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Abstract— Intelligent edge sensors that augment legacy un-
intelligent” manufacturing systems provides cost-effective func-
tional upgrades. However, the limited compute at these edge
devices requires trade-offs in efficient edge-cloud partitioning
and raises data privacy issues. This work explores policies for
partitioning random forest approaches, which are widely used for
inference tasks in smart manufacturing, among sets of devices
with different resources and data visibility,. We demonstrate,
using both publicly available datasets and a real-world grinding
machine deployment, that our privacy-preserving approach to
partitioning and training offers superior latency-accuracy trade-
offs to purely on-edge computation while still achieving much of
the benefits from data-sharing cloud offload strategies.

Index Terms—edge computing, random forest, edge-cloud par-
titioning, sensor network

I. INTRODUCTION

Etrofitting intelligent sensors nodes on legacy manufac-

turing systems provides cost-effective smart manufac-
turing upgrades. However, reliably meeting real-time analyt-
ics demands entirely within the limited compute and power
budgets of these sensor nodes is challenging, especially for
complex computational models such as DNNs. Therefore,
simpler paradigms, like random forests, still remain popular
for embedded sensors [7]. Additionally. techniques that bal-
ance communication and computation costs while partitioning
the compute between the edge and a resource-rich server
have been deployed. However, sharing data with as server
makes data privacy a key constraint, especially when the
server is an external service provider. Although model sharing,
instead of data sharing, solves some of the challenges [5],
such approaches are not trivial to deploy in classical learning
paradigms, like random forests.

In smart manufacturing, multiple machines, even of the
identical make and model, can generate different artifacts
while encountering the same fault due to different physical
interference such as resonant frequency and ambient tem-
perature. The ability to capture diverse conditions from the
different nodes, with or without sharing data, can lead to more
robust models. We focus on extending random forests models
that have been deployed in smart manufacturing [7] to explore
edge-cloud partitioning strategies when multiple machines
cooperate in contributing to better models. Constructing an
accurate random forest model, while respecting data privacy
of a distributed multi user sensor network is also challenging.
Moreover, such a system demands accurately predicting the
cases where the edge analytics were insufficient and the cloud
must be employed for deeper analysis and accurate results.

We propose a novel framework to perform intelligent edge-
cloud partitioning for a distributed sensor network running
random forest-based analytics. We propose novel inference

strategies to maximize the number of predictions performed
at the edge, while consulting the cloud only when the local
results are not satisfactory. We also provide novel learning
strategies, especially when the distributed sensors do not
want to share the local data with the cloud, saving crucial
communication latency and energy. Our contributions include:
(1) Two different edge-cloud learning and inference policies,
in a distributed sensor environment, to efficiently run ran-
dom forest based data analytics. We explore the impact of
privacy-preserving random forest training mechanisms to help
protect sensitive data generated by the sensors. (2) Design
of a threshold based edge-cloud partitioning policy which
intelligently decides when to offload an inference to the
cloud while maximizing the prediction accuracy and mini-
mizing the communication overheads. (3) Evaluation of these
policies on a publicly-available data set and also on data
from real industrial grinding machines. We show that our
privacy preserving partitioning approach outperforms edge-
local prediction accuracy and achieves much of the accuracy in
a data-sharing model. Finally, we provide a sensitivity analysis
to understand the effect of different hyper-parameters on the
accuracy and latency.

II. EDGE-CLOUD PARTITIONING POLICIES

In this section, we discuss the various policies to
partition random  forest
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analytics task (for example,
monitoring the health of
same type of machine at different sites) using a random
forest algorithm. Since resource constraints can preempt
complete execution at the edge, and sending data to the cloud
is expensive due to communication energy and latency, it
is essential to explore edge-cloud co-design, where we rely
on the cloud if and only if it is necessary and beneficial

Fig. 1: Edge-cloud partitioning
policies.
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to achieve a more accurate result. Furthermore, when the
deployments are geo-distributed and operated by different
owners, the privacy concerns on sharing the data with a
third party cloud service provider becomes challenging in
developing the analytics solutions.

