2022 55th [IEEE/ACM International Symposium on Microarchitecture (MICRO) | 978-1-6654-6272-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/MICRO56248.2022.00083

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

An architecture interface and offload model
for low-overhead, near-data, distributed accelerators

Saambhavi Baskaran, Mahmut Taylan Kandemir, Jack Sampson
Pennsylvania State University
sxv49@psu.edu, mtk2@psu.edu, jms1257 @psu.edu

Abstract—The performance and energy costs of coordinating
and performing data movement have led to proposals adding
compute units and/or specialized access units to the memory
hierarchy. However, current on-chip offload models are re-
stricted to fixed compute and access pattern types, which limits
software-driven optimizations and the applicability of such an
offload interface to heterogeneous accelerator resources. This
paper presents a computation offload interface for multi-core
systems augmented with distributed on-chip accelerators. With
energy-efficiency as the primary goal, we define mechanisms to
identify offload partitioning, create a low-overhead execution
model to sequence these fine-grained operations, and evaluate
a set of workloads to identify the complexity needed to achieve
distributed near-data execution.

We demonstrate that our model and interface, combining
features of dataflow in parallel with near-data processing
engines, can be profitably applied to memory hierarchies
augmented with either specialized compute substrates or
lightweight near-memory cores. We differentiate the benefits
stemming from each of elevating data access semantics, near-
data computation, inter-accelerator coordination, and com-
pute/access logic specialization. Experimental results indicate a
geometric mean (energy efficiency improvement; speedup; data
movement reduction) of (3.3; 1.59; 2.4)x, (2.46; 1.43; 3.5)x
and (1.46; 1.65; 1.48)x compared to an out-of-order processor,
monolithic accelerator with centralized accesses and monolithic
accelerator with decentralized accesses, respectively. Evaluating
both lightweight core and CGRA fabric implementations high-
lights model flexibility and quantifies the benefits of compute
specialization for energy efficiency and speedup at 1.23x and
1.43 %, respectively.

Keywords-distributed accelerator; near-data offload; energy
efficiency; heterogeneous architecture interface

[. INTRODUCTION

Between the end of Dennard Scaling [1] and the spiraling
divergence in the energy costs of communication and
computation, increasing integration merely by raising the
number of general-purpose cores (GPP) and cache resources
has limited appeal [2], [3]. An alternative, explored by several
recent efforts, focuses on augmenting the cache and memory
hierarchy with specialized computational units to overcome
data movement limitations, and thereby achieve better energy
efficiency [4], [5], [6], [7], [8], [9], [10]. The design space
of future energy-efficient architectures is poised to become
extremely diverse owing to the heterogeneity in computation
and non-uniformity in data access costs brought on by these
efforts, further amplifying the heterogeneity already being
embraced by commercial designs [11], [12], [13]. Effectively
managing this diversity will require adopting new abstractions
and developing new optimizations appropriate to these

platforms for lower time-to-market and better accelerator-
level parallelism (ALP) [14].

The traditional primacy of active, centralized compute units
within a hierarchy of mostly passive memory units creates an
overhead in the movement of both control and data. Fixed-
granularity, demand-based load and store interfaces exhibit
control inefficiencies in scenarios where data accesses are
highly structured and data movement inefficiencies when
only a subset of the accessed data, or a collective property
of said data, is desired by the computation (e.g., searching,
filtering, reductions, etc). Furthermore, given the scale of
modern memory systems, there is no single location within
the memory hierarchy that can be plausibly near-data for all
data. To achieve peak efficiency, near-data approaches must
distribute compute resources proportionately to the physical
scale of the memory system.

Prior works have addressed portions of these concerns
by specializing streaming memory access patterns [8], [9]
and offloading computations near data [4], [7], [15], [16]. A
traditional, A-to-B offload model, where a GPP offloads a
part of the computation to a monolithic, on-chip accelerator
resource may still exhibit data movement overheads, as
operands are often spread throughout the cache hierarchy.
Systems where recurrent data access functionality is decou-
pled and decentralized from the host/accelerator [8], [17],
[18], still require data to move to a central location for
computation, causing a bandwidth bottleneck. Some near-
data offload models [10], [19] provide support for fixed
compute patterns and/or data access functionalities. Extending
the processor ISAs with binding accelerator functionality
restricts the applicability of the offload interface to other
application and access characteristics. This also constrains
the scope of software optimizations that can be applied in
such an offload model. In other words, a desirable offload
model for designs with increasingly diverse resources should
be extensible to heterogeneous accelerator resources with
arbitrary functionality. While the software optimizations can
help localize computations to data in such offload models,
distributed compute units require specialized, yet flexible,
interface definitions to move control and data efficiently
among various compute units. In this work, we show
that generalizing the offload of both distributed near-data
computations and common communication/access patterns
among the distributed accelerators allows the exploitation of
greater ALP in architectures while managing the increasingly
divergent spatial access costs and asymmetric compute-

978-1-6654-6272-3/22/$31.00 ©2022 IEEE 1160
DOI 10.1109/MICR0O56248.2022.00083
Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from |IEEE Xplore. Restrictions apply.

memory costs effectively.

Our proposed offload model answers the following
questions— What to offload? We exploit compiler mech-
anisms to extract key application semantics such as inter-
relationship between multiple data structures in the appli-
cation, their respective data access patterns and associated
instruction chains that are profitable to offload; How to be
near-data? We use the above information to partition the
application code, and identify placement of partitioned com-
putations near-data in the cache hierarchy to achieve better
energy efficiency; and how to interface with and among
offloads? We utilize a generic offload model encompassing
an architecture interface and compiler-generated offload
configurations to enable distributed and concurrent compute
units to co-exist as peers for operand communication.

The major contributions of this work include:

(1) We propose a novel offload interface with minimal
constraints for architecture models with both distributed
computation and distributed access capabilities. The
proposed interface is designed in a generic manner for
offloading arbitrary functionalities to heterogeneous
accelerator resources, irrespective of their substrate
implementation. Further, the interface offers flexible
communication mechanisms for energy-efficient orchestration
of both control and data.

(2) We demonstrate a compiler-automated framework
to exploit the proposed offload interface with an
optimization goal of reducing data movements. Given an
application coded in an imperative programming language,
our proposed compiler support automatically analyzes and
partitions the code to map onto distributed accelerator
resources employing the proposed interface.

(3) We validate the offload interface for various
architecture models. Our experimental evaluation shows
that the architecture models with distributed compute/access
capabilities employing the proposed interface have, for
the application benchmarks considered, a geometric mean
energy efficiency of 3.3x, 2.46x and 1.46x, and data
movement reduction of 2.4x, 3.5x and 1.48x, while also
having a speedup of 1.59x, 1.43x and 1.65x compared
to an out-of-order processor, a monolithic accelerator with
centralized accesses on L3 bus and monolithic accelerators
with decentralized accesses respectively.

(4) We further differentiate the energy and performance
benefits arising along two axes — near-data computation
specialization and data access/communication specialization.

II. BACKGROUND
We classify our design space along two major spe-
cialization trends that aim to reduce data and control
movements: (1) monolithic vs. distributed computation—
distributing accelerators (termed compute nodes) through
the memory hierarchy, and (2) centralized vs. decentralized

1161

(@) fori=0:N:1
Cli] = f(A[i], B[i])
E[D[i]] =g(CIiD)

f,g l:l Mono-CA

-z Monolithic compute

* Specialized but

i Centralized Access engine
i+ Data movement bottleneck

i+ Eg: DAE

! Mono-DA

i ¢ Dccentralized Accesses
: * Cost-unaware limited

i compute pattern support
i * Eg: Fixed-function
accelerators

{@ Hops=2 _ | @ [Cl{Hop=1 . Mrlbuted compute
i (I]_ =D i » Decentralized Accesses
i « Common abstraction of
I Hop=1 i heterogencous resources

_ i * Cost-aware partitions
D Hops= , « Lower control and data

movement bottleneck

(©
Legend
Data struct wegend
g[ﬂ Iﬂ Iﬂ ata structures @ Data access
Sy v v @3 Compute
E 1< QA % Access units] [Data structure
< ' | : 4 : <> Ld/st req/resp.
SVl W v Operations as =3 Dataflow
< D producer/consumers Stream
Figure 1. Design space for compute and memory access specialization

approaches showing the dataflow for the example code snippet.

accesses—decoupling memory accesses from the program
and distributing the hardware orchestrating the accesses
(termed access nodes) through the memory hierarchy. The
physical locality of compute nodes and their decentralization
reduces the control and data movement overheads through
the system hierarchy, whereas increasing the specialization of
data access minimizes the control overhead required to move
data to compute nodes. Figure 1a-d shows a code snippet
and how it can be executed in the design space with the
architecture models under consideration.

Monolithic-Compute Centralized Accesses (Mono-CA):
General-purpose out-of-order (OoO) cores, on-chip accel-
erators [20] and decoupled access-execute architectures have
monolithic execution semantics and/or specialized accesses
(e.g., access pattern-specific prefetches). However, as shown
in Figure 1b these require its operands to be moved to a
centralized location, where f and g are executed. This causes
data and control movement bottlenecks.

Monolithic-Compute Decentralized Accesses (Mono-DA):
In a basic Mono-DA architecture model, there is only one
place where an offloaded computation happens. However,
there are distributed access points from where the data
are forwarded. Recent works [8], [9], [21] offload the
functionality of accessing data to the memory system. This
facilitates the memory hierarchy to supply data related to

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

the configured access patterns (streams, e.g., for i=0:N;
Ali] or indirect streams, e.g., for i=0:N;B[A[i]]) faster
and in an energy-efficient fashion with reduced control
overheads. Besides this, we also classify architectures as
Mono-DA if a given offloaded computation is mapped
in a monolithic fashion even if different computations
can be mapped concurrently to various locations in the
hierarchy. While these architectures offer more distributed
computation options than a basic Mono-DA architecture, near-
data architectures with fixed compute pattern support in/near-
cache do not support breaking apart the compute pattern
to reduce data movement (i.e., the particular computation
is mapped monolithically), and hence lose opportunities
to perform “sub-computation” [22] placement. Figure 1c
shows an example of this architecture model, where the
multi-input operands are forwarded to a single location to
compute and write data in-place. A and B are forwarded to
C, where the functions-f and g are concurrently executed.
In the example, it might be energy-efficient to forward A to
B, and forward only the result of function-f to C. In other
words, the offload interface constrains further placement
optimizations that are essential for reducing data movements.
The complex indirect accesses such as E[D[i]] in the figure
do not get offloaded to an accelerator, since the architecture
paradigm does not associate the indirect memory references to
application data structures and does not allow representing the
interdependence of various data structures following arbitrary
semantics.

Distributed-Compute Decentralized Accesses (Dist-DA):
Architectures in this space should provide both distributed
and flexible execution semantics along with decentralized
accesses. In Figure 1d, multiple read dataflows A and B are
associated together, where operation f happens. The result, an
intermediate dataflow, is then forwarded to the location of C.
Dist-DA requires only three hops, collectively, for the result
of function-f to reach the location of C, compared to Mono-
DA. Such a model first requires a common abstraction for the
offloads and for interfacing among the various concurrently-
active nodes, so that the compiler/programmer can use
these resources efficiently. This further allows compiler
partitioning optimizations to be applied independently of
the interface definition. Secondly, Figure 1d also shows how
the interrelationship among data structures (A, B, etc.) is
used to create a natural flow of control and data among
various computation nodes through a low-overhead operand
communication interface. The dataflow from location-B
updates C and gets forwarded to be consumed by a compute
node at location-E. Similarly, the compute node at location-D
can be configured as another producer for the node at location-
E. The nodes at locations A - E can be independently mapped
onto any accelerator substrate available near data.

