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Joint Optimization Across Timescales: Resource
Placement and Task Dispatching in Edge Clouds

Xinliang Wei , Student Member, IEEE,  A B  M Mohaimenur Rahman ,
Dazhao Cheng , Member, IEEE,  and Yu Wang , Fellow, I E E E

Abstract—The proliferation of Internet of Things (IoT) data and innovative mobile services has promoted an increasing need for low-
latency access to resources such as data and computing services. Mobile edge computing has become an effective computing
paradigm to meet the requirement for low-latency access by placing resources and dispatching tasks at the edge clouds near mobile
users. The key challenge of such solution is how to efficiently place resources and dispatch tasks in the edge clouds to meet the QoS of
mobile users or maximize the platform’s utility. In this article, we study the joint optimization problem of resource placement and task
dispatching in mobile edge clouds across multiple timescales under the dynamic status of edge servers. We first propose a two-stage
iterative algorithm to solve the joint optimization problem in different timescales, which can handle the varieties among the dynamic of
edge resources and/or tasks. We then propose a reinforcement learning (RL) based algorithm which leverages the learning capability
of Deep Deterministic Policy Gradient (DDPG) technique to tackle the network variation and dynamic as well. The results from our
trace-driven simulations demonstrate that both proposed approaches can effectively place resources and dispatching tasks across two
timescales to maximize the total utility of all scheduled tasks.

Index Terms—Resource placement, task dispatching, reinforcement learning, optimization, edge computing
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1 INTRODUCTION

ECENTLY, there has been a tremendous growth of the
new computing paradigm - mobile edge computing [1],

[2], [3] in both academia and industry due to its advances
over traditional cloud computing (e.g., low-latency, agility,
privacy). Especially as the increasing amount of data and
services offered by diverse applications and IoT/smart
devices, network operators and service providers are likely
to build and deploy computing resources (such as data,
models, services) at the edge of the network near users so as
to shorten the response time and support real-time intelli-
gence applications.

As shown in Fig. 1, a typical edge computing environ-
ment consists of mobile users, edge clouds (including multi-
ple edge servers connected by the edge network), and a
remote cloud (usually within data centers). Each edge
server is generally deployed at the network edge near
mobile users and owns specific storage, CPU, and memory
capacity. Mobile users can generate a couple of computation
tasks at any location which request to be dispatched at edge
servers with sufficient resources (i.e., internal computation
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resources such as CPU, memory, storage) and may also
require certain data or services (i.e., external resources such
as training data or machine learning services). Note that the
types of computing tasks from mobile users/devices are
heterogeneous due to diverse settings and applications. For
example, some tasks may only request data (e.g., image,
video) or machine learning (ML) model from the edge net-
work, and then process it locally or perform ML computa-
tion based on the model at local edge server. Some tasks
may request computation at other edge servers with certain
computation services, such as video analysis, speech recog-
nition, 3D rendering. Some tasks may need a combination
of data, services and computation resources, such as distrib-
uted federated learning or interactive augmented reality.
Fig. 1 shows some examples where tasks from mobile users
request either data/services or both. Note multiple user
tasks can be served by the same edge server and the deploy-
ment of multiple copies of resources can usually reduce the
accessing cost or balance loads among servers. The diverse
types of tasks from mobile users and dynamic available
resources at edge servers introduce new challenges in
resource management and task dispatching in such a com-
plex edge computing system.

Resource management and computation task offloading
in edge computing has been widely studied. For example,
[4] and [5] have studied the data placement strategy for
workflows in edge computing considering workflow’s
dependency, reliability, and user cooperation. Xie et al. [6],
[7] and Wei et al. [8], [9] have proposed different virtual
space-based data placement methods, where both data and
servers are mapped into a virtual space and the data place-
ment decision is based on the virtual distance in the space.
Li et al. [10] and Breitbach et al. [11] have investigated both
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Fig. 1. A typical mobile edge computing environment where data and
services are placed at edge clouds and tasks are dispatched to different
edge servers. In this example, task 1 is performed at server 2, while task 2
and task 3 are performed at server 5.

data and task placement in edge computing. While [10]
adopted a tabu search based algorithm to solve a joint opti-
mization, [11] considered data/task placement with multi-
ple context dimensions and proposed a context-aware
replication strategy. Beside of data placement, service place-
ment has also attracted researchers’ attention. Ouyang et al.
[12] proposed an adaptive user-managed service placement
algorithm to jointly optimize the latency and service migra-
tion cost. Xu et al. [13] studied the service caching in mobile
edge clouds with multiple service providers and proposed
a distributed caching mechanism for resource sharing. Pas-
teris et al. [14] also studied a multiple-service placement
problem and proposed an approximation algorithm to max-
imize the total reward. There are also recent studies [15],
[16], [17], [18] on resource allocation in edge computing.
Zhang et al. [16] proposed a decentralized multi-provider
resource allocation scheme to maximize the overall benefit
of all providers, while Meskar and Liang [15] proposed a
resource allocation rule retaining fairness properties among
multiple access points. Kim et al. [17] designed a joint opti-
mization of wireless MIMO signal design and network
resource allocation to maximize energy efficiency. Eshraghi
and Liang [18] considered the joint optimization of resource
allocation and offloading decision for mobile clouds. Simi-
larly, service placement and task/computation offloading
has been considered jointly in [19], [20], [21], [22], [23].
However, most of these works consider a kind of joint opti-
mization at a single timescale, thus may not handle the
dynamic among tasks, resources, and computation facilities
in the edge computing environment.

In a real dynamic edge computing environment, tasks
from mobile users generally have a small size and can be
easily moved around and distributed at different edge serv-
ers for processing. However, the resources, such as data
and services, may not be adjusted fast enough to meet the
dynamic requirements of tasks. For example, it takes time to
reconfigure a service in a new edge server. Similarly,
migrating large amount of data also involves additional
costs. Therefore, it is nature to manage resources and tasks
at two different time scales, i.e., task dispatching can be per-
formed in a fast timescale, while resource placement can
occur in a slow timescale. Such multi-timescale solutions
have been shown to be more efficient than single timescale

methods in edge computing [24], [25]. In addition, a critical
factor that has been overlooked is the dynamic status of
edge servers. Edge servers are not always running due to
regular maintenance or certain events (e.g., power outage
and system error). If the status of an edge server is changed,
the overall topology of the edge network is changed and
this further affects the performance of the entire edge sys-
tem. Therefore, it is important to taking server status into
the resource placement and task dispatching.