A. Data-Shared Edge-Cloud Policy

First, we consider a distributed sensor model, where each
device is equipped with a small compute capability to perform
analytics using random forests, and each individual device is
trained on its own data. Next, we consider a model where
multiple devices from multiple deployments participate in
cooperative data sharing. The cloud server, to accommodate
data drift, periodically (but infrequently) accumulates all the
data from different deployments to train a larger model which
can generalize better than the local, edge specific, models. In
both cases, due to the resource limitation of the edge devices,
edge-specific model size may be reduced at the expense of
accuracy.

Thresholding the Edge: The ideal case, for either of the
aforementioned models, is when all the compute can be done,
accurately, at the edge devices. However, to alleviate the
shortcomings of less accurate predictions at the edge, some
computations are routed to the cloud, expecting a better result
at the expense of a higher latency. Therefore, it is essential
to know if and when to route the compute to the cloud to
balance accuracy and latency. We solve this issue by a adopting
a thresholding mechanism based on model confidence, and
accordingly decide to consult the cloud for better accuracy on
less-confident local predictions. Deciding a proper threshold
is application and quality of service dependent and remains
a user tunable parameter. If the user task can tolerate lower
accuracy prediction, or the user is more conservative about the
cost associated with sending a request to the cloud, they could
decide to change the threshold according to their requirements.
Consequently, the programmable threshold makes the whole
design more flexible: the collaboration ratio can be adjusted
based on the needs of different types of machines, and more ro-
bust compared with the result dependent model simplification
strategy which may perform differently on different datasets.
Our experiments suggests variance to be the most suitable
metric to decide the threshold.

Why Variance: Random-forest typically randomly samples
the data and generates different estimators from the given
data. The bootstrapping strategy makes each estimator learn
different features of the data set and therefore increases the
generality of the whole model. In this case, variance of the
estimators becomes a good indicator of prediction confidence.
A low output variance of the estimator means the predicted
values are tightly concentrated, i.e., different estimators, even
after learning different features, give similar answers. Simi-
larly, a high variance indicates that the predicted values are
discrete and there is no consensus. Relying on how different
the answers from each estimators are, we can quantify the
prediction quality of the random-forest.

Peer-Before-Server: Although sharing data with the cloud
helps us build robust models, the communication latency is
significantly higher than local computation, prompting several

works [6] to push compute to the edge. For latency-sensitive
applications, offloading to peers may be more viable than
offloading to the cloud. That is, if the model at the edge
node is unavailable (because of resource constraints) or has
produced a low-confidence result, instead of directing the
prediction query to the cloud, the edge could direct it to
the peers (or other deployments) on the same local network.
Since, all the deployments are working on the same task, and
have trained on similar data, we will be able to perform the
analytics task within a reasonable accuracy bound. However,
if the confidence bound at the peer is not met, the cloud is
contacted, at higher latency than having directly contacted the
cloud to begin with. In our experiments, we observe that,
in most cases, the accuracy of the peers are similar to that
of the edge node. Therefore the case of consulting a peer
only becomes beneficial when the communication latency and
energy to the peer is much less than to the cloud.

B. The Case of Privacy Awareness

Having a centralized data repository of various systems
improves model robustness. However, not all the deployments
may want to participate in data sharing because of privacy
reasons. Using the example of modern industrial machine state
monitoring, the sensor attached to the machines for monitoring
their health can also give away critical information like run
time, operating conditions, materials etc., which might cause
major privacy concerns. This problem has been addressed
in federated learning by combining the models using weight
averaging [2]. The algorithm makes sure that no data is shared
with a centralized agent (like the cloud, which performs the
training action), yet the learner is able to learn by combining
multiple pre-learnt models. We extended this design idea
by constructing a random forest model as a combination
of multiple decision trees from different learners (different
deployments). To preserve the data privacy of the participat-
ing deployments, the cloud learns by ensembling randomly
sampled decision trees from each of the deployments, instead
of learning a random forest from the data shared by each of
them. Random sampling of the decision trees also augments
the model by minimizing the data induced bias of each of the
models. The random sampling method is data agnostic, and
hence ensures minimal data induced bias. Random sampling
of decision trees, albeit a naive way, has been empirically
shown to work well in preserving model characteristics and
providing accurate predictions.

