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ABSTRACT

Accurately measuring the absolute depth of every pixel captured by
an imaging sensor is of critical importance in real-time applications
such as autonomous navigation, augmented reality and robotics.
In order to predict dense depth, a general approach is to fuse sen-
sor inputs from different modalities such as LiDAR, camera and
other time-of-flight sensors. LIDAR and other time-of-flight sen-
sors provide accurate depth data but are quite sparse, both spatially
and temporally. To augment missing depth information, generally
RGB guidance is leveraged due to its high resolution information.
Due to the reliance on multiple sensor modalities, design for ro-
bustness and adaptation is essential. In this work, we propose a
transformer-like self-attention based generative adversarial net-
work to estimate dense depth using RGB and sparse depth data. We
introduce a novel training recipe for making the model robust so
that it works even when one of the input modalities is not avail-
able. The multi-head self-attention mechanism can dynamically
attend to most salient parts of the RGB image or corresponding
sparse depth data producing the most competitive results. Our
proposed network also requires less memory for training and in-
ference compared to other existing heavily residual connection
based convolutional neural networks, making it more suitable for
resource-constrained edge applications. The source code is available
at: https:// github.com/kocchop/robust-multimodal-fusion-gan
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Figure 1: The figure reflects upon the model robustness due
to sensor failures. In (a), both the RGB and sparse depth
is present. However, in (b) and (c), one of the modalities is
missing. Trained with our proposed novel recipe, a single
model can produce reasonable outputs for all three scenarios.
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1 INTRODUCTION

Dense and accurate depth prediction is one of the most fundamen-
tal challenges for tasks such as autonomous vehicle guidance, 3D
mapping and surveillance, scene understanding, assisting physi-
cally challenged people and augmented reality applications like
modeling virtual environments such as digital twins [1, 2, 3, 4]. Fore-
casts predict that globally one in ten vehicles will be automated
by 2030 [5]. Dense depth also helps in extracting better semantics,
object detection and 3D object reconstruction. In order to obtain
true depth information, generally, different time-of-flight (ToF) sen-
sors such as LIDAR/RADAR (Light/Radio Detection and Ranging)
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are widely used. ToF sensors can provide reliable depth data but
are limited by heavy sparsity in their outputs. For example, LIDAR
which is the most accurate and has the longest range provides only
32 or 64 depth scan lines at a frequency of 15-20 Hz [6]. Hence,
predicting the dense depth map from such sparse data is a popular
research topic in machine learning. Typically, in order to find the
missing depth values, corresponding RGB images are utilized. RGB
guidance can provide different contextual shape information that
can be fused with the LiDAR data to obtain dense depth.

One of the most effective ways to find out contextual informa-
tion is by using attention models [7, 8]. Attention based models
have gained a lot of popularity lately due to their capability of find-
ing out the most salient features, and drawing necessary context
across the entire input space. This leads to much better perfor-
mance. Dosovitskiy et al. [9] introduced multi-headed self attention
based transformer model which obtains the state-of-the-art results
on language tasks outperforming the existing recurrent network
approaches. Later, they extended the same concept to an image
classification task where an entire image is divided into a set of
16x16 sized patches. These patches were transformed into tokens
much similar to word embeddings and achieved better performance
compared to the state-of-the-art CNN based designs. One of the
most fundamental aspect contributing to such good performance
is their ability to extract the most relevant information required
for the given task. In depth completion tasks, one preliminary step
is to extract the depth of field information from RGB images for
which transformers seem to be an ideal candidate.

While multimodal fusion ensures better reconstruction quality, it
also makes the model conditioned upon the input modalities. When
one of the sensor modalities undergoes some technical, physical or
environmental hindrance, the whole model performance becomes
vulnerable [10]. Hence, even though fusion is essential for better
quality, some provision for robustness must also be present to tackle
with such failures. One probable solution is to make the model
robust during training by reproducing the absence of different
sensor modalities.

Generative adversarial networks or GANs [11, 12, 13, 14] have
gained a lot of popularity lately due to their better modeling capa-
bility of the input data distribution and is the state-of-the-art for
image generation tasks [15]. Since the end product of depth comple-
tion task is usually a dense depth image, GANs are being adopted
by different studies for obvious reasons [16]. In this study, we also
deploy a GAN towards the task of dense depth reconstruction. To
summarize, the key contributions of this paper are,

(1) We deploy a transformer based multimodal fusion network to
recover dense depth from RGB and sparse depth information.
Our proposed network achieves state-of-the-art performance
compared to other concurrent multimodal fusion studies.

