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Abstract—In recent years, edge computing has become an increasingly popular computing paradigm to enable real-time data

processing and mobile intelligence. Edge computing allows computing at the edge of the network, where data is generated and

distributed at the nearby edge servers to reduce the data access latency and improve data processing efficiency. One of the key

challenges in data-intensive edge computing is how to place the data at the edge clouds effectively such that the access latency to the

data is minimized. In this paper, we study such a data placement problem in edge computing while different data items have diverse

popularity. We propose a popularity based placement method which maps both data items and edge servers to a virtual plane and

places or retrieves data based on its virtual coordinate in the plane. We then further propose additional placement strategies to handle

load balancing among edge servers via either offloading or data duplication. Simulation results show that our proposed strategies

efficiently reduce the average path length of data access and the load-balancing strategies indeed provide an effective relief of storage

pressures at certain overloaded servers.

Index Terms—Data placement, data popularity, load balancing, data replication, edge computing

Ç

1 INTRODUCTION

WITH the increasing amount of data generated by diverse
applications and devices, especially the large amount of

data collected by Internet of Things (IoT) services or generated
by smart devices, data transmission has become the bottle-
neck of traditional cloud computing platforms. Sending all
the data to the cloud platform for data processing or intelli-
gent services is time consuming and causes long response
latency. Therefore, a recent trend is to process the data at the
edge of the network near the users to shorten the response
time, improve processing efficiency and reduce network pres-
sure. In addition, with the advance of Artificial Intelligence of
Things (AIoT), not only millions of data are generated from
daily smart devices, such as smart light bulbs, smart cameras,
various sensors, but also a large number of parameters of
complex machine learning models have to be trained and
exchanged by these AIoT devices. Classical cloud-based plat-
forms have difficulty communicating and processing these
data/models effectively with sufficient privacy and secure
protection. This has further accelerated the growth of this new
computing paradigm - edge computing [1].

As shown in Fig. 1, a typical edge computing environment
consists of several entities: mobile user, edge server, edge net-
work and remote cloud. Unlike the cloud environment, edge
servers are geographically dispersed at the edge of the net-
work near the mobile users and own heterogeneous comput-
ing and storage capability [1], [2], [3], [4], [5], [6], [7]. Each

edge server can provide services for those mobile users in the
specific nearby area by holding some data/models and per-
forming the computation task based on data/models. Hereaf-
ter, we use data to refer to both data and models as long as
they are required for performing the service requested by
mobile users.1When amobile user requests data, its request is
forwarded to the nearest edge server. If the edge server has
the data, it can response themobile user immediatelywith the
data (as Data C in Fig. 1) or perform the corresponding com-
puting service for the user. Otherwise, the edge server has to
retrieve the data from other edge servers (DataA or B) or even
from the remote cloud (Data F). Clearly, the data placement is
a critical issue in edge computing, since the location of data
affects the response latency of the requested service. If the
data is stored at a nearby edge server, the service can be per-
formed very quickly, while a request needed to access remote
cloud takes much longer to be performed. In addition, as
shown in Fig. 1, multiple mobile users at different locations
may request the same data (Data B) and different data has
diverse popularity (i.e., different number of requests from
users). Therefore, in this paper, we study the data placement
problem in edge computing with the consideration of data
popularity.

Data placement has been well studied in distributed sys-
tems [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26]. However, edge computing has its
own characteristics [1], such as proximity, fluctuation, and
heterogeneity. Edge servers deployed in the edge network
are in the proximity of mobile users compared with the dis-
tributed system (e.g., cloud computing). So it improves the
speed of data processing as a direct result of lower latency.
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1. Here, we do not differentiate the personal data or public data, as
long as the data/model will be used/shared by multiple users at differ-
ent locations. Also different security and privacy protection techniques
[8], [9], [10] can be applied before the data placement.
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In addition, devices are usually user-controlled and can
leave the edge network at any time. That means the network
status is fluctuating over time. Furthermore, the topology of
edge environments is heterogeneous and dynamic, which
will bring another challenge to the data placement, e.g.,
how to maintain the existing data already stored in the edge
server when the topology is changed. Thus data placement
problem in edge computing has also drawn significant
attentions from researchers recently [27], [28], [29], [30]. But
most of them formulate the data placement problem as an
optimization problem and leverage complex optimization
solvers to tackle it. Such methods suffer from high computa-
tion and communication overheads, which makes them not
suitable for large-scale systems. Most recently, Xie et al. [31],
[32] proposed a novel virtual space based method, which
maps both switches and data indexes/items into a virtual
space and places data based on virtual distance in the space.
Their method can enable efficient retrieve via greedy for-
warding. However, none of them consider data popularity
when placing data on edge servers in edge computing.
Therefore, this work aims to verify the feasibility of consid-
ering data popularity in data placement problems.