III. EXPERIMENTAL EVALUATION AND RESULTS

In this section, we describe our evaluation methodology and
evaluate both privacy-preserving and data-sharing partitioning
strategies compared with a traditional random-forest approach.
We apply our techniques on Appliance energy prediction
data [3], and also provide a case analysis of material surface
roughness prediction using real world grinding-machine sensor
data. We analyze the accuracy-latency trade offs of each
strategy and show their benefits in different scenarios.

A. Appliance Energy Prediction

The appliance energy prediction data-set predicts the energy
usage of home appliances, given the environmental parameters,
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Algorithm 1: Training and Inference Pseudocode

function TRAIN(Sensor_Data, NodeID, CloudID)
@Edge
for each node do
prep_data(data,node);
if Privacy Aware then
train_model()
> Locally train the model send_model(cloudID)

> pre-process the data at edge

else

L send_data(cloudID); > Send raw data to cloud

@Cloud
for each node do
if Privacy Aware then
L sample_trees(nodeID); > Sample trees from each node
else
L merge_data();
train();

> merge raw data from all nodes

end function
function INFERENCE(Data, NodeID)
@Edge

for each node do

Predict()

if Accuracy < Threshold then

Send_data(CloudID);
L accuracy

> Send data to cloud for

else
Send_results(CloudID);
Predict@Cloud

end function

> Send the inference result
> Run Prediction at Cloud
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Fig. 2: Accuracy comparison of different policies on a simulated
distributed setup. The data set is divided into 2 chunks creating a
two home set up and the similar is done for a 4 home setup.

such as temperature and humidity of different regions of the
home as well as the locality (from weather station data [3]
with 14803 training samples and 4932 testing samples). This
data set directly fits our use case for two reasons - 1. In
the real world, these sensors would be distributed in different
homes, and each home will have its own idiosyncrasies. 2.
The home owners may or may not be willing to share the
sensor measurements of their home for privacy reasons. We
divide the data into training and testing sets, and to simulate
a distributed environment, the training data is further divided
into multiple different chunks (starting from 2 to 4, each part
representing a household in the same neighbourhood). We
ensure data diversity between different partitions to ensure
similarities with the real-world. Further, we apply our policies
to the distributed data and train random forest models (both
for the edge and the cloud). Figure 2 shows the accuracy of
various policies on 2-home and 4-home setups.

Key Observations:

1) The data sharing with the cloud increases the accuracy

of the power prediction significantly (11.94% increase in
correlation for a 2-home setup and about 25.62% increase in
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Fig. 3: Accuracy-latency comparison of different policies with differ-
ent distributed setup. The edge execution is done on a raspberry Pi,
and the cloud is mimicked by a desktop class machine. Considering
the scale of the problem, the execution time on a desktop machine is
almost same as a larger cluster that we typically find in a cloud.

correlation for 4-home setup). The accuracy improvement in
the 4-home setup is significant and the reason for the lower
edge accuracy of the 4-home setup is the limitation in number
of training samples (2 home setup has twice the amount of
data than the 4 home setup to train with).

2) However, the cloud execution latency also increases for the
2-home setup due to the model complexity. The 2-home setup,
albeit more accurate, has a more complex model (#splitting
points 10501) at the cloud thanks to the large volume of
training samples, leading to more execution time compared to
the relatively simpler model for the 4-home setup. The cloud
model is trained on a larger data set and has more parameters
than the edge models and hence is more accurate.

3) The privacy preserving cloud model, although less accurate
than the data shared cloud model, performs significantly better
than the edge models, with 5.1% more correlation in case of
the 2-home setup and 10.37% more correlation for the 4-home
setup. Thanks to a simpler model (which is a random sample
of the edge models), the latency does not increase significantly.

