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Abstract— This paper studies the problem of controlling a
group of mobile robots to drive a group of humans to an
exit for emergency evacuation. The interactions between the
robots and the humans are modeled by a social force model.
A novel optimization problem is formulated to synthesize a
controller with closed-form expression. Sufficient conditions for
global asymptotic stability are established for the humans and
the robots. A simulation is conducted to evaluate the proposed
controller.

I. INTRODUCTION

Human emergency evacuation can be a challenging situ-
ation due to the need to relocate a possibly large crowd of
people safely without causing choke points that slow down
the evacuation process [1]. Recent studies have shown that
it can be promising to use mobile robots to guide human
crowds for reasons such as safety and efficiency [2] [3]. Due
to the chaotic nature of the process, ensuring the success of
evacuation becomes critical.

A majority of work on robot-assisted human evacuation
is focused on single-robot scenarios. For example, paper [4]
uses a robot to guide evacuees to select an exit within the
minimum escape time. A robot is deployed to redirect evac-
uees toward the least congested exit in [5]. An autonomous
mobile robot acting as a dynamic obstacle around the exit is
proposed in paper [6] to control the flow of the pedestrians.
Interested readers are referred to the recent survey paper [7]
for more discussion. These works typically consider small
simplified environments where the evacuees only require
a few instructions from the robots during the evacuation
process.

Multi-robot systems are known to be able to increase
the amount of interactions with human crowds and there-
fore evacuate more humans in more complicated scenarios.
Existing work on multi-robot-assisted human evacuation
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can be categorized into model-free approaches and model-
based approaches. When accurate human-robot interaction
(HRI) models are unavailable, model-free approaches are
deployed such that the robots can learn the end-to-end
mapping between sensory inputs and the optimal actions. For
example, pedestrian regulation is studied in [8] using deep
reinforcement learning that maps a robots’ image perception
of the human crowd to the robots’ control inputs.

When accurate HRI models are available, model-based
approaches are desired for stronger performance analysis.
The HRI models can be categorized into macroscopic models
and microscopic models. Macroscopic approaches model
human evacuees as a large number of identical entities and
treat the crowd as a continuum flow, analogous to gas and
fluid, driven by vector fields [9]. By modeling the humans as
a swarm, guidance robots are deployed in [10] to control the
humans by providing directions. By using a density function
to describe the distribution of the states of the human crowd,
control strategies in [11] [12] generate the desired velocity
fields that aim to drive the crowd density to a target density.
Robots moving back-and-forth at the entrances are deployed
in [13] to regulate the inflow of humans, and a feedback
control scheme is designed to achieve optimal traffic flow in
the pedestrian corridor by adjusting the motion frequency of
the robots.

As a complement, microscopic approaches treat each
individual as a distinct entity, consider the motion of each
human and aim to ensure the evacuation of each individual.
Based on the models of human dynamics with respect to the
robots, microscopic approaches can be further categorized
into two classes [14]: i) Cellular automaton models [5] [15],
where both the time and the state spaces of the humans and
the robots are discrete. ii) Force-based models [16] [17] [18]:
where the human dynamics are modeled using ordinary dif-
ferential equations in terms of the positions of the robots. For
cellular automaton models, the controllers derived are mostly
logic-based, i.e., using if-else statements. For force-based
models, the corresponding controllers derived are usually
solutions to optimization problems. However, to the best of
our knowledge, there is no theoretical guarantee established
for the existing controllers on ensuring the convergence of
humans to exits.

Contribution statement. This paper considers the prob-
lem of using multiple robots to drive a group of humans to a
given exit for emergency evacuation. We explicitly consider
human-robot interaction and human-human interaction using
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a social force model. A novel optimal control problem is
formulated to synthesize a state-feedback controller with
closed-form expression. Specifically, by using Lyapunov
stability theory, the convergence of the humans to the exit
is imposed as hard constraints, and the convergence of the
robots to the exit is imposed as soft constraints. The proposed
controller ensures the asymptotic convergence of both the
humans and the robots. Our contribution is summarized as
follows:
• A novel optimal controller is proposed for multi-robot-

assisted human evacuation.
• Theoretical guarantees are derived for the convergence

of the humans and the robots to the exit.
Simulation is conducted to evaluate the proposed controller
and the theoretical guarantees.

