simulation package [9]. It provides 
users a straightforward way to automatically generate and com-
pute non-linear responses, as specified by a double-sided Feynman 
diagram given as input. The double-sided diagrams are created us-
ing the Automatic Feynman Diagram Generator within the UFSS 
package, tailored to the desired phase-matching or phase-cycling 
condition [10,11].

Our code simulates the non-linear optical responses in the im-
pulsive regime, which applies to many ultra-fast optics experi-
ments in which pulse overlap is low or non-existent and the sam-
ple dynamics under study are slow compared to the pulse duration 
[12–14]. These settings are experimentally advantageous as the ad-
ditional light-matter interaction due to pulse overlap can occlude 
the signal of interest. Such scenarios require pulse delays that are 
larger than the temporal width of the pulses used [7,8,12–14].

A typical nonlinear experiment in the visible spectral range 
uses femtosecond pulses that cover a wavelength range of several 
nanometers in the spectral domain. Under these conditions, the 
experiment can be theoretically modeled with infinitely narrow (δ-
function) pulses. An additional approximation in this approach is 

the dipolar treatment of light-matter interaction; although limit-
ing, it is a staple in multiple nonlinear spectroscopies.

Aside from various home-grown codes localized to various re-
search groups, there are a few codes that are available to the 
community. The Spectron/iSpectron code developed by Mukamel’s 
group provides spectral calculations via two methods. First, through 
the average amplitudes of Liouville pathways and cumulant expan-
sion of Gaussian fluctuations in reference eigen-energies; second, 
with molecular configuration-specific Green’s function expressions 
[15]. On the other hand, the Ultrafast Spectroscopy Suite (UFSS) 
by Rose and Krich obtains nonlinear spectroscopic signatures (for 
both closed and open quantum systems with finite-dimensional 
Hilbert space) via perturbative expansion of the wavefunction, and 
conversion of light-matter interaction with subsequent evolution 
into a convolution problem with appropriately designed opera-
tors. Their method takes into account the temporal profiles of the 
laser pulses. This results in reduced computational cost for simu-
lation, especially in the case of temporal overlap between different 
laser pulses. Additionally, the suite provides automatic generation 
of double-sided Feynman diagrams that has been utilized in this 
work [10,11]. Briefly, our approach differentiates itself from these 
packages by computing the direct evolution of the density matrix 
for the system with intermittent projection with light-matter in-
teraction defining and guiding specific Liouville-space pathways.

We begin with a general overview of the theory of multi-
dimensional spectroscopy, its implementation in our code, and de-
scribe its installation and required components. We then present a 
few model calculations showing how one can set up, compute, and 
interpret the results. We intend that the code provides a robust 
and adaptable platform for both theory and experimental groups 
working in this area. To maintain the article’s brevity, the com-
plete code for these simulations is available in Examples 1 and 2 
on the Google Colab platform, and the input parameters for various 
functions and methods in the package are thoroughly explained in 
the Appendix.

2. Theoretical background and description of the algorithm

In any spectroscopic experiment, one ultimately is measuring a 
macroscopic polarization of the sample as induced by an incident 
applied electric field and one can express the polarization in terms 
of powers of the electric field "E

"P = εo

(
χ (1) · "E + χ (2) · "E · "E + χ (3) · "E · "E · "E + · · ·

)
(1)

where χ (n) are susceptibilities. Since the electric field is a vector, 
the various susceptibilities are tensors that encode both the ampli-
tude and the electric field polarization of the nonlinear response. 
However, our current implementation discards the electric field 
polarization dependence of the non-linear response, focusing only 
on the overall amplitude of each non-linear term as represented 
by the dipolar light-matter interaction (discussed below). Such as-
sumptions can be related to polarization-insensitive experiments, 
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where the input and output pulses’ electric field polarizations are 
not controlled/monitored. For polarization control/sensitivity ex-
periments, the current implementation is equivalent to an isotropic 
averaged response over all the input and output electric field po-
larizations.

In isotropic media with inversion symmetry, the polarization 
must change sign when the optical electric fields are reversed. 
Consequently, all the even-order terms vanish and the 3rd order 
term is the lowest-order non-linearity. Under the dipole approx-
imation in light-matter interaction, the observed polarizability is 
calculated by taking the expectation value of the quantum dipole 
operator:

P (t) = Tr(µρ(t)) = 〈µρ(t)〉 (2)

where ρ(t) is the quantum density matrix for the system which 
has evolved under the influence of the external optical fields. This, 
too, can be expanded in powers of the electric field as

P (t) =
∞∑

n=1

P (n)(t) (3)

Each of the terms in this series can be computed within the con-
text of time-dependent perturbation theory by assuming that the 
applied field interacts with the system at times τ1 < τ2 < · · ·τn . 
The resulting expression takes the form of a series of nested time 
integrals and commutation operations,

P (n)(t) =
t∫

−∞
dτn

τn∫

−∞
dτn−1 · · ·

τ2∫

−∞
dτ1 E(τn)E(τn−1) · · · E(τ1)

× S(n)(1,2 · · · ,n), (4)

where S(n)(1, 2 · · · , n) is the susceptibility given as a series of in-
teractions with the dipole operator µ̂ interspersed by propagation 
under the Liouville super-operator representing the system dynam-
ics,

S(n)(1,2 · · · ,n) = χ (n) =
(

− i
h̄

)n

〈µ̂(n)eiLtn [µ̂(n − 1),

· · · eiLt2 [µ̂(2), eiLt1 [µ̂(1),ρ(0)]]]〉 (5)

Note that we have indexed each interaction with the light field by 
the order in which it appears in the time sequence,

τ1 = 0

t1 = τ2 − τ1

t2 = τ3 − τ2

...

tn = t − τn

and reflects the specific timing of the experimental laser pulses. 
This is defined for all positive times tn . The susceptibility can be 
written as

S(n)(1,2 · · · ,n) =
(

− i
h̄

)n ∑

i

R(n)
i (6)

where each R(n)
i is a pathway obtained by the expansion of the 

nested commutators. One obtains 2n terms since the dipole op-
erator can act either on the left-side or right-side of the density 
matrix. However, each term is paired with its complex conjugate, 

giving 2n−1 unique terms. Further, for an nth order non-linear re-
sponse, the electric field itself is composed of n pulses,

E(t) =
n∑

i=1

Ei(t)(e−iωt+"k·"r + e+iωt−"k·"r), (7)

such that the simplest 3rd order expression contains 6 ×6 ×6 ×4 =
864 possible terms. However, most of these terms either vanish 
or are equivalent. Within the field of ultrafast spectroscopy, these 
terms are commonly expressed in a diagrammatic representation 
whereby propagation in time is represented as a vertical line and 
interactions via the density matrix are incoming or outgoing ar-
rows [7,8]. The last interaction, which is not within the nested 
commutators represent an outgoing field. The wavevector and fre-
quency of this field comply with the conservation of momentum 
and energy from previous interactions, resulting in phase-matching 
and phase-cycling conditions; such that the final wavevector is the 
sum of wavevectors from all previous interactions and can distin-
guish rephasing and non-rephasing pathways. Following the usual 
conventions in this field, one has a series of rules:

1. The two vertical lines represent the time evolution of the ket 
and bra sides of the density matrix with time running from 
the bottom to the top.