In this paper, we investigate the static data placement
strategy based on data popularity in edge computing with
the aim of reducing the average forwarding path length of
data. Inspired by [31], [32], we also adopt a virtual-space
based placement method with greedy routing-based
retrieve, but take into consideration of data popularity
when we generate the coordinates of data items. Based on
an observation that in a dense network the node in center
region has smaller shortest path to other areas compared
with nodes in the surrounding regions, we carefully design
our mapping strategy so that a popular data item is placed
closer to the network center in the virtual plane. Then the
placement of data is purely based on the distance between
data item and edge server in the virtual plane. To address
the storage limits at servers and balance the load among
edge servers, we further propose several placement strate-
gies which either offload data items to other servers when
the assigned server is overloaded or place multiple replicas
of the same data item to reduce the assigned load of servers.
In both cases, we do take data popularity into consideration
when designing the offloading and replication strategies.
Simulation results show that our proposed strategies can
achieve better performance compared to existing solutions

[31], [32]. Moreover, both the offloading and replication
strategies can effectively handle the storage pressure of
overloaded edge servers.

In short, the contributions of this paper are three-folds.

� To our best knowledge, our proposed data place-
ment strategy is the first virtual-space based method
to consider data popularity in data placement in
edge computing. Our proposed method maps more
popular data closer to the network center and thus it
is placed to a nearby server, which shortens the
shortest paths during the data retrieve process and
reduces the overall response latency.

� We also propose several offloading and replication
strategies which can make smart offloading and rep-
lication decisions based on data popularity, to fur-
ther reduce the pressure on overloaded servers and
improve the overall performance.

� We have conducted extensive simulations to verify
the efficiency and effectiveness of the proposed data
placement strategies. It confirms the advance of tak-
ing data popularity into consideration in our design.

Even though our proposed solution is mainly designed
for the static data placement, it also enables potentially
quick adaptation to handle dynamic edge environment. For
example, a new data item or an update of data popularity of
an existing data item can be easily handled with a new cal-
culation of its coordinates in the virtual plane. If there is an
update of network topology, the edge servers’ coordinates
need to be regenerated, which can be efficiently handled by
the controller of software-defined edge network infrastruc-
ture. Our virtual-space based solution is much more agile
than the optimization-based data placement methods.

The rest of this paper is organized as follows. Section 2 pro-
vides related works on data placement. Section 3 introduces
the motivation of our study and the overall design of our
method. Section 4 presents the virtual coordinate construction
of the edge server and data which plays the center role in our
design. Section 5 describes the detail of our proposed data
placement and retrieval methods. Sections 6 and 7 present
additional data placement strategies with the consideration of
storage limits and multiple replicas, respectively, to balance
the load. Evaluations of proposed methods are provided in
Section 8. Finally, Section 9 concludes the paper with possible
future directions.

2 RELATED WORKS

Data placement has been an important topic in distributed
database/system [11], [12], [13], peer-to-peer networking
[14], [15], [16], [17], content delivery network[18], [19], and
cloud computing[20], [21], [22], [23], [24], [25], [26]. Due to
the similarity of cloud computing and edge computing, here,
we mainly focus on reviewing recent data placement strate-
gies in cloud computing. Li et al. [20] proposed a clustering
algorithm based on the principle of minimum distance to
dynamically place data into clusters and a consistent hashing
method to decide the specific storage servers to hold the data
in cloud computing. However, the proposed methods only
consider the similarity among data as the distance metric in
clustering but ignore all networking and computing delay

Fig. 1. A typical edge computing environment where data (or models)
are placed at edge servers and shared by mobile users.
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among servers. Xu et al. [21] investigated the data placement
problem among data centers via cloud computing, and pro-
posed a genetic algorithm to obtain the best approximation of
data placement. Similarly, Guo et al. [22] also used a genetic
algorithm to solve the data placement among data centers
where both the cooperation costs among data slices and the
global load balancing are considered. Wang et al. [23] also
studied data placement strategy for data-intensive computa-
tions in distributed cloud systems, which aims to minimize
the total data scheduling between data centers while main-
taining statistical I/O load balancing and capacity load bal-
ancing. In addition, several works [24], [25], [26] have
focused on the data placement strategy for scientific work-
flows in cloud environment where data dependency and
temporal relation among data and tasks play important roles.
However, these centralized data placement methods suffer
from high computation and communication overheads.