Note that an effective offload model targeting this design
space has the following requirements:

1162

@ Flexible co-location of compute and data for reduced
data movement: The model should support distributed
arbitrary compute functions (including sub-computations)
to enable static/runtime optimizations, such as cost-aware
partitioning to reduce data movements.

@ Low-overhead operand communication: The model
requires interface mechanisms for inter-accelerator com-
munications to happen without incurring the high control
overheads of host orchestrations.

@ Heterogeneous accelerator implementation: The model
and the interface should not dictate the type of execution
substrate at the distributed locations. In other words, the
model should permit heterogeneous accelerator resources
to use the common interface for inter-accelerator or host-
accelerator communication, with minimal micro-architectural
requirements in accelerator/accessor design.

A. Related Work

Our work relates to four primary areas of research as
follows.
Specialization/decentralization of data accesses: Decou-
pled access-execute [18], [23], [24], [25] architectures decou-
ple data accesses from other computations for performance
speedup. StreamISA [9] and stream floating [8] adds the
notion of “streams” to processor ISAs and the cache hierarchy,
to enable caches to proactively generate and forward access
requests without requiring host intervention for specific
memory access patterns. These approaches help to improve
performance speed-up, as long-latency accesses can be hidden
and can also reduce the energy-inefficiencies of control
overhead for fetching the data.
Near-data architectures: There have been numerous propos-
als for designing data-centric architectures [4], [5], [7], [15].
One common approach involves augmenting cache with logic
circuits for in-place computation and is driven by technology
advancements [5], [6], [16]. Reconfigurable arrays in the last-
level cache executing coarse granularity offloads [4] have
also been investigated. Our focus is to explore the offload
model and architecture interface for better exploiting the
benefits of such in/near-data technology improvements.
Near-data offload models: Near-stream computing
(NSC) [10] extends the host ISA and coherence protocols
to support sixteen offload functions near stream-based
(strided/indirect/pointer-chasing) memory accesses. For
complex operation offloads, it relies on the nearby core.
Additional microarchitecture modifications in the host
processor can provide benefits such as tight-coupling with
the processor and fine-grained range management within a
data structure (may-aliasing streams). However, the stream
ISA abstraction binds the offloadable function and access
patterns. There is also less flexibility to exercise different
code partition strategies for data movement optimizations
or to make use of on-chip heterogeneous accelerator
resources. Livia [7] proposes memory services, a task-based

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

programming model and architecture that automatically
schedules tasks based on data locality. However, it is
limited to irregular workloads with only single kernels
operating on a single cacheline. Table I differentiates our
approach from these works. NSC considers augmenting
the host processor ISA and micro-architecture capabilities
for near-stream abstraction. On the other hand, our work
proposes a generic interface for near-data accelerators to
communicate with each other. The higher-level philosophies
of these works are different, and the implications of these
approaches are significant. We believe that the remote
accelerator definitions and their micro-architectures should
not be bound by the host ISA. The accelerators in the
system should be able to communicate as first-class citizens
without any host-side overhead. Whereas NSC extracts
streams and reduces vertical data movement through the
cache hierarchy, we associate code with data structures
and allow software optimizations to reduce on-chip data
movement including inter-tile movement. NSC augments
the host with multiple stream-engine cores that monitor
the address ranges of may-alias streams before offloading
to remote accelerators. While we do not handle aliasing
(false positive) streams, the cases where code regions do
not know which data structures they are handling are rare
for the workloads considered. Hence, in this work, we only
rely on compiler optimizations and a simple accelerator
scheduler to enable multi-access combining and distribution
within a data structure (Section IV Figure 2). Further, the
proposed interface does not preclude compiler passes from
adding software runtime checks for may-alias pointers, and
dynamically let the host decide to offload.

Recent work [26] has targeted finer-grained near-data
offloads by decentralizing the accelerator offload mechanism,
while still employing a monolithic view of memory, and like
Livia [7], does not make use of the concurrency enabled by
distributed computation substrates. Both these works start
and finish an offloaded function to completion, and then pass
on the control to another accelerator. On the other hand,
PEI [15] and GraphPIM [27] extend the processor ISA to
interface with other in-memory co-processors. In this work,
we leave the distributed offload functionality to be defined
by the software. We adhere to energy-efficient dataflow for
recurring patterns of communication between the distributed
accelerators using software-configured interface mechanisms.
Our Dist-DA offload interface enables a variable degree of
coupling between the distributed accelerator resources, which
in turn facilitates the applicability of additional optimizations
such as, data movement reduction and further computation
specialization of the distributed application code.

On-chip accelerator specialization and multi-accelerator
coordination: Charm [28], [29] proposes a multi-core ar-
chitecture with distributed accelerator resources with DMA
and scratchpad, and an ability to pipeline the output of

1163

Table 1
COMPARISON WITH RELATED WORKS.
Livia [7] NSC [10] This work

Access: #concurrent | One
data structures
Compute:
Offioad function
Offfoad substrate

Many Many

ISA-defined
16 compute patterns
Scalar unit/remote SMT core

Software-defined
accelerator functions
Programmable unit-
in-order core/CGRA
Access, compute, data
structures (memory objects)
Peer-like

Yes

Software-defined;
One task at a time
Programmable unit-
in-order core/FPGA
Data structure/
Memory service
N/A

N/A

Abstraction Stream & coupled

compute pattern

Look-up & forward

Partial (fixed patterns

limit optimizations)

Stream (strided/indirect
/pointer chase) with no reuse
High (ISA,

coherence protocol)

C
Data movement-
aware partitioning
Target appls

Trregular Both

Additional
impl. overhead

High (new prog-
ramming model)

Low (compiler intrinsics)

one accelerator to another for exploiting pipeline parallelism.
Stitch [30] proposes a many-core architecture with distributed
patches of fixed computation patterns communicating over
a static NoC. However, the offload interfaces in both these
works are not generic, do not allow various degrees of offload
granularity, and require a specific implementation substrate
for accelerators. Pipette [31] and Fifer [32] architectures pro-
pose techniques to exploit fine-grained pipeline-parallelism
in irregular applications for general-purpose processors and
large-scale CGRAs (coarse-grained reconfigurable arrays).
While the focus of these works is different from ours, the
techniques to decouple compute partitions and the principles
to augment producer-consumer partitions with control flow
semantics are similar to our work. However, our interface
mechanisms to support irregular control flow are more generic
in its applicability since each accelerator can choose to define
the response functions to control flow indications.

III. OUR APPROACH

Our goal is to define an offload model for a Dist-DA
target architecture, shown in Figure 2a, while adhering to
the requirements listed in Section II. We make the following
design choices to build an offload interface that allows
distributing code regions flexibly and at low overhead, for
mapping on heterogeneous accelerator micro-architectures.
e Configurable semantics of offload function: We target
partitioning at sub-computation granularity which is necessi-
tated for reducing data movement by @ and as has also been
established by prior work [19], [22]. Therefore, the function-
ality of the distributed accelerators should not be bound by
the host ISA or its micro-architecture. With this in mind,
we define an abstraction (Section IV-A) for the compiler to
extract such sub-computations along with application data
structure semantics. Associating code regions to application
data structures helps to reduce inter-data structure traffic. We
then build an automated compiler approach for programmer-
transparency, and to define communication-aware distributed
offload functions.

e Decoupled producer-consumer communication: We ob-
serve that, among the considered workloads, loops performing
recurrent functions dominate the dynamic code coverage
between 70-99%. This results in the communication between

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

distributed offload functions to have a “recurrent” producer-
consumer relationship. We exploit this behavior by adopt-
ing a dataflow communication model for energy-efficiency
(Section IV-B). We configure the accelerator definitions
with details of its producer/consumer to enable implicit low
overhead communications between the offload functions as
required by @. This reduces the control overhead of recurrent
communications compared to a two-way request-response
mechanism. Note that this implicit dataflow communication
mechanism can be further generalized to accelerator pipelines
beyond inner-loop scope, but that our current compiler flow
does not automate exploitation of these scopes.

e Accelerator architecture-agnostic: The rising heterogene-
ity of emerging systems requires the interfaces between differ-
ent compute units to be as general as possible to ensure easier
portability, maintenance, and future-proofing. To achieve
this @, our architecture interface does not impose a specific
accelerator architecture beyond requiring a generic interface
model for configuration-related and operand communication
(Section IV-C). In other words, our offload model permits
the use of heterogeneous accelerator resources by employing
software intrinsics for inter-accelerator or host-accelerator
communication. In addition, we use a buffer within the access
units to decouple distributed offloads. The buffers are also
used to capture reuse and to provide latency-insensitivity of
memory accesses and operand communication.

Our main contribution is defining a generic offload
interface that allows a better exploitation of advantageous
features of the Dist-DA architectural model compared to
prior works. Since the offload interface allows flexible
offload function definitions, it permits software-driven fine-
grained optimizations to be applicable for on-chip data
movement reductions. Further, heterogeneous accelerator
architectures can conform to the proposed offload interface
without requiring intrusive design changes.

T sch -~ (b) Buffer Orchestrator
<’ [AccessID | Start, Stride |
MMIO|| > =[x | 0x7F00, 4.
>« Buffer Allocation Table
p Compute [Buffer ID I Access IDs]
I_LLI'_|1LI'_|1LI'_EIJ f resource [buf-a [xyz. |
\ 10/CGRAL..
3 d) Case-1 Multi-access
L2 L2 L2 L2 (d) Caserl combining

|
¢ < (len(buffer)-threshold,

=
(a) rch (c) Access unit __ - to cache + . |/ c-runtime constant

'"Ddd';ce > write Cache forA(]U:)ngl(j)Jrc)
a“es‘; ?d \Lmer“ . interface
s::.:: N H oriCrfltgrs % ﬁ}}c!tD jlicenslacion Case-2 Access distribution
< p crl ¢ > bank interleaving
4+ || |Obj-Al I Obj-A2

Drain/
Fill FSM

) oby:-
c‘;ﬂ‘lm{lt?e -’lf;,, 7 l}:sq- $
nodes | dasa| '3 | Buf select H RAM

Figure 2. (a) Target architecture, (b) Buffer management, (c) Access unit
design and (d) Access mappings.

IV. THE Di1ST-DA OFFLOAD INTERFACE

This section describes how we abstract the target offload-
able code and how we map the interface between distributed
offloads, along with the necessary architecture and software
support. An example of how a code snippet gets mapped
using the proposed interface is shown in Figure 3.

A. Software Support

Offload abstraction: Offloadable code regions are ab-
stracted as dataflow graphs (DFGs) of primitive units (see
Figure le), namely, (i) application memory objects/data
structures, (ii) access instructions for required memory
transactions, and (iii) operations represented as a set of
producers and consumers. The compiler converts the example
code snippet shown in Figure 3-@) to a DFG representation
as in Figure 3-@ for further analysis and optimizations. The
DFG shows the natural dataflow relationship between the
data structures involved in the region of offload. Each data
structure is assigned a distinct virfual object ID, representing
a logical memory object. An object can be resident at various
levels in the memory hierarchy. The compiler groups the
accessors based on the underlying memory object that it can
access. This ensures object-level memory access ordering.

