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Abstract—The proliferation of Internet of Things (loT) data and innovative mobile services has promoted an increasing need for low-
latency access to resources such as data and computing services. Mobile edge computing has become an effective computing
paradigm to meet the requirement for low-latency access by placing resources and dispatching tasks at the edge clouds near mobile
users. The key challenge of such solution is how to efficiently place resources and dispatch tasks in the edge clouds to meet the QoS of
mobile users or maximize the platform’s utility. In this article, we study the joint optimization problem of resource placement and task
dispatching in mobile edge clouds across multiple timescales under the dynamic status of edge servers. We first propose a two-stage
iterative algorithm to solve the joint optimization problem in different timescales, which can handle the varieties among the dynamic of
edge resources and/or tasks. We then propose a reinforcement learning (RL) based algorithm which leverages the learning capability
of Deep Deterministic Policy Gradient (DDPG) technique to tackle the network variation and dynamic as well. The results from our
trace-driven simulations demonstrate that both proposed approaches can effectively place resources and dispatching tasks across two

timescales to maximize the total utility of all scheduled tasks.

Index Terms—Resource placement, task dispatching, reinforcement learning, optimization, edge computing

1 INTRODUCTION

ECENTLY, there has been a tremendous growth of the

new computing paradigm - mobile edge computing [1],
[2], [3] in both academia and industry due to its advances
over traditional cloud computing (e.g., low-latency, agility,
privacy). Especially as the increasing amount of data and
services offered by diverse applications and IoT/smart
devices, network operators and service providers are likely
to build and deploy computing resources (such as data,
models, services) at the edge of the network near users so as
to shorten the response time and support real-time intelli-
gence applications.

As shown in Fig. 1, a typical edge computing environ-
ment consists of mobile users, edge clouds (including multi-
ple edge servers connected by the edge network), and a
remote cloud (usually within data centers). Each edge
server is generally deployed at the network edge near
mobile users and owns specific storage, CPU, and memory
capacity. Mobile users can generate a couple of computation
tasks at any location which request to be dispatched at edge
servers with sufficient resources (i.e., internal computation
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resources such as CPU, memory, storage) and may also
require certain data or services (i.e., external resources such
as training data or machine learning services). Note that the
types of computing tasks from mobile users/devices are
heterogeneous due to diverse settings and applications. For
example, some tasks may only request data (e.g., image,
video) or machine learning (ML) model from the edge net-
work, and then process it locally or perform ML computa-
tion based on the model at local edge server. Some tasks
may request computation at other edge servers with certain
computation services, such as video analysis, speech recog-
nition, 3D rendering. Some tasks may need a combination
of data, services and computation resources, such as distrib-
uted federated learning or interactive augmented reality.
Fig. 1 shows some examples where tasks from mobile users
request either data/services or both. Note multiple user
tasks can be served by the same edge server and the deploy-
ment of multiple copies of resources can usually reduce the
accessing cost or balance loads among servers. The diverse
types of tasks from mobile users and dynamic available
resources at edge servers introduce new challenges in
resource management and task dispatching in such a com-
plex edge computing system.

Resource management and computation task offloading
in edge computing has been widely studied. For example,
[4] and [5] have studied the data placement strategy for
workflows in edge computing considering workflow’s
dependency, reliability, and user cooperation. Xie et al. [6],
[7] and Wei et al. [8], [9] have proposed different virtual
space-based data placement methods, where both data and
servers are mapped into a virtual space and the data place-
ment decision is based on the virtual distance in the space.
Li et al. [10] and Breitbach et al. [11] have investigated both
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Fig. 1. A typical mobile edge computing environment where data and
services are placed at edge clouds and tasks are dispatched to different
edge servers. In this example, task 1 is performed at server 2, while task 2
and task 3 are performed at server 5.

data and task placement in edge computing. While [10]
adopted a tabu search based algorithm to solve a joint opti-
mization, [11] considered data/task placement with multi-
ple context dimensions and proposed a context-aware
replication strategy. Beside of data placement, service place-
ment has also attracted researchers’ attention. Ouyang et al.
[12] proposed an adaptive user-managed service placement
algorithm to jointly optimize the latency and service migra-
tion cost. Xu et al. [13] studied the service caching in mobile
edge clouds with multiple service providers and proposed
a distributed caching mechanism for resource sharing. Pas-
teris et al. [14] also studied a multiple-service placement
problem and proposed an approximation algorithm to max-
imize the total reward. There are also recent studies [15],
[16], [17], [18] on resource allocation in edge computing.
Zhang et al. [16] proposed a decentralized multi-provider
resource allocation scheme to maximize the overall benefit
of all providers, while Meskar and Liang [15] proposed a
resource allocation rule retaining fairness properties among
multiple access points. Kim et al. [17] designed a joint opti-
mization of wireless MIMO signal design and network
resource allocation to maximize energy efficiency. Eshraghi
and Liang [18] considered the joint optimization of resource
allocation and offloading decision for mobile clouds. Simi-
larly, service placement and task/computation offloading
has been considered jointly in [19], [20], [21], [22], [23].
However, most of these works consider a kind of joint opti-
mization at a single timescale, thus may not handle the
dynamic among tasks, resources, and computation facilities
in the edge computing environment.

In a real dynamic edge computing environment, tasks
from mobile users generally have a small size and can be
easily moved around and distributed at different edge serv-
ers for processing. However, the resources, such as data
and services, may not be adjusted fast enough to meet the
dynamic requirements of tasks. For example, it takes time to
reconfigure a service in a new edge server. Similarly,
migrating large amount of data also involves additional
costs. Therefore, it is nature to manage resources and tasks
at two different time scales, i.e., task dispatching can be per-
formed in a fast timescale, while resource placement can
occur in a slow timescale. Such multi-timescale solutions
have been shown to be more efficient than single timescale
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methods in edge computing [24], [25]. In addition, a critical
factor that has been overlooked is the dynamic status of
edge servers. Edge servers are not always running due to
regular maintenance or certain events (e.g., power outage
and system error). If the status of an edge server is changed,
the overall topology of the edge network is changed and
this further affects the performance of the entire edge sys-
tem. Therefore, it is important to taking server status into
the resource placement and task dispatching.

In this paper, we jointly study the resource placement
and task dispatching problems in mobile edge computing
with the aim of maximizing the total utility of performed
tasks. We first formulate the problem as an joint optimiza-
tion problem under the storage, CPU, and memory con-
straints and take the status of edge servers into account. The
overall problem is a nonlinear programming, and thus hard
to solve due to its high complexity. In addition, the dynam-
ics of tasks, resources, and the edge environment also make
solving this problem much harder. In this paper, we then
design two alternative approaches: two-stage optimization
method and deep reinforcement learning method. The two-
stage optimization method decomposes the joint optimiza-
tion problem to two sub-problems (resource placement and
task dispatching), and then solves them respectively and
iteratively. One nice property of this two-stage optimization
method is that it can be performed across two timescales,
i.e., performing the joint optimization in each time frame (at
a slow timescale) and task dispatching sub-problem only in
each time slot (at a fast timescale). To handle the dynamics
in edge environment and the complexity of the optimiza-
tion, we also leverage reinforcement learning (RL) techni-
ques to tackle our joint optimization problem. RL has been
used as an effective solution in edge computing [26], [27].
The RL agent can improve its policy to achieve a better goal
according to the future reward feedback generated by the
environment. Our proposed RL method leverages the Deep
Deterministic Policy Gradient (DDPG) [28], [29] to solve the
joint optimization problem in dynamic edge environment.
Moreover, our deep RL method enables more flexible han-
dling of the multi-timescale problem either by controlling
the action or by leveraging multiple DDPG models.