While similar to cloud computing, edge computing has
its own characteristics [1]. Thus the data placement problem
in edge computing becomes a new emerging topic in recent
years. Both Shao et al. [27] and Lin et al. [28] have studied
the data placement strategy for workflows in edge comput-
ing. Shao et al. [27] proposed a data replica placement strat-
egy for processing the data-intensive IoT workflows which
aims to minimize the data access costs while meeting the
workflow’s deadline constraint. The problem is modeled as
a 0–1 integer programming problem to consider the data
dependency, data reliability and user cooperation, and then
solved by an intelligent swarm optimization. Similarly, Lin
et al. [28] also proposed a self-adaptive discrete particle
swarm optimization algorithm to optimize the data trans-
mission time when placing data for a scientific workflow. Li
et al. [29] investigated a joint optimization of data placement
and task scheduling in edge computing to reduce the com-
putation delay and response time. For the data placement
optimization, the authors considered the value, transmis-
sion cost, and replacement cost of data blocks, and the for-
mulated optimization problem is solved by a tabu search
algorithm designed for the knapsack problem. However,
again these optimization-based methods usually suffer
from poor stability and high overheads. Breitbach et al. [30]
have also studied both data placement and task placement
in edge computing by considering multiple context dimen-
sions. For its data placement part, the proposed data man-
agement scheme adopts a context-aware replication, where
the parameters of the replication strategy is tuned based on
context information (such as data size, remaining storage,
stability, application).

Most recently, Huang et al. [33] have studied caching fair-
ness for data sharing in edge computing environments.
They propose fairness metrics to take resources and wire-
less contention into consideration and formulate the caching
fairness problem as an integer linear programming prob-
lem. Then they propose an approximation algorithm based
on connected facility location algorithm and a distributed
algorithm. Xie et al. [31] studied the data-sharing problem
in edge computing and proposed a coordinate-based data
indexing mechanism to enable the efficient data sharing in
edge computing. It maps both switches and data indexes
into a virtual space with associated coordinates, and then
the index servers are selected for each data based on the

virtual coordinates. Their simulations showed that both the
routing path lengths and forwarding table sizes for publish-
ing/querying the data indexes are efficient. Xie et al. [32]
further extended their virtual-space method to handle data
placement and retrieval in edge computing with an enhance-
ment based on centrodial Voronoi tesselation to handle load
balance among edge servers. Both [31] and [32] inspire our
work on data placement with data popularity (adopting a vir-
tual-space based placement method with greedy routing-
based retrieve), but they do not consider the data popularity
of data items.

Note that there are other types of resource management
problems in edge computing, such as virtual network func-
tion placement [34], [35], service placement [36], [37], and
cloudlet placement [38], [39], [40]. These problems are differ-
ent from the data placement problem, and their solutions
could not solve the considered data placement problem here.

3 DATA POPULARITY AND DESIGN OVERVIEW

3.1 Network Models and Data Placement Problem

In this paper, we consider a typical edge computing environ-
ment as shown in Fig. 1, where an edge networkGðV;EÞ con-
nects N edge servers with M links. Here V ¼ fv1; v2; . . . ; vNg
and E ¼ fe1; e2; . . . ; eMg denote the set of edge servers and
the set of direct links among them, respectively. For each edge
server vi, we assume that it has a specific maximal storage
capacity ci ¼ cðviÞ. Let lij ¼ lðvi; vjÞ to represent the shortest
path length from edge server vi to vj inG, we then have a dis-
tance matrix L ¼ flijg which holds lengths of all shortest
paths in the edge network. Assume that we have W data
items, D ¼ fd1; d2; . . . ; dWg, in the system. Each data di has a
specific data size si ¼ sðdiÞ and data popularity pi ¼ pðdiÞ
(which will be explained in the next subsection). For each of
data item di, we need to find an edge server vj to hold it. Then
the data placement problem can be represented as finding a
mapping f from D to V , where fðdiÞ ¼ vj. The goal of data
placement problem is to find amapping tominimize the aver-
age access cost (or delay) to stored data items in edge network
G and also balance the load among edge servers. Xie et al. [32]
proposed a nice virtual-space based data placement strategy
for edge computing problem however they did not consider
data popularity among data items di. Compared with com-
plex optimization-based data placement strategy, the virtual
space basedmethod ismuch simple and easy to implemented.