Offload extraction: The compiler partitions the DFG so
that each partition has at most one memory object to localize
computation to data, as shown in Figure 3-@. Further, the
sum of the communication costs across multiple partitions is
minimized by employing graph partitioning algorithms [33].
To enable distributed execution with low control overheads,
each partition has a co-located control logic that orchestrates
its execution. The orchestrator contains the necessary con-
ditions to iterate a given offload function, based on loop
induction variables or the presence of an input value. The
communication between the partitioned offload functions is
mapped using the interface mechanisms (described next) to
enable decoupled producer-consumer execution. Finally, the
compiler generates distributed accelerator definitions, shown
in Figure 3-@ (see Section V).

B. Interface mechanisms for Dist-DA

To facilitate communication of various kinds of data or
control operands among distributed accelerator definitions, we
define memory-mapped I/O (MMIO)-based interface mecha-
nisms implemented as software intrinsics, as summarized in
Table II. We categorize the mechanisms into four classes.

o Host-initiated mechanisms: The host uses these mecha-
nisms to allocate and free a set of accelerator resources at
runtime based on the requirements in the application binary.
The cp_config transfers the offload configurations to the
hardware accelerator scheduler. cp_config_stream/random
allocates an access unit for strided memory accesses or
random access, respectively. Additional arguments specify the
size and type of accessed data. If the allocation is successful,
the hardware scheduler returns the allocated buffer, uniquely

1164

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

clnput: code snippet 9 Optimization — DS and access-aware partitioninga Output: disgilll)llllttl?)(:l :ccelerator
o 0:i<N:i DS-1 DS-2 = oo
for(jv O,Xj[:] N; j++) { — cp_consume A3
it e nt: B3, A
D) || Placement i, il =] ey e
Y[v] = strided { gccess Al start,
Q[qi++] = ..uus - 1 | uide, DS-3
T[ti++] = | TES under/ | Gy
\ Placement hint: Al overflow cp_consume
} == strided access Y
DFG abstraction DS-4 ~ Z_cp_consume
@) DrGabstraction | on @ m | @R |||
& Placement hint: DS-3 = DS-2 DS-4 qitT
strided access fOY(V Yo T 4
egen
6 Execution flow cmp? —caenc
[]] DID St
OO R Sy LA (OO . Note:] [| Data 10Cati0n
- OE 8 [@]f # mapped accelerator locations = @ Compute
Vi > 3 out of 8 @ Access
E % A3, A4 1 # concurrent accelerator definitions = 4 -
~ | i *Al->A2: data dependence : Data structure
‘ OE Lk (o GO (03 (B iy * A2->A3/A4 : Control dependence == Dataflow
@ [ait J[T] (tie+] L o I A SRR converted to data dependence Configuration

Figure 3.

Example of Dist-DA offload model with proposed interface. (1) The input code is abstracted as a DFG of memory object locations, accesses and

computations, in (2). (3) Compiler optimizations are done. (4) and (5) show distributed accelerator definitions and execution flow in Dist-DA architecture.

identified by a buf-id. The hardware scheduler maintains the
access-id to buf-id mappings per application context in a
buffer allocation table, shown in Figure 2b.

Table I

INTERFACE MECHANISMS. THE FOLLOWING MECHANISMS ARE
IMPLEMENTED THROUGH MMIQO-BASED SOFTWARE INTRINSICS.

Mechanism Operands/Return

. cp_config offload-id, [args]

3 cp_config_stream access-id, start, stride, length, [args]/ buf-id

T cp_config_random access-id, start, end, [args] / buf-id
cp_produce access-id, data

E cp_consume access-id / data

S cp_step access-id, [N]

E cp_fill_buf access-id, [#elements]
cp_drain_buf access-id, [#elements]

c cp_write obj-id, obj-offset, data

S cp_read obj-id, obj-offset/ data

S cp_fill_ra buf-id, [addr], [#elements]

R~ cp_drain_ra buf-id, [addr], [#elements]

_ cp_set_rf reg-id, data

8 cp_load_rf reg-id / data
cp_run offload-id

o Dataflow mechanisms: The dataflow-based producer-
consumer mechanisms allow memory accesses and com-
munication of intermittent values to be mapped with the
same semantics. cp_produce/consume writes/reads data from
the access-id. Spatially-mapped producer-consumer nodes
(e.g., as in CGRA) may have an implicit access-id. These
enable repetitive transfer of operands between accelerators
in a decoupled fashion. Decoupling the units helps for a
part of a DFG to run ahead of the rest. Dataflow control
cp_step skKips its read/write pointers through N elements (e.g.,
a consumer can consume from the buffer corresponding to a
given access-id, and can optionally step its access pointer
by one or N times). cp_fill/drain_buf mechanisms interface

with the hardware module (if present) to fill/drain the buffers
as per the configured pattern for its associated access-id.
e Random access mechanisms: cp_fill/drain_ra mecha-
nisms are used to explicitly fill/drain the local buffers,
analogous to DMA operand transfers. Our automated com-
piler passes do not currently utilize the cp_fill/drain_ra
mechanisms. However, Figure 5 and Section VI-D explore
examples where these mechanisms are employed via user-
specified schedules. cp_write/read mechanisms are useful
to transfer intermittent data between co-processors with
indirect/data-dependent access patterns. These accesses are
based on the data structure/memory object ID and its offset.
They get translated by the object-buffer mapping module to
identify if the data is present in local buffers. If not, these
accesses go through the cache interface block to the external
memory system.
e Accelerator control mechanisms: The register-file access
mechanisms cp_set/load_rf are used (typically by the host)
to transfer scalar values to/from an accelerator register, reg-id.
The cp_run command starts the execution of an offload.

Interface vs. implementations: Note that the interface
mechanisms separate out the semantics of the offload function
from the communication aspects as per requirement @@. This
allows other offload models to be designed on top of this
interface. For example, Livia’s migration scheme can be
implemented by invoking cp_set_rf and cp_run to transfer
operands and invoke an already configured accelerator based
on a coin flip, or based on looking up the location of the
data as in NSC [10].

In addition to the interfaces shown in Table II, which are
evaluated in this work, we also propose that our interface
would benefit from a cp_transfer intrinsic to transfer values

1165

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

from a source to destination buffer in batches. However, the
expected use cases for cp_transfer imply algorithmic changes
to explicitly perform these batch transfers, and our compiler
passes therefore neither currently use this mechanism, nor
is the mapping between additional pragma support and
entailed compiler extensions sufficiently obvious that a
manual approximation clearly reflects future implementations.
We therefore exclude cp_transfer from the scope of this work
except to note it as a desirable feature of an offload interface.
While this work assumes the target architecture in Fig-
ure 2a for the purposes of concrete evaluation, the proposed
interface would be equally applicable to any distributed
collection of accelerator resources with the following features:
A light-weight in-order (IO) processor or configurable
processing element (PE), capable of executing a DFG of
primitive operations and data access units with local buffering
to enable reuse and support latency-insensitive dataflow
communication between producers and consumers.

C. Architectural Support in Accelerators

Access units: Figure 2c shows the design of our access
unit, the primary functionality of which is to decouple the
distributed partitions by acting as an intermediate data-store to
provide latency-insensitivity. Each access unit has four main
components. (1) The SRAM buffers enable data reuse and
decoupling. The accelerators deal only with data structures
identified by an obj-id and its offset. Every accelerator
has a translation block that converts the obj-id and offset
to its respective physical address. (2) The registers store
the current read and write pointers. This helps multiple
consumers to access the buffers regulated by the bandwidth
management unit. (3) The cache interface block handles
memory requests/responses. Credit-based backwards flow-
control protocol support is assumed in the network-on-chip
(NoC). The communication model can be adapted to support
multi-casting, depending on the underlying NoC design, by
enabling each producer to send values only when there
is space in all consuming buffers. (4) Additionally, we
implement hardware support for one-dimensional strided
patterns in the access unit, given their ubiquity. The finite
state machine logic (FSM) tracks the currently accessed data
structure offsets, and prefetches or drains data based on
the configured stride and buffer occupancy. The address
generation units can be combined with the co-located
compute resources to map more complex access patterns,
such as hashing or N-dimensional strides.

Reuse: While our primary aim is to support distributed,
mostly-in-place computation, it is also important to reuse
already fetched data. We use a simple hardware scheduler at
allocation time to detect buffer reuse among access nodes.
Multiple accessors are combined to be co-located along with
a local storage unit for temporal and spatial reuse across
accesses. Access instructions with overlapping strides are
mapped to a single buffer. Figure 2d shows an example, where

1166

¢ is the distance between the accesses on data structure A,
along with two examples of access specialization, based on
the runtime value of c. When the accelerator resources are
configured at allocation time, if there is a runtime-determined
overlap of access windows and the access distance is less
than the buffer overflow limit, these accesses are combined
by the runtime (Section V-B) to be mapped to the same
buffer. However, if the runtime finds that two accesses do
not overlap, they can be distributed upon the conditions that
the compiler did not identify any dependency violations and
the partitioning is profitable. This enables concurrency among
non-overlapping accesses and reduces coherence traffic.

D. System Support

Translation and Coherence: The proposed accelerators
need to be virtual-memory compatible and fine-grained
translation imposes latency overheads. Hence, we map a
large contiguous memory space for accelerator-accessible
data structures that is managed with a slab allocator for
allocations/frees. This mitigates the number of allocations and
page translation requests between the host and the accelerator.
The accelerator uses offsets into the data structure to access
the local buffer and memory. The runtime manages the
translations per memory object.

Within the boundaries of the offloaded code, the accesses
to data structures are localized to the home bank where they
are anchored. However, if the accesses fall outside the current
compiler analysis scope for offloadable code, the data will
need to be invalidated if the scope of access changes between
processor/accelerator domain. This can also be accomplished
by flushing the data as conventional NDP designs do [34].
For ease of integration with the rest of the system, each
accelerator has an accelerator coherency port (ACP) [35]. All
memory requests from the accelerators pass through its local
ACP. We minimize generating cross-cluster coherence traffic
by explicitly managing the accelerator-visible data structures
in software and not participating in hardware coherence
protocols for co-located accesses. This is possible since we
have one serializing point per memory object.