In short, the contributions of this papers are three-folds.

We formulate an joint optimization problem consid-

ering the storage, CPU, and memory constraints as

well as the edge server status for the resource place-

ment and task dispatching in mobile edge computing.

We propose two alternative approaches, two-stage

optimization and deep reinforcement learning, to solve

the joint optimization problem. Both methods can be

applied across two timescales to deal with different

dynamics of tasks and resources in mobile edge
computing.

Extensive trace-driven simulations are conducted to

evaluate our proposed methods, and results show

both methods can effectively improve the total utility.

The outline of this paper is as follows. Section 2 first

introduces the system model and our formulated optimiza-

tion problems. Sections 3 and 4 present our proposed two-

stage optimization method and deep reinforcement based

method, respectively. Evaluations of our proposed methods
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via simulations are provided in Section 5. Section 6 presents
an overview of related works. Finally, Section 7 concludes
the paper with possible future directions. A preliminary
version of this paper appears as [30].

2 SYSTEM MODELS AND THE OPTIMIZATION

In this section, we first introduce our network and system
models under a general edge computing architecture. Then
we formulate the resource placement problem, the task dis-
patching problem, and the joint optimization problem,
respectively.

2.1 Network and System Models

Without loss of generality, we construct a typical mobile
edge computing architecture as shown in Fig. 1. The edge
network topology is defined as graph G38V; EP, consists of N
edge servers and M direct links among them. Here, V %
fvi;...;vngand E % fey;...;emg are the set of edge servers
and the set of links, respectively. For each server v; 2 V, it
has a maximal storage capacity c;, a CPU frequency fi, a
memory capacity m;, and the current remaining storage
capacity cci. For each link ¢, 2 E, it has a propagation delay
pi and a network bandwidth b;.

Assume that there are X data items (D % fdy;...;dxg), Y
services (S % fsy;...;syg) and Z computing tasks (U %
fui;...;uzg). Since both data items and services can be con-
sidered as needed resources for computing tasks, we treat
them as O% X p Y resources in total, i.e., Q% fq| %
di;...;ax % dx; qxp1 % Si;...;90 % syg. For each resource g,

it has a storage size of o;, a download cost SJ from the

cloud, a CPU requirement z; and a memory requirement h;,
respectively. Note that for the data resource, its CPU and
memory request are set to 0. Each task ux has a requested
resource set Vi, a CPU requirement g,, a memory require-
ment di, a size of expected output data by, the arriving
server Ci, and a benefitr,.

To define the requested resources for task ux, we intro-
duce a binary variable vi;; as the indicator whether resource g
is required by task ug.

1; resource q is required by task u ; kil

v 4 0; otherwisei k
Then, the requested resource set Vi % fqjjvi;; % lg, and its
input resource size ay can be calculated as 3@ %0 et

Note that the resource requested by task u |¢ ud bgj Her
data telm oF specific services.

We assume that tasks arrive at discrete time unit t. The
duration of such time unit is t. Later, we will discuss the
case where multiple time scales are used (Sections 3.2 and
4.3). For each server v;, we also assume there is a status indi-
cator st! to represent whether this server is available at time
t (avallable when st! % 1, not available when st! % 0). There

are two possible causes to unavailability: predllctable (such

as scheduled update or maintenance) or sudden events
(such as power-outage). Here we mainly consider the first
type of cases. For the latter case, different back-up strategies

should be considered.
Table 1 summarizes the key symbols used in our paper.
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2.2 Resource Placement
We first consider a resource placement problem where a
placement decision is needed for each resource g; at time t.
A binary variable xt ., is defined as the placement decision in
time t where resource g; is placed in edge server v;.
t 1; q; will be placed in v; at t, Jii
x0; %otherwise. (1)
Here, we assume thatglata items or services can have repli-
cas in edge cloud (i.e. x;,; can be larger than 1). In addi-
tion, an edge server may store multiple data and services,
but the total storage size placed in edge server v; cannot
exceed its current remaining storage capacity:

X0
x;.boj st ki, for all vi:
j%l1

@

For services, there are also specific CPU and memory
requirements on the placed server.

x(z, sty fi, for all vi; gj:

3)

“)

The resource placement aims to maximize the total bene-
fit minus the total cost from all serving tasks, while satisfy-
ing resource constraints. Here, we consider two types of
costs from serving tasks: placement cost and accessing cost.

For the placement cost of a resource item q; to a server v;
during the placement, we consider two possible ways: (a)
directly downloading from the cloud with a cost of $j, or
(b) transferring from a nearby server v, which holds a copy
of gj att 1, with a cost of fdq;; vi; vip. Here, assume that P; is
the shortest path in Gt connecting vk and v;', then the cost
fdq;; vi; viP can be defined as follow.

xjt;ihr st; i, for all vi; g;:

0

fog; vicviP % o ol V%V 5

G Viey ViP 74 B2p, 3y b PIP; otHerWigh:Vk ®)
Thus, the placement cost of gj to v; at t is the minimal among
all these, i.e.,
(
R 0; if xtl %1

L
pCj;i % minds;; mink%iéxjgklf(’iqj; Vi; ViPPb; othemlse

(©)
Note that if g; is already in v; at t 1, no cost is needed.
Then, the plagg 1§ cost for da alg; at t can be defined as

(M

t t t .
n; Y Xj,; PC;
i%1
We also define a variable to indicate whether resource q; is
requested by any task:

P
I if vy 1

Vij Ya .
0; otherwise:

@®)

1. Here G represents the edge network formed by all available serv-
ers at time t. The shortest path is defined regarding the summation of
propagation and transmission delays of g; over the path.
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TABLE 1
Symbols Used in the Paper

Symbol

Notation

G;V,E;U;Q;D; S
Vi, €, Uk, gj
N,M,Z,0
ci=ccj; fi; m;

Py, bi

0}, $;, z=h;

gi=dx, by, Ck, r¢
Wi;j, Vi, ak

t=t, x

st}

Xit;i

f8q;; vi; v;p

PCji

Vj

Siko Sii

k % OuPy,

kéZP

C Lr:iput/ C oL;Jitput C it;:imp
&‘E'I .