In this paper, we jointly study the resource placement
and task dispatching problems in mobile edge computing
with the aim of maximizing the total utility of performed
tasks. We first formulate the problem as an joint optimiza-
tion problem under the storage, CPU, and memory con-
straints and take the status of edge servers into account. The
overall problem is a nonlinear programming, and thus hard
to solve due to its high complexity. In addition, the dynam-
ics of tasks, resources, and the edge environment also make
solving this problem much harder. In this paper, we then
design two alternative approaches: two-stage optimization
method and deep reinforcement learning method. The two-
stage optimization method decomposes the joint optimiza-
tion problem to two sub-problems (resource placement and
task dispatching), and then solves them respectively and
iteratively. One nice property of this two-stage optimization
method is that it can be performed across two timescales,
i.e., performing the joint optimization in each time frame (at
a slow timescale) and task dispatching sub-problem only in
each time slot (at a fast timescale). To handle the dynamics
in edge environment and the complexity of the optimiza-
tion, we also leverage reinforcement learning (RL) techni-
ques to tackle our joint optimization problem. RL has been
used as an effective solution in edge computing [26], [27].
The RL agent can improve its policy to achieve a better goal
according to the future reward feedback generated by the
environment. Our proposed RL method leverages the Deep
Deterministic Policy Gradient (DDPG) [28], [29] to solve the
joint optimization problem in dynamic edge environment.
Moreover, our deep RL method enables more flexible han-
dling of the multi-timescale problem either by controlling
the action or by leveraging multiple DDPG models.

In short, the contributions of this papers are three-folds.

We formulate an joint optimization problem consid-
ering the storage, CPU, and memory constraints as
well as the edge server status for the resource place-
ment and task dispatching in mobile edge computing.
We propose two alternative approaches, two-stage
optimization and deep reinforcement learning, to solve
the joint optimization problem. Both methods can be
applied across two timescales to deal with different
dynamics of tasks and resources in mobile edge
computing.

      Extensive trace-driven simulations are conducted to
evaluate our proposed methods, and results show
both methods can effectively improve the total utility.

The outline of this paper is as follows. Section 2 first
introduces the system model and our formulated optimiza-
tion problems. Sections 3 and 4 present our proposed two-
stage optimization method and deep reinforcement based
method, respectively. Evaluations of our proposed methods
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via simulations are provided in Section 5. Section 6 presents
an overview of related works. Finally, Section 7 concludes
the paper with possible future directions. A preliminary
version of this paper appears as [30].

2 S Y S T E M  M O DE L S  AND THE OPTIMIZATION

In this section, we first introduce our network and system
models under a general edge computing architecture. Then
we formulate the resource placement problem, the task dis-
patching problem, and the joint optimization problem,
respectively.

2.1 Network and System Models
Without loss of generality, we construct a typical mobile
edge computing architecture as shown in Fig. 1. The edge
network topology is defined as graph GðV; EÞ, consists of N
edge servers and M direct links among them. Here, V ¼
fv1; . . . ; vN g and E  ¼  fe1; . . . ; eM g are the set of edge servers
and the set of links, respectively. For each server vi 2  V , it
has a maximal storage capacity ci , a CPU frequency f i ,  a
memory capacity mi , and the current remaining storage
capacity cci. For each link el 2  E ,  it has a propagation delay
pl and a network bandwidth bl.

Assume that there are X  data items (D ¼  fd1; . . . ; dX g), Y
services (S ¼  fs1; . . . ; sY g) and Z  computing tasks (U ¼
fu1; . . . ; uZ g). Since both data items and services can be con-
sidered as needed resources for computing tasks, we treat
them as O ¼  X  þ  Y     resources in total, i.e., Q ¼  fq1 ¼
d1; . . .; qX ¼  dX ; qX þ 1  ¼  s1; . . .; qO ¼  sY g. For each resource qj ,

it has a storage size of oj , a download cost $ j from the

cloud, a CPU requirement zj and a memory requirement hj ,
respectively. Note that for the data resource, its CPU and
memory request are set to 0. Each task uk has a requested
resource set Vk , a CPU requirement gk, a memory require-
ment dk, a size of expected output data bk, the arriving
server Ck ,  and a benefit rk .

To define the requested resources for task uk, we intro-
duce a binary variable vk; j  as the indicator whether resource qj
is required by task uk.

1;     resource q is required by task u ; k;j

0;     otherwise:

2.2     Resource Placement
We first consider a resource placement problem where a
placement decision is needed for each resource qj at time t.
A binary variable xt     is defined as the placement decision in
time t where resource qj is placed in edge server vi.

t 1;     qj will be placed in vi at t, j ; i

0;     otherwise.

Here, we assume that data items or services can have repli-
cas in edge cloud (i.e. i¼1 xj ; i  can be larger than 1). In addi-
tion, an edge server may store multiple data and services,
but the total storage size placed in edge server vi cannot
exceed its current remaining storage capacity:

X
x j ; i o j   sti  cci, for all vi: (2)

j¼1

For services, there are also specific CPU and memory
requirements on the placed server.

xj; i z r  sti  f i ,  for all vi ; qj : (3)

xj; i hr  sti  mi, for all vi; qj: (4)

The resource placement aims to maximize the total bene-
fit minus the total cost from all serving tasks, while satisfy-
ing resource constraints. Here, we consider two types of
costs from serving tasks: placement cost and accessing cost.

For the placement cost of a resource item qj to a server vi

during the placement, we consider two possible ways: (a)
directly downloading from the cloud with a cost of $ j ,  or
(b) transferring from a nearby server vk, which holds a copy
of qj at t  1, with a cost of fðqj; vk; viÞ. Here, assume that P j  is
the shortest path in Gt connecting vk and vi

1, then the cost
fðqj; vk; viÞ can be defined as follow.

fðqj; vk; viÞ ¼  
0; 

e l 2P j  
ðbl 

þ  plÞ;     otherwise: (5)

Thus, the placement cost of qj to vi at t is the minimal among
all these, i.e.,

t            

(
0 ;                                                                 if xt1 ¼  1

j ; i                 minð$j; mink¼iðxj;k
1fðqj; vk; viÞÞÞ;     otherwise:

Then, the requested resource set V k  ¼  fqj jvk; j  ¼  1g, and its                                                                                                           (6)

Note
i
that

s
the resource requested by task u

a
c

¼
ud be 

v
t

j o j .       

Then, the place 
is

e
already in vi

t
at t  1, no cost is needed.

We assume that tasks arrive at discrete time unit t. The
duration of such time unit is t . Later, we will discuss the nt ¼ xt      pct : (7)
case where multiple time scales are used (Sections 3.2 and i¼1

4.3). For 
to represent whether this server is available at time We also define a variable to indicate whether resource qj is

t (available when stt ¼  1, not available when stt ¼  0). There
are two possible causes to unavailability: predictable (such
as scheduled update or maintenance) or sudden events v j  ¼ k (8)

(such as power-outage). Here we mainly consider the first
type of cases. For the latter case, different back-up strategies

1. Here Gt represents the edge network formed by all available serv-
ers at time t. The shortest path is defined regarding the summation of

Table 1 summarizes the key symbols used in our paper. propagation and transmission delays of qj over the path.
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TABLE 1
Symbols Used in the Paper