2. Interactions with the light field are represented as arrows en-
tering or leaving the diagram at specified times. Since the last 
interaction occurs outside the nested commutator, it is differ-
ent and is always represented as an outgoing (dashed) arrow.

3. Each diagram has a sign (−1)n where n is the number of in-
teractions on the right side of the diagram. Each right-hand 
side interaction carries a minus from the commutator bracket. 
The last interaction originates outside the bracket and does not 
contribute a sign.

4. An arrow pointing to the right represents an electric field with 
e−iωt+ikr while one pointing to the left represents an electric 
field with e+iωt−ikr . The emitted light (last outgoing arrow) 
has a frequency and wavevector given by the sum of the input 
frequencies and wavevectors.

5. Arrows pointing towards the system correspond to excitations 
of the system, while those pointing away are de-excitations.

6. The final trace operation requires that the system is in a pop-
ulation element after the last interaction. The population ele-
ment in this context is |n〉〈n| instead of a coherence element 
of the density matrix, represented by |n〉〈m|.

7. By convention, we will show only diagrams with the last in-
teraction emitting from the ket (i.e., the left side).

The picture that emerges is that at time τ1 = 0, the system 
interacts (from the left or right) with the impinging laser field, 
which projects a coherence within the system. For example, for a 
two-state system starting its ground state with ρ(−∞) = |0〉〈0| we 
would have that ρ(0+) = (|1〉〈0| + |0〉〈1|). Each term now evolves 
under the Liouvillian for time t1 such that

ρ(t1) = eiLt1ρ(0+) (8)

At time t1, one has an interaction followed by a time evolution 
ti , until the last projection at time tn when the final signal is ob-
served. Since the projections can be on the right or on the left 
side of the density matrix, a given experiment can be thought of 
as a sum over all left and right side interactions. The diagram rules 
lead to four distinct 3rd order diagrams for a 2-level system and 
six for a 3-level system (for rephasing and non-rephasing signals 
or photon echo and virtual echo spectra). The first four are shown 
on the left in Fig. 1, whereas the additional two are shown on the 
right.
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Fig. 1. (Top Row) Rephasing double-sided diagrams for 3rd order response. In a rephasing experiment, the outgoing signal emerges at k = −k1 + k2 + k3. (Bottom Row) 
Non-rephasing double-sided diagrams for 3rd order response. In a non-rephasing experiment, the outgoing signal emerges at k = +k1 − k2 + k3. The numbering and notation 
of these diagrams follow the convention in Ref. [8].

Table 1
Summary of response types, operations, and syntax for a 3rd order coherent process 
corresponding to the diagrams shown in Fig. 1.

Interaction Diagrams

Response Type Action Input Syntax

R1(t1, t2, t3) [B+, K +, B, K ] ((‘Bu’,0),(‘Ku’,1),(‘Bd’,2))
R2(t1, t2, t3) [B+, B, K +, K ] ((‘Bu’,0),(‘Bd’,1),(‘Ku’,2))
R3(t1, t2, t3) [B+, K +, K +, K ] ((‘Bu’,0),(‘Ku’,1),(‘Ku’,2))
R4(t1, t2, t3) [K +, B+, B, K ] ((‘Ku’,0),(‘Bu’,1),(‘Bd’,2))
R5(t1, t2, t3) [K +, K , K +, K ] ((‘Ku’,0),(‘Kd’,1),(‘Ku’,2))
R6(t1, t2, t3) [K +, B+, K +, K ] ((‘Ku’,0),(‘Bu’,1),(‘Ku’,2))

For computational purposes, any diagram can be compactly rep-
resented as a time-ordered list of left or right-side operations such 
as where K + and K denote an excitation and a de-excitation on 
the left (i.e., on the ket), respectively. Similarly, B+ and B de-
note a de-excitation and an excitation on the right (i.e., on the 
bra), respectively. Following the convention introduced by Auto-
matic Feynman Diagram Generator, in QuDPy, these interactions 
are encoded by ‘Ku’ and ‘Kd’ for K + and K ; similarly, B+ and 
B are represented by ‘Bu’ and ‘Bd’, respectively [10,11]. Table 1
summarizes 6 possible response functions for a coherent 3rd or-
der process with their equivalent actions and corresponding QuDPy 
syntax. Notice that the last interaction is not indicated in QuDPy 
syntax since it always corresponds to a ket-side de-excitation op-
eration by convention.

Note, although only odd-order terms contribute to the polar-
ization in isotropic media, one can also consider interactions that 
are even-order with respect to the density matrix by measuring 
the photoluminescence (PL) rather than the polarization. Here, we 
assume that the final signal is proportional to the relatively slow, 
spontaneous emission of light from an excited population state (in 
contrast to the radiated signals arising from off-diagonal coherence 
elements |n〉〈m| in odd-order spectroscopies) [16]. In this scenario, 

Fig. 2. An example of a 4-th order rephasing diagram for an excited-state emission 
process specified by ((‘Bu’,0),(‘Ku’,1),(‘Bd’,2),(‘Bu’,3)).

one can use a 4-pulse sequence as sketched in Fig. 2, in which the 
out-going PL reflects the excited state population vis.