B. Case Study: Edge Cloud Partitioning in Smart Industries

The evolution of industry 4.0 [4] standard is bringing
intelligent sensing and analytics into the industrial and man-
ufacturing segment. Modern smart machines come with inte-
grated sensors with built-in communication protocols to send
data to either an attached computer, a base station or cloud.
These features increase the cost of the machines significantly,
making it extremely hard for small and medium scale entities
to procure them. Moreover, a majority of the machines in
operation, comprising much of the modern supply chain,
are classical machines without any sensing or intelligence
built into them. Without any smartness built into them, these
classical machines often suffer from unforeseeable failures.
Therefore, retrofitting such classical machines with smart
sensors will help in preventing such failures and will allow
taking predictive measures to increase production efficiency.

To understand the implications and benefits of retrofitting
sensing into these classical machines, we conducted a case
study on the data collected from a grinding machine which had
three types of sensors — one power sensor and two accelerom-
eters. It also incorporated the tool parameters like speed, feed
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Fig. 4: Sensitivity study
and depth-of-cut, and measured the surface roughness of the
grinding surface. The goal of our study was to correctly predict
the surface roughness from sensor data. We divided the data
into multiple chunks to emulate a multi machine setup (varying
from 2 to 5). Since the data size is limited, with increasing
numbers of machines, the training data-per-machine decreases,
and hence gives us the opportunity to also study the impact
of data availability. We implemented a random forest based
regression model to predict the surface roughness value and
tested our partitioning policies. The edge node is implemented
on Raspberry Pi development boards and the cloud is emulated
via a desktop class Intel corei9 10900k CPU (with 64GB
DDR4 RAM). Figure 3 shows the accuracy and latency of
different policies with different numbers of machines.
Key Observations:
1) If data is shared with (a third party) cloud, the accuracy
of the model generated using all data from different machines
is significantly higher than the models generated for the edge
using their own data. Although, in case of 5 machines (see
Figure 3) we see about a 5% accuracy gain with a 14.71%
latency increment to perform the inference at cloud, this 5%
increment has significant impact in practise. For example, for
a typical grinding job that takes about 8.2 seconds [1], this
5% improvement impacts ~ 46k parts per year per machine
(working 8 hours/day).
2) For the most part, the accuracy of the privacy preserving
model remains same (if not less) compared to the data sharing
model (this reflects the fact that these machines might belong
to different industries who were not willing to participate in
the the data sharing process). Even with minimal accuracy
improvement of 3.5% (see Figure 3, where the 5 machines
belong to 5 different owners and not sharing data), one
grinding machine can save up to ~ 27.4k parts per year.
3) The latency difference between the data shared model and
privacy preserved model is not so prominent due to the lower
data volume. The models generated are simple, and hence does
not have significant difference in execution time at the cloud.
Sensitivity Study: To better understand the relationship be-
tween the inference quality and the threshold, we run our
model with different parameter settings, shown in Figure 4,
over the cases of edge-peer and edge-cloud structures with
device counts of two and four. Figure 4a shows that setting

a high threshold value will reduce the average inference time
in all four cases. This effect is more obvious in the edge-peer
structure since it will send the data to its nearest peer and check
the prediction quality until it reaches the cloud. Figure 4b
also shows how network structure amplifies the effect of
changing threshold value. Therefore, it is important to choose
a threshold that optimizes the trade off between efficiency
and accuracy. Similar to the data on inference time, the effect
from the increasing threshold on prediction accuracy will be
more pronounced when there are more devices available and
the overall trend seen in Figure 4c is the inverse of that
in Figure 4a. This makes it possible to find a sweet spot,
given specific needs, in efficiency and accuracy trade offs.
The number of estimators also needs to be customized for
different datasets. Figure 4d shows that inference time will
increase linearly with the number of estimators whereas it
has a very small impact on correlation. Therefore, reducing
the number of estimators while keeping the prediction quality
over a certain boundary will optimize fine tuning the model.

IV. CONCLUSIONS

An efficient compute and data partitioning between edge
and cloud, while preserving data privacy, is an important
problems to address for both existing and future deployments.
This work provides a practical solution to achieve latency-
accuracy balanced partitions for random forest based infer-
ence tasks. We demonstrate the real-world applicability of
our approach for two smart manufacturing deployments, and
analyzed the accuracy-latency trade offs and their sensitivity
to user-supplied thresholds. We believe that our solution can
be easily deployed and be beneficial for random forest based
distributed sensing-computing platforms.
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