E. Use cases

Flexible offload functions: In Figure 3-@), data
movement-aware partitioning of the code region produces
flexible accelerator definitions A7/-A4, to be co-located at the
four data structures: X, Y, Q, and T. Our offload interface
helps in transferring the control and data dependencies
across distributed compute/access nodes in an energy-efficient
dataflow model shown in Figure 3-@. Note that the data and
control dependencies in the original code region still exist:
A2 is data-dependent on A1, whereas both A3 and A4 are
control-dependent on A2. The mapped accelerators execute
concurrently (pipeline-parallelism across A7-A4), but these
do not parallelize beyond the sequential dependencies that
already exist in the application. While our focus is not to

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

location-1 : buffer-1

Input code: for (j=0;j<N;j++)
Y

v o) Ysal: 0x44 = |[P1.Write to buf @ %al.
Pscudo-IR: clil = g(v); I,® § If occupancy >
BBI: . < threshold,
z/ow_| = phi [N, BBOJ[%ivj.nxt, BB1], / @) 2 block on cp_produce.
{;L;‘sfigfe(""oal e e == s - = ||p2. Step write pointer.
> -
o, s --
sp:i‘t;p(,g’,?;;n;u/u—qz—_ —-—=x ¢ =2 [0x30] FSM 1T Push data from buf @
cp_step Yoa2 = — 'S ®) %a2p onto network.
Y%gout = call g (v) (I Success? step pointer
,,,,,,,,, ' credits 4 { Interconnect and drain.
6iv).nxt = add %ivj, | 1! N2. Deliver network data
=i N, %ivj.nxt = p <
BB2: - A
Note: The cp_produce interface ! I‘ T o
specifies only an access D and N@&>) N 5 C1.Read %a2.
not a destination buffer because V * = p > =] a8 g C2. Success? step
the mapping between producer \ @D N 2 pointer and drain.
and consumer buffers is static. If ~ Va2 Ox =
the accessors (%al and %a2) are ~»>| [%6a2: 0x4] [3
local, then the network p{)‘fﬁgﬂ

write
pointer

Figure 4. Cross-partition communication mapping.

component is elided. location-2 : buffer-2

auto-parallelize applications in this work, our approach does
not preclude parallel speed-ups. If we have a task-parallel
application, it can be adapted to use the proposed interface.

Cross-partition communication: Figure 4 details how
a communication edge (intermediate value v in the input
code) between distributed accelerators at locations-1 and 2
get mapped on the access units for decoupling. c¢p_produce
and cp_step on access ID %al in the pseudocode writes
into the local buffer-1, say at address 0x44 in the example,
and steps the pointer by 1 as shown in the figure. This
is followed by a read operation at access ID %a2p for
remote consumer. Although the consumer is remote, the
proxy pointer in %aZp is maintained locally for memory
object-specific access ordering. A buffer is allocated at the
consumer for performance decoupling. The data from the
network gets written at %aZ2c on buffer-2. The consumer
at location-2 uses cp_consume and cp_step on %a2 to read
data from its local buffer.

Control communication: Figure 5a shows how commu-
nication can happen across different control domains in a
loop nest, assuming the loop nest in the input code gets
partitioned into two, one with the outermost loop control
and other with innermost loop. The pseudocodes show how
the host configures the write (accl) and read (acc2) accesses
with ¢p_config_random mechanisms, and how the innermost
loop bounds (Ap[i] and Ap[i+1]) are transferred between
partitioned offloads. Partition-1 reads the loop bounds from
memory and produces onto the buffer, which are later
consumed by the partition-2 executing the innermost loop.

Access/communication scheduling: Figure 5b shows an
example for an in-order core with manual access scheduling
with ¢p_config_random and cp_fill/drain mechanisms, in
the absence of a fill/drain FSM hardware block. The host
configures two access-IDs to be mapped on the same buffer
s/sr at the source — a forward-stepping write access accW
and a reverse-stepping read access accR. The third access
accD at the destination writes into the target buffer, d. The
partition-1 initially fills the buffer s with data from memory
object-src. This is followed by repeated consume and step on
the filled buffer at partition-1. Concurrently, the partition-2

1167

receives data from the network and writes into the buffer d.
The buffer d is finally drained once the loop in partition-2
finishes.

V. COMPILER SUPPORT

This section details our compiler implementation for
automating the identification and extraction of offloads. We
implement the compiler passes on the LLVM framework [36]
to automate the entire compilation flow from partitioning
offloadable code regions to extraction of distributed acceler-
ator definitions from application hot-spots. The implemented
passes rely on existing LLVM analysis passes, namely,
static single assignment (SSA), scalar evolution [37], and
memory analyses. Current memory-pattern specialization
approaches [23], [24] specialize a memory access pattern
in isolation from the rest of the application accesses. As a
result, the application characteristics, including its execution
and data semantics, are lost in the process of mapping
to the underlying architecture. Each memory access gets
transformed to an abstract load or store to a virtual address,
and loops get transformed into repetitive execution of
instructions. However, we note that some of the algorithm
and data semantics are visible to the compiler. In fact,
current compiler systems try to efficiently represent every
memory access and compute instruction in loops as recurrent
expressions, or as a function of other static single assignment
(SSA) expressions [37]. While the aim of these compiler
techniques is to enable efficient mapping of computations by
exposing how the variables evolve in a loop, in this work,
we leverage this representation to enable efficient decoupling
of distributed communicating offload units. Each unit is
“self-contained” in terms of control, and connecting these
units in a producer-consumer fashion reduces the external
control overhead of sequencing multiple accelerator resources.
Figure 6 visualizes the compiler support detailed below.

A. Compilation Steps

All the following steps are automated on the LLVM
framework with support from the Metis graph partitioning
library [38] and CGRA-Mapper [39] for CGRA-based spatial
accelerators.

1) Profiling: Profiling is used (only) to identify key code
regions that contribute to high dynamic instruction coverage.
We profile on train/small inputs that are different from the
actual datasets used for evaluation in Section VI. While we
could apply our technique without this step to any code
region whose semantics support offload, not all offloads
are likely to be profitable, and hot-code profiling assists
our profitability analysis. Further, a more dynamic approach
could use run-time hotness, rather than offline code profiling,
to determine whether to offload a given computation graph in
whole or in part. We consider the former to be an interesting
topic for sensitivity studies and workload characterization
of offloading under our proposed model and the latter to be

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

Loop nest code snippet: Pseudo-IR for partition-1:

20 for (i=0;i<R;it++) BB1:
| for (j=Aplil: j<Ap[i+1]; j++) 9%i = phi [0, BBO], [%inxt, BB1]
E ...loop body... <rs,re> = <2 x 132> load Ap[%i]
2 Pseudo-IR for host control: cp_produce accl, <rs,re>
§ cp_config offloadID-1... ¢p_step accl
S cp_config_random accl,&Ap[0],&Ap[R] %inxt=add %i, 1
O cp_config_random acc2,&Ap[0],&Ap[R] %exitc = icmp..
@ offloadID1 br %exitc BBI, BB2
a

Pseudo-IR for partition-2:
BBO0:

<Js, je> = cp_consume acc2
br BB1

BB1:
%j = phi [js, BBO], [jnxt, BB1]
...loop body...
br %exitc BB1, BB2

BB2:
cp_step acc2

[Ap]t]

c,d>

1\ f<a,b>

Code snippet to transfer size-n block in Pseudo-IR for partition-1:

reverse order BBO:
for (int i = 0; i< n-1; i++) .
dst[n-1-i] = srefi]; B]C;;—ﬁ il ra s, <src, 0>, n

Pseudo-IR for host control:

cp_config offloadID-1...

s=cp_config_random accW ,&src[0],&src[n-1]
sr=cp_config_random accR,&src[n-1],&src[0]
call assert... // assert same buffer ID (s == sr)

%i = phi [0,BB0], [%inxt, BB1]
%v = cp_consume accR
// Push %v to n/w

Scheduling without fill
/drain hardware FSM

YInxt......
d=cp_config_random accD, &dst[0],&dst[n-1] ‘%‘:exitc = icmp......
() cprun offloadID] br %exitc BB1.....
Figure 5.

a route to further optimization of our system, but defer the
exploration of both to future works.

2) DFG classification: The compiler analyzes all loop
regions in the target program to identify all basic blocks
without high control complexity. The compiler skips consid-
ering basic blocks requiring frequent, non-pipelinable host
synchronizations for offload. The final set of candidate code
regions are used for identifying acceleratable regions.

The compiler abstracts groups of offloadable instructions
as accessor and computation nodes in a DFG. All the address
computation instructions leading to load or store instruction
are grouped together as accessors. The accessors are grouped
based on pointer analysis by marking each node with a
distinct pointer ID. The rest of the instructions are classified
as computation nodes. Additional representative nodes per
memory data structure are added to the DFG to indicate the
data structure-accessor mapping for further partitioning and
placement steps. These three types of nodes are shown in
Figure 3-@. Compiler-based memory alias and dependence
analyses [40] are used to identify the underlying pointers
that each memory access instruction points to. Access nodes
that do not have known memory pointers at compile time
are marked with unknown memory object IDs. Control-
dependencies in the DFG are converted to data dependencies
by predication.

We leverage Scalar Evolution analysis to identify add-
recurrent (streaming) patterns of address computations. Static
memory dependence analysis of the compiler [40] is further
leveraged to conservatively classify each DFG into three cases
for partitioning: (1) partitionable accesses and computations,
with no memory dependence cycles across loop iterations
(parallelizable offload); (2) non-partitionable DFG because
of unresolved memory pointers or presence of memory
dependence cycles across loop iterations; and (3) partitionable
accesses and computations that are non-parallelizable due

Pseudo-IR for partition-2:
BB1:
%i = phi [0,BBO], [%inxt, BB1]
%v=//data delivered from n/w
cp_produce accD, %v
cp_step accD, 1
%inxt......
Yexite = icmp......
br %exitc BB1, BB2
BB2:
cp_drain_ra d, <dst, 0>, n

Characteristic use cases of proposed interface mechanisms.

Architecture config

Profiled hotspots — ¥ i Optimizations

02 opt Memory DFG ,{ Classify DFGs |,(DFG partition}
analysis abstraction is
[(Clang) (LLVM) (LLVM) (LLVM) (Metis)

Accelerator
definitions (IR to

Mapping {speé&iglci%stion h]f'lz}cement J
AM: ints (LLVM
microcode) (CGRAMapper) (LLVM) [¢)

Figure 6. Compilation flow in the LLVM tool-chain (the shaded blocks
represent the added optimizations).

to the presence of irregular write accesses (pipelinable). In
cases (1) and (3), the computations can overlap with multiple
memory accesses and the offload can further be analyzed
for partitioning. In case (2) however, the execution needs to
be serialized to ensure correctness and, hence our compiler
conservatively avoids partitioning. Note that the compiler can
add pointer checks and decide whether to offload at runtime
if such cases are prevalent in a particular target workload.

3) DFG partitioning: The DFG edges connecting various
accesses and compute instructions in the abstracted DFG
are annotated with communication bit-widths. All nodes
are marked with the type of necessary compute resources.
The partitionable DFGs are input to Metis [38] following
conventional graph partitioning techniques [33] to reduce
inter-partition communication cost while keeping the number
of accessed data structures per partition low. The com-
piler iterates graph partitioning with increasing number of
partitions as a criterion. The pass maintains a history of
inter-partition communication cost for various solutions and
the number of distinct data structures accessed within a
partition. The iterations are performed for a maximum of
the number of nodes in the DFG or until there is only one
data structure per partition. At the end, the compiler outputs
the solution with the lowest inter-partition communication
cost and least number of data structures per partition. Non-
partitionable DFGs bypass the partitioning step. Partitioning
involves clustering various accesses with computations to
reduce communication costs, clustering multiple accessors for

1168

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

exploiting spatial reuse and decoupling long-latency memory
accesses by mapping onto a buffer interface as shown in the
example on Figure 3-@). The compiler assigns a distinct
access-ID for such specialized accesses.

4) Access node placement: The compiler marks the access
nodes with preferred (vertical) placement in the memory
hierarchy. The preferred location is decided based on memory
access pattern characteristics. In general, long strided access
are marked to be placed at L3, whereas irregular accesses to
shorter sequences are placed closer to the host. Offloading
shorter irregular accesses requires more control data to be
transferred, and this is not amortized at the LLC. In the
example, the compiler pass marks the X, Q, T accesses as
strided and Y as indirect accesses.