X Yia

Crj

RPj Ya frpj;ig, TDk Ya ftdk;ig
ss; 2 SS,aaj 2 AA
rri

mdsju™p, moésju"‘ob
Qdss; aajup, Q08ss; aaju®p

the edge network, the set of edge servers, direct links, tasks, resources, data items, services

a edge server, a direct link, a task, and a resource

the number of edge servers/links/tasks/resources

the maximal/current storage, CPU frequency, memory capacity of edge server v;

the propagation delay and network bandwidth of link e,

the storage size, download cost from the cloud, CPU/memory requirement of resource q;

the CPU/memory requirement, output data size, arriving server, and benefit of task uj

an indicator whether resource g;j is required by ug, the requested resource set and input size of task uy
the index/duration of time unit (time slot), the number of time slots per time frame in two timescales an
indicator whether server v; is available at time t

the data placement decision at t whether resource g; is placed at server v;, here xjfi 2 f0;1g

the placement cost of a resource item g; from v to v;

the placement cost of resource g; to v; at t, and the placement cost of resource g; at t

the indicator whether resource g; is requested by any task

the accessing cost of task uy for g; at t, and the accessing cost of q; from server v; at t

the server assigned by the tasking dispatching of ui

the task dispatching decision at t whether task uy is dispatched to server v;, here y; 2 f0; 1g

the CPU cycles to process task ux with the input data/service size z

the accessing cost of resource/output and the computation cost of task ui at server v;

the completion cost of uk at server v; at t

the data placement of resource q; and dispatching decision of task u to server v; at t in i-th round
the available computing resources (e.g., storage, CPU, memory) of server v;

the placement decision of resource g; and the dispatching targets of task uy over each server v;
the system state at step i in the state space SS, the system action at step i in the action space AA
the award obtained given the agent’s action aa; at step i

the actor evaluation and target networks

u™, u4, Umo, u the critic evaluation and target networks
D, K the evaluation network parameters and target network parameters
z,8," the replay buffer, the number of sampled data from D
the expected value/reward, discount factor of future reward, and update rate for target networks
. L. X X X k
For the accessing cost of resource after the data/service is max 6ry Vigp St vy t
placed, let st be the accessing cost for resource g; required i ’ i
by task u. Note that the accessing cost depends on which X ¢ te .
edge server task ui is processed at. Let x % Oukb be the s.t. X0 st ta; 8i
server assigned by the tasking dispatching of ux. The access- : o
ing cost of gj can be defined as Xjize st ti; 8i;j  (12)
xJ-‘;ihr st; nj; 8i;j
S % vr,r/nnx 003 15 vib: ©) xi, 2 f0; 1g; 8i;j

If without task dispatching, we assume that task uk is proc-

i201;2;..;NP;j2 81;2;...;0b:

essed at its arriving server Cy, then the accessing cost is

fk % mlnx .if00;; Cik; vib: (10)

ral, we define the accessing cost of gj from any edge
RV

2.3 Task Dispatching
In terms of task dispatching, we assume all tasks arrive in
edge network in an arbitrary order. At time t, the goal of

task diTpisbing, it AR B SRERALEES SR
cost of tl?éettégﬁl

Spemﬁcally, the total completion cost of a task ux mainly consists of three parts: (a) the accessing cost
S % mm X3 £0a;; vi; vib: (11)  of resources required by ug, (b) the computation cost of uy,

and (c) the transmission cost of output data of uy.

Since each of serving tasks Bas benefit of r |, the utility of We denote yi,; as the task dispatching decision at t

each task uy can be defined as

Ore Vi s, P whether task uy is dispatched to edge server v;.

Now we can formulate the resource placement problem
as an optimization problem. The objective is to maximize t o1 1; task ug is dispatched to server v; at t; (13)

g, . . . i a
total utilities from all serving tasks minus the summation of  Here y\k/'e assiftne
accessing costs for all resource at time t.

#h task is at most dispatched to a
single server, i.e., | | Yk

i%1
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Note that there are different types of tasks: some only
need data from the edge network, some only need to per-
form general computation at any server either with data or
not, some need to perform specific computation with certain
service at the available server. Our formulation can model
all these task types. If task ux only needs data, g, % 0,dc % 0
while ax > 0. If ux only needs general computation without
specific service or data, g, > 0,dx > 0 while ax % 0.

Assume that task ui is dispatched to edge server v, i.e.,
Yii % 1, then its associated costs are defined as follows.

Accessing cost of resources: The transmission cost of input

data a needed service for task u, is defined as
t

CrPvt % ViGi SY

k;i 1 i

Computat1on cost Let kdzb be the function to define
CPU cycles to process task ux with the input data/service

size z. So the computation cost of task u processed in

) kOojP

edge server v; is defined as Cc‘Jmp %o Qi Vi

Transmission cost of output: The total transmission cost of
output data for task u, from edge server v, to arriving edge
server Cy is C‘:(“tp“t % fébk, vi; Cib.

Therefore, the completion cost of task uy is calculated as

& -y Cmput b Ccompb Coutput. (14)

Recall each task has a benefit r,. We then can formulate
the task dispatching decision as an optimization problem
whose goal is to maximize the total task utility if task ug is
running on server v; at t.

XX
max Vi, 0re &b
Xk
s.t. Vi &l b 8i
k
Yiiak st Eci; 8i; k
Yii8k st fi; 8i:k (15)
\Q(,dk st, y; 8i; k
yk;i 1; 8k
2.5 2 f0; 1g; 8k; 8i
i201;2;..;Nb;k2 681;2;...;Zb

. P
Note that the constraint of | y{.&f; t makes sure that

the dispatched tasks can be completed within the duration
of a time scale t.

2.4 Joint Optimization Problem
We now consider a joint resource placement and task dis-
patching problem as a nonlinear program problem:

XX X k

max ik;itdrk &k;if v jj N (16)
X j

s.t. x;.105 b ypac st &c; 8i; k 17
xtiz; st fi; 8i; (18)
Xt hy st m; 8i; j (19)
Yii8k st fi; 8i; k (20)

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 1, JANUARY-MARCH 2023

yidi st fni; 8i; k Q1)
X
Yiii L 8k (22)
i
X
Vi &St 8i (23)
k
xjt;i 2 f0;1g; vy, 2 f0; 1g (24)
i2081;..;Nb;j2 61;...;0b; (25)
k2 al;...;zZb (26)

Since there is a nonlinear term inside y &}, the overall prob-
lem is a nonlinear integer program problem which is known
difficult to solve due to its high computational complexity.

3 Two-STAGE OPTIMIZATION METHOD

To solving the challenging joint optimization problem, we
propose a two-stage algorithm to decompose the problem
and solve it via multiple iterations. One of the advantages
of this proposed two-stage method, it can be easily adopt to
perform the joint optimization across different timescales.

3.1 Two-Stage Optimization

The main idea of this algorithm is as follows. First, we ran-
domly generate a feasible task dispatching decision yk ,
then formulate and solve the resource placement problem
(obtaining xt 1) to maximize the total task utilities. Next, we
take the resource placement decision x}; 1 as input, and for-
mulate and solve the task dispatching problem (obtaining
yk I) This finishes the first round of two-stage optimization,
then we repeat the two steps, i.e., iteratively taking the latest
resource placement or task dispatching decision as an input
to optimize the other decision within the overall joint prob-
lem, until it satisfies a specific condition.