3.2 Data Popularity

Data popularity measures howmuch a given piece of data is
requested by the users in a system. This gives an indication
of the importance of that data. Therefore, it is one of the
most important parameters in the design of various data-
centric distributed systems and enable more intelligent data
management, such as file assignment in parallel I/O system
[41], replication management in distributed storage systems
[42], [43], load balancing in content delivery networks [44],
and coordinated caching in named data networking [45].
Hamdeni et al. [46] provided a nice survey on data popular-
ity and highlighted its importance in the replication man-
agement in distributed systems. It is clear that taking
popularity into account allows to better place the data or
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their replicas to avoid overloaded sites in any distributed
systems.

For the data placement problem in edge computing, data
popularity is also critical. First, data placement aims not
only to minimize the data access delay but also load balanc-
ing among edge servers, thus data items have to be place
among different servers. Obviously, placing more popular
data items at the edge server with shorter delay within the
network can significantly reduce the data access cost during
data retrievals, since popular data are repeatedly requested
by various users from all edge servers. For example, Fig. 2
shows an example of two placement strategies, which place
two data items d1 and d2 at servers v1 and v2 respectively
and differently. Assume that pðd2Þ > pðd1Þ, thus there are
more requests from other servers to d2’s location than d1’s.
With different placement, the routes of shortest paths are
different (as blue and red trees marked in the figure), and v2
has shorter paths to all other servers than v1 does. Table in
the figure shows the total length of all shortest paths to each
data item under two placement strategies. It is obvious that
placement f1 has better performance since the red shortest
path tree has less path length (81) than the blue one (95) in
Fig. 2a while reversed in Fig. 2b. Therefore, in this paper,
we introduce data popularity to assist the data placement
strategy in edge computing.

Although data popularity has been widely used in dis-
tributed systems, to our best knowledge, most of existing
data placement strategies for edge computing do not con-
sider data popularity. The only exception is [29], where the
authors considered data popularity as part of their estima-
tion of value of data block in their formulated placement
problem. Particularly, they compute the data popularity
based on the access frequencies of the data blocks and the
time interval between two accesses, and use it as one of the
parameters in their utility function. The data placement
problem is then formulated as a complex combinatorial
optimization problem solved by a tabu search algorithm.
Different from their solution, we use data popularity in the
virtual space mapping where data items are mapped to a
virtual space based on their data popularity, and then the
placement decision is made based on the coordinates in the
virtual space.

Data popularity can be assessed differently for distrib-
uted system depending on the application. In general, there
are three factors contributing to the data popularity: the
number of accesses (i.e., how many times the data item is
requested), the life time, and the request distribution over

time or space. In this paper we simply use the number of
accesses as the data popularity. However, it is not difficult
to extend our definition to include other two factors (or
even other data popularity measurements) into our system.
For each data item di, we assume that its data popularity
pi ¼ pðdiÞ describes its number of access requests over time.
We assume that data popularity for each data is known to
the system. Larger data popularity means the data item is
more frequently accessed by mobile users in the system.
Obviously, the locations of the popular data items are at the
roots of the overall data placement problem, compared with
those of unpopular data. Note that there could also be more
complex data popularity models, where various user or
location specific preferences may be considered differently
even for the same data item. Our proposed method may be
further extended to deal with such models by treating the
data preferences from different users/locations with differ-
ent weights or more refined models. We leave such study as
one of the future works.