A DFG partition with both stream and indirect accesses
to the same memory object are marked to be co-placed,
and the indirect accesses will expend one cycle to check
the local buffer before forwarding a request through the
memory interface. We adopt a greedy approach for the
(horizontal) placement of access nodes on an LLC cluster.
At allocation time, the access nodes are assigned a home
LLC cluster based on the address of its first access. However,
the placement technique can further be improved in the future
with additional runtime support to compare the migration
cost with cross-cluster access costs: Then, the partitions
with access units placed at L3 can further be decoupled by
dynamically migrating the access nodes to banks with data
like prior work [10].

5) Access specialization: The compiler specializes the
edges connecting different partitions with the help of dataflow
mechanisms in Table II. An example of the mapping is
shown in Figure 4. The cross-edges between the partitions
are specialized to be mapped onto buffers in the access units
for enabling decoupled communication between producers
and consumers. The decoupled partitions can execute multiple
iterations of the loop ahead of the other partitions. In Figure 3-
@, the indirect accesses to Y require ordering, which is
already ensured by the clustering of all accesses per data
structure. The compiler further specializes the strided access
nodes by mapping on access units (Section-IV-C, Figure 3-
@-Al), while also inserting the associated configuration in-
trinsics c¢p_config_stream. Nodes with determinable constant
access distance are grouped together as candidates for spatial
reuse. As an optional specialization for in-order accelerators,
the pass inserts software prefetches for any irregular access
without dependency violations.

6) Offload configurations: Finally, the compiler outputs
accelerator definitions for the partitions based on the available
accelerator resources in the target system. In the case of
CGRAs, larger DFGs are partitioned further and mapped
across multiple tiles. After successful mapping, the offloaded
code region is outlined, and cp_set/load_rf instructions are
inserted for transfer of any scalar operands to/from the accel-

erators, respectively. The final co-processor(s) configurations
are bundled with the application binary.

B. Execution Flow

e At runtime, depending on the placement hints from the
compiler, home nodes get identified as per the greedy
approach mentioned in Section V-A-4. The host allocates
and configures the accelerator resources for the associated
partition identified in the cp_config instructions (Figure 3-@).
This includes loading the translation block for all objectiDs
used within the partition.

o Each access node with an access-ID gets mapped to
hardware address generation units (buf-id), and each pro-
ducer/consumer mapped over the interface mechanism gets
assigned a write/read pointer interface (see Figure 2c) that
is mapped to MMIO space.

e The buffer orchestrator, in Figure 2b, is configured with
start and stride values of the stream to let the buffer hold a
window of elements for reuse among any co-placed accessors.
Accessor-to-memory-object mappings are stored in a runtime
data structure managed by the orchestrator and are used to
perform multi-access combining as shown in the Figure 2d
(case-1). If the access distance is within the address range
of the local cache, then these accessors are mapped on
distributed accelerator resources. Note that the compiler
ensures that only accessors with constant access distances
between them are identified as target candidates for multi-
access combining.

o During execution, accelerators communicate through access
buffers, and the access management unit ensures that, if
there are consumers with back-pressure, the fill/drain FSM is
throttled accordingly. The offload model allows concurrent
execution of the host and multiple accelerators.

e cp_consume operations on an empty buffer block until the
producer writes a value. This is used for cases where the host
waits until the offloaded execution finishes. After execution
finishes, the runtime deallocates accelerator resources, if there
is no reuse across multiple outer loop iterations.

Table III
SIMULATED PARAMETERS

000 Core 2GHz, 2x4, X86 ISA, 5-way Ice Lake [41]
L1 D/T cache | 8-way 32KB, MSHR-8, latency 2
L2 cache 128KB, 16-way, MSHR-16,
latency 4, stride prefetcher
L3 cache | 2MB static NUCA (256KB per cluster) [41]
8 clusters (4 banks per cluster) on mesh
NoC, 16-way, MSHRs-64, latency 10
Memory | LPDDR 2GB
Accelerator | CGRA @ 1GHz or 1-issuc in-order @ 2GHz,
4KB bufter per L3 cluster, ACP - 1-way 1KB

VI. EXPERIMENTAL EVALUATION

We use gem5 [48], a cycle-level simulator to simulate the
system with the parameters shown in Table III. Table IV lists
key characteristics of the evaluated single-threaded work-
loads. To test the effectiveness of our approach, we choose

1169

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

Table IV
WORKLOADS.

Input dataset
288x352 images

Benchmark
Disparity [42]

Tracking [42] | 288x352 image
FDTD-2D [43] | 5.8MB
Cholesky [43] | IMB
adi [43] 1024x1024 matrix (24MB working set)
Seidel [43] 1000x1000 matrix (3.8MB working set)
Pathfinder [44] | 6MB matrix
Nw [44] | 4MB matrix
BFS [45] scale-12,edge factor-32

Page rank [46]
Pointer chase

12MB working set
8MB uniform distribution

PCA [47] 1.2MB working set
=12 A:000 S C:Mono-DA-1I0@2G E:Dist-DA-10@2G
E B:Mono-CA@2G i D:Mono-DA-F@1G F:Dist-DA-F@1G
210
=
-
g8
o
g6
&
2 4
5 |«
g 2
o
53}
O-ABCDEF ABCDEF ABCDE F ABCDEF ABCDE F ABCDEF ABCDE F ABCDEF ABCDEF ABCDEFABCDEF ABCDEF ~ABCD
dis trac fdt cho sei adi pf nw bfs pr pch pca gm
Figure 7. Normalized energy efficiency.

streaming, graph, dynamic programming, dense linear algebra,
and data mining applications from Cortex/SDVBS [47]
[42], MachSuite [45], Polybench [43] and Rodinia [44].
The accelerator code regions are identified and extracted
using compiler passes built on top of the LLVM compiler
infrastructure 11.0 [36]. All applications are compiled with
Clang and LLVM Opt -O2. The O3 LLVM-Opt passes
aggressively unroll the loops with multiple runtime checks
by default. This increases the number of configurations
of an offloadable code region and the binary size. Fine-
tuning the sequence of compiler passes to avoid this issue is
ongoing work. Metis [38] is configured for partitioning the
offloads. For configurations with CGRA, we use the open-
source CGRA Mapper tool [49], [50] to map the offloads. A
slab allocator handles memory allocations for the evaluated
configurations with accelerators. A cycle-accurate model
of a statically-mapped CGRA is implemented in the gem5
simulator. For configurations with in-order (IO) cores, we
use an in-order core pipeline based on the gemS simple cpu
model executing custom 64-bit microcodes generated by the
compiler. All our applications with accelerator offloads are
validated by execution until program completion. We model
the dynamic energy for all system components including
processor, caches, interconnect, accelerators, access buffers
and memory. We use McPAT [51] and Cacti [52] configured
for parameters shown in Table III for 32nm technology.

A. Tested Configurations

The following configurations are evaluated. @) 00O — out-
of-order core running single-threaded workloads. &) Mono-
CA@L3@2GHz without area constraints — OoO pro-
cessor with a monolithic accelerator on the L3 bus with
centralized, but stream-specialized, accesses and an 8KB
private cache. 3) Mono-DA-IO @2GHz and (4) Mono-DA-
F@1GHz without area constraints — OoO processor with

1170

decentralized accesses but without computation partitioning.

Both the configurations allow the reuse of the locally buffered
data. Accelerator resources are implemented with either
an IO core@2GHz or CGRA fabric@1GHz, respectively.
The Mono-DA-F configuration has a 8x8 CGRA fabric to
support larger near-data offloads. (8) Dist-DA-I0O @2GHz
and (6 Dist-DA-F@1GHz — 000 processor with decentral-
ized accesses and distributed computations. Accelerators are
based on IO cores@2GHz and 5x5 CGRA fabric@1GHz,
respectively (see Section VI-E for area overheads). The
results are normalized against the OoO configuration, unless
explicitly specified.

B. Energy Efficiency

We illustrate the potential of the offload interface in (1) dis-
tributing both compute and accesses and (2) being adaptable
to various optimizations. Figure 7 plots the energy efficiency
of the configurations for various benchmarks. Distributing
and specializing the computations along with decentralizing
the accesses (Dist-DA-F) shows 3.3 x geometric mean (GM)
energy efficiency over a OoO core execution. Because of
reduced inter-accelerator traffic and flexibility of the offload
interface, Dist-DA-F provides 1.46x GM energy efficiency
compared to Mono-DA-IO baseline. Further, the Dist-DA-IO
configuration provides a GM energy efficiency of 2.67x
over the baseline. It highlights the flexibility of our offload
interface to support various accelerator implementations.

Effect of decentralizing accesses: Overall, Dist-DA-
F@1GHz provides 2.4x, 3.5 and 1.48x GM reduction in
data movement (bytes) compared to OoO, Mono-CA@2GHz
and Mono-DA-IO@2GHz, respectively. Decentralizing ac-
cesses reduces the traffic through the cache hierarchy for all
the benchmarks as shown in Figure 8 (remains the same for
all DA configurations). The distribution of dynamic accesses
between accelerator resources is shown in Figure 9. Whereas
the component intra measures the traffic internal to an accel-
erator’s local buffers in bytes, D-A/A-A measures the external
traffic between an accelerator and cache hierarchy/remote
accelerator, respectively. We note that all applications with
good spatial locality have a higher percentage of intra, which
are more energy-efficient than cache accesses and the asso-
ciated implicit data movement overheads (D-A in Figure 9).
Effect of sub-computation partitioning: The Dist-DA
configuration associates arbitrary sub-computations with data
structures based on compiler hints discussed in Section V-A.
As a result, better data movement-aware partitioning reduces
inter-accelerator traffic (A-A in Figure 9) further compared to
Mono-DA configurations. We further show the breakdown of
traffic through the NoC in Figure 10. The four components
are host-initiated request/response control (ctrl) and data
traffic (data), and inter-accelerator control (acc_ctrl) and
data overheads (acc_data). While specializing access nodes
can reduce data traffic across the cache hierarchy, as shown in
Figure 8, further partitioning and placement optimization has

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

e
<
-

S
-

Him
pt

Figure 8. # normalized cache accesses.

A:000

q C:Mono-DA-I0@2G
B:Mono-CA@2G

D:Mono-DA-F@1G

E:Dist-DA-IO@2G EEED-A [JA-A [intra
F:Dist-DA-F@1G

Figure 9. Dynamic access distribution
Emctrl EEmdata [Jacc_ctrl

A:000 D:Mono-DA-F@1G
B:Mono-CA@2G E:Dist-DA-10@2G
72| C:Mono-DA-I0@2G F:Dist-DA-F@1G

[acc_data

Figure 10. Data transferred through NoC (norm).

1" ® { r rate(mem ops)

12 i ‘ ®8 1°C

10| X‘ ‘

8 ® ® ®

o | A | B | .

4 ,’; &l x:‘ ‘ x* T A® ko ‘ x(

Sl W) 1n s ald p] el g e s
QAN oA NN s N sl wliNRN wRRRNN wiil waUAN o AN

ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF
dis trac fdt cho sei adi pf nw bfs pr pch pca

(a) Normalized rate of memory operations and IPC.