2-Stage Decomposition: The detail of decomposition of i-th
round is as follows.

Stage 1: Solving resource placement problem with fixed task
dispatching. In this stage, our goal is to determine resource
placement for each data and service in order to maximize
the total task utilities with the last task dispatching decision
yE:il. The problem can be formulated as P1:
XX t;il X 0

\ k;(? My &k;ipt % j
ki i
s.t.  017p; 318b; 319b; 23b; §24b; §25b; 326b:
The solution of this problem is x;.;.

Stage 2: Solving task d1spatch1ntg problem with fixed resource
placement In this stage, we take the resource placement deci-
sion xV generated in the first stage as input and determine
the task dispatching for each task y . to maximize the total
utility. The problem can be formulated as P2:

X X

-

max
27

Clgn a b %
max VARDNCLY WP %
ki i

s.t.  d17p;820p 626D:
The solution of this stage is y¥;

(28)
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Algorithm 1. Two Stages Optimization Method

Input: Status of all servers V and the network G, resources Q
and tasks U for time t.
Output Resource placement and task dispatching decisions
,and yi
1 Inltlahze max_itr, max_occur, bound_val
2: Generate an random initial task dispatching decision ytlfi
which is feasible (i.c., satisfying constraints in P2) '

3: i % 1and count_num % 0;

4: repeat

5: Stagel: Calculate x ' by solving P1 with yt i1 as the fixed
task dispatching

6: stage2: Calculate y}; by solving P2 with x7; as the fixed

resource placement, let obj_val be the achieved objective
value (total utility from tasks)

7. if obj_val > bound_val then

8: bound val =obj_v val count_num =1

9: % Jl’ykl%ykl

10: else if obj_val =bound_val then

11:  count_num % count_ nump 1

12:i%ip 1

13: until count_num % max_occur ori % max_itr

14: return xjt;i and yL,i

After the decomposition, in each round, both P1 and P2
are linear integer programming problems, and thus can be
solved by the classical linear programming methods (e.g.,
branch and bound, dynamic programming).

Overall Iteration, Initialization and Termination: Algorithm 1
shows the overall algorithm. Initially, a feasible random task
dispatching y " is generated (Line 2). Then, in each round
(Lines 5-12), we solve the P1 and P2 with the previous deci-
sion as the input. The resource placement and task dispatch-
ing decisions (xt "and y"') are optimized iteratively. Finally,
the iteration terminates (Llne 13) when either of the follow-
ing metric met: (1) the number of iteration reach certain
threshold max_itr, or (2) the current objective value (total
task utility) has occurred more than a specified threshold
max_occur. These two thresholds can be set via experiments.
Obviously, larger threshold values lead to longer iteration

but improved results. In Section 5, we will show the
improvement is limited after certaipround of iterations.

3.2

So far, we only discuss our two-stage algorithm in a one-time
slice. In edge computing systems, the workload (i.e., comput-
ing tasks) and the resources (e.g., data or services) to serve
such workload need to be managed on different timescales
[24], [25]. Usually the computing tasks could be distributed
more frequently at a fast timescale in the edge network,
while the resource placement could be adjusted (such as
redeploying or migrating services) less frequently on a
slow timescale. Compared with the single timescale
method, multi-timescale solutions [24], [25] can achieve
better performance with more flexible management, thus gain
significant attractions recently from the research community.
Our proposed two-stage algorithm can be easily to adopt
to a two-timescale solution. As illustrated in Fig. 2, we can
make task dispatching decisions along with the fast
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Fig. 2. lllustration of joint resource placement and task dispatching
across two timescales.

timescale (at the starting point of each time slot) and make
resource placement decisions along with the slow timescale
(at the starting point of each time frame). Here, we assume
that each time frame includes x time slots. More specifically,
at the beginning of each time frame, we run our proposed
iterative two-stage algorithm (Algorithm 1), and at the
beginning of each time slot (except for the first time slot),
we only solving the Stage 2 problem (P2) where the resource
placement is fixed. By doing so, not only we can handle
diverse dynamics among workload and resources, but also
the running time of overall algorithm is reduced since the
iterative algorithm is only performed once at each time
frame and solving P2 at each time slot is relevantly simpler.
Thus, it leads to greater flexibility with more cost savings.

4 REINFORCEMENT LEARNING BASED METHOD

In this section, we consider an alternative method to solve
the joint optimization by leveraging the emerging deep rein-
forcement learning technique. Reinforcement learning (RL)
has a great capability to attack complex optimization prob-
lems in a j;ynamic system. The characteristic of RL frame-
work is that the decision is made by RL agents and the
feedba k generate ; by the environment is used to im_rove
the de ision of the agent. There are three key elements in
the RL frameworks: state, action and rewar d

Generally, RL algorithms can be classified as the category
of value-based and olicy-base d methods. Value-based RL

methods (e.g., Q-learning, Deep Q-network (DQN) [31],
Double DQN [32]) can select and evaluate the optimal value
function with lower variance- The value function measures
the goodness of the state (state-value) or how good is to per-
form an action from the given state (action-value). However,
it is difficult for value-based methods to handle the problem
of continuous action spaces. If it calculates the value in an
infinite number of actions, it will be time-consuming.

On the other hand, policy-based methods, such as policy
gradient [29], are effective in high-dimensional or continu-
ous action spaces. It can learn stochastic policies and has
better convergence properties. The main idea is to able to
determine at a state which action to take in order to maxi-
mize the reward. The way to achieve this objective is to find
tune a vector of parameters (u) so as to select the best action
to take for policy p. The policy p is the probability of taking
action a when at state s and the parameters are u. There are
some disadvantages for policy-based methods: (1) it
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Fig. 3. The architecture of Actor-Critic RL framework.

typically converges to a local rather than global optimum;
(2) evaluating a policy is typically inefficient and high
variance.

Actor-Critic RL method [33] is proposed to combine the
basic idea of value-based and policy-based algorithms. The
actor uses policy-based methods to select the action while
the critic uses value-based methods. As shown in Fig. 3, the
actor takes the state as input and outputs the best action. It
essentially controls how the agent behaves by learning the
optimal policy (policy-based). The critic, on the other hand,
evaluates the action by computing the value function (value
based). And the feedback (such as error) will tell the actor
how good its action was and how it should adjust. How-
ever, since the actor-critic method involves two neural net-
works, each time the parameters are updated in a
continuous state and there is a correlation before and after
each parameter update, which causes the neural network to
only look at the problem one-sidedly, and even causes the
neural network to learn nothing. To avoid such problem in
our problem, we leverage Deep Deterministic Policy Gradi-
ent (DDPG) RL technique [28], [29] to solve the joint optimi-
zation problem.

4.1 RL Framework: State, Action and Reward
We first define the specific state vector, action vector and
reward for our system model to enable the proposed RF
framework.

State Vector: At each step i, the agent collects the edge net-
work information and parameters defined below to form
the system state.