P L(r)
n (t) ∝ 〈n|ρ(r)(t)|n〉 (9)

where ρ(r)(t) is the rth order term in the perturbation expansion of 
the density matrix. This is one of a number of possible interaction 
pathways and can be input as

R1(0,1,2,3; t) = ((′Bu′,0), (′Ku′,1), (′Bd′,2), (′Bu′,3)) (10)

along with 4 times, {t1, t2, t3, t}, in which the t2 corresponds to the 
population waiting time. The last time t corresponds to the ob-
served PL. Additionally, in a comparable experiment, these terms 
can determine the photo-current generation, with the observed 
photocurrent being proportional to the population of the final ex-
cited state [17–20].
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Finally, once response elements (R’s) are obtained, the suscep-
tibility can be computed by summation of constitutive responses. 
Typically, one works in a state space in which the system Hamil-
tonian is purely diagonal and the interaction with the external 
laser field is treated as strictly non-diagonal perturbation. As an 
example, if we take the “system” to be a harmonic oscillator with 
Ho = h̄ω(a†a + 1/2) and the light-matter interaction to be medi-
ated by the dipole operator: µ̂ = µ(a + a†), one can immediately 
write down the various response functions in Table 1. For example,

R1(t1, t2, t3) = (−1)2µ4〈a(t3)a†(t1)ρ(−∞)a(t0)a†(t2)〉 (11)

in which a(t) is the harmonic oscillator destruction operator in the 
interaction representation, i.e. a(t) = eiωta. However, a generalized 
physical system is never this simple since the dipole operator can 
create transitions between multiple quantum states. Moreover, in-
teraction with the environment can induce loss of phase coherence 
and non-radiative relaxation processes that need to be accounted 
for in a generalized computational package.

With this in mind, our implementation uses the QuTiP 4.x pack-
age to handle all of the setup and propagation of the system vari-
ables [9]. Our approach assumes that one can write down the sys-
tem Hamiltonian and external coupling in terms of a standard set 
of quantum operators, such as the spin-matrices or harmonic oscil-
lator operators. This includes systems with time-dependent Hamil-
tonians, systems interacting with complex bath degrees of free-
dom, cavity QED, polaritons, and a wide variety of open-quantum 
systems. The current version of QuTip includes both Lindblad and 
Redfield equation integrators which are continuously improved 
upon to optimize both numerical efficiency and memory overhead. 
We present some of the main details on the methods and capabili-
ties for defining system Hamiltonians and system-bath interactions 
in the appendix and refer the interested reader to the thoroughly 
detailed documentation of the QuTip package [21].

Our implementation interrupts the QuTip mesolve() routine 
at the specified intervals performs the required projection, and 
then allows the propagation to continue. Rather than propagating 
the operators in the interaction representation, we propagate the 
density matrix in the Schrödinger representation and then act with 
the perturbation at specified times.

For example, to simulate the R1 rephasing diagram, we first 
define a quantum system Hamiltonian, H , and transform all system 
operators into a basis in which H is diagonal,

H̃ = e−S He+S

We then write the dipole operator (and all other operators for that 
matter) in the eigenbasis as

µ̃ = e−Sµe+S = µ̃+ + µ̃−,

where µ̃+(µ̃−) is the part of the transformed dipole operator that 
leads to a ket’s excitation (de-excitation) and vice-versa for a bra. 
This can be done analytically or numerically within QuTip. Simi-
larly, we define the initial density matrix, ρ(−∞), in the eigenba-
sis of H̃ . All the operators must be defined as quantum operators 
within the same Fock space. QuTip will return an error if all quan-
tum operators are not defined within the same Fock or Hilbert 
space.

QuTip provides an efficient implementation for including sys-
tem/bath interaction using either Redfield theory [22] or Lind-
blad theory [23]. Under the Lindblad approach, the density matrix 
evolves according to

d
dt

ρ = − i
h̄
[Hsys,ρ] +

∑

i

γi(LiρL†
i − 1

2

{
L†

i Li,ρ
}
) (12)

where {Li} is a set of orthonormal operators defined in the oper-
ator space of the system Hilbert space, and γi are real, positive 
rates associated with the bath fluctuations and dissipation. The 
curly brackets {·, ·} denote the anticommutator.

At t = 0, we apply the first projection and proceed to gener-
ate a specific Liouville-space trajectory by alternatively propagating 
and projecting. For example, the R1 diagram is specified with the 
QuDPy syntax as

((Bu,0), (K u,1), (Bd,2)).

We assume that the initial density matrix is stationary up until 
time t = 0, at which we apply the first interaction. In this case, it 
is a bra-side (right-side) excitation, corresponding to

ρ((Bu);0+) = (ρ(−∞)µ̃−).

This is not the full density matrix, simply one time-evolved contri-
bution following a sequence of steps through the Liouville space. 
The full-density matrix is a sum of all possible projections and 
propagations. Secondly, the interactions are local in time since we 
assume each pulse to be essentially a δ-function in time. This term 
is propagated under the system/bath Liouvillian operator, L, to 
time t1,

ρ((Bu); t1) = eiLt1ρ((Bu);0+) = eiLt1(ρ(−∞)µ̃−),

at which time we act again, in this case on the ket-side excitation 
with µ̃+:

ρ((Bu, K u); t+
1 ) = µ̃+ρ((Bu); t1) = µ̃+

(
eiLt1(ρ(−∞)µ̃−)

)
.

Again, this is propagated to time t1 + t2 at which time we act on 
the bra-side with a de-excitation:

ρ((Bu, K u, Bd); (t1 + t2)
+)

=
(

eiLt2
(
µ̃+eiLt1

(
ρ(−∞)µ̃−

)))
µ̃+. (13)

Finally, we propagate for the third time interval and act (on the 
ket-side) with the final de-excitation to produce the term con-
tributing to the full polarization signal. For the case at hand, we 
have

R1(t1, t2, t3) =
〈
µ̃−eiLt3

((
eiLt2

(
µ̃+eiLt1

(
ρ(−∞)µ̃−

)))
µ̃+

)〉
.

(14)

Similar expressions can be written for the other five response di-
agrams. Note, that if L carries an explicit time dependency, then 
each propagation step needs to be taken as a time-ordered opera-
tion.