(2) We propose a novel training scheme to improve the model’s
tolerance to sensor availability. We empirically show that
our trained network is more robust compared to other uni
or multimodal fusion networks.

(3) Our proposed network has much less run time memory re-
quirement in contrast with other heavily residual connection
based models, thus making our model suitable for deploy-
ment in memory constrained systems.

3560

Md Fahim Faysal Khan et al.

2 RELATED WORKS

2.1 Unimodal Depth Reconstruction

Eigen et al. [17, 18] proposed a multi-scale deep network that em-
ploys two network stacks, in which one takes the RGB image and
gives a coarse global depth prediction, and the latter uses the pre-
vious stack output and refines the depth prediction locally. Liu et
al. [19] used continuous conditional random field (CRF) along with
deep CNN to predict the depth from RGB images. Laina et al. [20]
used a Residual Network for depth prediction on RGB images. Liu
et al. [21] used wavelet-contour let dictionaries for accurate recon-
structions. Hawe et al. [22] used a conjugate sub-gradient method
to reconstruct the dense disparity image. Eldesokey et al. [23] used
normalized convolution layers to calculate the confidence and prop-
agate it to the consecutive layers for sparse input. Uhrig et al. [24]
used a similar approach of calculating the validity mask and propa-
gating it to get dense sparsity maps. HMS-Net [25] used sparsity-
invariant operations with the multi-scale encoder-decoder network
for handling sparse inputs and sparse feature maps. The perfor-
mance of the model further increased with the addition of RGB
guidance. Jartiz et al. [26], Lu et al. [27] proposed a encoder-decoder
for depth completion from only sparse depth. Ku et al. [28] used
the basic image-processing algorithms on sparse LiDAR data to get
dense depth. Most recently, Khan et al. [29] built a GAN architecture
that generates dense depth using only sparse depth from LiDAR.
However, without using multiple modalities it is very difficult to
get the most accurate dense depth maps.

2.2 Multimodal Fusion

Various efforts have shown the effectiveness of the combination of
RGB and sparse depth input to infer dense depth information. To
merge these two modalities, most of the techniques in the litera-
ture used a two-branch network. Hua et al. [30], Jaritz et al. [31]
created an encoder-decoder architecture in which two modalities
are encoded separately to extract features before being fused into
a single decoder. To extract features, Tang et al. [32] employed a
two-level encoder-decoder network for RGB and LiDAR, fusing
the RGB decoder output with the sparse Depth encoder at each
level. Fusion-Net [1] merges RGB and LiDAR data by extracting
global and local information via two branches. DeepLiDAR [33] is
composed of surface normal and color pathways. Each pathway
fuses both modalities at different phases. To integrate RGB and
sparse depth, Rig Net [34] uses a repetitive guidance technique.
This method includes an image guidance network with repetitive
hourglass networks that feed the output of the previous network
into the current network, as well as a depth generation network
with a single hourglass network that refines the predicted depth
using repetitive guidance modules and an efficient guidance algo-
rithm to produce refined depth step by step. Ma et al. [2] employs a
deep regression model that predicts a full resolution depth picture
using RGBD (4-channel) as input. PE-Net [35] employs two branch
networks, one color-dominant and the other depth-dominant, to
merge RGB and sparse depth maps into a dense depth map. The
color-dominant branch uses RGB, and sparse depth maps to forecast
a coarse depth map, which is then sent into the depth-dominant
branch, which produces a dense depth map. They use CSPN++ [36]



Robust Multimodal Depth Estimation using Transformer based Generative Adversarial Networks

(convolutional spatial propagation network) for depth map refine-
ment. CSPN [37] is also another method for depth refinement and
depth completion used with state of the art architectures. Zhang et
al. [38] proposed a multi-task GAN for both semantic segmentation
and depth completion. It includes the computed semantic images
in addition to RGB and sparse depth to improve the dense depth
output. Parallel to this, another line of work explores other modality
based fusion to recover depth. For example, Parida et al. [39] uses
binaural audio and RGB to predict the depth. They also use the
echo signal to predict the material type which gets further fed to
the attention network that weighs the depth maps generated from
the echo and visual pipelines to produce the final depth map.