M: the number of links among edge servers.
N: the number of edge servers.
bi: available network bandwidth of each link.
cri: available computing resources (e.g., storage,
CPU, memory) of each edge server.
Let SS be the state space, the system state ss; 2 SS at step
i can be defined as

ss; % fbl;bz;...;bM;crl;crz;...;crNgi:

Action Vector: In terms of action vector, the agent will
make decisions for both resource placement and task dis-
patching. The decision mainly consist of where to place
resources and where to dispatch tasks. Therefore, the action
vector includes two parts.

RPj% frpj1;rpj2; - ;rpj;ng: resource placement of
each external resource g; (data, service).
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TDk % ftdy;1; tdi;2; .. .; tding: dispatching target of
each task ui (released by mobile user).
Let AA be the action space, the system action aa; 2 AA at
step i can be defined as

aaj % fRP1; RP2;...;RPRTDy; TD2;...; TDZ:

Reward: For each step, the agent will get the reward rr;
from the environment after taking a possible action aa;.
Generally, the reward function is related to the objective
function in the optimization problem. Fortunately, the
objective of our optimization problem is to maximize the
total utility of all tasks, so the award of RL agent is to set as
following.

X X X
rei % Org & % *
k i j

(29)

Notice that the reward rr; can be obtained given the agent’s
action aaj, which includes the solution of both resource
placement and task dispatching, and the environment.

4.2 DDPGRL Algorithm

The main goal of RL algorithm is to tune the learning mod-
el’s parameters (u) so as to select the best action aa to take
based on the given state. We adopt Deep Deterministic Pol-
icy Gradient (DDPG) technique [28], [29] to perform the RL.
Actually, DDPG integrates the essential idea of the actor-
critic and DQN. DQN uses a replay memory and two sets of
neural networks with the same structure but different
parameter update frequencies, which can effectively pro-
mote learning. DDPG has a similar idea but the neural net-
work is a bit complicated. As aforementioned, compared
with other RL methods, policy gradient can be used to filter
actions in continuous action spaces. Moreover, the screen-
ing is performed randomly based on the learned action dis-
tribution. However, the screening in DDPG is deterministic
but not random. In terms of the architecture of neural net-
works in DDPG, it is similar to that of Actor-Critic, both
need the policy-based neural networks and the value-based
neural networks as shown in Fig. 4. Each kind of neural net-
work also includes two types of neural networks: the evalu-
ation network and the target network. The target networks
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are time-delayed copies of their original networks that
slowly track the learned networks. Using these target net-

works greatly improve stability in learning.

Algorithm 2. DDPG method

Input: The edge network G8V; EP, set of external resource Q, set
of task U. Remained storage capacity cc;, CPU frequency fi,
memory capacity m; of each edge server. Propagation delay pj,
network bandwidth b; of each link. Storage size o;, download
cost $j, CPU requirement z; and memory requirement h; of
each resource.
1: Initialize the environment with all input information.
2: Initialize Actor and Critic evaluation network mdsju™p and
9).
Qdss; aajulp with parameters u™ and u?, respectively.
3: Initialize Actor and Critic target network moasju’“oband
Q3ss; aaquobwith parameters o umandu® W@
4: Initialize empty replay buffer D, the maximum episodes
max_ep and the maximum steps per episode max_st.
5: for episode % 1;episode < max_ep do
6: Initialize the random exploration noise for action.
7:  Generate the initial observation state ss; from

environment.
8: foreachstepi% 1;i < max stdo
9: Calculate action aa; based on the current policy and
random noise.
10: Execute action aa;in the environment and observe
reward rri and new state ssip1.
11: Store transition (ss;; aa;; rri_ssip1) to replay buffer D
12: Send the action from Actor evaluation and target
Peestr\;\é%g(v f}c}) Critic evaluation and target network,
RIZ
13: Randomly sample a batch of transitions (ss;; aai; rri;

ssip1) from D to Actor and Critic network.

14: Calculate z; % rr; b gQPdssip1; m"assiblju"P bjud b, where g
is the discount factor for future rewards.

15: Updatq,Critic evalyation network by minimizing the
loss: & 8z QOfss;; aaiquDbz, where K is the number
of samp leq ( ata fromp .

16: Send gradient arameters to Actor evaluation network.

17: Update Actor evaluation network by using the sampled
policy gradient:

1 X o —
— I 2aQ0ss; @aju P ;o .aaumsss p! umMISSjUPj,
K . i i i
I

18: Update Actor and Critic target network by using the
evaluation network arguments:

T | BT T L TN . ) BT
19: end for
20: end for

Algorithm 2 is the detail of DDPG algorithm. The main
steps of DDPG algorithm (with corresponding lines in Algo-
rithm 2) are as follows.

1) Initialize the system and environment based on the
edge network G, and set of external resource Q and
set of task U as well as other network information
(Line 1).

2) Initialize Actor evaluation network mdsju™p and tar-
get network m°65jumob as well as Critic evaluation
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network  Qdss;aaju® and target network
Qoéss;aaquOP, where u™ and u® are evaluation net-
work parameters, v and u@ are target network
parameters (Lines 2-3).

3) Initialize replay buffer D, the maximum number of
episodes max_ep and the maximum number of steps
per episode max st (Line 4). D is used to sample
experience to update neural network parameters.

4) At the beginning of each episode, initialize the ran-
dom exploration noise and generate the initial state
ss; (Lines 5-7).

5) For each step i, the actor selects an action aa; based
on the ¢y rrent p olic y and rand om noise (I ines 8-

6) The environment executes action aa; and get the
reward rr; and observe new state ssip1. Then it stores
the transition (ssi; aaj; rri; ssip1) to D. At the same
time, the actor send the action to critic network
(Lines 10-12).

7) Randomly sample a batch of data (ss;; aaj; rri; ssip1)
from D. Then calculate the expected value/reward
z; (Lines 13-14).

8) Update Critic and Actor evaluation network with the
sampled data (Lines 15-17).

9) Update Actor and Critic target network with the rate

" (Lines 18).

This process is done until it reaches the maximum

number of episode.

10)

ccdu
Fig. 4 also shows these steps with the ir le n mbers.

4.3 RL Method Across Two Timescales

While RL technique can handle network dynamics, it is also
flexible to deal with the complexity in multiple timescales
scenario. We now further extend our proposed DDPG to
work across two timescales. There are two different ways to
extend the proposed DDPG method. A straightforward way
is to build another separate DDPG for task dispatching
problem P2, and run both DDPG models in different time-
scales (joint one for each time frame and P2 one for each

time slot). The other way is to use the same DDPG model,

but force the action policy to not adjust the resource place-
ment during the fast timescale. With either way, the agent

can still learn the best decision based on the environment
and the “Yrrent state vector. In this paper, we adopt the first
method as shown in Fig. 5. We use two DDPG networks,
one for resource placement (RP DDPG) and the other for
task dispatching (TD DDPG). Resource placement (RP
DDPQG) is performed every specific time frame while task
dispatching (TD DDPG) is executed every time slot. In each
time slot, the environment sends current network state
(available network bandwidth and computing resources) to
task dispatching agent (TD agent), the TD agent will output
the task dispatching decision to the environment. Our
experimental results (Section 5.5) show that by leverag-
ing two DDPG agents, the proposed RL method can han-
dle the system dynamic and manage the resource/task
effectively.