Continuing with the example of 3rd order response, in a typ-
ical experiment, one scans the t1 and t3 intervals for a fixed t2
interval. Since during t2, the system is in a population state of 
the density matrix, t2 is referred to as the “population time”. One 
then performs a 2D Fourier transform with respect to t1 and t3 for 
a fixed population time. Generally speaking, the signal along the 
diagonal provides a correlation between the absorption and emis-
sion spectra of the system for a given population time, and the 
off-diagonal features correspond to the coherences between the 
states. Note that the off-diagonal coherence signal may connect 
both bright and dark (non-emissive) states. Fig. 3 gives a gen-
eral overview of the information that can be obtained via a 3rd 
order polarization measurement. In Fig. 3(a), the symmetric off-
diagonal features indicate that the two states (labeled |a〉 and |b〉) 
share a common ground state (|g〉). In Fig. 3(b) the absence of off-
diagonal features indicates that the states are decoupled, whereas 
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Fig. 3. Example of a 2D spectra of a system with two excited levels |a〉, |b〉 and a ground state |g〉. (a) The intensity spectrum is symmetric along the diagonal since the states 
share a common ground, (b) the states are decoupled, (c) coupling of the |b〉 and |a〉 leads to relaxation of |b〉 towards |a〉, which translates to an asymmetric amplitude of 
the off-diagonal peaks. Insets in (a-c) show the energy diagrams for corresponding mechanisms, and the transition frequencies are labeled by ω’s. (d-e) indicate the modulus 
of a rephasing 2D spectrum for an inhomogeneous system that consists of a collection of emitters, where, in (d) each resonant frequency is decoupled from the others 
and is schematically represented by a red circle. The homogeneous width of each emitter, represented by the size of the circle, is measurable along the anti-diagonal. (e) 
The total signal forms an elongated peak along the diagonal (inhomogeneous broadening). (f) Pulse sequence used to perform a multi-dimensional coherence spectroscopic 
measurement for obtaining 3rd-order polarization response. (Reprinted from Ref. [24].) (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

in Fig. 3(c) the asymmetry in the off-diagonal features are indica-
tive of dynamical evolution between two excited states. Moreover, 
the overall structure of the diagonal line shapes indicates the lo-
cal environment that each state samples. As seen in Fig. 3(d, e), 
inhomogeneous broadening along the diagonal arises from the sta-
tistical sampling of various local environments within the sample; 
whereas the elongation across the anti-diagonal results from the 
homogeneous broadening mechanisms. Consequently, this tech-
nique separates the homogeneous and inhomogeneous contribu-
tions to the overall line shape [2]. Consequently, one obtains a 
wealth of dynamical information regarding the inner workings of 
a quantum system through the use of coherent, multi-dimensional 
spectroscopy.

Our approach allows one to compute the quantum dynamics 
associated with an arbitrary model Hamiltonian using QuTip (v4) 
quantum optics package [9]. The QuTip package is robust, easy 
to use, and has developed a sizable user group spanning multi-
ple areas of atomic and molecular physics. We also incorporate a 
symbolic approach for determining the irreducible/non-vanishing 
double-sided Feynman diagrams [10], which provides a straight-
forward way to compute the 2D responses in the time domain. 
Additionally, our method leverages the efficient Fast-Fourier Trans-
form (FFT) capabilities in Numpy for efficient conversions to the 
frequency domain. Lastly, we note that our approach is not lim-
ited to 3rd-order non-linear responses. In principle, one can use 
our approach to simulate arbitrary order experiments with arbi-
trarily complicated system/bath Hamiltonians, limited only by the 
computational resources (and time) available to the user.

The disadvantage of our current implementation is that it as-
sumes the interaction with the external laser field is purely im-
pulsive, acting only at a single instant. However, this is not an 
extreme limitation since the experimental setups we are most in-
terested in studying, achieve this limit using temporally narrow 
pulses that span the entire spectral frequency range of the system. 
Additionally, the pulse overlap is often an experimentally undesir-
able situation that results in coherence spikes and the inclusion of 
additional diagrams in the signal of interest, a situation most ex-
periments tend to avoid [10,25]. Finally, it is fairly straight-forward 

Fig. 4. QuDPy structure, the subroutines are shown in red, and the functions are 
shown in purple.

to implement finite-sized pulses within our approach, we reserve 
this for future releases of our method.

3. Downloading and installation

QuDPy relies on only a few packages, namely QuTip for quan-
tum dynamics, UFSS for diagram generation, and supporting 
packages such as NumPy and Matplotlib. The QuDPy pack-
age can be installed with a simple command pip install 
qudpy==1.x.x where 1.x.x is the version number. The in-
stallation process automatically installs any required packages in 
case they are not installed. The online GitHub repository for the 
package can be found here (https://github .com /sa -shah /QuDPy).

QuDPy comprises two subroutines i.e., Classes and plot_
functions. The program’s structure is shown in Fig. 4. The de-
tails of methods and functions in the package (along with their 
input and output parameters) are provided in the Appendix.
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4. Example calculations

Before giving two worked examples, we give an overview of 
the typical workflow for using our approach. This section does not 
provide the complete code as it is documented in Examples 1 and 
2, available on Google Colab (links on the front page).

4.1. Typical workflow

A typical work-flow using our approach begins by defining the 
system Hamiltonian using the QuTip package and then initializ-
ing the diagram-generation code in UFSS using a desired phase-
matching/phase-cycling condition [10,11]. The diagram-generation 
step is formally agnostic of the system Hamiltonian at this point 
and these two initial steps can be easily swapped. Furthermore, 
the user can provide custom diagrams without invoking UFSS, pro-
vided the diagrams are in the format required by the UFSS routine.

The system setup can be accomplished using the System() 
command provided in the QuDPy package e.g. a custom system 
with Hamiltonian Hd, light-matter interaction operator A, dipole 
operator mud, collapse operator list c_ops and density matrix 
rho, can be created by

sys=System (H=Hd,
a=A ,
u=mud,
c_ops =[c1d , c2d , c3d , c4d ] ,
rho=rho )

This is provided as a utility routine for setting up the system and 
its associated quantum Fock space (that depends on the basis used 
to define Hamiltonian and interaction operator). We next provide 
two worked examples to illustrate how to use our code for per-
forming spectral simulations.