2.3 Attention Model in depth reconstruction

Prakash et al. [40] proposed a transformer-based model to fuse the
RGB and LiDAR inputs as these samples complement each other
while describing the scene. Both modalities are encoded separately,
but intermediate features are fused at each level using a transformer.
When the two modalities’ results are added together, the global
context of the 3D scene emerges. For monocular depth estimation,
Rantfl et al. [41] employs transformers as encoders and convolution
decoders, resulting in fine-grained predictions. It overcomes the
limitations of down sampling with convolutions, such as granularity
loss and feature resolution loss in deeper networks that are difficult
to extract using a decoder.

The use of multiple sensor modalities with attention mechanism
have been able to generate very close to true depth maps. However,
most of the models are very much input dependent and hence
cannot handle sudden sensor failures or unavailability. They lag
behind in terms of robustness and reliability which is essential in
practical scenario. In order to tackle this, recent approaches like [42]
consider asymmetric distortion in different sensing modalities that
they fuse. Complimentary to their approach our proposed training
scheme is able make robust inference even when one of the sensor
modalities is completely unavailable due to sensor malfunction or
other challenges. For example, an RGB image in low light conditions
or when the camera gets occluded. In such scenario, the system
can disable the RGB modality and infer with only LiDAR. Similarly,
the system can also leverage in case of malfunction of the LIDAR
system to reduce expensive energy acquisition of this active sensing
technique.

3 METHODOLOGY

In this section, we formulate the depth completion problem mathe-
matically. We elaborate on the variation of our proposed task spe-
cific optimization rule with respect to typical GAN settings. Finally,
we discuss the loss functions followed by the model architecture.

3.1 Problem Statement

In this study, we aim to solve the problem of dense depth prediction
using multimodal sensor inputs. We leverage a generative adver-
sarial network (GAN) [11] to solve it. A typical GAN consists of a
generator block and a discriminator block where the generator
delivers the desired output and the discriminator tries to detect if
it is a counterfeit example. It is in essence a two player min-max
game, where the training ends when the generator is able to make
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the discriminator believe that the generated samples are indeed
real. In our case, we want the generator to produce dense depth
samples from sparse depth data and a corresponding RGB image.
Let PSP, PPN and PRGB denote the input distributions of sparse
depth, dense depth and the RGB image respectively. We consider
the generator network G has a parameter set 0 with a loss function
LS. If there are n = 1,..., N training samples for each of modalities,
then we optimize to find Oc:

N
A 1
6 = argmin — ' LC (Gg (PSP , PRGB),PDN ) (1)
ec N o G n n n

where 0 is the parameter set of the trained generator model.
The loss function LS consists of multiple weighted loss compo-
nents designed to capture certain properties of the output dense
depth map and is described in section 3.3. It is to be noted that un-
like a typical GAN, our generator does not sample from a random
distribution. We explain the reasons in the following section.

3.2 Conditional GAN settings

In an ideal setting, the generator samples from a random distri-
bution in order to generate a real-like sample. However, Mirza
et al. proposed that a GAN can be conditioned upon its particular
inputs [43] and many studies reported state-of-the-art results adopt-
ing it [44, 45]. In this study, we also use a conditional GAN setting
where we condition the network upon the input sparse depth and
the corresponding RGB image. Hence, instead of sampling noise
from a random distribution, our generator network takes the sparse
depth and the RGB image as its input and we say the network to
be conditioned upon such. If D represents the discriminator model,
then our generator and discriminator function would solve the
following min-max problem:

min max V(D,G) = Eppp~Pyan (Pon) 108 D(PDN) ]+

Epgp~Pg (Psp),Pre~Pe (Prop) [108(1 — D(G(PRGB, Psp)))]

With this approach, our generator is able to generate images
very similar to original data distribution making it harder for the
discriminator to distinguish between the real and fake samples.
One other aspect of our GAN problem formulation that we want
to particularly highlight is that unlike the generator, we do not
condition the discriminator. Instead, we use a relativistic average
discriminator [46], which is explained further in section 3.3.

3.3 Loss Functions

Since there are two networks which get simultaneously trained in a
GAN, there are two loss functions, one for the generator and another
for the discriminator. We follow prior works [29] to get suitable
loss functions to train our GAN. The different loss components are
discussed below briefly.