5 PERFORMANCE EVALUATION
This section reports the results from our trace-based simula-
tions to evaluate our proposed strategies.
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Fig. 5. Resource placement and task dispatching via deep reinforcement
learning across two timescales with two DDPG models.

5.1 Simulation Setup

In our simulation, we randomly construct edge networks G

with 10 to 50 edge servers whose degree satisfies a binomial
distribution. The propagation and bandwidth for each net-
work link are randomly generated. Each edge server has a
limited storage capacity ranges from 512MB to 1,024MB. To

siarelateeths G quspoTy RUL St ofcader SohYar0ve

traces) [34]. For the external resources (data and services),

e SpRdgmlvgrassated QsHtsomAng 30aeryiess share

ifgtedhe taskirom reqPASHSHD WS Svraes R MAsH-
developed by a Korean Team, which collected the CBR and
VoIP traffic from the WiBro network in Seoul, Korea. We

randomly sample from this dataset to generate the random
tasks from mobile user to perform our simulation. We run
our experiments on a DELL Precision 3630 Tower with i7-
9700 CPU, 16GB RAM and NVIDIA GeForce RTX 2060
GPU. For our proposed RL based method, the detail of
hyper parameters configuration is reported in Table 2. The

parameters are initialized by general val'e that used in
most RL experiments. We test multiple values for each
parameter and select the value that has better performance.
We compare our proposed Two Stage Optimization (OPT)
and Deep Reinforcement Learning (RL) sol tions with two
baselines: a random strategy and a greedy strategy.

Random (RAND). At each time slice, it randomly gen-
erates a feasible resource placement and task dis-
patching decision which satisfies those constraints.

Greedy (GRD). It greedily determines its resource
placement and task dispatching decision to maxi-
mize total utility in each round. It gives the priority
to resources/tasks based on their popularity/
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TABLE 2
RL Hyper Parameters

Parameter Value Parameter Value
Max Episode 100 Reward Discount 0.9
Max Step per Episode 3,000 Batch Size 32

Learning Max Episode 10  Soft Replacement 0.01
Actor Learning rate 0.0001 Replay buffer Capacity 10,000
Critic Learning rate 0.0002

benefits. Specifically, GRD first sorts resources based

on their popularity and processes them from the

most popular one. It iteratively selects an edge server

to place this resource which maximizes the total util-

ity in each round. Similarly, for tasking dispatching,

GRD sorts all tasks based on their benefits and pro-

cesses the most beneficial task first. Likewise, it

greedily selects an edge server to dispatch the task to

get the maximal task utility in each round iteratively.

We evaluate the performance of all methods based on

average total utility (i.e., the objective function in our

formulated optimization problems). Obviously, the larger

utility value the better resource placement and task dis-

patching performance. All parameters required to calcu-

late the objective function (such as network topology,

bandwidth, task requirements, server capacity, download

cost) are known to all methods as inputs at each time

unit. For RL methods, those are used to calculate the
reward at each time unit.

51,12 Overall Performance

I the first set of simulations, we test all four methods

LR diedtBpeRRS oM ddBdhe sipgle timescale) over dif-
unddg ferdisplays e PEHRLERARSS RS th%ﬁqulrosi&%mf

each time unit). The number of edge servers is fixed at 30. It
is obvious to see that the average total benefits of four solu-
tions increase as the number of task requests increases. Our
proposed two stage optimization algorithm (OPT) and Rein-
forcement Learning (RL) outperform the other two algo-
rithms (RAND and GRD) in all cases. In addition, when the
number of requests is low (e.g., 10 or 20), the difference of
average total utilities between OPT and RL is small. How-
ever, as the number of requests increases, the difference
becomes larger. So, in the real scenario, we can select either
OPT or RL if the number of requests is low. If the number of
request is large, we prefer t use RL to make the decision.
We then fix the number Of tasks at 30 and investigate the
impact of the number of edge servers (changing from 10 to
50). As shown in Fig. 6b, the average total utility of RAND

increases in the beginning and then less varies as the num-
ber of edge servers increases. For other three solutions, OPT
and GRD vary a little as the number of servers increases
while RL keeps stable all of the way. Overall, the perfor-
mance of most of the solutions are relevantly stable, espe-
cially RL. For all cases, RL and OPT perform much better
than GRD and RAND. This once again confirms the advan-
tage of our two proposed methods.
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Fig. 6. Overall performance of four methods in one timescale: Compari-
son of proposed solutions (OPT, RL) with Random (RAND) and Greedy
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5.3 Running Time and Convergence of OPT
We first investigate the running time and convergence of
our proposed two-stage optimization (OPT) method.

Fig. 7a shows the running time of OPT, GRD and RAND
at jifferent time slots. The running time is defined as the

time duration when the algorithm is exe  ting. We can find

that GRD and RAND has the least running time since their
placement/dispatching can be done in a polynomial time.
Our OPT method spends more time to solve the challenging
optimization problem, but remember that it generates much

better solution (better total utilities) than GRD/RAND as
shown in Fig. 6.

Recall that our two-stage optimization algorithm (Algo-
rithm 1) iteratively o,timizes the objective value under a
max iteration. Fig. 7b displays the total task tility per
slot under different iterations. It is clear that with more
iterations the overall trend of performance increases,
even though there is an drop in early iteration and some
variety in each iteration. Therefore, it is necessary to
select an appropriate max iteration (max_itr) to achieve a
decent performance (total utility). It is a trade-off bet-
ween the max iteration and the rynning time as well as
the optimization objective valje since more iterations
cOst more running time

5.4 OPT Across Two Timescales
We further investigate our proposed methods across two
timescales where the joint resource placement and task dis-

atshipg dretsinesiaty madet diffargnbiimeisales (ige
stage optimization solution (OPT).