4.1.1. Inclusion of light-matter interaction in quantum evolution
In addition to the evolution under system bath interaction, the 

system also observes light-matter interaction in accordance with a 
given double-sided diagram. The Automatic Diagram Generator in 
UFSS generates the diagram for phase-matching or phase-cycling 
conditions. For example, consider the case of R(3)

1,2,3 in the phase 
matching direction −k1 + k2 + k3; the corresponding diagrams can 
be generated by:

import ufss
R3rd = ufss . DiagramGenerator ( )
R3rd . set_phase_discrimination ( [ ( 0 , 1 ) , ( 1 , 0 ) , ( 1 , 0 ) ] )
d = np . array ( [ 1 ] ) # a s s i g n i n g pulse durat ions
R3rd . e f ie ld_t imes = [d , d , d , d]
# S e t t i n g pulse de lays
time_ordered_diagrams_rephasing = R3rd . get_diagrams ([0 ,100 ,200 ,200])
[R3 , R1 , R2] = time_ordered_diagrams_rephasing
rephasing = [R1 , R2 , R3]

In the code above, each pulse is considered 1 fs long with pulse 
delays t1, t2, t3 of 100, 200, and 200 fs, respectively. (Note: these 
delays are arbitrary at this point and selected only to ensure non-
overlapping pulses.) The double-sided diagrams contain R1, R2, 
and R3. These diagrams then become inputs for calculating the 
spectral response with appropriate system evolution.

4.1.2. Imposing time gating for light-matter interactions
Given a system and a double-sided diagram, the density matrix 

evolves with the appropriate master equation until a light-matter 
interaction is encountered as dictated by the diagram. The cor-
responding raising or lower operation is applied from the left or 
right on the density matrix. Afterward, the density matrix becomes 
the initial density matrix for the next step of evolution under the 
same master equation as before till the next light-matter interac-
tion. This pattern is repeated for all light-matter interactions. For 

experimentally observable spectroscopic response, only the final 
state after the last light-matter interaction is important; however, 
states throughout the evolution can be saved for inspection.

4.1.3. 2D coherence
In a particularly useful experimental scheme, the coherence 

generated under different light-matter interactions in a double-
sided diagram is utilized to probe intra-material interactions spec-
troscopically. In this approach, two-time delays are tuned, while 
all others are fixed. The resulting final density matrices generate 
2D spectra by computing 〈µ〉. Experimental feasibility or the de-
sired spectroscopic frequency precision determines the scan range 
for adjustable time delays.

For example in R1, coherences are generated during time in-
tervals t1 and t3 (i.e. |0〉〈1| and |1〉〈0|). The set of final states in 
corresponding 2D coherence with a t1 and t3 range of 200 fs each 
and t2 fixed at 20 fs, can be generated by

sys1 = System ( ) .
t1 , t2 , t3 = (200 , 20 , 200)
statesR1 = sys1 . response2D_pop (R1 , t1 , t2 , t3 )

These can then generate spectra with in-built functions that com-
pute 〈µ〉 from these states.

4.2. Fourier transform and resolution in frequency domain

To generate high-resolution 2D coherence spectra, follow these 
guidelines for efficient utilization of computational resources:

• Increase time-domain resolution for a larger scanned fre-
quency range in the spectra.

• Use the maximum difference between eigenvalues of the sys-
tem Hamiltonian to estimate the minimum time-step via the 
Nyquist theorem for a faithful simulation. Note the step size 
must be small enough to support QuTip differential equation 
solvers (QuTip will output an appropriate warning otherwise).

• Select a large scan range for the time domain for improved 
frequency domain resolution.

• If the system loses coherence quickly, avoid additional sys-
tem evolution, as it would only result in smoothing spectral 
features. Instead, use smoothing functions while plotting the 
spectra.

• For inspection of system evolution and expectation values of 
important observables, utilize the diagram_donkey test run 
before committing to a full-scale simulation.

4.3. Example 1: excitation exchange coupling between chromophores

In the example which follows, we consider two coupled oscilla-
tors with Hamiltonian:

H/h̄ = ω1a†a + ω2b†b + J (a†b + b†a) (15)

Physically, this corresponds to a system composed of two chro-
mophores that can exchange quanta via the exchange coupling, J , 
which can be either positive or negative. The transition dipole op-
erator is the sum of the dipole operators for each oscillator,

µ̂ = µA(a + a†) + µB(b + b†). (16)

In this example, we also assume each oscillator is coupled to a 
thermal bath which relaxes each to a thermal population. This is a 
general model for a wide range of systems encountered in chemi-
cal physics.

The complete Python code for this model is provided in the 
Example 1 Jupyter notebooks on Google Colab. Once the system 
has been set up, we are ready to compute something and it is 
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Fig. 5. Results from diagram_donkey show the expectation values of system dipole 
(red dashed) and excitation number (blue solid) operators for a R1 diagram with a 
coherence time of 5 and 10 fs for the first and second coherence, and a population 
time of 5 fs. The results reveal the population relaxation and loss of coherence from 
system-bath interactions.

useful to examine the populations and coherences produced by the 
R1 diagram.

s t a t e s = sys . diagram_donkey ( [ 0 , 5 , 1 0 , 2 0 ] , [ R1 ] , r =10)

The pulse arrival times of 0, 5, 10, 20 fs and a resolution of 10 
steps per fs are selected arbitrarily to illustrate the functionality. 
This produces a plot showing the populations and coherences ver-
sus time as shown in Fig. 5. Notice that from time t = 0 to 5 
fs, the system evolves as a coherence |0〉〈1|, from 5 fs to 10 fs, 
the system is projected onto a population |1〉〈1| where it under-
goes non-radiative relaxation. As noted above, this time period is 
called the population time. At 10 fs, it is again projected onto a co-
herence, this time |1〉〈0| where it evolves for an additional 10 fs 
before being projected back down to the |0〉〈0| ground state. It is 
important to note that the coherences and populations are in the 
eigenbasis and not with regards to the primitive (pre-diagonalized) 
system.

A full simulation will involve independently scanning t1 and 
t3 for a fixed t2 population time. This is accomplished using 
coherence2d() routine as illustrated here.

time_delays = [100 , 5 , 100]
scan_id = [ 0 , 2]
r e s p o n s e _ l i s t = [ ]
states , t1 , t2 , dipole = sys . coherence2d (

time_delays , diagram , scan_id )
r e s p o n s e _ l i s t . append (np . imag ( dipole ) )

Here, we are first passing a series of time-delays t1, t2, and t3, a 
list of diagrams, and the indices of time delays that will be scanned 
e.g., 0 and 2. Further options include adjusting the temporal res-
olution for simulation and using parallel computing (if available); 
however, they are omitted from the current example for clarity. 
The selection of scan range in this example, although arbitrary, 
is typical of ultrafast femtosecond experiments, but it can be ad-
justed to the desired theoretical and practical requirements. This 
step typically requires the most computational effort since we re-
peat the time propagation to cover the specified temporal range 
with a fine-enough grid of points to resolve the spectral features. 
The calculations return, among other things, a 2D list of dipole 
operator expectation values for every choice of t1 and t3. This 
response list is the main ingredient required for calculating the 
observable spectra. We can now analyze the calculations and com-
pute the 2D spectra using the spectra() function as follows:

s p e c t r a _ l i s t , extent , f1 , f2 = sys . spectra ( res pons e_ l i s t )

Fig. 6 displays this example’s 2D spectra for a given t2 population 
time. The Fourier transform routine will return the full frequency 
range spanning both positive and negative frequencies; however, in 
the plots, only the fourth and first quadrants are shown for rephas-
ing and nonrephasing signals, respectively. Furthermore, the y-axis 
is inverted for the rephasing diagrams following the conventions 
of ultrafast spectroscopy.