3.3 Design Overview

Similar to [31], [32], our popularity-based data placement
strategy adopts a virtual-space approach, which maintains
a virtual space (i.e., a virtual 2D plane) and maps all edge
servers and data items to such plane, as shown in Fig. 3.
The data placement is based on the associated coordinates
of edge servers and data items in the virtual plane. How to
perform the mappings is critical in our design. When map-
ping edge servers from network plane into the virtual plane,
we try to make sure the euclidean distance between two
servers in the virtual plane is proportional to their real net-
work distance. When mapping the data items from data
plane into the virtual plane, we try to spread them out while
taking into consideration of their data popularity such that
the more popular data is closer to the center of the virtual
space. The intuition behind of this design is the shortest
paths to all other servers are shorter at the center area. Sec-
tion 4 presents the detailed design of our coordinate con-
struction algorithms. Given the constructed coordinates in
the virtual space, we can make our placement decision sim-
ply based on the virtual distance between a data item and
an edge server. The simplest version is to place the data
item to the nearest server in the virtual plane. Section 5
describes our proposed placement and retrieval strategies.

Fig. 2. Examples of two placement strategies of two data at two servers.

Fig. 3. Virtual space based approach: edge servers and data items are
mapped to a virtual space and associated with virtual coordinates.
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Fig. 4 illustrates a framework of the proposed methods
under a software-defined edge network infrastructure. In
such a system, the switches provide data communication
services to edge servers by following the forwarding rules/
entries placed by the controller in the control plane. At the
control plane, virtual coordinates are constructed for both
data items and edge servers, and then a data placement
strategy and its corresponding retrieval strategy will gener-
ate the forwarding rules to switches. At the switch plane,
the switch first maps the data request to virtual plane and
forward it based on its virtual coordinate and the installed
forwarding rules.

To handle load balancing among edge servers and fur-
ther reducing the data access delay, we propose several
additional placement strategies (Section 6), which offload
data items to nearby servers when the storage of desired
edge server of our placement method exceeds its maximal
limit, and new replica placement strategies (Section 7),
which strategically place multiple replicas to serve users
while considering the data popularity to decide the number
of replicas with favor to more popular data.

In summary, in our design, data popularity places a cen-
tral role. It has been considered during the construction of
virtual coordinates of data items (Section 4), the selection of
offloading choices (Section 6), and the decision on the num-
ber of replicas to deploy (Section 7).

4 VIRTUAL COORDINATE CONSTRUCTION

In this section, we discuss the construction of coordinates
for both data and edge server in the virtual plane, which is
a circular region with a radius of 1. The edge server and
data will be mapped to this virtual space, and their coordi-
nates will be unified to ½�1; 1�. The center of the circular
region (i.e., o with coordinates (0,0), as in Fig. 6) represents
the center of the network. The virtual coordinate plane pro-
vides a viable alternative to geographic coordinates of edge
servers and brings a new opportunity to link edge servers
with data based on their virtual coordinates. Similar to [31],
[32], mapping edge servers and data together to the virtual
space enables much simpler data placement and retrieve
(based on virtual coordinates, presented in Section 5).

4.1 Calculating Coordinates of Data Items Based on
Data Popularity

Recall that each data di has data size sðdiÞ and data pop-
ularity pðdiÞ. Assume that each data also has an unique

identifier (index or ID) IDðdiÞ. We compute the virtual
coordinate of data by leveraging the Polar coordinate
system and hash function. In the Polar coordinate sys-
tem, each point is determined by a distance (r) and angle
(u) from a point and a direction respectively. In terms of
hash function, given a specific key value with arbitrary
size (in our case the data item’s ID), a hash function can
return a fixed-size hash value which we will use for gen-
erating the Polar coordinate of this data item in the vir-
tual space.

Our proposed method to calculate the virtual coordi-
nates of data has three goals. First, the mapping should
be able to spread all data over the virtual plane where the
edge servers will also sit. This can balance the load of
data hosting among servers. Second, the mapping method
needs to take data popularity into consideration and pla-
ces the popular data items to the location which has
smaller shortest paths to other regions. Last, the mapping
method should be deterministic, i.e., given the same data
item, the output of our mapping method should be the
same. This can guarantee that for the data request on the
same data item our retrieval process can lead to the same
location in the virtual plane.