Symbol

G; V; E; U; Q; D; S
vi , el, uk, qj

N ,  M, Z ,  O
ci =cci ; fi ; mi

pl, bl

oj , $ j ,  zj =hj

gk=dk, bk, Ck ,  rk

wk;j , Vk , ak

t=t, x
stt

x j ; i

fðqj; vk; viÞ
pcj;i , nj

v j

s j;k , s j ; i

k ¼  ðukÞ yk;i

kðzÞ
input output comp
k;i k;i k;i

&t

t;i        t;i
j ; i        k;i

cri

R P j  ¼  frpj; i g, TDk ¼  ftdk;ig
ssi 2  SS ,  aai 2  A A
rri

mðsjumÞ, m0ðsjum0 
Þ

Qðss; aajuQÞ, Q0ðss; aajuQ0 
Þ

um, uQ, um0 
, uQ0

D ,  K
zi , g, "

Notation

the edge network, the set of edge servers, direct links, tasks, resources, data items, services
a edge server, a direct link, a task, and a resource
the number of edge servers/links/tasks/resources
the maximal/current storage, CPU frequency, memory capacity of edge server vi

the propagation delay and network bandwidth of link el

the storage size, download cost from the cloud, CPU/memory requirement of resource qj

the CPU/memory requirement, output data size, arriving server, and benefit of task uk

an indicator whether resource qj is required by uk, the requested resource set and input size of task uk

the index/duration of time unit (time slot), the number of time slots per time frame in two timescales an
indicator whether server vi is available at time t
the data placement decision at t whether resource qj is placed at server vi , here xj ; i  2  f0; 1g
the placement cost of a resource item qj from vk to vi
the placement cost of resource qj to vi at t, and the placement cost of resource qj at t
the indicator whether resource qj is requested by any task
the accessing cost of task uk for qj at t, and the accessing cost of qj from server vi at t
the server assigned by the tasking dispatching of uk

the task dispatching decision at t whether task uk is dispatched to server vi, here yk;i 2  f0; 1g
the CPU cycles to process task uk with the input data/service size z
the accessing cost of resource/output and the computation cost of task uk at server vi

the completion cost of uk at server vi at t
the data placement of resource qj and dispatching decision of task uk to server vi at t in i-th round
the available computing resources (e.g., storage, CPU, memory) of server vi

the placement decision of resource qj and the dispatching targets of task uk over each server vi

the system state at step i in the state space SS ,  the system action at step i in the action space A A
the award obtained given the agent’s action aai at step i
the actor evaluation and target networks
the critic evaluation and target networks
the evaluation network parameters and target network parameters
the replay buffer, the number of sampled data from D
the expected value/reward, discount factor of future reward, and update rate for target networks

For the accessing cost of resource after the data/service is
placed, let s t      be the accessing cost for resource qj required
by task uk. Note that the accessing cost depends on which
edge server task uk is processed at. Let k ¼  ðukÞ be the
server assigned by the tasking dispatching of uk. The access-
ing cost of qj can be defined as

s j;k  ¼  min xj;ifðqj; k; viÞ: (9)

If without task dispatching, we assume that task uk is proc-
essed at its arriving server Ck ,  then the accessing cost is

max
X X

ð r k   vk; j   sj;kÞ  
X

v j   nj 

k

j j

s.t.      xj ; i oj   sti  cci; 8i
j

xj; i z r  sti  f i ; 8i; j (12)

xj; i hr  sti  mi; 8i; j

x j ; i  2  f0; 1g; 8i; j

i  2  ð1; 2; . . .; NÞ; j 2  ð1; 2; . . .; OÞ:

2.3     Task Dispatching
In terms of task dispatching, we assume all tasks arrive in

j;k v i ¼ C k      
j ; i j k       i edge network in an arbitrary order. At time t, the goal of

In general, we define the accessing cost of qj from any edge
task dispatching is to find an optimal edge server vi 

pletioni  is                                                                                             cost of the task.
Specifically, the total completion cost of a task uk mainly consists of three parts: (a) the accessing cost

j ; i j; l j        l       i  of resources required by uk, (b) the computation cost of uk,
and (c) the transmission cost of output data of uk.

Since each of serving tasks has benefit of r  , the utility of We denote yt as the task dispatching decision at t
each task uk can be defined as jðrk  vk; j   sj;kÞ. whether task uk is dispatched to edge server vi.

Now we can formulate the resource placement problem
as an optimization problem. The objective is to maximize t 1;     task uk is dispatched to server vi at t;
total utilities from all serving tasks minus the summation of Here we assume that each task is at most dispatched to a
accessing costs for all resource at time t. single server, i.e., N       yt       1.
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Note that there are different types of tasks: some only
need data from the edge network, some only need to per-
form general computation at any server either with data or
not, some need to perform specific computation with certain
service at the available server. Our formulation can model
all these task types. If task uk only needs data, gk ¼  0, dk ¼  0
while ak >  0. If uk only needs general computation without
specific service or data, gk >  0, dk >  0 while ak ¼  0.

Assume that task uk is dispatched to edge server vi , i.e.,
yk;i ¼  1, then its associated costs are defined as follows.

Accessing cost of resources: The transmission cost of input
data and needed service for task u is defined as
Cinput ¼ O      vk ; j   s t  .

Computation cost:. Let kðzÞ be the function to define
CPU cycles to process task uk with the input data/service
size z. So the computation cost of task u processed in
edge server vi is defined as Ccomp ¼ j¼1 vk ; j   k

ðojÞ .
Transmission cost of output: The total transmission cost of

output data for task u from edge server v to arriving edge
server C k  is Coutput ¼  fðbk; vi; CkÞ.

Therefore, the completion cost of task uk is calculated as

&k;i ¼  C input þ  Ccomp þ  Coutput: (14)

Recall each task has a benefit rk . We then can formulate
the task dispatching decision as an optimization problem
whose goal is to maximize the total task utility if task uk is
running on server vi at t.

max
X X

y k ; i ð r k   &k;iÞ

s.t.
X

yk ; i & k ; i  t; 8i
k

yk;iak  sti  cci; 8i; k

yk;igk  sti  f i ; 8i:k (15)
yk;idk  sti  mi;                                     8i; k

yk;i   1; 8k
i

zk;i  2  f0; 1g; 8k; 8i

i  2  ð1; 2; . . .; NÞ; k 2  ð1; 2; . . .; ZÞ:

Note that the constraint of 
P

k  yk;i&k;i  t  makes sure that
the dispatched tasks can be completed within the duration
of a time scale t.

2.4 Joint Optimization Problem
We now consider a joint resource placement and task dis-
patching problem as a nonlinear program problem:

yk;idk  sti  mi; 8i; k (21)

X
y k ; i   1; 8k (22)

i

X
yk ; i & k ; i  t; 8i (23)

k

xj ; i  2  f0; 1g; yk;i 2  f0; 1g (24)

i  2  ð1; . . .; NÞ; j 2  ð1; . . .; OÞ; (25)

k 2  ð1; . . .; ZÞ: (26)

Since there is a nonlinear term inside yk;i&k;i, the overall prob-
lem is a nonlinear integer program problem which is known
difficult to solve due to its high computational complexity.

3 T W O -S T A G E  OPTIMIZATION METHOD

To solving the challenging joint optimization problem, we
propose a two-stage algorithm to decompose the problem
and solve it via multiple iterations. One of the advantages
of this proposed two-stage method, it can be easily adopt to
perform the joint optimization across different timescales.