A:000
B:Mnno-CA@%G
]

C:Mono-DA-1I0@2G
D:Mono-DA-F@1G

E:Dist-DA-1I0@2G
F:Dist-DA-F@1G

2

B T
© sy
£4 s e o
B
g3 = Il 58 aan
] Sl e s LAl 8 o 3B ‘ ey P
e | B O i o e
lgo ﬁg | | — il = —o —co—CSp— S —a;:.?ﬁ Wr“o
2] =
0-ABCDEF ABCDEF ABCDE F ABCDER ABCDE F ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF ABCDEF — ABCD
dis trac fdt cho sei adi pf nw bfs pr pch pca gm
(b) Normalized speedup
Figure 11. Performance numbers for all configurations.

enabled the computations to take place closer to the cache
cluster, as indicated by the reduced inter-compute costs in
Dist-DA compared to Mono-DA (acc_ctrl and acc_data) in
Figure 10. Our offload model enables better reductions in
data movement for workloads where a complex computation
requires multiple read operands and where sub-compute
partitioning is advantageous (disparity, tracking, fdtd-2d,
cholesky, seidel-2d, adi and nw).

Effect of compute specialization: Dist-DA-F@ 1GHz
provides 1.23x GM energy efficiency compared to Dist-DA-
[0@2GHz, as besides near-data accesses and better compute
parallelism arising from distribution, the CGRA improves
the instructions per cycle (IPC) within each partition as seen
in Figure 11a.

1171

C. Performance

Figure 11b plots the speedup normalized to OoO con-
figuration for the applications. Overall, Dist-DA-F config-
uration provides a 1.59x and 1.65x speedup over OoO
and Mono-DA-IO models. IPC: The benchmarks disparity,
tracking, fdtd-2d, cholesky, adi, seidel, serial-implementation
of pagerank and pathfinder have better cache line spatial
reuse with all accelerator configurations, which gets reflected
in the cache access counts in Figure 8 and hence better IPC
in Figure 11a. Access bandwidth: PCA has column-major
traversals, and the increased access latency with shallow
cache hierarchy is in the critical path (note however that
the additional L1-L2 traffic is avoided). Since Mono-DA
distributes data accesses without data structure grouping, it
achieves better access bandwidth per data structure. This
is seen in the tracking benchmark. Similarly, the larger
access bandwidth of a private cache in Mono-CA gives
better speedup for cholesky. However, as we will show in
Section VI-E, users can manually optimize data structure
allocation for bank-level parallelism. All the workloads with
irregular memory accesses (bfs, pointer chase) show better
performance in DA configurations, owing to better access
locality and bandwidth, whereas OoO and Mono-CA must
wait for the data to go through the cache hierarchy. Clocking:
Benchmarks adi and seidel, which feature a larger number
of complex arithmetic operations, perform better on a faster
accelerator Mono-CA@2GHz. Similarly, higher clocking
rate in the Mono-DA-IO configuration provides speedup for
benchmarks tracking, fdtd-2d and cholesky. Dist-DA provides
lower NoC traffic, reduced communication latency and better
instruction-level parallelism (ILP). All of these play a role
in improving the rate of memory operations and IPC for the
Dist-DA configurations, as shown in Figure 11a.

Our evaluation focuses to showcase the wider applicability
of the proposed offload model to near-data accelerator
resources for energy efficiency, rather than to deeply mine the
finely-tuned performance capabilities of a single implemen-
tation of the model. Performance speedup can be further
improved with more aggressive techniques in unrolling,
hardware synthesis, mapping, increased buffer size in access
units, and access scheduling (e.g., migration [10]).

D. Case studies

While the focus of this work has been to evaluate the
benefits of distributing computation and accesses within
single-threaded applications, we also perform case studies
for multi-threaded workloads to show how thread-level
parallelism synergizes with the Dist-DA model within a
thread. We also provide a case study that exhibits the utility
of our non-automated interface mechanisms in offloading
control-intensive codes. Table V shows the coverage of
interface mechanisms in Section IV-B, differentiating the
use of automated interface features in our core evaluation

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

Table V
COVERAGE OF INTERFACE MECHANISMS USED IN BENCHMARKS AND
CASE STUDIES. C: COMPILER AUTOMATED. U: USER ANNOTATED.

o |o = s E £ G
Qg | A R B 1= [=
Benchmark / é%gégfl 2= glgé‘l’%"g glg
Case study Eig QI‘Q'Q'EI_*E"E!-S‘I °|§ 3 QE,,@!
aEMENLENEREE RGN
Access unit supports? Y[Y[Y|Y
disp c|c|c|cc|c|C Cc|C c|C|C
trac c|c|c|cic|c|c c|C c|C|C
fdt c|C c|C|C c|C c|c|C
cho C c|C|C c|C c|C|C
sei c|C c|c|C c|C c|C|C
adi c|c|c|cic|c|c c|C c|Cc|C
pf c|C c|C|C c|C c|c|C
nw c|C c|C|C c|C c|C|C
bfs c|c|c|c|c|c c|C c|c|C
pr c|C c|c|c|c c|C c|c|C
pch C C c|c|C
pca cl|cjc|cic|c|cC C|C c|C|C
spmyv (annotated) |U|[U UlU|U|U|[U|U[U U|U|(U|U
nw (annotated) U|u|U|U|U UlU|U U|U|U|U
bfs (multi-thread) |U|U|U|[U (U U|U|U U|U|(U|U
pf (multi-thread) |U|U|U|U|U U(U|U U|U|U|U
E [Dist-DA-B EEE Dist-DA-BNS ‘EZ B 00O
glﬂ EE 000 S [Dist-DA-BN gl [DistDA loop nest E
2 & =
2 s
]
&

=)

nw

#threads
(b) Multithreaded workloads.

(a) Control intensive offloads.

Figure 12. Case studies: Speedup for control-intensive offloads and
multithreading workloads.

and programmer-annotation-required features for our control-
intensive and multi-threading case studies.

Interface mechanisms Although our compiler automation
is currently limited to extracting accelerator definitions from
the innermost loops of workloads, the proposed interface
mechanisms can be employed to larger scopes. We evaluate
the use of the interface for workloads with irregular control
flow (the sparse matrix vector multiplication benchmark [53]
with randomly generated dataset — sixteen equally-sized 2D
tiles [54] of dimension 4096x4096 with 5 x 1073 sparsity
and 2.048 standard deviation in CSR format) and irregular
data access patterns (nw [44]) by modifying the codes with
additional user annotations to exercise specific portions of our
proposed interface. We consider three Dist-DA configurations-
(1) Dist-DA-B: compiler automated Dist-DA configuration
with the application written with loop-blocking, (2) Dist-
DA-BN: user-identified code regions with blocked loop-nests
for offloads, and (3) Dist-DA-BNS: user-identified schedule
for fetching data blocks or for pipelining the control flow
in a loop nest. Figure 12a shows the speedup of all the
configurations normalized to OoO. Whereas loop-blocked
implementation of nw improves parallelism by reducing data
dependencies, Dist-DA-BN localizes the control of the nested
loop and pipelines a larger number of loop iterations. On
the other hand, Dist-DA-BNS configuration allows multiple
stages of scheduling by filling in (cp_fill_ra) the data
block for computation followed by draining of the output

1172

results (cp_drain_ra). Offloading of the shorter innermost
loops in spmyv does not amortize the distributed offload as
seen by the 0.44x speedup of Dist-DA-B configuration.
Offloading a two-deep loop nest with localized control
reduces the host-accelerator offload overheads while also
providing a 1.22x speedup. Additionally, Dist-DA-BNS
shows a 1.95x speedup since it decouples the loop nest
control by producing (cp_produce) the loop bounds for the
innermost loop. The Dist-DA offload interface allows for
defining flexible offload functions, which helps in pipelining
across multiple invocations of the innermost loop offload.
Whereas recent works enhance the processor architecture
and/or interface [10], [17], [55] for improved data access
efficiency with limited support for offloading computation,
our proposed offload interface permits software-directed
mapping of both computations and data accesses near-data
without complex core modifications.

Multithreading workloads: To understand the behavior
of our proposed offload model on multithreaded programs, we
evaluate two multi-threaded applications (pathfinder and BFS)
from the rodinia benchmark suite [44] by scaling the number
of threads (1, 2, 4 and 8 threads). Whereas the proposed
compiler flow automatically partitions the application code
region subject to the data dependencies within a thread,
we currently rely on programmer annotations to identify
parallel code regions without read-write synchronizations
between concurrent threads. Figure 12b shows the execution
speedup for various configurations. All values are normalized
to single-threaded OoO configuration. The execution time
reduces as the number of threads is increased from 1 to 8 for
both benchmarks. Current framework limitations require the
parallel iterations of a loop (or loop nest) to be individually
scheduled to different threads. Hence, the stream-based access
specialization step in Figure 6 is skipped. This prevents even
better speedup in pathfinder as the spatial locality of accesses
across multiple parallel iterations are not exploited. Better
pragmas to indicate scheduling chunks of loop iterations
can improve the speedup. On the other hand, the outer-
loop parallelism in BFS exposes opportunities to exploit
pipelining across innermost loop iterations, and therefore
provides consistent speedups with increasing number of
concurrent threads.

E. Sensitivity analysis

Offload characteristics: Table VI shows various charac-
teristics of the offloaded code regions for all applications.
The second column (%cc) indicates the dynamic fraction
of instructions (code coverage) in the baseline that get
specialized, and the third column (%dc) displays the dynamic
memory access coverage capturing the fraction of memory ac-
cesses that are offloaded. We note that the identified offloads
within the innermost loops have a reasonable code coverage
and cover a majority of application memory accesses for
most of the benchmarks. The control overhead required to

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

3| Speedup A:Dist-DA-I0-1G C:Dist-DA-10-3G
8 IPC B:Dist-DA-10-2G
2
1 % % % % % % ® ® ®
x * b
L /P % ® * *x * x " x * e
A BT A B C A C A C A T A BT A B T A BT A BT

B B, C
dis fdt cho sei

Figure 13. Clocking sensitivity— speedup and IPC norm. to Dist-DA-IO-1G.

Speedup A:Dist-DA-I0 C:Dist-DA-I0O+SW
3 $§ EncrgyEfficiency B:Dist-DA-F D:Dist-DA-F+A .
2 x ®
Yura® wxue® wlfin w®x® T LRt LR LEER axax a%RE LML %

ABCD ABCD ABCTD ABTCTD ABCD ABCD ABCD ABCTD ABCD ABCD ABCD ABCD
dis trac fdt cho sei adi pf nw bfs pr pch pca

Figure 14. Effect of software-prefetching and allocation optimizations—
speedup and energy efficiency norm. to Dist-DA-I1O.

initialize and offload these code regions through MMIO
accesses is shown as a fraction of total memory accesses
in the original application, which forms a small percentage
(%init in column-4). Immediate operands configured based
on the c¢p_config/cp_set_rf mechanisms also contribute to
the MMIO overheads. The average number of local buffers
allocated per partitioned offload (#buf in column-5) is at
most three across all benchmarks. Table VI also shows the
maximum size of the output microcode per offload produced
by our compiler pass for the Dist-DA-IO configuration in
column-7.

Table VI
OFFLOAD CHARACTERISTICS FOR DIST-DA. COLUMNS: BENCHMARK,
9% CODE COVERAGE, DATA COVERAGE, INITIALIZATION OVERHEAD,
AVERAGE #BUFFERS, MAXIMUM STATIC INSTRUCTIONS & DFG
DIMENSIONS AND STATIC INSTRUCTIONS SIZE FOR IN-ORDER CORE.