In the first set of experiments, we perform our proposed
OPT method against RAND/GRD in three different scenar-
ios: (1) Slow Timescale: all methods perform joint resource
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Fig. 7. Running time and convergence of OPT: (a) Comparison of run-
ning time (OPT versus RAND/GRD); (b) Convergence of OPT.
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placement and task dispatching at the beginning of each
time frame; (2) Fast Timescale: all methods perform place-
ment and dispatching at the beginning of each time slot; (3)
Two Timescales: all methods perform task dispatching in
each time slot while joint resource placement and task dis-
patching performing only at the beginning of each time
frame. In this set of experiments, each time frame has 5 time
slots (i.e., x % 5), and we fix the number of request per time
frame at 30 and the number of edge server at 30. Fig. 8a dis-
plays the Performances of three methods (OPT, RAND,
GRD) under three scenarios. First, our proposed two-stage
OPT method achieve better Performanc® than RANDand
GRD in all setting. Second, for all three solutions, running at
slow timescale achieves larger utilities than running at fast

timescal®. This is mainly due to running at slow timescale
takes the advantage having better global information over
longer time duration. In addition, fast timescale solution
also suffers from frequent resource placement chang®s
which might be costly. Third, when the solutions are
perfol'med across two timescales, the Perform@nces can be
further improved. This might due to performing task dis-
patching at the time slot can find sufficient server to perform
the task and quickly release the server for other tasks. Over-

all, the results from this set show that multi-timescale solu-
tion can achieve better performance compared with the
single timescale method, which echos the similar discovery
from [24], [25] (tho gh the studied roblems and network
models are different), p

Finally, we evaluate our proposed two-timescale solu-
tions over edge servers with dynamic status by leveraging
the status trace-driven data from the Google Cluster Data
(ClusterData 2011 traces) [34]. We use the trace data to gen-
erate the server status at different time slots. Other parame-
ters are similar to previous experiments. For two-timescale
solutions, we use different combinations of OPT/GRD/
RAND to solve data placement and task dispatching prob-
lems respectively. As shown in Fig. 8b, there are nine com-
binations in total. For example, OPT+RAND means
optimization based method is used for data placement,
while task dispatching is done randomly. Fig. 8b reports the
results of these methods under three different scenarios: (1)
Always On: assume that all edge servers are always running
and available for serving tasks; (2) Dynamic Status: the status
of the edge node varies along with the time slot, while a
server is down at a time slot no task can be dispatched to it;
(3) Static Status: our method completely ignore the server
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status during solving the data placement and task dispatch-
ing. Obviously, all combinations with dynamic status have
lower total utility than those of always on, since some server
may be unavailable in certain time slots. In addition, if
ignoring the status, the performance (of static status) will be
significantly reduced, since the dispatched tasks may not be
completed due to the server is unavailable. Clearly, our sol-
utions which considers dynamic status can achieve a com-
parative performance to the case where every server is on.
Last, among all nine combinations, using our optimization
based solution for both resource placement and task dis-
patching across two-timescales has higher performance
than other combinations. This indirectly illustrates the effec-
tiveness of the two-stage algorithm under two-timescales to
handle real dynamics in edge computing, which is the major
contribution of this paper.

5.5 Performance and Convergence of RL

In this subsection, we study the performance and conver-
gence of our proposed deep RL methods. The default num-
ber of edge servers is set to 10.

Convergence Performance of RL Under Single Timescale and
different timescales. Fig. 9a displays the convergence result of
our RL solutions that jointly determine the resource place-
ment and task dispatching decision in a single timescale. As
we can see, the reward gets higher as the number of epi-
sodes increases and it converges at around the 80th episode.
On the other hand, Fig. 9b shows the convergence of our RL
solutions across two timescales where makes the task dis-
patching decision in the fast timescale and the resource
placement decision in the slow timescale. We can find that
the reward drops in the beginning and then increases when
the training episode increases. We also observe that the
reward in Fig. 9b is higher than that in Fig. 9a. This further
confirms the benefit of making resource placement and task
dispatching across two timescales.

Convergence Performance of Resource Placement and Task
Dispatching. We further show the convergence result of
resource placement and task dispatching, respectively. We
first fix the task dispatching decision in each episode and
make the resource placement decision. Similarly, we then
fix the resource placement decision in each episode and
make the task dispatching decision. As shown in Fig. 10, the
results of resource placement and task dispatching are simi-
lar since they use the same RL model and can both converge
while working on different optimization decisions. The
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Fig. 10. Convergence of resource placement and task dispatching:
Training resource placement and task dispatching respectively.

number of edge server is not large and the resource place-
ment problem is less complex than the task dispatching
one, thus RL can learn faster in resource placement. The
task dispatching initially has larger variation since the tasks
are more sensitive to the user mobility. With more training
data, the convergence becomes better.

Convergence Performance Under Different Batch Sizes/Learn-
ing Rates. Finally, we investigate the convergence of our pro-
posed deep RL method with different batch sizes and
learning rates. Fig. 11a shows the performance of RL with a
batch size at 32, 64 and 128. The batch size is used to deter-
mine the number of experience samples that need to be
trained each step. We can find that the result of batch size at
32 gets higher rewards and converges earlier than the other
two scenarios. Fig. 11b shows the performance of RL at dif-
ferent learning rates ", which is used to control the update
speed of the weight in the neural network. Here, we use dif-
ferent rates for the actor and critic (denoted by LC_A and
LC_C respectively). Obviously, different learning rates will
lead to different convergence results so we have to select an
appropriate learning rate for our RL model.

6 RELATED WORK

In this section, we briefly review some related works.

6.1 Resource Placement/Management

In this paper, we consider both data placement and service
placement as resource placement in edge computing. Note
that there are other types of resource management problems
in edge computing, such as virtual network function place-
ment [36], [37], virtual machine placement [38], [39], and
cloudlet placement [23], [40], [41]. Next, we briefly review
existing works on data placement and service placement.
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Fig. 11. Convergence of RL under different batch size and learning rate:
Running RL under 20 to 30 episodes with 3,000 steps per episode.
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Data placement has been an important topic in distrib-
uted database/system [42], [43], peer-to-peer networking
[44], [45], content delivery network[46], and cloud comput-
ing[47], [48]. While similar to all distributed systems, edge
computing has its own characteristics [1], thus brings new
data placement problems. Shao et al. [4] proposed a data
replica placement strategy for processing the data-inten-
sive IoT workflows in edge system which aims to mini-
mize the data access costs while meeting the workflow’s
deadline constraint. The problem is modeled as a 0-1 inte-
ger programming problem and solved by an intelligent
swarm optimization. Similarly, Lin et al. [5] also proposed
a self-adaptive discrete particle swarm optimization algo-
rithm to optimize the data transmission time when placing
data for a scientific workflow in edge computing. Li et al.
[10] investigated a joint optimization of data placement
and task scheduling in edge computing to reduce the com-
putation delay and response time. Their formulated opti-
mization considers the value, transmission cost> and
replacement cost of data blocks, which is then solved by a
tabu search algorithm. Breitbach et al. [11] have also stud-
ied both data placement and task placement in edge com-
puting by considering multiple context dimensions. For its
data placement part, the proposed data management
scheme adopts a context-aware replication, where the
parameters of the replication strategy is tuned based on
context information (such as data size, remaining storage,
stability, application). Huang et al. [49] have studied cach-
ing fairness for data sharing in edge computing environ-
ments. They formulate the caching fairness problem,
where fairness metrics take resources and wireless conten-
tion into consideration, and propose both approximation
and distributed algorithms. Xie et al. [6] also studied the
data-sharing problem and proposed a coordinate-based
data indexing mechanism to enable the efficient data shar-
ing in edge computing. It maps both switches and data
indexes into a virtual space with associated coordinates,
and then the index servers are selected for each data based
on the virtual coordinates. Xie et al. [7] further extended
their virtual-space method to handle data placement and
retrieval in edge computing with an enhancement based
on centrodial Voronoi tesselation to handle load balance
among edge servers. Similarly, Wei et al. [8], [9] proposed
another virtual-space based data placement strategy which
takes the data popularity of data items into consideration
during the virtual-space mapping, data placement and
retrieval. There are solutions [50] for data management
issues in edge computing as well.