Notations. In this paper, we use lower-case letters, e.g.,
a, to denote scalars, bold letters, e.g., a, to denote vectors;
we use upper-case letters, e.g., A, to denote matrices, calli-
graphic letters, e.g., A, to denote sets. Denote In ∈ Rn×n

the n-by-n-dimensional identity matrix, 0n ∈ Rn the column
vector with n zeros and 0n×m ∈ Rn×m the matrix with
n×m zeros. We use lowerscript (·)i to distinguish the local
values of agent (human or robot) i.

II. PROBLEM FORMULATION

In this section, we introduce the dynamic models of the
robots and the humans and state the objective of the human
crowd control problem.

Dynamic models. Consider a group of robot R ,
{1, · · · , nr} with single integrator dynamics

żj(t) = uj(t). (1)

where zj ∈ Z ⊂ R2 is the location of robot j ∈ R and
uj ∈ U ⊂ R2 is the corresponding control inputs.

Consider a group of humans H , {1, · · · , nh}. Denote
xi ∈ X ⊂ R2 the location of human i ∈ H, and vi ∈
V ⊂ R2 the corresponding velocity. Denote dij , ‖xi −
zj‖ if j ∈ R and dij , ‖xi − xj‖ if j ∈ H the distance
between the center of mass of human i and robot/human j,
rRi > 0 the comfort distance of human i with respect to
robot and rHi > 0 the comfort distance of human i with
respect to other humans. In this paper, we assume that each
human i is assigned to and only affected by a fixed subset
of robots Ri ⊂ R, e.g., each robot raises a specific sign and
the humans only follow the robots with the specific signs.
The social force dynamics [19] of human i is given by[
ẋi(t)
v̇i(t)

]
=

[
02×2 I2
02×2 02×2

] [
xi(t)
vi(t)

]
+

[
02×2
I2

]
fsoc
i (t) (2)

where fsoc
i (t) ,

∑
j∈Ri

fHR
ij (t) +

∑
j∈H\i f

HH
ij (t),

fHR
ij (t) , aRi exp[(rRi − dij(t))/bRi ]nij(t),

fHH
ij (t) , aHi exp[(rHi − dij(t))/bHi ]nij(t),

nij(t) ,
xi(t)−zj(t)

dij(t)
if j ∈ R and nij(t) ,

xi(t)−xj(t)
dij(t)

if
j ∈ H, and aRi , a

H
i , b

R
i , b

H
i ∈ R. Furthermore, we assume

that each robot only affects one human. This can be achieved
by assigning each human a unique sign to follow.

Problem statement. The objective of this paper is to design
a controller π : Znr × (X ×V)nh → U to drive the humans
and the robots to an exit. The problem is challenged by the
fact that the coupled dynamics of (1) and (2) is nonlinear
respect to the robot control inputs uj(t).

III. CONTROLLER DESIGN

Denote A ,

[
02×2 I2
02×2 02×2

]
, B , [02×2, I2]T , and

qi , [xT
i ,v

T
i ]T . Then the human dynamics in (2) can be

compactly written as

q̇i(t) = Aqi(t) +Bfsoc
i (t) (3)

which is a standard linear time-invariant system with respect
to input fsoc

i (t) [20]. Without loss of generality, we let the
origin xi = 02 be the exit the humans need to reach. Then
the problem of driving all the humans and the robots to
an exit can be treated as a stabilization problem in control
theory. Consider Lyapunov function V H(qi) , 1

2q
T
i Qqi,

where Q is positive definite. Then the following lemma
summarizes the sufficient condition to stabilize system (3).

Lemma III.1. Let a desired social force be given by
f∗i (t) = −K(t)qi(t) such that the derivative of V H along
the trajectories of q̇i(t) = Aqi(t) +Bf∗i (t) given by

V̇ H(qi(t)) = qTi (t)Q(Aqi(t) +Bf∗i (t))

= qTi (t)(QA−QBK(t))qi(t)

satisfies V̇ H(04) = 0 and V̇ H(qi(t)) < 0 for all qi(t) 6=
0. Then the system q̇i(t) = Aqi(t) + Bf∗i (t) is globally
asymptotically stable.