Jocc | %dc %init | #buf | #insts,DFG dim | insts(B)

dis | 95 99.55 | 0.57 2 27, 5x8 216
tra | 82 99.97 | 037 3 55, 8x8 440
adi | 98 99.98 0.1 3 28, 8x5 224
fdt | 98 99.97 | 0.05 3 35, 9x7 280
cho | 95 98.54 | 1.73 2 11, 4x5 88
sei | 99 99.83 | 0.25 3 18, 9x5 144
pf | 99 99.9 0 3 27, 6x7 216
nw | 86 59.97 | 0.05 3 9, 5x8 72
bfs | 74 80.27 1.1 1 14, 4x7 112
pr | 97 99.89 | 0.31 1 28, 6x6 224
pch | 99 99.9 0.78 0 4, 2x4 32
pca | 98 99.94 | 0.66 1 17, 4x7 136

Area: We use MCcPAT, Yosys [56], FreePDK45 [57],
CGRA-Mapper [49], [50] and scaling equations [58] to
estimate the area overhead of the accelerator resources. The
Dist-DA configuration with light-weight single-issue in-order
cores with multi-threading capability, two complex and two
floating point ALUs contributes to an area overhead of 1.9%
of one L3 cache cluster at 32nm (0.3% of the entire chip).
For the CGRA-based configurations, we assume a statically-
mapped CGRA architecture as in prior work [39], [50]. The
processing units are heterogeneously distributed for area
efficiency. Employing dynamic per-cycle CGRA scheduling
that tolerates flexible memory access latency and better
mapping techniques can reduce area requirements further [59],
[60]. As shown in Table VI on column-6, the maximum
number of instructions per input DFG is 55, with a two-

1173

dimensional DFG span of 8x8 when ordered topologically
(before partitioning). An upper bound provisioning of 5x5
CGRA tile (four float, complex and fifteen integer ALUs) per
L3 cluster along with buffers and accelerator coherence ports
translates to an area overhead of 2.9% per cluster (0.48%
of the entire chip). Further performance-area tradeoffs (e.g.,
increasing vectorization and unrolling factors of loops) have
not been our focus. We conservatively model the accelerator
resource showing the upper bounds of area limitations at
a nominal 1GHz timing requirement, assuming the default
vector width of 4 and no explicit loop unrolling pragmas.

Clocking: We vary the accelerator clocking rate from
1GHz to 3GHz and find that, although the speedup improves
for most of the benchmarks, as seen in Figure 13, the IPC
reduces prominently for the access-dominated benchmarks.
Seidel-2D, on the other hand, has higher #arithmetic opera-
tions compared to accesses, hence the rate of IPC reduction
is low. This further supports our offload model, since we gain
more from increasing distributed accelerator-level parallelism
(see Figure 1la) than just increasing the clock rate, and
exploiting this requires the offload model to support flexible
accelerator definitions and energy-efficient communication
between distributed accelerators.

Working set size: We increase the working set size of the
fdtd-2d kernel from 5.8MB to 1.11GB with LLC capacity of
2MB. We find that the performance delay and energy numbers
are dominated by the latency and energy of memory accesses.
However, the Dist-DA configuration still reduces the on-chip
data movement by 2.5x to yield an overall energy efficiency
improvement of 9.5% compared to the Mono-DA baseline.

Software optimizations: To highlight that many optimiza-
tions are applicable on our Dist-DA model, we further evalu-
ate two configurations shown in Figure 14. The configurations
are normalized to Dist-DA-IO. @ Dist-DA-IO+SW with an
issue width of 4 and additional software prefetches inserted
in the offloaded code: software prefetching helps to hide
the longer L3 latency in most benchmarks with indirect
accesses, most prominently for pca and pr. Higher clocking
rate (2GHz) and issue width helps better the performance
compared to Dist-DA-F@1GHz, as in cholesky with multi-
stream reduction pattern and spatial reuse.) Dist-DA-F+A:
We test the sensitivity to allocation by manually customizing
the data structure allocations for intra-cluster locality. We find
minor improvements in speedup and energy efficiency. This
is because our offload scope is limited to the innermost loop
that already has intra-cluster locality most of the time. For
every outer loop iteration, the home node placement decision
is repeated, and this helps keep the computations near data.
For any longer offloads, our offload model is extensible to
incorporate runtime migration. This can be done at compile-
time by incorporating additional logic in the offload code to
raise a control request to the host to calibrate home node
placement. Otherwise, additional micro-architecture support
in the host can help monitor address ranges at sub-data

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

structure granularity for better runtime placement decisions
and handle may-alias address ranges within a data structure,
similar to prior work [10].

VII. DISCUSSION

Application affinity for Dist-DA: Of the benchmarks
we studied, applications consisting of streaming or irregular
memory accesses to a large data structure which are recurrent
and/or which can be pipelined across multiple inner-loop
iterations are profitable to be mapped on the proposed
architecture. Shorter code regions requiring increased host
communication and synchronizations, which cannot be
pipelined over multiple offload calls, would translate to
reduced performance and energy benefits, just as with other
offload models. Exploring performance-driven trade-offs for
domain-specific customization of access units is one of our
future directions.

Extending the interface to off-chip data residence: In
this work, we evaluate only on-chip offload models to
distribute computations for reducing on-chip data movement.
However, if the data is resident off-chip, off-chip localization
of compute may be preferable. Since the proposed offload
interface uses MMIO-based intrinsics to communicate across
distributed accelerators, extending it to off-chip memories
is possible. Off-chip offloads can follow similar producer-
consumer semantics. However, the scale of amortization and
offload granularity for which an offload becomes profitable
would vary. Such an off-chip offload model should handle
the challenges arising when a data structure is spread out
across multiple DRAM modules and when the larger off-chip
latency overheads are difficult to amortize over fine-grained
compute distribution and communication. Further, we expect
that many applications with off-chip resident data structures
will also have some on-chip resident data structures as well.
Our interface should allow both on-chip and off-chip offloads
to communicate among each other as appropriate for the given
application mapping.

Utilization: This work considers mapping of single-
threaded workloads with inherent control and data depen-
dencies to distributed accelerators. As a result, although
the distributed accelerators are concurrent, the dependencies
exerted by the accelerators bring down the effective hardware
utilization. To improve utilization and to exploit “accelerator-
reuse” [14], a core focus of our future work is exploring
accelerator micro-architectures specifically optimized for
multi-workload sharing of accelerator resources.

Accelerator sharing and multi-threading: Our current
evaluation focuses on single-threaded executions, but many
multi-threaded applications or multi-process workloads are
also sensible for the Dist-DA model. While evaluating the
quantitative trade-offs in supporting these scenarios is a
subject of ongoing work, two relevant issues are clear: 1)
atomicity support and interface generality and 2) resource
sharing. Our existing offload semantics already ensure

1174

ordering of accesses to an offload-accessed data structure.
Mapping synchronization data and operations as an offload
task, combined with our support for accelerator-to-accelerator
control transfer, should be sufficient to embody necessary
atomic operations, although how efficiently this performs
is not yet known. For verifying interface generality, we are
exploring ways to work alongside the OpenMP runtime,
where Dist-DA helps in energy-efficient communication/syn-
chronization within the concurrent but distributed partitions
of a software thread, and OpenMP helps manage multiple
software threads.

Finally, prior work [61], [62], [63], [64] has noted that
specialized logic often shares many common sub-patterns
and access patterns. Our future work will investigate how
best to exploit this, especially in multi-process workloads, to
generate offload descriptions that can perform the union
of multiple common patterns with much lower resource
entailment than provisioning for all offloads individually.

VIII. CONCLUSION

This paper proposes an offload model to enable efficient
data and control communication among the various dis-
tributed and heterogeneous compute resources that are in-
creasingly becoming common in system hierarchies. Further,
we identify a distributed offload abstraction of an input code
in a given sequential C/C++ application for efficient near-
data partitioning by the compiler. The partitioned offload
definitions along with the architecture interface and compiler
support help us implement an energy-efficient near-data
system. Our near-data accelerator abstractions and offload
models are adaptable to various architecture configurations.
We show that distributed computation offloading along with
decentralizing accesses (Dist-DA-F) provides a geometric
mean energy efficiency of 3.3x, 2.46x and 1.46x, data
movement reduction of 2.4x, 3.5 and 1.48x, and a speedup
of 1.59x, 1.43x and 1.65x compared to an OoO 5-way
processor, a monolithic accelerator @ L3 (Mono-CA@L3)
and monolithic offload but with decentralized accesses (Mono-
DA-IO) for various application benchmarks, respectively.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and shepherd for their insightful comments and suggestions.
We also thank Adithya Kumar and Dr. Kanchana Bhaaskaran
for providing useful feedback on early drafts. This work
was funded in part by NSF awards #1822923, #1763681,
#2211018, #1931531, #2028929 and #2008398.

REFERENCES

[11 R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout,
E. Bassous, and A. R. LeBlanc, “Design of ion-implanted
mosfet’s with very small physical dimensions,” IEEE Journal
of Solid-State Circuits, vol. 9, no. 5, pp. 256-268, 1974.

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

[10]

[11]

[12]

[13]

[14]

[2] M. B. Taylor, “Is dark silicon useful? harnessing the four
horsemen of the coming dark silicon apocalypse,” in Design
Automation Conference. NY, USA: IEEE, 2012, pp. 1131-
1136.

[3] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor, “Conserva-
tion cores: reducing the energy of mature computations,” in
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems.
NY, USA: ACM, 2010, pp. 205-218.

[4] A. Dhar, X. Wang, H. Franke, J. Xiong, J. Huang, W.-
m. Hwu, N. S. Kim, and D. Chen, “Freac cache: folded-
logic reconfigurable computing in the last level cache,” in
2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2020, pp. 102-117.

[5] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy,
D. Blaauw, and R. Das, “Compute caches,” in International
Symposium on High Performance Computer Architecture. NY,
USA: IEEE, 2017, pp. 481-492.

[6] O. Mutlu, S. Ghose, J. Gomez-Luna, and R. Ausavarungnirun,
“Processing data where it makes sense: Enabling in-memory
computation,” Microprocessors and Microsystems, vol. 67, pp.
28-41, 2019.

[7] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu,
S. Gupta, D. Sanchez, and N. Beckmann, “Livia: Data-centric
computing throughout the memory hierarchy,” in Proceedings
of the International Conference on Architectural Support for
Programming Languages and Operating Systems. NY, USA:
ACM, 2020, p. 417-433.

[8] Z. Wang, J. Weng, J. Lowe-Power, J. Gaur, and T. Nowatzki,
“Stream floating: Enabling proactive and decentralized cache
optimizations,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2021, pp.
640-653.

[9] Z. Wang and T. Nowatzki, “Stream-based memory access spe-
cialization for general purpose processors,” in 2019 ACM/IEEE
46th Annual International Symposium on Computer Architec-
ture (ISCA), 2019, pp. 736-749.

Z. Wang, J. Weng, S. Liu, and T. Nowatzki, “Near-stream
computing: General and transparent near-cache acceleration,”
HPCA. https://seanzw. github. io/pub/hpca2022-near-stream-
computing. pdf, 2022.