3.1     Two-Stage Optimization
The main idea of this algorithm is as follows. First, we ran-
domly generate a feasible task dispatching decision yt;0,
then formulate and solve the resource placement problem
(obtaining xt;1) to maximize the total task utilities. Next, we
take the resource placement decision xt;1 as input, and for-
mulate and solve the task dispatching problem (obtaining
yk;i). This finishes the first round of two-stage optimization,
then we repeat the two steps, i.e., iteratively taking the latest
resource placement or task dispatching decision as an input
to optimize the other decision within the overall joint prob-
lem, until it satisfies a specific condition.

2-Stage Decomposition: The detail of decomposition of i-th
round is as follows.

Stage 1: Solving resource placement problem with fixed task
dispatching. In this stage, our goal is to determine resource
placement for each data and service in order to maximize
the total task utilities with the last task dispatching decision
yt;i1. The problem can be formulated as P1:

max
X X

y t ; i 1 ð r k   &k;iÞ  
X

% j
k i j (27)

s.t. ð17Þ;ð18Þ;ð19Þ;ð23Þ;ð24Þ;ð25Þ;ð26Þ:

max
X X

y k ; i ð r k   &k;iÞ  
X

v j   nj 

k

i j

s.t.
X

x j ; i o j  þ  yk;iak  sti  cci; 
j

(16)

8i; k (17)

The solution of this problem is xj; i .
Stage 2: Solving task dispatching problem with fixed resource

placement. In this stage, we take the resource placement deci-
sion xt;i generated in the first stage as input and determine
the task dispatching for each task yt;i to maximize the total
utility. The problem can be formulated as P2:

xj ; i z j   sti  f i ; 8i; j (18)
max

X X
y t ; i  ðrk  &k;iÞ  

X
% j

xt h  stt  m ; 8i; j (19) k i j (28)
s.t. ð17Þ;ð20Þ  ð26Þ:

yk;igk  sti  f i ; 8i; k (20) The solution of this stage is yt;
i
 .
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k;i

j ; i k;i

4 R EINF O R C E M ENT L EARNING B A S E D METHOD

j;i k;i

k;i

j ; i k;i
task dispatching

k;i j ; i

7: i f  obj  val >  bound val then
8: bound val = obj  val; count num = 1
9: x t t¼  x  ; y ¼  y

10: else if  obj  val = bound val then
11: count num ¼  count num þ  1
12: i  ¼  i þ  1
13: until count  num ¼  max occur or i ¼  max itr
14: return x and y
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Algorithm 1. Two Stages Optimization Method

Input: Status of all servers V and the network G , resources Q
and tasks U for time t.
Output: Resource placement and task dispatching decisions
xt      and yt .

1: Initialize max itr, max occur, bound val
2: Generate an random initial task dispatching decision yt;0

which is feasible (i.e., satisfying constraints in P2)
3: i  ¼  1 and count num ¼  0;
4: repeat
5: Stage1: Calculate xt;i by solving P1 with yt;i1 as the fixed

Fig. 2. Illustration of joint resource placement and task dispatching

6: Stage2: Calculate yt;i by solving P2 with xt;l as the fixed
across two timescales.

resource placement, let obj  val be the achieved objective
value (total utility from tasks) timescale (at the starting point of each time slot) and make

resource placement decisions along with the slow timescale
t;i t;i (at the starting point of each time frame). Here, we assume

j ; i j ; i        k;i k;i  that each time frame includes x  time slots. More specifically,
at the beginning of each time frame, we run our proposed
iterative two-stage algorithm (Algorithm 1), and at the
beginning of each time slot (except for the first time slot),

t t we only solving the Stage 2 problem (P2) where the resource
j ; i k;i

placement is fixed. By doing so, not only we can handle
diverse dynamics among workload and resources, but also
the running time of overall algorithm is reduced since the

After the decomposition, in each round, both P1 and P2 iterative algorithm is only performed once at each time
are linear integer programming problems, and thus can be frame and solving P2 at each time slot is relevantly simpler.
solved by the classical linear programming methods (e.g., Thus, it leads to greater flexibility with more cost savings.
branch and bound, dynamic programming).

Overall Iteration, Initialization and Termination: Algorithm 1
shows the overall algorithm. Initially, a feasible random task
dispatching yt;0 is generated (Line 2). Then, in each round
(Lines 5-12), we solve the P1 and P2 with the previous deci- In this section, we consider an alternative method to solve

sion as the input. The resource placement and task dispatch- the joint optimization by leveraging the emerging deep rein-
ing decisions (xt;i and yt;i ) are optimized iteratively. Finally, forcement learning technique. Reinforcement learning (RL)

the iteration terminates (Line 13) when either of the follow- has a great capability to attack complex optimization prob-

ing metric met: (1) the number of iteration reach certain lems in a dynamic system. The characteristic of RL frame-

threshold max itr, or (2) the current objective value (total work is that the decision is made by RL agents and the

task utility) has occurred more than a specified threshold feedback generated by the environment is used to improve

max occur. These two thresholds can be set via experiments. the decision of the agent. There are three key elements in

Obviously, larger threshold values lead to longer iteration the RL frameworks: state, action and reward.

but improved results. In Section 5, we will show the           Generally, RL algorithms can be classified as the category
improvement is limited after certainround of iterations.              of value-based and policy-based methods. Value-based RL

methods (e.g., Q-learning, Deep Q-network (DQN) [31],
Double DQN [32]) can select and evaluate the optimal value

3.2 Joint Optimization Across  Two Timescales function with lower variance. The value function measures
So far, we only discuss our two-stage algorithm in a one-time the goodness of the state (state-value) or how good is to per-
slice. In edge computing systems, the workload (i.e., comput- form an action from the given state (action-value). However,
ing tasks) and the resources (e.g., data or services) to serve it is difficult for value-based methods to handle the problem
such workload need to be managed on different timescales of continuous action spaces. If it calculates the value in an
[24], [25]. Usually the computing tasks could be distributed infinite number of actions, it will be time-consuming.
more frequently at a fast timescale in the edge network,           On the other hand, policy-based methods, such as policy
while the resource placement could be adjusted (such as      gradient [29], are effective in high-dimensional or continu-
redeploying or migrating services) less frequently on a      ous action spaces. It can learn stochastic policies and has
slow timescale. Compared with the single timescale      better convergence properties. The main idea is to able to
method, multi-timescale solutions [24], [25] can achieve      determine at a state which action to take in order to maxi-
better performance with more flexible management, thus gain      mize the reward. The way to achieve this objective is to find
significant attractions recently from the research community.         tune a vector of parameters (u) so as to select the best action

Our proposed two-stage algorithm can be easily to adopt      to take for policy p. The policy p is the probability of taking
to a two-timescale solution. As illustrated in Fig. 2, we can      action a when at state s and the parameters are u. There are
make task dispatching decisions along with the fast      some disadvantages for policy-based methods: (1) it
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t t

framework.

the system state.

ss ¼  fb  ; b ; . . . ; b ; cr ; cr ; . . . ; cr g :

Action Vector: In terms of action vector, the agent will
make decisions for both resource placement and task dis-

vector includes two parts.

j

Notice that the reward rr i can be obtained given the agent’s

works in DDPG, it is similar to that of Actor-Critic, both
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Fig. 3. The architecture of Actor-Critic R L  framework.

typically converges to a local rather than global optimum;
(2) evaluating a policy is typically inefficient and high
variance.