4.4. Example 2: cavity QED using QuDPy

In this example, we consider a driven/dissipative open quan-
tum system consisting of a finite number of independent two-state 
atoms coupled to a quantized mode of the radiation field (Dicke 
model) [26]. The Dicke model shows a mean-field phase transi-
tion to a super-radiant phase when the coupling between light 
and matter crosses a critical value. The Dicke transition belongs 
to the Ising universality class and has been used to model sev-
eral cavity quantum electrodynamics experiments [27–29]. While 
Dicke superradiant transition is analogous with the lasing instabil-
ity, lasing and Dicke superradiance belong to different universality 
classes [30].

In this example, we shall assume that an open-quantum system 
consisting of a single cavity mode coupled to N independent 2-
level systems is in turn probed by an external laser field that acts 
as a time-dependent perturbation. The Hamiltonian for the model 
reads

H = h̄(ca†a + h̄
N∑

j=1

ω jσz( j) + 2λ√
N

(a + a†)
∑

j

σx( j) (17)

where (c is the frequency of the (cavity) mode and {ω j} are the 
transition frequencies of the individual spins and λ parameter-
izes the coupling strength between spins and cavity mode. In our 
worked model, we take all the spins are to be identical. Under this 
assumption, we can define the total spin operators

Sα =
∑

j

σα( j) (18)

which satisfies the spin algebra [Sx, S y] = ih̄Sz . Using these opera-
tors, the Hamiltonian simplifies to

H = h̄(ca†a + h̄ωSz + 2λ√
N

(a + a†)Sx (19)

This simplifies the numerical studies by reducing the Hilbert space 
for the spins from 2N to 2S + 1 with S ≤ N/2. Lastly, the third 
term is the coupling between the cavity mode and the two-level 
systems. The 

√
N is introduced so that the coupling becomes a 

constant in the limit of N → ∞. As such, we define the coupling

g = 2λ√
N

(20)

and write the system Hamiltonian as

H/h̄ = (ca†a + ωSz + g(a + a†)Sx (21)

In these units, the critical coupling occurs at gc = √
(cω/2. The 

Dicke model itself is related to several other models in quan-
tum optics. Specifically, when N = 1, it is the Rabi model. If the 
counter-rotating terms (aσ−( j) and a†σ+( j)) are excluded, the 
model is termed the Jaynes-Cummings model for N = 1 and the 
Tavis-Cummings model for N > 1.

In this example, we consider the driven/dissipative Dicke model 
in which the density matrix evolves according to the quantum 
master equation

8
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Fig. 6. Frequency domain response (i.e. spectra) for two-time correlation. The top row displays the sum of rephasing diagrams R1, R2, and R3 with left, center, and right 
plots showing real, imaginary, and absolute values, respectively. The bottom row represents the same for the sum of nonrephasing diagrams R4, R5, and R6. These spectra 
only show the first quadrant for the non-rephasing and the fourth for rephasing (with an additional inversion of y-axis for rephasing).

d
dt

ρ = 1
ih̄

[H,ρ] +
∑

α

γα

(
LαρL†

α − 1
2

{
L†
α Lα,ρ

})
(22)

in which we include terms for cavity decay and pumping, atomic 
relaxation, atomic dephasing, and collective decay. Our simulations 
are initialized by first requiring the system’s density matrix to be 
in a steady state with regards to the unperturbed quantum mas-
ter equation, i.e., dρss/dt = 0. Once ρss = ρ(−∞) has been deter-
mined, either via numerical relaxation or analytically, the simula-
tion proceeds as above. For this, we assume a thermal population 
of photons in the cavity mode (as determined by the pumping in-
tensity) and define Lindblad operators

L1 =
√

κ(nth + 1)a (23)

L2 = √
κntha† (24)

where κ is the photon exchange rate between the cavity mode and 
the external bath.

Within our model, we assume that the driven/dissipative cav-
ity+spins system is additionally probed by a series of perturbative 
ultrafast pulses that exchange quanta with the cavity mode via

Hcav/laser ∝ µcav(b
†
lasera + a†blaser). (25)

Taking the applied laser field to be semi-classical, we can write 
this as

Hcav/laser ∝ µcav(E(t)a + E∗(t)a†) (26)

where E(t) is the electric field of the applied probe pulses and 
µcav is the transition dipole of the cavity. This assumption is based 
on the fact that the experimental signals correspond to the macro-
scopic polarizability of the entire cavity system. Fig. 7 provides a 
pictorial representation of the proposed experiment.

Fig. 7. Third order response for the Dicke Model system. The cavity contains two-
level systems (TLS) that interact with each other and the cavity mode (represented 
by a red curve). The cavity is pumped with an incoherent light source (bulb), and 
the system is probed with two pulses K1 and K2. The generated signal in a proper 
phase-matching direction is Ksignal .

In our examples, we consider the non-linear 3rd order response 
for a resonant cavity h̄(c = h̄ω j = 1 which has a critical coupling 
of λc =

√
(cω
2 = 1/2. The simulation is performed with a cavity-

spin coupling strength of 0.25, N = 6 spins, and a 6-state basis 
for the cavity mode. The cavity pumping/relaxation rate κ is set at 
0.05. The spin dephasing is also introduced as 

√
0.15Sz . These are 

chosen as model parameters and are not specific to the particu-
lar physical system. The detailed list of parameters and additional 
information is provided in the relevant Jupyter notebooks in the 
SI/GitHub repository.