3.3.1 Discriminator Loss. For the discriminator, as mentioned be-
fore, we use a Relativistic average Discriminator (RaD) [46] which
instead of comparing a binary label in a deterministic way, calcu-
lates the relative likelihood between the generated and the fake
data. In other words, it finds out the probability of a generated sam-
ple being more realistic than the fake data or the probability of the
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Figure 2: Transformer-based GAN architecture for Depth Completion. The RGB and sparse depth has separate late fusion
pipelines. The transformer-based encoder outputs get folded first and then passed to the multimodal fusion block. The residual
in residual dense block (RRDB) generates the final depth map.

generated sample being less realistic than the real data. Finally, the
discriminator loss is obtained by taking an average of the two. Let
us assume, PpN = Géc (Psp, Prgp) be the distribution of generated

dense depth maps. Then the discriminator loss, l}?a p can be written
as,

lI?aD = -Eppn [log (DRaD (PDN, ﬁDN))] -
Ejon [log (1 _ pRaD (ﬁDN’ PDN))]

which automatically leads to its symmetrical adversarial loss for
the generator:

®)

lG

RaD = —EpDN [10g (1 _ pRaD (PDN,PDN))] B

Epon [log (DRaD (pDN,PDN))]

Finally, the discriminator loss, LD can be written as the average
of the two.

©)

D_ G G
L™ = (Igap + IRap) /2

®)

3.3.2  Generator Loss. The generator loss consists of three compo-
nents, (1) the adversarial loss, (2) normal loss and (3) pixel loss. The
adversarial loss is already described in Eq. 4. The normal loss,

n

DN DN
I 1 <Vi Vi >
normal = ; Z 1- m (6)
ZA |
where VPN VDN are the corresponding gradient vectors of

ground truth PPN and the prediction PPN The (-) denotes the dot
product of the gradient vectors and ||-|| denotes the norm of the
corresponding vectors. We choose the normal loss as it is one of
the most meaningful intermediate representation of a depth map.
Finally, the pixel loss, [yjye is defined as,

Lpixet = BpsrlIGog (P7F) = PPN|ly )
which leads to the total genereator loss as,
L6 = Laormal + A1 % llce;aD + Az % lpixel ®
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The A; and A, are weighing factors to balance the different loss
components. Generally, training a GAN is a little challenging and
having unbalanced loss factors can lead to training instability like
mode collapse and non-convergence, two most common issues with
GAN training. The scaling factors help to stabilize the training and
can lead towards favorable outcomes.

3.4 Network Architecture

Our proposed generator architecture consists of mainly three key
components, namely, (1) the transformer encoder structure, (2) a
multimodal fusion block and (3) a residual in residual dense block
(RRDB). We briefly explain each of these blocks below:

3.4.1 Visual Transformer based Encoder. A visual transformer di-
vides the input image into N patches, each of which is treated as
a word. It is then linearly projected, and positional embedding is
applied. The transformer encoder receives this input afterwards.
To get an output, the first column of the encoder output is passed
through an MLP. On large datasets, visual transformers outper-
form CNNs in visual tasks. The sensor information, either from the
camera or LiDAR, can be composed in a 3D volume and treated as
a frame. We follow the same approach as ViT [47]. The frame is
first divided into patches and then projected into embedding space.
Finally, the corresponding positional embedding is added, and the
tokens are fed to the transformer-based encoder block.

3.4.2  Multimodal Fusion Block. One of the most important feature
of the proposed architecture is its "multimodal fusion block". The
transformer based encoder block extracts most meaningful informa-
tion from its input through its multi-headed attention mechanism
and provides the output as a vector embedding. These embedding
vectors basically correspond to each of the 2D input patches. In
order to have a spatial output from them, these vectors must be
converted to 2D patches once again maintaining the original order
and locality. In order to do so, we leverage a token folding technique
which ensures the correct arrangement of all the patches. Then
the folded 3D volume is passed through a convolution block to a
higher dimensional projection. Meanwhile, the sparse depth and
RGB frames are also passed through two other separate convolution
blocks. Finally, the three pipelines are fused inside the multimodal
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Figure 3: The figure shows the qualitative comparison among the depth reconstruction studies. Both the proposed FusionGAN
Model A & B provides better dense depth reconstruction outputs with much finer details compared to the existing studies.