Actor-Critic RL method [33] is proposed to combine the
basic idea of value-based and policy-based algorithms. The
actor uses policy-based methods to select the action while
the critic uses value-based methods. As shown in Fig. 3, the
actor takes the state as input and outputs the best action. It
essentially controls how the agent behaves by learning the
optimal policy (policy-based). The critic, on the other hand,
evaluates the action by computing the value function (value
based). And the feedback (such as error) will tell the actor
how good its action was and how it should adjust. How-
ever, since the actor-critic method involves two neural net-
works, each time the parameters are updated in a
continuous state and there is a correlation before and after
each parameter update, which causes the neural network to
only look at the problem one-sidedly, and even causes the
neural network to learn nothing. To avoid such problem in
our problem, we leverage Deep Deterministic Policy Gradi-
ent (DDPG) RL technique [28], [29] to solve the joint optimi-
zation problem.

4.1 R L  Framework: State, Action and Reward

Fig. 4. The architecture of DDPG R L  Algorithm. The circled numbers are
the corresponding steps.

TDk ¼  ftdk;1; tdk;2; . . . ; tdk;N g: dispatching target of
each task uk (released by mobile user).

Let A A  be the action space, the system action aai 2  A A  at
step i can be defined as

aai ¼  fRP1 ; RP2 ; . . . ; RPR; TD1 ; TD2 ; . . . ; TDZgi:

Reward: For each step, the agent will get the reward rr i

from the environment after taking a possible action aai.
Generally, the reward function is related to the objective
function in the optimization problem. Fortunately, the
objective of our optimization problem is to maximize the
total utility of all tasks, so the award of RL agent is to set as
following.

rr i  ¼  
X X

ð r k   &k;iÞ  
X

% j : (29)
k i j

We first define the specific state vector, action vector and
reward for our system model to enable the proposed RF

action aai, which includes the solution of both resource

State Vector: At each step i, the agent collects the edge net- placement and task dispatching, and the environment.

work information and parameters defined below to form
4.2     DDPG R L  Algorithm
The main goal of RL algorithm is to tune the learning mod-

M: the number of links among edge servers. el’s parameters (u) so as to select the best action aa to take
N :  the number of edge servers. based on the given state. We adopt Deep Deterministic Pol-
bl: available network bandwidth of each link. icy Gradient (DDPG) technique [28], [29] to perform the RL.
cri : available computing resources (e.g., storage, Actually, DDPG integrates the essential idea of the actor-
CPU, memory) of each edge server. critic and DQN. DQN uses a replay memory and two sets of

Let S S  be the state space, the system state ssi 2  S S  at step neural networks with the same structure but different
i can be defined as parameter update frequencies, which can effectively pro-

mote learning. DDPG has a similar idea but the neural net-
work is a bit complicated. As aforementioned, compared

i 1      2 M 1 2 N  i with other RL methods, policy gradient can be used to filter
actions in continuous action spaces. Moreover, the screen-
ing is performed randomly based on the learned action dis-
tribution. However, the screening in DDPG is deterministic

patching. The decision mainly consist of where to place      but not random. In terms of the architecture of neural net-

resources and where to dispatch tasks. Therefore, the action      
need the policy-based neural networks and the value-based
neural networks as shown in Fig. 4. Each kind of neural net-

R P j ¼  frpj;1 ; rpj;2 ; .. .; rpj;Ng: resource placement of work also includes two types of neural networks: the evalu-
each external resource q (data, service). ation network and the target network. The target networks
Authorized licensed use limited to: Temple University. Downloaded on September 29,2023 at 14:08:32 UTC from IEEE Xplore. Restrictions apply.



memory capacity m of each edge server. Propagation delay p ,
network bandwidth bj jof each link. Storage size o , download

ach resource.

8: for each step i ¼  1; i <  max st do
9: Calculate action aa

reward rr and new state ss .
11: Store transition (ssi i i i þ 1; aa ; rr ss ) to replay buffer

respectiv ly.

0 0

K

P
i

policy gradient:

X
aa umss¼ss  ;aa¼mðss Þ ssr  Qðss; aaju Þj r  mðssju Þj     :

evaluation network arguments:

u "u þ  ð1  "Þu ; u "u þ  ð1  "Þu :

(Line 1).

ss1 (Lines 5-7).

i

" (Lines 18).

number of episode.

method as shown in Fig. 5 We use two DDPG netwo ks,

effectively.

per episode max  st (Line 4). D is used to sample
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are time-delayed copies of their original networks that network Qðss; aajuQÞ and target network
slowly track the learned networks. Using these target net- Q0ðss; aajuQ0 

Þ, where um and uQ are evaluation net-

works greatly improve stability in learning. work parameters, um0      
and uQ0      

are target network
parameters (Lines 2-3).

Algorithm 2. DDPG method 3) Initialize replay buffer D, the maximum number of

Input: The edge network GðV; EÞ, set of external resource Q, set
episodes max ep and the maximum number of steps

of task U . Remained storage capacity cci , CPU frequency f i , experience to update neural network parameters.i j 4) At the beginning of each episode, initialize the ran-

cost $ j ,  CPU requirement zj and memory requirement hj of                   dom exploration noise and generate the initial state

e
1: Initialize the environment with all input information. 5) For each step i, the actor selects an action aai based
2: Initialize Actor and Critic evaluation network mðsjumÞ and on the c u rrent p olic y and  rand om noise (L ines 8-
9).

Qðss; aajuQÞ with parameters um and uQ , respectively. 6) The environment executes action aai and get the
3: Initialize Actor and Critic target network m0ðsjum0 

Þ and                             reward rr i  and observe new state ssiþ1 . Then it stores
Q0ðss; aajuQ0 

Þ with parameters um0
um and uQ0

uQ . the transition (ssi; aai; rri ; ssiþ1) to D .  At the same
4: Initialize empty replay buffer D ,  the maximum episodes time, the actor send the action to critic network

max ep and the maximum steps per episode max st. (Lines 10-12).
5: for episode ¼  1; episode <  max ep do                                                      7)      Randomly sample a batch of data (ssi ; aai ; rri ; ssiþ1)
6:     Initialize the random exploration noise for action.                                  from D .  Then calculate the expected value/reward
7: Generate the initial observation state ss1 from z (Lines 13-14).

environment. 8) Update Critic and Actor evaluation network with the
sampled data (Lines 15-17).

random noise.
i  based on the current policy and 9) Update Actor and Critic target network with the rate

10: Execute action aai in the environment and observe                  10) This process is done until it reaches the maximum
i i þ 1

12: Send the action from Actor
;
evaluation and target 

D . Fig.
 