In our solution, we map each data di to a virtual location
in the virtual plane whose polar coordinates are rðdiÞ and
uðdiÞ. To consider the data popularity in the mapping, our
design is based on the following observation. In a dense net-
work, the center area has smaller shortest paths to all
regions. Fig. 5b shows that the average length of shortest
paths to other servers and the distance to the network center
for each server in a randomly deployed network with 50
servers (Fig. 5a). Clearly, the servers closer to the center of
the network has less total length of all shortest paths. Based
on this observation, our mapping method puts a popular
data item near the center of the virtual plane. Specifically,
we generate rðdiÞ 2 ½0; 1� using

rðdiÞ ¼ 1� pðdiÞ=pmax; (1)

where pmax is the maximal data popularity among all data
items. By doing so, the more popular data is, the closer to
the center point as shown in Fig. 6a. To spread data items at
different regions, we calculate the angle uðdiÞ using the hash
value of the data’s ID. Particularly, we first calculate the
hash value HðdiÞ by using a hash function H (e.g., SHA-
256). Next, we reduce the hash value to the scope of the vir-
tual space by (1) using only the last 4 bytes of HðdiÞ and

Fig. 4. Framework of the proposed data placement solution in a soft-
ware-defined edge network infrastructure.

Fig. 5. (a) An example of physical network topology of a random network
with 50 edge servers. (b) The relation between the average length of
shortest paths to other servers from a server and its distance to the net-
work center.
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converting them to a 4-byte binary value hðdiÞ, and (2) nor-
malizing hðdiÞ between 0 and 2p. In other words,

uðdiÞ ¼ 2p� hðdiÞ=ð232 � 1Þ: (2)

By doing so, we place this data items along certain direction
in Polar coordinates. Different data items will be spread all
different directions. Even the data items with the same data
popularity will be placed at different locations. The final
polar coordinates are (rðdiÞ; uðdiÞ), whose corresponding
Cartesian coordinates can be obtained by

xðdiÞ ¼ rðdiÞ � cos uðdiÞ
yðdiÞ ¼ rðdiÞ � sin uðdiÞ:

�
(3)

Fig. 6 illustrates the relationship of virtual coordinates
between Polar and Cartesian coordinates. All data items are
mapped into a circular region with unit radius in the virtual
plane. The construction of coordinates for all data items can
be done in OðWÞ, whereW is the number of data items.

4.2 Calculating Coordinates of Edge Servers Based
on Network Distance

We also want to spread all edge servers in the same virtual
plane. The major goal of the mapping of edge servers is to
make sure that the euclidean distance between two edge serv-
ers in the virtual plane is proportional to their physical net-
work distance. By doing so, when we place popular data
items near the center in the virtual plane (as in Section 5.1), the
accessing cost of themwill be relevantly smaller since the cost
is proportional to the distance in the virtual plane. In addition,
this will ensure the local retrieve proposed in Section 5.2
(which picks the next server based on their virtual coordi-
nates) has low routing stretch. This mapping problem is basi-
cally a network embedding (or graph embedding) problem,
which has been well studied. Given the network topology G
and the shortest path measurements among edge servers, we
adopt the M-position algorithm used by [31], [32] to generate
the virtual coordinates of edge servers in the 2D virtual plane.
For the completeness, we briefly review the basic idea of such
an algorithm. Given the network topology G, we can obtain
the shortest path matrix L ¼ flijg, where lij is the shortest
path length from edge server i to j. Using L as the input, the
M-position algorithm aims to calculate the coordinates of
edge servers, which can be represented as a coordinate matrix
Q (a 2�N matrix of N edge servers in the two dimensional
virtual plane), i.e.,

Q ¼ xðv1Þ xðv2Þ � � � xðvNÞ
yðv1Þ yðv2Þ � � � yðvNÞ

� �
:

The key idea behind the M-position algorithm is based on
the fact that Q can be derived from a scalar product matrix
B ¼ 1

2JL
ð2ÞJ via the eigenvalue decomposition [31]. The

major steps of the mapping algorithm to generate coordi-
nates of edge servers is given as follows.

1) Given the network topology G, generate the shortest
path matrix L ¼ flijg and compute Lð2Þ ¼ fl2ijg,
which is the squared distance matrix.