Fig. 8 shows the predicted 2D coherence spectra for our model 
system. In this case, one can clearly see symmetric off-diagonal 
coherences between the two diagonal peaks corresponding to the 
lower and upper polariton (LP and UP) states of this system. In this 
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Fig. 8. 2D coherence spectra of response for example 2. The top row displays the sum of rephasing diagrams R1 , R2, and R3, and the bottom row represents the same for 
the sum of nonrephasing diagrams R4, R5 and R6. The left, center, and right columns show real, imaginary, and absolute values, respectively. Only the first quadrant for the 
non-rephasing and the fourth for rephasing diagrams are shown.

case, both LP and UP are connected to a common ground state. 
Physically, this can be understood since in setting up the problem 
we transformed the cavity operators a and a† to the eigenbasis of 
the Dicke Hamiltonian. More complex dynamics can be introduced 
(for example) by including incoherent relaxation pathways via ad-
ditional Lindblad operators.

5. Discussion

We present here the first-release of our generalized package for 
simulating non-linear spectral responses observed in modern ultra-
fast spectroscopy. While our examples have focused upon optical 
signals, the approach we have adopted can be used to model a 
wide-range of physical problems with significant ease and control, 
allowing the end-user to rapidly create model Hamiltonian systems 
and compute accurate responses. We have avoided a detailed anal-
ysis of the results to keep the discussion focused on introducing 
the package and its use. Future releases of this code will include 
the facility for more complex pulse-shapes, time-dependent system 
Hamiltonians, electric field polarization, and the means to con-
nect the approach to ab initio treatments of molecular systems that 
can provide an explicit Hamiltonian with excitation manifolds and 
inter-band transition dipoles (as QuTip is capable of simulating the 
appropriate quantum dynamics provided by the explicit Hamilto-
nian). We believe that the code will have tremendous utility within 
the ultrafast spectroscopy user community as well as a useful ped-
agogic tool for courses on modern spectroscopic methods.
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Appendix A. QuTip functions and methods

A.1. States and operators

Different typical states can be defined as follows:

• Fock state ket and density matrix by basis(N, m) and 
fock_dm(N,p), here m and p are the occupied energy levels 
and N is the size of Hilbert space.

• Coherent state and density matrix by coherent(N,alpha) 
and coherent_dm(N,alpha), where alpha is the eigen-
value for requested coherent state.

• For thermal density matrix thermal_dm(N,n) with n as 
particle number expectation value.

For common operators, following built in options are available.

• Lowering: destroy(N)
• Raising: create(N)
• Number: num(N)
• Single mode displacement: displace(N,alpha), where al-

pha is the displacement amplitude.
• Single mode squeeze: squeeze(N,sp) with sp as the 

squeezing parameter.
• Sigma X: sigmax()
• Sigma Y: sigmay()
• Sigma Z: sigmaz()
• Sigma plus: sigmap()
• Sigma minus: sigmam()
• Higher spin operators: jmat(j,s) where, j is the total spin 

and s can be ‘x’, ‘y’, ‘z’, ‘+’, or ‘-’.

A.2. Functions on states and operators

States and operators can be further manipulated by calling in-
built functions. In the list of functions below, a state or operator 
is represented as ‘Q’ and its inbuilt function is called via ‘Q.func-
tion()’

• Conjugate: Q.conj()
• Adjoint: Q.dag()
• Eigenenergies: Q.eigenenergies()
• Eigenstates: Q.eigenstates(), this returns both eigenval-

ues and eigenvectors.
• Exponential: Q.expm(), matrix exponential of an operator.
• Groundstate: Q.groundstate()
• Norm: Q.norm(), returns L2 norm for states and trace norm 

for operators.
• Partial Trace: Q.ptrace(sel), returns partial trace with 

components selected using ‘sel’ parameter (see QuTip docu-
mentation for more details).

• Basis Transformation: Q.transform(ket_list), performs 
basis transformation to new basis given by ‘ket_list’, a list of 
states.

• Normalize a vector: Q.unit().

A.3. Evolution methods

QuDPy uses QuTip mesolve for the quantum evolution of 
a both closed and open systems. This function deploys the 
Schrödinger equation for closed and Lindblad equation for open 
quantum systems. See QuTip documentation for a detailed list of 
input parameters. Examples 1 and 2 also highlight specific use 
cases.

Appendix B. QuDPy functions and methods

The default System class variables are as follows

• h̄ = 0.658211951 in eV fs.
• ω, system frequency with a default value of E/h̄ with E = 2

eV.
• H , Hamiltonian with default value of h̄ωa†a
• a, the system lowering operator for light-matter interaction. 

By default, it is the lowering operator of a 3-level harmonic 
oscillator.

• µ, the system dipole operator. Default value is µ = a† + a
• c_ops, a list of collapse operators for Lindblad simulation. By 

default, it is empty.

Furthermore, the System class can be initialized with the following 
values.

• n, total energy levels.
• H, Hamiltonian
• rho, initial density matrix
• a, system lowering operator encoding emission of a photon.
• u, system dipole operator defined as µ(a† +a). µ = 1 typically.
• c_ops, list of collapse operators encoding system-bath cou-

pling.
• e_ops (optional), list of operators for which expectation val-

ues are demanded in each simulation. Typically an empty list.
• tlist (optional), list of time steps for simulation. Typically 

not required during system initialization.
• diagonalize, True/False can perform Hamiltonian diagonal-

ization and basis transformation of all operators if required.

B.1. Functions

The following functions are contained in the System class sub-
routine (see Fig. 4 for hierarchy details.

• diagram_donkey, for simulating a single trial of system
• coherence2d, for generating two-time coherence response.
• spectra, for converting the temporal response to spectra.
• linear_spectra, for calculating and generating a linear
• pop_study, for computing a series of 2D-coherence

Similarly the plot_functions subroutine contains the fol-
lowing functions,

• multiplot, for plotting multiple response (temporal or fre-
quency) simultaneously.

• plot, for single spectrum or temporal response
• pop_plot, for plotting a response on multiple population 

times.

B.1.1. diagram_donkey
Computes and plots a single-density matrix evolution for a 

list of double-sided diagrams. Mainly useful for inspection/instruc-
tional purposes.

Inputs:

• interaction_times (required), a list of arrival times for 
pulses, and the last entry is the time interval for detecting a 
local oscillator.

• diagrams(required), a list of double-sided diagrams in UFSS 
diagramGenerator format.

• r (optional), temporal resolution (time steps per fs)
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Outputs:
None, plots the diagram.
Notes:
The first pulse arrives at t=0.