4
 
also

 
shows these

 
steps

 
with

 
the 

c
ir

c
le

d
 n

u
mbers.

network 
e
to Critic evaluation and target network,      

4.3     R L  Method Across  Two Timescales
13:        Randomly sample a batch of transitions (ssi; aai ; rri ;               While RL technique can handle network dynamics, it is also

ssiþ1) from D  to Actor and Critic network.                               flexible to deal with the complexity in multiple timescales
14:        Calculate zi ¼  rr i  þ  gQ0ðssiþ1; m0ðssiþ1jum ÞjuQ Þ, where g       scenario. We now further extend our proposed DDPG to

is the discount factor for future rewards.                                  work across two timescales. There are two different ways to
15: Update Critic evaluation network by minimizing the extend the proposed DDPG method. A straightforward way

loss:  1 ðzi  Qðssi; aaijuQÞÞ2, where K  is the number is to build another separate DDPG for task dispatching
of samp led  d ata from D . problem P2, and run both DDPG models in different time-

16: Send gradient 
p
arameters to Actor eval

u
atio

n
 network. scales (joint one for each time frame and P2 one for each

17:        Update Actor evaluation network by using the sampled       time slot). The other way is to use the same DDPG model,
but force the action policy to not adjust the resource place-
ment during the fast timescale. With either way, the agent

1                                Q                                                                        m                            can still learn the best decision based on the environment
K  i                                                                  

i                         i                                                      i                      and the current state vector. In this paper, we adopt the first

18: Update Actor and Critic target network by using the one for
,
resource placement

. 
(RP DDPG) and the other

r
for

task dispatching (TD DDPG). Resource placement (RP
m0 m m0 Q0 Q Q0 DDPG) is performed every specific time frame while task

dispatching (TD DDPG) is executed every time slot. In each
19: end for time slot, the environment sends current network state
20: end for (available network bandwidth and computing resources) to

task dispatching agent (TD agent), the TD agent will output
Algorithm 2 is the detail of DDPG algorithm. The main the task dispatching decision to the environment. Our

steps of DDPG algorithm (with corresponding lines in Algo-      experimental results (Section 5.5) show that by leverag-
rithm 2) are as follows.                                                                       ing two DDPG agents, the proposed RL method can han-

1)      Initialize the system and environment based on the      
dle the system dynamic and manage the resource/task

edge network G , and set of external resource Q and
set of task U as well as other network information 5 P E R F O R M A N C E  EVALUATION

2) Initialize Actor evaluation network mðsjumÞ and tar- This section reports the results from our trace-based simula-
get network m0ðsjum0 

Þ as well as Critic evaluation tions to evaluate our proposed strategies.
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make use of the Google Cluster Data (ClusterData 2011

the size of each resource are from 10MB to 200MB. To simu-

ity data from the CRAWDAD dataset kaist/wibro [35],
developed by a Korean Team, which collected the CBR and
VoIP traffic from the WiBro network in Seoul, Korea. We

tasks from mobile user to perform our simulation. We run
our experiments on a DELL Precision 3630 Tower with i7-
9700 CPU, 16GB RAM and NVIDIA GeForce RTX 2060
GPU. For our proposed RL based method, the detail of
hyper parameters configuration is reported in Table 2. The

most RL experiments. We test multiple values for each

We compare our proposed Two Stage Optimization (OPT

baselines: a random strategy and a greedy strategy.

unit. For RL methods, those are used to calculate the
reward at each time unit.

5.2     Overall Performance

ferent numbers of tasks or edge servers.

under different number of task requests (from 10 o 50 in

forcemen Learning (RL) outperform the other two algo-

OPT or RL if the number of requests is low. If the number of

We then fix the number of tasks at 30 and investigate t
impact of the number of edge servers (changing from 10 to
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TABLE 2
R L  Hyper Parameters

Parameter Value Parameter Value

Max Episode 100 Reward Discount 0.9
Max Step per Episode     3,000 Batch Size                             32
Learning Max Episode      10 Soft Replacement               0.01
Actor Learning rate        0.0001 Replay buffer Capacity 10,000
Critic Learning rate        0.0002

benefits. Specifically, GRD first sorts resources based
on their popularity and processes them from the
most popular one. It iteratively selects an edge server
to place this resource which maximizes the total util-
ity in each round. Similarly, for tasking dispatching,
GRD sorts all tasks based on their benefits and pro-
cesses the most beneficial task first. Likewise, it
greedily selects an edge server to dispatch the task to
get the maximal task utility in each round iteratively.

We evaluate the performance of all methods based on
average total utility (i.e., the objective function in our
formulated optimization problems). Obviously, the larger

Fig. 5. Resource placement and task dispatching via deep reinforcement       utility value the better resource placement and task dis-
learning across two timescales with two DDPG models.                                        patching performance. All parameters required to calcu-

late the objective function (such as network topology,
5.1 Simulation Setup bandwidth, task requirements, server capacity, download

In our simulation, we randomly construct edge networks G cost) are known to all methods as inputs at each time

with 10 to 50 edge servers whose degree satisfies a binomial
distribution. The propagation and bandwidth for each net-
work link are randomly generated. Each edge server has a
limited storage capacity ranges from 512MB to 1,024MB. To

simulate the CPU, memory and status of edge servers, we      
I

n

 the first set of simulations, we test all four methods

traces) [34]. For the external resources (data and services),      within a fixed time period (in the single timescale) over dif-

we randomly generate 100 data items and 20 services where           
Fig. 6a displays the performances for the four solutions

late the tasks from mobile users, we leverage the user mobil-      
each time unit). The number of edge servers is fixed

t
at 30. It

is obvious to see that the average total benefits of four solu-
tions increase as the number of task requests increases. Our

randomly sample from this dataset to generate the random proposed
t
two stage optimization algorithm (OPT) and Rein-

rithms (RAND and GRD) in all cases. In addition, when the
number of requests is low (e.g., 10 or 20), the difference of
average total utilities between OPT and RL is small. How-
ever, as the number of requests increases, the difference

parameters are initialized by general val
u
e that used in becomes larger. So, in the real scenario, we can select either

parameter and select the value that has better performance.
)      

request
 
is large,

 
we

 
prefer t

o 
use

 
RL

 
to make

 
the

 
decision.

he

and Deep Reinforcement Learning (RL) sol

u

tions with two      
50). As shown in Fig. 6b, the average total utility of RAND

increases in the beginning and then less varies as the num-
Random (RAND). At each time slice, it randomly gen- ber of edge servers increases. For other three solutions, OPT
erates a feasible resource placement and task dis- and GRD vary a little as the number of servers increases
patching decision which satisfies those constraints. while RL keeps stable all of the way. Overall, the perfor-
Greedy (GRD). It greedily determines its resource mance of most of the solutions are relevantly stable, espe-
placement and task dispatching decision to maxi- cially RL. For all cases, RL and OPT perform much better
mize total utility in each round. It gives the priority than GRD and RAND. This once again confirms the advan-
to resources/tasks based on their popularity/ tage of our two proposed methods.
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5.4 OPT Across  Two Timescales
We further investigate our proposed methods across two

frame versus time slot). Here we mainly focus on our two-
stage optimization solution (OPT).