Table 1: Model Variation

FusionGAN | RGB | Sparse | Early Late
Variants Depth | Fusion | Fusion
Model-A v v X v
Model-B v v v v

fusion block as shown in Fig. 2. The transformer based encoder
extracts the relevant guidance for depth and the other two pipelines
enforce that with the multimodal fusion.

3.4.3 Residual in Residual Dense Block (RRDB):. RRDB [15] blocks
are inspired by Dense Net architecture which connects all the layers
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in the residual block directly with each other. By increasing the
number of connections, it enhances performance. Due to the strong
representation to capture the semantic information, a deeper model
using RRDB aids in further improving the reconstruction of finer de-
tails. Since our task is to reconstruct dense depth in fine granularity,
we choose an RRDB block before the final output generation.

3.4.4 Model Variation: In this work, we also propose another vari-
ant of our generator model. In the basic model, we have only the
RGB image going to the transformer encoder and the two sepa-
rate pipelines of RGB and sparse depth are combined later within
the fusion block. We name this late fusion based basic variant as
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Table 2: Depth Completion Accuracy (ShapeNet)

Architecture | RMSE | MAE | iRMSE | iMAE
FusionNet [1] 0.12 0.03 36.24 0.15
Sparse-to-Dense [2] 0.023 | 0.01 0.42 0.03
PENet [35] 0.022 | 0.004 1.99 0.03
FusionGAN (Model A) | 0.021 | 0.003 8.99 0.007
FusionGAN (Model B) | 0.017 | 0.002 | 1.02 | 0.004

"Model-A". In the other variant, we leverage both late and early
fusion. The whole pipeline remains same except we introduce the
sparse depth to the transformer as well i.e. we feed in both the RGB
and sparse depth to the transformer encoder. Later the encoder
output is then fused with the other two late fusion pipelines. We
call this variant as "Model-B". The model variants are presented
in Table 1.

4 EXPERIMENTAL SETUP

In this section, we briefly explain the datasets and training method-
ology. We also expand upon our proposed novel training recipe
for model robustness. We conduct our experiments primarily on
the ShapeNet [48] and NYU-Depth-v2 [49] datasets. The ShapeNet
dataset contains 128K randomly chosen training samples and 1.2K
validation samples. For NYU-Depth-v2 dataset, we use the official
split of training (around 47.5K samples) and testing (654 samples).
The depth images are first down-sampled to half and then center-
cropped to the size of 304 X 228. Finally, the sparse depth samples
are obtained by uniformly sampling the dense depth maps. For
NYU-Depth-v2, we only keep 5% valid depth points and remove
the rest.

Following previous studies [29], we train the model using only
pixel loss for initial 200-300 iterations and then add the remaining
two losses. The warm up session helps stabilizing the training
by not sending extreme false samples to the discriminator, thus
avoiding probable chances of local minima. We use Adam [50] with
1 =0.9 and fo = 0.999 as our learning rule. We initially start with
a learning rate of 2e — 4 and gradually decrease it to 1.25e — 5 within
a training span of 23 epochs.

For the transformer based encoder block, we use the original
ViT-base architecture with 12 being the no of layers and heads.
The patch embedding vector is of length 768 as well. We train our
model with and without the pretrained transformer model. We
find negligible difference in final accuracy. However, using the
pretrained model speeds up the training time.

4.1 Sensor Resilient Training Recipe

In order make our model robust against possible sensor failures,
occlusion, noise and uncertainties, we introduce a novel training
recipe for our multimodal fusion GAN. We simulate the sensor un-
availability scenario during our GAN training. While training, we
randomly select 20% of the training batches and instead of feeding
those batches to the network, we input a zero or null matrix of the
same shape. The number of such batches have been chosen empir-
ically. We find that by training in such way, the model becomes
more robust to any kind of incoming sensor failures. We further
discuss it in section 5.2.
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Table 3: Depth Completion Accuracy (NYU-Depth-v2)

Architecture RMSE | REL | MAE
(m) (m)
FusionNet [1] 0.12 | 0.014 | 0.035
Sparse-to-Dense [2] 0.2 0.046 | 0.12
CSPN [37] 0.087 | 0.013 | 0.037
FusionGAN (Model A) | 0.079 | 0.011 | 0.032
FusionGAN (Model B) | 0.076 | 0.011 | 0.033