Intel, “Intel 12th gen hybrid performance and efficiency-cores.”
[Online]. Available: https://www.intel.com/content/www/us/
en/gaming/resources/how-hybrid-design-works.html

ARM, “Arm big.little technology.” [Online]. Available:
https://www.arm.com/technologies/big-little

A. Branover, D. Foley, and M. Steinman, “Amd fusion apu:
Llano,” IEEE Micro, vol. 32, no. 2, pp. 28-37, 2012.

M. D. Hill and V. J. Reddi, “Accelerator-level parallelism,”
Communications of the ACM, vol. 64, no. 12, pp. 36-38, 2021.

1175

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled
instructions: a low-overhead, locality-aware processing-in-
memory architecture,” in Proceedings of the International
Symposium on Computer Architecture. NY, USA: IEEE,
2015, pp. 336-348.

C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer,
D. Sylvester, D. Blaaauw, and R. Das, “Neural cache: Bit-serial
in-cache acceleration of deep neural networks,” in Proceedings
of the International Symposium on Computer Architecture.
NY, USA: IEEE, 2018, pp. 383-396.

B. C. Schwedock, P. Yoovidhya, J. Seibert, and N. Beckmann,
“Tédko: A polymorphic cache hierarchy for general-purpose
optimization of data movement,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture,
ser. ISCA °22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 42-58. [Online]. Available:
https://doi.org/10.1145/3470496.3527379

M. Orenes-Vera, A. Manocha, J. Balkind, F. Gao, J. L. Aragon,
D. Wentzlaff, and M. Martonosi, “Tiny but mighty: Designing
and realizing scalable latency tolerance for manycore socs,” in
Proceedings of the 49th Annual International Symposium on
Computer Architecture, ser. ISCA ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 817-830.
[Online]. Available: https://doi.org/10.1145/3470496.3527400

A. Pattnaik, X. Tang, O. Kayiran, A. Jog, A. Mishra, M. T.
Kandemir, A. Sivasubramaniam, and C. R. Das, “Opportunistic
computing in gpu architectures,” in 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture
(ISCA). 1IEEE, 2019, pp. 210-223.

Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks,
“Co-designing accelerators and soc interfaces using gem5-
aladdin,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2016,
pp. 1-12.

T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankar-
alingam, “Stream-dataflow acceleration,” in 2017 ACM/IEEE
44th Annual International Symposium on Computer Architec-
ture (ISCA). 1EEE, 2017, pp. 416-429.

X. Tang, O. Kislal, M. Kandemir, and M. Karakoy, “Data
movement aware computation partitioning,” in Proceedings
of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, 2017, pp. 730-744.

J. E. Smith, “Decoupled access/execute computer architectures,”
ACM SIGARCH Computer Architecture News, vol. 10, no. 3,
pp. 112-119, 1982.

T. J. Ham, J. L. Aragén, and M. Martonosi, “Decoupling data
supply from computation for latency-tolerant communication
in heterogeneous architectures,” ACM Transactions on Archi-
tecture and Code Optimization (TACO), vol. 14, no. 2, pp.
1-27, 2017.

, “Efficient data supply for parallel heterogeneous ar-
chitectures,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 16, no. 2, pp. 1-23, 2019.

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

[26] S. Baskaran and J. Sampson, “Decentralized offload-based

[27

[28

[29]

[30]

131

[32

[33

[34

[35

[36

[37

execution on memory-centric compute cores,” in The Interna-
tional Symposium on Memory Systems, 2020, pp. 61-76.

1 L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim,
“Graphpim: Enabling instruction-level pim offloading in graph
computing frameworks,” in International symposium on high
performance computer architecture. NY, USA: IEEE, 2017,

pp. 457-468.

] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Rein-
man, “Charm: A composable heterogeneous accelerator-rich
microprocessor,” in Proceedings of the International Sympo-
sium on Low Power Electronics and Design. NY, USA: ACM,

2012, p. 379-384.

J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, H. Huang, and
G. Reinman, “Composable accelerator-rich microprocessor
enhanced for adaptivity and longevity,” in International
Symposium on Low Power Electronics and Design. NY,
USA: IEEE, 2013, pp. 305-310.

C. Tan, M. Karunaratne, T. Mitra, and L.-S. Peh, “Stitch:
Fusible heterogeneous accelerators enmeshed with many-core
architecture for wearables,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA).
IEEE, 2018, pp. 575-587.

] Q. M. Nguyen and D. Sanchez, “Pipette: Improving core
utilization on irregular applications through intra-core pipeline
parallelism,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2020, pp.

596-608.
]

——, “Fifer: Practical acceleration of irregular applications
on reconfigurable architectures,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture,

2021, pp. 1064-1077.

] 1. Moulitsas and G. Karypis, “Architecture aware partitioning
algorithms,” in International Conference on Algorithms and
Architectures for Parallel Processing. Springer, 2008, pp.

42-53.

1 M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper,
J. LaCoss, J. Granacki, J. Brockman, A. Srivastava et al.,
“Mapping irregular applications to diva, a pim-based data-
intensive architecture,” in SC’99: Proceedings of the 1999
ACM/IEEE Conference on Supercomputing. 1EEE, 1999, pp.

57-57.
1

Y. S. Shao and D. Brooks, “Research infrastructures for
hardware accelerators,” Synthesis Lectures on Computer Ar-

chitecture, vol. 10, no. 4, pp. 1-99, 2015.
]

C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in International
Symposium on Code Generation and Optimization. NY, USA:

IEEE, 2004, pp. 75-86.

—

O. Bachmann, P. S. Wang, and E. V. Zima, “Chains
of recurrences—a method to expedite the evaluation of
closed-form functions,” in Proceedings of the International
Symposium on Symbolic and Algebraic Computation, ser.
ISSAC °94. New York, NY, USA: Association for
Computing Machinery, 1994, p. 242-249. [Online]. Available:
https://doi.org/10.1145/190347.190423

1176

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on
scientific Computing, vol. 20, no. 1, pp. 359-392, 1998.

G. repository, 2022. [Online]. Available: https://github.com/
tancheng/CGRA-Mapper

V. Paisante, M. Maalej, L. Barbosa, L. Gonnord, and F. M. Q.
Pereira, “Symbolic range analysis of pointers,” in 2016
IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 1EEE, 2016, pp. 171-181.

Agner, “The microarchitecture of intel, amd, and via cpus: An
optimization guide for assembly programmers and compiler
makers.” [Online]. Available: https://www.agner.org/optimize/
microarchitecture.pdf

S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “Sd-vbs: The san diego
vision benchmark suite,” in IEEE International Symposium
on Workload Characterization. NY, USA: IEEE, 2009, pp.
55-64.

L.-N. Pouchet and S. Grauer-Gray, “Polybench: The polyhedral
benchmark suite.(2012),” URL http://www-roc. inria. fr/~
pouchet/software/polybench, 2012.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in /EEE international symposium
on workload characterization. NY, USA: IEEE, 2009, pp.
44-54.

B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks,
“Machsuite: Benchmarks for accelerator design and customized
architectures,” in /EEE International Symposium on Workload
Characterization. NY, USA: IEEE, 2014, pp. 110-119.

S. R. Group, “Page rank serial implementation.” [Online].
Auvailable: https://github.com/Sable/pagerank-benchmark

S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau,
S. Garcia, and M. Bedford Taylor, “Cortexsuite: A synthetic
brain benchmark suite,” in 2014 IEEE International Sympo-
sium on Workload Characterization (IISWC), 2014, pp. 76-79.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti
et al., “The gem5 simulator,” ACM SIGARCH computer
architecture news,, vol. 39, no. 2, pp. 1-7, 2011.

C. Torng, P. Pan, Y. Ou, C. Tan, and C. Batten, “Ultra-
elastic cgras for irregular loop specialization,” in 2021 IEEE
International Symposium on High-Performance Computer
Architecture (HPCA). 1EEE, 2021, pp. 412-425.

C. Tan, C. Xie, A. Li, K. J. Barker, and A. Tumeo, “Opencgra:
An open-source unified framework for modeling, testing, and
evaluating cgras,” in 2020 IEEE 38th International Conference
on Computer Design (ICCD). 1EEE, 2020, pp. 381-388.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: An integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in Proceedings of the International Symposium
on Microarchitecture. NY, USA: ACM, 2009, p. 469-480.

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[52] R. Balasubramonian, A. B. Kahng, N. Muralimanohar,

A. Shafiee, and V. Srinivas, “Cacti 7: New tools for inter-
connect exploration in innovative off-chip memories,” ACM
Transactions on Architecture and Code Optimization,, vol. 14,
no. 2, Jun. 2017.

S. R. Group, “Spmv benchmark.” [Online]. Available:
https://github.com/Sable/spmv-benchmark

C. Giannoula, I. Fernandez, J. G. Luna, N. Koziris, G. Goumas,
and O. Mutlu, “Sparsep: Towards efficient sparse matrix vector
multiplication on real processing-in-memory architectures,”
Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 6, no. 1, pp. 1-49, 2022.

N. Talati, K. May, A. Behroozi, Y. Yang, K. Kaszyk, C. Vasi-
ladiotis, T. Verma, L. Li, B. Nguyen, J. Sun et al., “Prodigy:
Improving the memory latency of data-indirect irregular
workloads using hardware-software co-design,” in 2021 IEEE
International Symposium on High-Performance Computer
Architecture (HPCA). 1EEE, 2021, pp. 654-667.

C. Wolf, “Yosys open synthesis suite,” 2016.
FreePDK45. [Online]. Available: https://www.eda.ncsu.edu/

A. Stillmaker, Z. Xiao, and B. Baas, “Toward more accurate
scaling estimates of cmos circuits from 180 nm to 22 nm,”
VLSI Computation Lab, ECE Department, University of
California, Davis, Tech. Rep. ECE-VCL-2011-4, vol. 4, p. m8§,
2011.

D. Wijerathne, Z. Li, A. Pathania, T. Mitra, and L. Thiele,
“Himap: Fast and scalable high-quality mapping on cgra via

1177

[60]

[61]

[62]

[63]

[64]

hierarchical abstraction,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2021.

C. Tan, T. Geng, C. Xie, N. B. Agostini, J. Li, A. Li,
K. Barker, and A. Tumeo, “Dynpac: Coarse-grained, dynamic,
and partially reconfigurable array for streaming applications,”
in 2021 IEEE 39th International Conference on Computer
Design (ICCD). IEEE, 2021, pp. 33-40.

G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata,
M. B. Taylor, and S. Swanson, “Qscores: Trading dark
silicon for scalable energy efficiency with quasi-specific
cores,” in Proceedings of the International Symposium on
Microarchitecture. NY, USA: IEEE, 2011, pp. 163-174.

N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and
K. Flautner, “An architecture framework for transparent
instruction set customization in embedded processors,” in
Proceedings of the International Symposium on Computer
Architecture. NY, USA: IEEE, 2005, pp. 272-283.

T. Nowatzki, V. Gangadhar, and K. Sankaralingam, “Exploring
the potential of heterogeneous von neumann/datafiow execu-
tion models,” in Proceedings of the 42nd Annual International
Symposium on Computer Architecture, 2015, pp. 298-310.

M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks, “The
accelerator store: A shared memory framework for accelerator-
based systems,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 8, no. 4, pp. 1-22, 2012.

Authorized licensed use limited to: Penn State University. Downloaded on September 29,2023 at 15:40:38 UTC from IEEE Xplore. Restrictions apply.