In the first set of experiments, we perform our proposed
OPT method against RAND/GRD in three different scenar-
ios: (1) Slow Timescale: all methods perform joint resource

models are different).
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Fig. 6. Overall performance of four methods in one timescale: Compari-
son of proposed solutions (OPT, RL)  with Random (RAND) and Greedy
(GRD) strategy with different numbers of tasks or edge servers.

Fig. 8. Performance of OPT across two timescales with dynamic status:
(a) different methods at fast, slow or two timescales; (b) with dynamic
status from real-world traces.

5.3 Running Time and Convergence of OPT
We first investigate the running time and convergence of      placement and task dispatching at the beginning of each
our proposed two-stage optimization (OPT) method.                   time frame; (2) Fast Timescale: all methods perform place-

Fig. 7a shows the running time of OPT, GRD and RAND      ment and dispatching at the beginning of each time slot; (3)
at different time slots. The running time is defined as the      Two Timescales: all methods perform task dispatching in
time duration when the algorithm is executing. We can find      each time slot while joint resource placement and task dis-

that GRD and RAND has the least running time since their      patching performing only at the beginning of each time
placement/dispatching can be done in a polynomial time.      frame. In this set of experiments, each time frame has 5 time
Our OPT method spends more time to solve the challenging      slots (i.e., x  ¼  5), and we fix the number of request per time
optimization problem, but remember that it generates much      frame at 30 and the number of edge server at 30. Fig. 8a dis-
better solution (better total utilities) than GRD/RAND as      plays the performances of three methods (OPT, RAND,
shown in Fig. 6.                                                                                    GRD) under three scenarios. First, our proposed two-stage

Recall that our two-stage optimization algorithm (Algo-      OPT method achieve better performance than RAND and
rithm 1) iteratively optimizes the objective value under a      GRD in all setting. Second, for all three solutions, running at

max iteration. Fig. 7b displays the total task utility per      slow timescale achieves larger utilities than running at fast
slot under different iterations. It is clear that with more      timescale. This is mainly due to running at slow timescale
iterations the overall trend of performance increases,      takes the advantage having better global information over

even though there is an drop in early iteration and some      longer time duration. In addition, fast timescale solution
variety in each iteration. Therefore, it is necessary to      also suffers from frequent resource placement changes
select an appropriate max iteration (max itr) to achieve a      which might be costly. Third, when the solutions are
decent performance (total utility). It is a trade-off bet-      performed across two timescales, the performances can be
ween the max iteration and the running time as well as      further improved. This might due to performing task dis-
the optimization objective value since more iterations      patching at the time slot can find sufficient server to perform

cost more running time.                                                                   the task and quickly release the server for other tasks. Over-

all, the results from this set show that multi-timescale solu-
tion can achieve better performance compared with the
single timescale method, which echos the similar discovery

timescales where the joint resource placement and task dis-      
from [24], [25] (tho

u

gh the studied 

p

roblems and network

patching decisions are made at different timescales (time           Finally, we evaluate our proposed two-timescale solu-
tions over edge servers with dynamic status by leveraging
the status trace-driven data from the Google Cluster Data
(ClusterData 2011 traces) [34]. We use the trace data to gen-
erate the server status at different time slots. Other parame-
ters are similar to previous experiments. For two-timescale
solutions, we use different combinations of OPT/GRD/
RAND to solve data placement and task dispatching prob-
lems respectively. As shown in Fig. 8b, there are nine com-
binations in total. For example, OPT+RAND means
optimization based method is used for data placement,
while task dispatching is done randomly. Fig. 8b reports the
results of these methods under three different scenarios: (1)
Always On: assume that all edge servers are always running
and available for serving tasks; (2) Dynamic Status: the status
of the edge node varies along with the time slot, while a

Fig. 7. Running time and convergence of OPT: (a) Comparison of run- server is down at a time slot no task can be dispatched to it;
ning time (OPT versus RAND/GRD); (b) Convergence of OPT. (3) Static Status: our method completely ignore the server
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6.1     Resource Placement/Management
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Fig. 9. Convergence of R L  under different timescales: Running joint
resource placement and task dispatching under single timescale and
across two timescales.

Fig. 10. Convergence of resource placement and task dispatching:
Training resource placement and task dispatching respectively.

number of edge server is not large and the resource place-
status during solving the data placement and task dispatch- ment problem is less complex than the task dispatching
ing. Obviously, all combinations with dynamic status have one, thus RL can learn faster in resource placement. The
lower total utility than those of always on, since some server task dispatching initially has larger variation since the tasks
may be unavailable in certain time slots. In addition, if are more sensitive to the user mobility. With more training
ignoring the status, the performance (of static status) will be data, the convergence becomes better.
significantly reduced, since the dispatched tasks may not be           Convergence Performance Under Different Batch Sizes/Learn-
completed due to the server is unavailable. Clearly, our sol-      ing Rates. Finally, we investigate the convergence of our pro-

utions which considers dynamic status can achieve a com-      posed deep RL method with different batch sizes and
parative performance to the case where every server is on.      learning rates. Fig. 11a shows the performance of RL with a
Last, among all nine combinations, using our optimization      batch size at 32, 64 and 128. The batch size is used to deter-
based solution for both resource placement and task dis-      mine the number of experience samples that need to be
patching across two-timescales has higher performance      trained each step. We can find that the result of batch size at
than other combinations. This indirectly illustrates the effec-      32 gets higher rewards and converges earlier than the other
tiveness of the two-stage algorithm under two-timescales to      two scenarios. Fig. 11b shows the performance of RL at dif-
handle real dynamics in edge computing, which is the major      ferent learning rates ", which is used to control the update
contribution of this paper.                                                                 speed of the weight in the neural network. Here, we use dif-

ferent rates for the actor and critic (denoted by LC_A and
LC_C respectively). Obviously, different learning rates will

5.5 Performance and Convergence of R L lead to different convergence results so we have to select an
In this subsection, we study the performance and conver- appropriate learning rate for our RL model.
gence of our proposed deep RL methods. The default num-
ber of edge servers is set to 10.

Convergence Performance of RL Under Single Timescale and E L A T E D O R K
different timescales. Fig. 9a displays the convergence result of In this section, we briefly review some related works.
our RL solutions that jointly determine the resource place-
ment and task dispatching decision in a single timescale. As
we can see, the reward gets higher as the number of epi-
sodes increases and it converges at around the 80th episode. In this paper, we consider both data placement and service
On the other hand, Fig. 9b shows the convergence of our RL placement as resource placement in edge computing. Note
solutions across two timescales where makes the task dis- that there are other types of resource management problems
patching decision in the fast timescale and the resource in edge computing, such as virtual network function place-
placement decision in the slow timescale. We can find that ment [36], [37], virtual machine placement [38], [39], and
the reward drops in the beginning and then increases when cloudlet placement [23], [40], [41]. Next, we briefly review
the training episode increases. We also observe that the existing works on data placement and service placement.
reward in Fig. 9b is higher than that in Fig. 9a. This further
confirms the benefit of making resource placement and task
dispatching across two timescales.