Similar to data placement, service and resource placement
in edge computing has been studied as well. Ouyang et al.
[12] proposed an adaptive user-managed service placement
algorithm to jointly optimize the latency and service migra-
tion cost. By formulating the service placement problem as a
contextual Multi-armed Bandit problem, they proposed a
Thompson-sampling based online learning algorithm to
explore make adaptive service placement decisions. Xu et al.
studied the service caching in mobile edge clouds with
service providers completing for both computation
bandwidth resources, and proposed a distributed and
game-theoretical caching mechanism for resource
among the network service providers. Pasteris et al.
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[14] also studied a multiple-service placement problem in a
heterogeneous edge system and proposed an approximation
algorithm placing multiple services to maximize the total
reward. Meskar and Liang [15] proposed a resource alloca-
tion rule retaining fairness properties among multiple access
points, while Zhang et al. [16] proposed a decentralized
multi-provider resource allocation scheme to maximize the
overall benefit of all providers. Resource placement has also
been considered jointly with other design issues in edge
networking and computing. For example, Kim et al. [17]
designed a joint optimization of wireless MIMO signal
design and network resource allocation to maximize energy
efficiency in wireless D2D edge computing. Eshraghi and
Liang [18] considered the joint optimization of computing/
communication resource allocation and offloading decision
of uncertain tasks in mobile edge networks.

6.2 Task Offloading/Dispatching

Task dispatching, as known as computation offloading [51],
is also a critical problem in edge computing, and has been
studied recently. In many cases, it is jointly considered with
data/resource placement. For example, Breitbach et al. [11]
also considered task placement in their context-aware solu-
tion, where task scheduler allocates tasks according to the
current context and observes the state during runtime. Bi
et al. [19] jointly studied a task offloading, service caching
and resource allocation problem in a single edge server that
assists a mobile user to perform a sequence of computation
tasks. They formulated it as a mixed integer nonlinear pro-
gramming (MINLP), and then solved it by separately opti-
mizing the resource allocation and transforming the
problem to integer linear program. Xu et al. [20] proposed
an online algorithm to jointly optimize dynamic service
caching and task offloading in edge-enabled dense cellular
networks. Their solution is based on Lyapunov optimization
and Gibbs sampling without knowing future information.
Similarly, Poularakis et al. [21] investigated the joint service
placement and request routing problem in edge-enabled
multi-cell networks, and proposed a bi-criteria algorithm
with randomized rounding technique that achieves approx-
imation guarantees while violating the resource constraints
in a bounded way. Ma et al. [22] studied cooperation among
edge servers and investigated cooperative service caching
and workload scheduling in mobile edge computing envi-
ronment. They formulated the problem as MINLP and
solved it by an iterative algorithm based on Gibbs sampling
to achieve near-optimal performance. Yang et al. [23] pro-
posed a Benders decomposition-based algorithm to jointly
solve the cloudlet placement and task allocation problem
while minimizing the total energy consumption.

However, most of these works consider a kind of joint
optimization at a single timescale, thus may not handle
the dynamic among tasks, resources, and computation
facilities in the edge computing environment. Recently,

Farhadi et al. [24] studied service placement and request [13]
scheduling problem in edge cloud environment for data-multiple
intensive applications and proposed a two-timescales and
framework to determine the near-optimal decision under stable
specific constraints. You et al. [25] also studied a joint sharing
resource provision and workload distribution problem in
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mobile edge network. They formulated the problem as a
nonlinear mixed-integer program to minimize the long-
term cost, and proposed online learning based algorithms
to solve the problem in two timescales. Our work is
inspired by these works, but we consider different joint
optimization with different network and edge settings. In
addition, we also leverage deep reinforcement learning to
solve the joint optimization.

6.3 Deep Reinforcement Learning

Reinforcement learning is one of the basic machine learn-
ing paradigms, which has been well-studied and widely
applied in many fields. Recent advances in deep rein-
forcement learning (DRL) [28], [&9], [31], [32], [33] have
further enhanced I;s grea, capability to attack complex
optimization problems in real dynamic systems, includ-
ing edge computing.

Chen et al. [26] have studied the computation offloading
problem in a dynamic time-varying network, and proposed
a DQN-based solution to optimally offload the computation
to base stations to maximize the long-term utility perfor-
mance. Li et al. [52] considered the joint offloading and
resource allocation in a multi-user edge system, where mul-
tiple users can perform computation offloading via wireless
channels to an edge server. They proposed a DRL based
scheme to tackle the optimization. Huang et al. [53] consid-
ered a binary task offloading in wireless edge system, and
proposed a DRL based online offloading framework to
adapts task offloading decisions and wireless resource allo-

cations to the time-varying wireless channel conditions.

Wang et al. [27] also proposed a DRL based resource alloca-
tion approach to adaptively allocate computing and net-
work resources to reduce the average service time and
balance resource usages under dynamic edge network.
Ning et al. [54] solved the joint task scheduling and resource
allocation optimization in vehicular edge system to maxi-
mize users’ Quality of Experience (QoE) by using a two-
sided matching scheme for task scheduling and a DRL
approach for resource allocation respectively. Nath and Wu
[55] considered the computation offloading and resource
allocation in a cache-assisted edge system, and proposed a
DDPG-based scheduling policy to minimize the long-term
average cost including energy consumption, total delays
and resource accessing cost. Meanwhile, Rahman et al. [56]
also studied the joint problem of mode selection, resource
allocation, and power allocation to minimize the total delay
in the fog radio access networks using DRL methods. While
many of these works adopt DRL to successfully optimize
task scheduling/offloading and/or resource allocation,
they usually use one DRL agent to learn the dynamic. In our
work, our DRL method has been extended to work across
two timescales.

7 CONCLUSION

In this study, we have investigated a joint resource place-
ment and task dispatching problem in edge computing
across different timescales. We proposed a two-stage opti-
mization algorithm and a deep RL based algorithm to solve
this joint optimization within a dynamic edge environment.
Both methods can handle the variety of dynamics at two

different timescales. Our simulation results showed that
(1) both proposed methods perform much better than
random and greedy algorithms; (2) the advantage of per-
forming resource placement and task dispatching in dif-
ferent timescales is not only to reduce the placement
cost but also does not require much future prediction of
the task. The two proposed solutions have their own
advantages. On one hand, RL needs more time to train

the agent’s model while OPT directly solves the optimi-
zation problem. On the other hand, R[, is more efficient

to handle dynamic environment and scales well with
larger number of requests/servers.

In future, we plan to further enhance the proposed meth-
ods by also considee.ng how to handle and recover from

sudden server failur, events, and apply the proposed ideas
to other joint optimization issues in €dge computing and

beyond.
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