4.2 Evaluation Metrics

In order to compare the performances, we use the following set
of evaluation metrics, (1) Root Mean Square Error (RMSE), (2)
Mean Absolute Error (MAE), (3) Inverse RMSE (iRMSE), (4) In-
verse MAE (iMAE) and (5) Mean Absolute Relative Error (REL). Let
k = 1,2,..., K be the total samples in the validation set. Then the
evaluation metrics are defined as:

~ 2
RMSE : \/% P (PDN —PDN)
MAE : % ¥k |Pon = Pon|
)2

i . 1 1 1
iRMSE : \/F Sk (7 - s

PpNn
; .1 11
iMAE : % Sk Fon ~ Pon
! Ppn—Ppn

One thing must be mentioned here is that, for the reported num-
bers on ShapeNet dataset, all the evaluation metrics operate upon
normalized output data. On the other hand, the NYU-Depth-v2
dataset result metrics are computed from actual depth values.

5 RESULTS
5.1 Depth Completion with Fusion

We first compare the depth reconstruction accuracy among the con-
temporary studies. Table 2 and Table 3 present the quantitative re-
sults and comparison against other baselines for the ShapeNet [48]
and NYU-Depth-v2 [49] datasets respectively. Clearly, our proposed
FusionGAN models (A & B) achieve the best results among all. In
our model B variant, we give the transformer encoder both the
input RGB image and sparse depth data and it outperforms all the
other prior works. The multi-headed attention mechanism plays
a crucial role in finding the most useful context from both of the
modalities and hence, yielding the best performance. The best value
in each category of evaluation metrics has been marked in bold.
Fig. 3 shows the qualitative comparison among the studies for the
ShapeNet dataset. Both of our proposed models achieve much de-
tailed and accurate dense depth maps across the different depth
completion datasets.

5.2 Robustness to Sensor Failures

In order to make our model robust to sensor failures, we adopt
the training recipe described in section 4.1. The quantitative re-
sults are displayed in Table 4. The first row shows the baseline
accuracy for normally trained FusionGAN (model A). Now we run
another inference by randomly dropping one of the input modali-
ties in 20% samples from the total validation set. As we can observe
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Figure 4: The figure shows the reconstruction results simulating a sensor failure. (a) denotes the normal case when both
the input modalities are present. (b) and (c) represent the failure in any of the two modalities. Compared to all the model
trained normally, our robust FusionGAN model produces the best depth completion outputs whenever one such failure occurs.
Moreover, it is also capable of reconstructing depth maps on par with baseline models when both the modalities are present.

Table 4: Model Robustness Comparison

Architecture | RMSE | MAE | iRMSE | iMAE
FusionGAN (Vanilla) | 0.02 | 0.003 | 8.99 0.007
With Failure 0.8 0.36 inf inf
FusionGAN (Robust) | 0.08 0.02 | 30.18 0.05
With Full Info 0.03 0.01 6.88 0.03

that when this model is presented with a missing input modality,
the reconstruction accuracy gets severely degraded presented in
row 2. The third row shows the same model accuracy but trained
with simulated sensor failure in the loop. Obviously, the overall
reconstruction accuracy is not as good as the combined multimodal
approach but it is significantly better compared to the vanilla base
model. Moreover, the training scheme does not necessarily affect
the reconstruction capability of the model when both of the modal-
ities are present. As shown in the last row, the robust model is
still capable of producing outputs as good as the base model when
both of the sensor inputs are available. The Fig. 4 shows the recon-
struction quality for all the cases. As we can see that, the models
trained in normal fashion perform terribly when one of the sensor
modalities is absent. In contrast to that, our robust FusionGAN
model is capable of producing both better and meaningful results.