Convergence Performance of Resource Placement and Task
Dispatching. We further show the convergence result of
resource placement and task dispatching, respectively. We
first fix the task dispatching decision in each episode and
make the resource placement decision. Similarly, we then
fix the resource placement decision in each episode and
make the task dispatching decision. As shown in Fig. 10, the
results of resource placement and task dispatching are simi-
lar since they use the same RL model and can both converge Fig. 11. Convergence of R L  under different batch size and learning rate:
while working on different optimization decisions. The Running R L  under 20 to 30 episodes with 3,000 steps per episode.
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Data placement has been an important topic in distrib- [14] also studied a multiple-service placement problem in a
uted database/system [42], [43], peer-to-peer networking heterogeneous edge system and proposed an approximation
[44], [45], content delivery network[46], and cloud comput- algorithm placing multiple services to maximize the total
ing[47], [48]. While similar to all distributed systems, edge reward. Meskar and Liang [15] proposed a resource alloca-
computing has its own characteristics [1], thus brings new tion rule retaining fairness properties among multiple access
data placement problems. Shao et al. [4] proposed a data points, while Zhang et al. [16] proposed a decentralized
replica placement strategy for processing the data-inten- multi-provider resource allocation scheme to maximize the
sive IoT workflows in edge system which aims to mini- overall benefit of all providers. Resource placement has also
mize the data access costs while meeting the workflow’s been considered jointly with other design issues in edge
deadline constraint. The problem is modeled as a 0–1 inte- networking and computing. For example, Kim et al. [17]
ger programming problem and solved by an intelligent designed a joint optimization of wireless MIMO signal
swarm optimization. Similarly, Lin et al. [5] also proposed design and network resource allocation to maximize energy
a self-adaptive discrete particle swarm optimization algo- efficiency in wireless D2D edge computing. Eshraghi and
rithm to optimize the data transmission time when placing Liang [18] considered the joint optimization of computing/
data for a scientific workflow in edge computing. Li et al. communication resource allocation and offloading decision
[10] investigated a joint optimization of data placement of uncertain tasks in mobile edge networks.
and task scheduling in edge computing to reduce the com-
putation delay and response time. Their formulated opti-
mization considers the value, transmission cost, and 6.2     Task Offloading/Dispatching
replacement cost of data blocks, which is then solved by a      Task dispatching, as known as computation offloading [51],
tabu search algorithm. Breitbach et al. [11] have also stud-      is also a critical problem in edge computing, and has been
ied both data placement and task placement in edge com-      studied recently. In many cases, it is jointly considered with
puting by considering multiple context dimensions. For its      data/resource placement. For example, Breitbach et al. [11]
data placement part, the proposed data management      also considered task placement in their context-aware solu-
scheme adopts a context-aware replication, where the      tion, where task scheduler allocates tasks according to the
parameters of the replication strategy is tuned based on      current context and observes the state during runtime. Bi
context information (such as data size, remaining storage,      et al. [19] jointly studied a task offloading, service caching
stability, application). Huang et al. [49] have studied cach-      and resource allocation problem in a single edge server that
ing fairness for data sharing in edge computing environ-      assists a mobile user to perform a sequence of computation
ments. They formulate the caching fairness problem,      tasks. They formulated it as a mixed integer nonlinear pro-
where fairness metrics take resources and wireless conten-      gramming (MINLP), and then solved it by separately opti-
tion into consideration, and propose both approximation      mizing the resource allocation and transforming the
and distributed algorithms. Xie et al. [6] also studied the      problem to integer linear program. Xu et al. [20] proposed
data-sharing problem and proposed a coordinate-based      an online algorithm to jointly optimize dynamic service
data indexing mechanism to enable the efficient data shar-      caching and task offloading in edge-enabled dense cellular
ing in edge computing. It maps both switches and data      networks. Their solution is based on Lyapunov optimization
indexes into a virtual space with associated coordinates,      and Gibbs sampling without knowing future information.
and then the index servers are selected for each data based      Similarly, Poularakis et al. [21] investigated the joint service
on the virtual coordinates. Xie et al. [7] further extended      placement and request routing problem in edge-enabled
their virtual-space method to handle data placement and      multi-cell networks, and proposed a bi-criteria algorithm
retrieval in edge computing with an enhancement based      with randomized rounding technique that achieves approx-
on centrodial Voronoi tesselation to handle load balance      imation guarantees while violating the resource constraints
among edge servers. Similarly, Wei et al. [8], [9] proposed      in a bounded way. Ma et al. [22] studied cooperation among
another virtual-space based data placement strategy which      edge servers and investigated cooperative service caching
takes the data popularity of data items into consideration      and workload scheduling in mobile edge computing envi-
during the virtual-space mapping, data placement and      ronment. They formulated the problem as MINLP and
retrieval. There are solutions [50] for data management      solved it by an iterative algorithm based on Gibbs sampling
issues in edge computing as well.                                                   to achieve near-optimal performance. Yang et al. [23] pro-

Similar to data placement, service and resource placement      posed a Benders decomposition-based algorithm to jointly
in edge computing has been studied as well. Ouyang et al. solve the cloudlet placement and task allocation problem
[12] proposed an adaptive user-managed service placement while minimizing the total energy consumption.
algorithm to jointly optimize the latency and service migra- However, most of these works consider a kind of joint
tion cost. By formulating the service placement problem as a      optimization at a single timescale, thus may not handle
contextual Multi-armed Bandit problem, they proposed a      the dynamic among tasks, resources, and computation
Thompson-sampling based online learning algorithm to      facilities in the edge computing environment. Recently,
explore make adaptive service placement decisions. Xu et al.      Farhadi et al. [24] studied service placement and request [13]
studied the service caching in mobile edge clouds with      scheduling problem in edge cloud environment for data-multiple
service providers completing for both computation      intensive applications and proposed a two-timescales and
bandwidth resources, and proposed a distributed and      framework to determine the near-optimal decision under stable
game-theoretical caching mechanism for resource      specific constraints. You et al. [25] also studied a joint sharing
among the network service providers. Pasteris et al.      resource provision and workload distribution problem in
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mobile edge network. They formulated the problem as a      different timescales. Our simulation results showed that
nonlinear mixed-integer program to minimize the long-      (1) both proposed methods perform much better than
term cost, and proposed online learning based algorithms      random and greedy algorithms; (2) the advantage of per-
to solve the problem in two timescales. Our work is      forming resource placement and task dispatching in dif-
inspired by these works, but we consider different joint      ferent timescales is not only to reduce the placement
optimization with different network and edge settings. In      cost but also does not require much future prediction of
addition, we also leverage deep reinforcement learning to      the task. The two proposed solutions have their own
solve the joint optimization.                                                            advantages. On one hand, RL needs more time to train

the agent’s model while OPT directly solves the optimi-
6.3 Deep Reinforcement Learning zation problem. On the other hand, RL  is more efficient

Reinforcement learning is one of the basic machine learn- to handle dynamic environment and scales well with
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In future, we plan to further enhance the proposed meth-

forcement learning
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