B.1.2. coherence2d
Computes the 2D coherence plot for a single diagram with only 

two scanable delays. It can be parallelized if resources are avail-
able.

Inputs:

• time_delays (required), list of time delays. Provide a time 
delay for each interaction, even if zero. The default is None. 
These should be guided by experimental and theoretical con-
siderations for each user.

• diagram (required), a double-sided diagram in UFSS dia-
gramGenerator format. The default is None. Utilize desired 
phase-matching/phase-cycling conditions for diagram genera-
tion.

• scan_id (required), a list of indices for the time delays in 
interaction_times that must be scanned. Default is None

• r (optional), time resolution of simulation in steps per fs. The 
default value is 10. Should be guided by the energy eigenval-
ues of desired Hamiltonian.

• parallel (optional), parallelization control, True or False. 
Default is False

Outputs:

• A 2D list of density matrices for each pair of scanned times.
• A numpy array of first scan time
• A numpy array of second scan time
• A 2D list of 〈µ〉

Notes:

B.1.3. spectra
Converts the list of dipoles into spectra through Fourier trans-

form.
Inputs:

• dipoles (required), a list of dipoles. Default is None
• resolution (optional), time resolution. The default is 10 

steps per fs.

Outputs:

• List of spectra
• Minimum and maximum limits of each frequency axis
• grid of first frequency
• grid of second frequency

Notes:

B.1.4. linear_spec
For computing simple linear spectra from the system after any 

number of interactions in the start.
Inputs:

• scan_time (required), time interval to be simulated in fs.
• diagram (optional), double-sided diagram for calculating the 

system response. All interactions contained in the diagram are 
applied at t=0. If diagram=None, then by default, a ‘Bu’ in-
teraction is applied at t=0.

• resolution (optional), time resolution of simulation in 
steps per fs.

Outputs:

• dipole expectation value
• time
• spectrum
• frequency

Notes:
For increasing the frequency resolution, increase the scan_

time. To decrease the range of frequencies, decrease the time res-
olution.

The function also plots the spectrum.

B.1.5. pop_study
For calculating the nonlinear response of a double-sided dia-

gram for a set of population times.
Inputs:

• pop_time_list (required), a list of population times. De-
fault None

• pop_index (required), an index of the population generating 
interaction. Default 1.

• time_delays (required), a list of time delays between inter-
actions. Default None

• diagram (required), a double-sided diagram to be simulated. 
Default None

• scan_id (required), list of indices of time delays to be 
scanned for 2D coherence plot. Default None.

• r (optional), time resolution of simulation in steps per fs. The 
default is 10.

• parallel (optional), a True/False control of parallelized com-
putation. Default is False

Outputs:

• list of 2D coherence response for each population time
• First scan time list
• Second scan time list
• List of spectra for each population time
• Extent of x and y-axis in spectra
• First frequency grid for spectra
• Second frequency grid for spectra.

Notes:

B.1.6. multiplot
Plot multiple data sets for spectral and evolution data.
Inputs:

• data (required), a list of spectra, dipole expectation values, or 
any other variable of interest. Default None

• scan_range (required), the min and max of both axis in the 
format [xmin, xmax, ymin, ymax]. Default None

• labels (required), a list of label for each axis. Default None
• title_list (required), a List of titles for each plot. Default 

None
• scale (optional), scaling of the data points, two choices are 

‘linear’ and ‘log’. Default ‘linear’.
• color_map(optional), choice of colormap. Default ‘viridis’.
• interpolation (optional), interpolation for points in the 

plot. Default ‘spline36’. Can be changed to None

Outputs:
Does not return any output, only generates the plots.
Notes:

12



S.A. Shah, H. Li, E.R. Bittner et al. Computer Physics Communications 292 (2023) 108891

B.1.7. plot
Plots a single data set.
Inputs:

• data (required), a spectrum or dipole expectation value list 
or any other variable of interest. Default None

• scan_range (required), the min and max of both axis in the 
format [xmin, xmax, ymin, ymax]. Default None

• label (required), a list of labels for each axis. Default None
• title_list (required), a title for the plot. Default None
• scale (optional), scaling of the data points, two choices are 

‘linear’ and ‘log’. Default ‘linear’.
• color_map(optional), choice of colormap. Default ‘viridis’.
• interpolation (optional), interpolation for points in the 

plot. Default ‘spline36’. Can be changed to None

Outputs:
Does not return any output, only generates the plot.
Notes:

B.1.8. pop_plot
Same as multiplot as of now. Will be updated in the future.

B.1.9. silva_plot
Plot multiple data sets for spectral and evolution data.
Inputs:

• spectra_list (required), a list of spectra, dipole expecta-
tion values, or any other variable of interest. Default None

• scan_range (required), the min and max of both axis in the 
format [xmin, xmax, ymin, ymax]. Default None

• labels (required), a list of label for each axis. Default None
• title_list (required), a List of titles for each plot. Default 

None
• scale (optional), scaling of the data points, two choices are 

‘linear’ and ‘log’. Default ‘linear’.
• color_map(optional), choice of colormap. Default ‘PuOr’.
• interpolation (optional), interpolation for points in plot. 

Default ‘spline36’. Can be changed to None.
• center_scale (optional), control for centering each data set 

in the list around zero by simple scale shift. The default value 
is True.

• plot_sum (optional), control for generating and plotting the 
total spectrum from the input list by summing individual data 
sets. Default True.

• plot_quadrant (optional), select a particular quadrant for 
the plot. Possible values are ‘1’, ‘2’, ‘3’ and ‘4’. The default is 
‘All’

• invert_y (optional), control for inverting the y-axis by 
changing negative values to positive. Default is False

• diagonals (optional), list of True/False values for including 
(or excluding) the diagonal and cross diagonal reference lines. 
The default is [True, True]

Outputs:
Does not return any output, only generates the plots.
Notes:

Appendix C. Functions and methods for defining model system 
with QuTip

C.1. Operators

The full details are available on the QuTip documentation. 
Briefly, the following operators can be defined to simulate a model 
Hamiltonian:

• destroy(N), Lowering operator for an N-level system
• jmat(s,) defines a spin operator for a spin s system.

C.2. Functions

In addition to operators, the following operations and corre-
sponding functions are available

• expectation value
• partace
• tensor

C.3. Methods quantum dynamics

The quantum evolution can be simulated by

• Schrodinger equation for closed systems
• Lindblad master equation for open quantum systems
• Redfield equation
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