Proof: This is a direct results of Theorem 4.2 in [21]. �.

An example pair of selection is Q =

[
I2 I2

02×2 I2

]
and

K(t) = 4
[
I2 I2

]
for all t > 0. Nevertheless, fsoc

i (t), as
opposite to uj(t), cannot be directly controlled. To stabilize
(3) using control inputs uj(t), j ∈ R, we propose a
novel optimal control formulation that takes stabilizing the
humans as hard constraints and stabilizing the robots as soft
constraints. More detailed description is given as follows.

A. Human-robot stabilization.

Human stabilization. Recall that the complete system of
using the robots to drive the humans is given by the combi-
nation of (3) and (1). We employ a backstepping approach
by introducing a new state f̃i(t) , fsoc

i (t)−f∗i (t), the error
between the desired social force and the actual social force
human i is experiencing. Next we derive the relation of how
control inputs uj(t), j ∈ R, from the robots change the error
of social force f̃i(t) acting on the humans. Denote

HRij (t) , (
1

bRi
+

1

dij(t)
)âRij (t)(xi(t)− zj(t))T − aRij (t)I2,

(4)

HHij (t) , (
1

bHi
+

1

dij(t)
)âHij (t)(xi(t)− xj(t))

T − aHij (t)I2,
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âRij (t) , aRi exp[
ri − dij(t)

bRi
]
xi(t)− zj(t)

d2ij(t)
, j ∈ R,

aRij (t) ,
aRi
dij(t)

exp[
ri − dij(t)

bRi
],

âHij (t) , aHi exp[
ri − dij(t)

bHi
]
xi(t)− xj(t)

d2ij(t)
, j ∈ H,

aHij (t) ,
aHi
dij(t)

exp[
ri − dij(t)

bHi
].

The dynamics of f̃i(t) is given as

˙̃
fi(t) =K(t)q̇i(t) + K̇(t)qi(t)

+
∑
j∈Ri

(
HRij (t)uj(t)−HRij (t)vi(t)

)
−

∑
j∈H\{i}

(
HHij (t)

(
vi(t)− vj(t)

))
. (5)

The derivation of (5) can be found in Appendix V-A.
Consider Lyapunov function

V̂ H(qi(t), f̃(t)) ,
1

2
qTi (t)Qqi(t) +

1

2
f̃T
i (t)f̃i(t).

Then the derivative of V̂ H along the trajectories of the
augmented system of (3) and (5) is given as

˙̂
V H(qi(t), f̃i(t)) = qTi (t)Qq̇i(t) + f̃T

i (t)
˙̃
fi(t)

= qTi (t)Q(Aqi(t) +Bf∗i (t) +Bf̃i(t)) + f̃T
i (t)

˙̃
fi(t)

= qTi (t)Q(Aqi(t) +Bf∗i (t))

+ f̃T
i (t)(

˙̃
fi(t) +BTQTqi(t))

By (5), we can compactly write

˙̃
fi(t) +BTQTqi(t) =

∑
j∈Ri

HRij (t)uj(t) + hi(t) (6)

where

hi(t) , K(t)q̇i(t) + K̇(t)qi(t) +BTQTqi(t)

−
∑
j∈Ri

HRij (t)vi(t)−
∑

j∈H\{i}

HHij (t)(vi(t)− vj(t)).

Recall that qTi (t)Q(Aqi(t) +Bf∗i (t)) 6 0 according to the
selection of Q and f∗i (t) = −K(t)qi(t) in Lemma III.1.
Denote HRi (t) , [HRi,1(t), · · · , HRi,ni

(t)]. Then a sufficient
condition for stabilizing the augmented system of (3) and
(5) for all i ∈ H is can be characterized by the following
lemma.

Lemma III.2. Suppose f∗i (t) is chosen according to Lemma
III.1 and it holds that

f̃T
i (t)

∑
j∈Ri

(
HRij (t)uj(t)

)
+ f̃T

i (t)hi(t)

6 −s(t)f̃T
i (t)HRij∗(t)(t)f̃i(t), (7)

where s(t) = 1 if f̃T
i H

R
ij∗(t)

(t)f̃i > 0, otherwise s(t) = −1,
and j∗(t) , arg minj∈Ri dij(t). Then the augmented system
(3) and (5) is globally asymptotically stable.