5.3 Memory Comparison

In this section, we do a comparative study on model size, train-
ing memory requirement and the inference latency. Even though
most of the studies to date compare the model sizes, we believe
that the training memory requirement is also an important aspect,
especially, when we think retraining or tuning the model on the fly
using limited compute/memory resources. Having a smaller size
definitely helps since it creates a small static memory footprint.
However, the model sizes are not themselves reflective of the com-
pute memory requirement of the models. The reason is the model
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Figure 5: Comparative study on runtime memory and
throughput. The bubbles are in proportion with correspond-
ing model sizes. The legend contains the parameter size
for each model. Our proposed networks deliver competitive
throughput requiring comparatively less runtime memory.

architecture. Fig. 5 is a comparative study between the model run-
time memory and throughput. The model radius is proportional
to its size. As we can see, the model size is not representative of
its runtime memory requirement. We attribute the main reason
to the residual connections. Since a lot of intermediate activation
maps are needed to be stored for the skip connections, even though
the parameter memory footprint is not much, the heavily residual
connection based models contribute to the larger memory needs.
All the runtime memory numbers are calculated for a batch size of
2. Both model A and B variants provide competitive performance
in terms of both runtime memory needs and overall throughput.
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Figure 6: The figure presents the reconstruction accuracy for different sensor fusion techniques. Only RGB based late fusion
performs worst since, it is a unimodal variant. The sparse depth fusion performs better. The RGB and sparse depth fused at

both earlier and later stages performs the best.

6 ABLATION STUDY

In this section, we perform an analysis on the different fusion strate-
gies and their effect on the reconstruction accuracy. It is already
evident that multimodal fusion is essential for a better depth re-
construction. In order to understand the individual impact of the
sensors and their corresponding fusion strategy, we perform an
ablation study. We add or remove each of the fusion pipeline and
see how it affects the reconstruction accuracy.

Late RGB and Sparse Depth Fusion: In our Fusion GAN
Model-A, we feed in the RGB image to the transformer-based en-
coder. We also have another RGB pipeline going for late fusion
via a convolution block. Since, the sparse depth already has some
accurate depth values to it, we do not perform much computation
on it. The sparse depth is also sent for late fusion via another convo-
lution block. We call this setting as late RGB and sparse depth fusion.

Only RGB Late Fusion: In this setting, we keep all the settings
mentioned above unchanged, except for the sparse depth pipeline.
We do not feed the sparse depth input at all. Hence, this variant
becomes a unimodal depth completion network with RGB as its
primary input. Later the same RGB input is fused through a convo-
lution block.

Only Sparse Depth Late Fusion: We repeat the methodology
as described previously. But this time, we do not have any RGB late
fusion. Rather, we feed in the Sparse depth information though a
simple convolution block after the encoder stage. This setting takes
both the RGB and sparse depth and tries to recover the dense depth.

Both RGB and Sparse Depth Early+Late Fusion: In this set-
ting, we have both the RGB and sparse depth late fusion pipeline.
However, we change the initial input to the transformer-based
encoder block. We feed in both the RGB and sparse depth to the
transformer encoder so that can take a look at both of the sensor
modalities at the same time. This is basically our FusionGAN vari-
ant, Model-B. In this case, early and late fusion are happening for
the RGB and sparse depth data.
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Table 5: Sensor Fusion Ablation Study

FusionGAN |  Fusion [ RMSE | MAE | iRMSE | iMAE

RGB+Sparse Late 0.021 | 0.003 | 8.99 0.007
RGB only Late 0.11 0.03 26.72 0.04

Sparse only Late 0.11 0.02 5.04 0.02
Both RGB | Early + Late | 0.017 | 0.002 1.02 0.004
& Sparse

The Table 5 compares the fusion strategies quantitatively and
the Fig. 6 shows the qualitative results. The best results are obtained
with both RGB and sparse depth fused at early and later stages. The
late RGB fusion variant performs the worst since, it is basically a
unimodal setting. The late sparse depth variant performs compara-
tively better because it unifies both the sensor modalities. In short,
more involved fusion strategy with different modalities yields most
accurate dense depth image.

7 CONCLUSION

In this paper, we propose a multimodal sensor fusion strategy using
transformer-based self-attention models. We train the network in a
generative setting to obtain the best results. Our proposed models
outperform existing studies in terms of reconstruction accuracy
and are competitive in terms of throughput. We also showcase that
the model parameter size and runtime memory requirement are
not analogous. A small model can occupy larger compute memory
than a bigger model just because of its internal architecture. The
runtime memory requirement by the proposed models is compara-
tively less than that of other contemporary works. Furthermore, we
suggest a novel training recipe to make the model robust to certain
sensor failure scenerios. The models trained in such strategy deliver
reasonably good outputs even if one input modality is unavailable.
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