Proof: Consider the Lyapunov function V̂ H(qi, f̃). Given
(6), inequality (7) implies f̃T

i (t)(
˙̃
fi(t)+BTQTqi(t)) < 0 if

f̃T
i (t) 6= 0 and f̃T

i (t)(
˙̃
fi(t)+B

TQTqi(t)) = 0 if f̃T
i (t) = 0.

Combining this with Lemma III.1, we have ˙̂
V H(04,02) = 0

and ˙̂
V H(qi(t), f̃i(t)) < 0 for all

[
qi(t)

f̃i(t)

]
6= 06. Then based

on Theorem 4.2 in [21], each augmented state (qi(t), f̃i(t)),
i ∈ H, is globally asymptotically stable. �

Robot stabilization. To drive the robots to the exit as much
as possible, we consider the Lyapunov function V R(zj) ,
1
2z

T
j zj . By Theorem 4.2 in [21], the stabilization of the

robots is ensured if the Lie derivative V̇ R(02) = 0 and for
all zj(t) 6= 02, we have

V̇ R(zj(t)) = zTj (t)uj(t) < 0. (8)

B. Human-aware optimal control.

In this section, we formally formulate the optimal control
problem. Notice that the stabilization of the humans can be
ensured if the control inputs always satisfy (7). Therefore,
(7) is imposed as the hard constraints of the optimal control
problem. Meanwhile, to drive the robots to the exit, (8)
is imposed as soft constraints. Furthermore, control efforts
should be minimized when the above objectives are satisfied.
Formally, for each human i, the optimal control problem is
formulated as follows.

min
uj , j∈Ri

1

2

∑
j∈Ri

uT
j (t)uj(t) + zTj (t)uj(t) (9)

s.t.
∑
j∈Ri

(
f̃T
i (t)HRi,j(t)uj(t)

)
+ f̃T

i (t)hi(t)

6 −s(t)f̃T
i (t)HRij∗(t)(t)f̃i(t).

Lemma III.3 below shows that problem (9) is always feasible.

Lemma III.3. If |aRi | > 0, then problem (9) is feasible for
all t > 0. �

The proof of the lemma is given in Section ??.
Therefore, problem (9) can be solved by the Lagrangian

dual method. The Lagrangian of (9) is given by

L
(
{uj(t)}j∈Ri

, λ(t)
)
,
∑
j∈Ri

(1

2
uT
j (t)uj(t)

+ zTj (t)uj(t)
)

+ λi(t)
(
f̃T
i (t)

( ∑
j∈Ri

HRi,j(t)uj(t)
)

+ f̃T
i hi(t) + s(t)f̃T

i (t)HRij∗(t)(t)f̃i(t)
)

s.t. λi(t) > 0. (10)

By first minimizing (10) with respect to uj(t) through
setting the first derivative to zero and then maximizing with
respect to λi(t), we have the solution

uj(t) = −
(
zj(t) + λi(t)(H

R
i,j)

T (t)f̃i(t)
)
, (11)

λi(t) =
(
s(t)f̃T

i (t)HRij∗(t)(t)f̃i(t)− f̃
T
i (t)

∑
j∈Ri

HRi,j(t)zj(t)
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+ f̃T
i (t)hi(t)

)(
f̃T
i (t)

( ∑
j∈Ri

HRi,j(t)(H
R
i,j(t))

T
)
f̃i(t)

)−1
.

Next we analyze the performance of the controller
derived in (11). Without loss of generality, let Ri =
{1, · · · , ni}. Denote zi(t) , [zT1 (t), · · · , zTni

(t)]T , ui(t) ,
[uT

1 (t), · · · ,uT
ni

(t)]T . Let β ∈ [0, 1). Then the following
proposition provides a sufficient condition for the humans
and the robots to asymptotically converge to the exit.

Proposition III.4. Suppose

f̃T
i (t)HRi (t)zi(t) > −β‖(HRi (t))T f̃i(t)‖2‖zi(t)‖2. (12)

Suppose |aRi | > 0 and there exists d̄ > 0 and some k1, k2 >
0 such that dij(t) 6 d̄, ‖K̇(t)‖2 6 k1 and ‖K(t)‖2 6 k2 for
all t > 0. Then controller (11) renders that zi(t) and qi(t)
are global uniformally asymptotically stable, for all i ∈ H.

�

Proposition III.4 shows that in order to ensure global
uniform asymptotic stability, the design of the desired force
f∗i (t), or K(t), needs to satisfy three requirements: ‖K̇(t)‖2
and ‖K(t)‖2 are bounded, and (12) is satisfied over time.
The further design of K(t) satisfying these requirements is
part of the ongoing work.

IV. SIMULATION

In this section, we conduct Monte Carlo simulations to
demonstrate the effectiveness of our controller and verify
the theoretical results.

Parameter selection. In the simulation, we use parameters
aRi = 1, rRi = 1, bRi = 1, aHi = 0.01, rHi = 1, bHi = 1.
For each human i, we assign 3 robots into the group Ri.
The initial locations of the humans are uniformly sampled
over [−1, 1] × [−1, 1] and the initial speeds of the humans
are uniformly sampled over [−0.1, 0.1]× [−0.1, 0.1]. We let
K(t) = 4[I2, I2] for all t > 0. For each human i with
initial location xi(0), to satisfy condition (12), we apply
heuristics such that for each robot j ∈ Ri, the initial location
is generated as zj(0) = 2xi(0)+ε, where ε ∼ N (0, 0.25I2).

Results. We conduct simulations of groups of nh =
1, 10, 20, 40 humans respectively. Notice that social force
always exists among the humans. Therefore, to facilitate
the convergence of the other humans, each human i and
the corresponding robots in Ri are immediately retrieved
if ‖xi‖ < 0.01, mimicking the successful evacuation of
human i. Figure 1 shows the trajectories of the robots and the
humans, the convergence of the humans in terms of ‖xi(t)‖2
and the convergence of the robots in terms of ‖zi(t)‖2. The
solid squares and the solid circles indicate the initial locations
of the robots and the humans, respectively. The unit of the
x-axis is second. Notice that all the humans and the robots
reach sufficiently close to the origin within 8 seconds.

V. CONCLUSION

This paper studies the problem of multi-robot-assisted
human evacuation. The problem is formulated stabilization of
a nonlinear system. A novel optimization problem is derived
to synthesize a controller with closed form. Preliminary

sufficient conditions are established for global asymptotic
stability. Simulation is conducted to verify the results.

APPENDIX

A. Derivation of ˙̃
fi

Recall that aRij (t) = aRi exp[
ri−dij(t)

bRi
]/dij(t). Then we

have

ȧRij (t) = −a
R
i

bRi
exp[

ri − dij(t)
bRi

]
ḋij(t)

dij(t)

− aRi exp[
ri − dij(t)

bRi
]
ḋij(t)

d2ij(t)
,

where ḋij(t) =
(xi(t)−zj(t))

T (ẋj(t)−żj(t))
dij(t)

. The the derivative
of
∑

j∈R ḟ
soc
ij (t) is given by∑

j∈Ri

ḟsoc
ij (t)

=
∑
j∈Ri

(
ȧRij (t)(xi(t)− zj(t)) + aRij (t)(ẋi − żj)

)
=
∑
j∈Ri

(
ȧRij (t)(xi(t)− zj(t)) + aRij (t)(vi(t)− uj(t))

)
=
∑
j∈Ri

((
− aRi
bRi

exp[
ri − dij(t))

bRi
]
ḋij(t)

dij(t)

− aRi exp[
ri − dij(t)

bRi
]
ḋij(t)

d2ij(t)

)
(xi(t)− zj(t))

+ aRij (t)(vi(t)− uj(t))
)

=
∑
j∈Ri

(
−
(
(
aRi
bRi

+
aRi
dij(t)

) exp[
ri − dij(t)

bRi
]
)

· (xi(t)− zj(t))T (ẋi(t)− żj(t))(xi(t)− zj(t))
d2ij(t)

+ aRij (t)(vi(t)− uj(t))
)

=
∑
j∈Ri

(
−
(

(
1

bRi
+

1

dij(t)
)(âRij (t))T

)
· (ẋi(t)− żj(t))(xi(t)− zj(t)) + aRij (t)(vi(t)− uj(t))

)
=
∑
j∈Ri

(
− (

1

bRi
+

1

dij(t)
)(âRij (t))T ẋi(t)(xi(t)− zj(t))

+ (
1

bRi
+

1

dij(t)
)(âRij (t))Tuj(t)(xi(t)− zj(t)))

)
+ aRij (t)(vi(t)− uj(t))

=
∑
j∈Ri

(
− (

1

bRi
+

1

dij(t)
)âRij (t)(xi(t)− zj(t))Tvi(t)

+ (
1

bRi
+

1

dij(t)
)âRij (t)(xi(t)− zj(t))Tuj(t)

)
+ aRij (t)(vi(t)− uj(t))

=
∑
j∈Ri

(
−HRij (t)vi(t) +HRij (t)uj(t)

)
.
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(a) Human-robot trajectories,
nh = 1

(b) Human-robot trajectories,
nh = 10

(c) Human-robot trajectories,
nh = 20

(d) Human-robot trajectories,
nh = 40

(e) Convergence of zi(t), nh = 1 (f) Convergence of zi(t), nh =
10

(g) Convergence of zi(t), nh =
20

(h) Convergence of zi(t), nh =
40

(i) Convergence of xi(t), nh = 1 (j) Convergence of xi(t), nh =
10

(k) Convergence of xi(t), nh =
20

(l) Convergence of xi(t), nh =
40

Fig. 1: Trajectories and the convergence of humans and robots for nh = 1, 10, 20, 40.

Similarly, recall that aHij (t) =
aHi

dij(t)
exp[

ri−dij(t)

bHi
], and its

derivative is given by

ȧHij (t) = −a
H
i

bHi
exp[

ri − dij(t)
bHi

]
ḋij(t)

dij(t)

− aHi exp[
ri − dij(t)

bHi
]
ḋij(t)

d2ij(t)
,

The the derivative of
∑

j∈H\{i} ḟ
soc
ij (t) is given by∑

j∈H\{i}

ḟsoc
ij (t)

=
∑

j∈H\{i}

(
ȧHij (t)(xi(t)− xj(t)) + aHij (t)(ẋi(t)− ẋj(t))

)
=

∑
j∈H\{i}

(
ȧHij (t)(xi(t)− xj(t)) + aHij (t)(vi(t)− vj(t))

)
=

∑
j∈H\{i}

((
− aHi
bHi

exp[
ri − dij(t)

bHi
]
ḋij(t)

dij(t)

− aHi exp[
ri − dij(t)

bHi
]
ḋij(t)

d2ij(t)

)
(xi(t)− xj(t))

+ aHij (t)(vi(t)− vj(t))
)

=
∑

j∈H\{i}

(
− (

aHi
bHi

+
aHi
dij(t)

) exp[(ri − dij(t))/bHi ]

· (xi(t)− xj(t))
T (ẋi(t)− ẋj(t))(xi(t)− xj(t))

d2ij(t)

+ aHij (t)(vi(t)− vj(t))
)

=
∑

j∈H\{i}

(
− (

1

bHi
+

1

dij(t)
)(âHij (t))T (ẋi(t)− ẋj(t))

· (xi(t)− xj(t)) + aHij (t)(vi(t)− vj(t))
)

=
∑

j∈H\{i}

(
− (

1

bHi
+

1

dij(t)
)(âHij (t))T (vi(t)− vj(t))

· (xi(t)− xj(t)) + aHij (t)(vi(t)− vj(t))
)

=
∑

j∈H\{i}

(
− (

1

bHi
+

1

dij(t)
)âHij (t)(xi(t)− xj(t))

T

· (vi(t)− vj(t)) + aHij (t)(vi(t)− vj(t))
)

= −
∑

j∈H\{i}

(
HHij (t)(vi(t)− vj(t))

)
.

Notice that

ḟ∗i (t) = −K(t)qi(t)− K̇(t)qi(t).

Then we have the derivative of f̃ i(t) by combining the above
results.
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