2) Compute the scalar product matrix B ¼ 1
2JL

ð2ÞJ ,
where J ¼ 1� 1

N A and A is anN �N matrix of ones.
3) Determine two largest eigenvalues �1, �2 and the

corresponding eigenvectors �1, �2 of matrix B.
4) Construct the coordinates of edge servers Q ¼

�2L
1=2
2 , where L2 is the matrix of two eigenvalues and

�2 is thematrix of two eigenvectors of thematrixB.
5) Normalize Q to 1ffiffi

2
p

qmax
Q, where qmax is the largest

absolute value of all elements in Q, so that all coordi-
nates of edge servers are within the circular region
with unit radius in the virtual plane.

The construction of coordinates for all edge servers takes
OðN3Þ, which is dominated by the complexity of all-pairs
shortest path and eigen decomposition of the matrix.

5 DATA PLACEMENT AND RETRIEVE

In this section, we discuss how our data placement strategy
places and retrieves data based on the virtual coordinates.

5.1 Placing Data to Edge Servers

Since we have obtained the coordinates of both edge servers
and data items in the same region on the virtual plane, the
data placement becomes quite straightforward. Here, we
first assume that each edge server has sufficient storage to
hold the data placed by our placement strategy. We will dis-
cuss how to handle load balancing when there is a storage
limit at edge server in Section 6. Our proposed basic data
placement strategy (denoted by Basic_Placement) places
each data item di to the edge server that has the nearest
euclidean distance to this data item in the virtual plane, i.e.,

fðdiÞ ¼ argmin
vk

jjvk; dijj

¼ argmin
vk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðvkÞ � xðdiÞÞ2 þ ðyðvkÞ � yðdiÞÞ2

q
:

Fig. 7 show examples of data placement output. Clearly, the
assignment of servers forms a Voronoi diagram (Fig. 7a) in
the region, where if a data item falls within a Voronoi cell then
it will be placed at the edge server who owns the Voronoi cell.
Since the more popular data items are more towards the cen-
ter of the network (as shown in Fig. 7b), they will be placed to
edge servers whose shortest paths to other servers are shorter.
It is noted that the center of the network is relative to the vir-
tual plane, which is the center of the circular region. The pop-
ular data items are placed to the servers near to the center of
the network, which are determined based on the distances on
this virtual plane. The data placement decision ismadewithin
OðWNÞ where N and W are the number of edge servers and
data items, respectively.

Fig. 6. Illustration of the virtual coordinates of two data items in the vir-
tual plane with (a) Polar coordinates and (b) Cartesian coordinates.
Here d1 has a higher data popularity than d2.
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5.2 Retrieving Data from Edge Servers

With our proposed coordinate construction and data place-
ment, there are two possible retrieve strategies to retrieve a
data from the edge network: global retrieve and local retrieve.

Global Retrieve: Global retrieve method assumes that edge
server and network controller have the global knowledge of
the topology. Based on this knowledge, the shortest paths
between any pair of servers are calculated and correspond-
ing switching information will be deployed in underlying
switches. When a mobile user at edge unit requests a data
item di, it first determines the coordinate ðxðdiÞ; yðdiÞÞ of this
data in virtual plane based on its index and popularity.
Then based on our placement strategy, it can calculate the
target server which holds the data item, i.e., vj ¼ fðdiÞ.
Next, the data request is routed towards vj by following the
stored shortest path until it reaches the target server. Global
retrieve strategy not only can guarantee the delivery of data
request, but also has the minimal retrieval latency since it
relays the request over the shortest path. However, the
drawback is the additional storage overhead at switches
and edge servers to store the shortest paths to all edge
servers.

Local Retrieve: In contrast, local retrieve method assumes
that each edge server only knows the information from its
neighboring edge servers. Thus it enjoys lower storage at
servers and switches. However, the challenge is how to
route the request towards the target server. Note that
instead of finding the target server fðdiÞ directly (which
needs the knowledge of coordinates of all servers), in local
retrieve, the data request is routed towards the coordinate
ðxðdiÞ; yðdiÞÞ of the data item in virtual plane. At each server
when receiving the request, it first checks whether this data
is placed in itself. If the current edge server is the target
server, it will reply the request. Otherwise, the current
server greedily selects the next server to forward from its
neighboring server based on their coordinates. The criteria
is to pick up the server whose coordinate is nearest to the
target coordinate ðxðdiÞ; yðdiÞÞ in the virtual plane. This pro-
cedure repeats until the request reaches the target server.
Notice that greedy forwarding may fail at local minimum,
but randomized forwarding can be used to get out of the

local minimum2 However, compared with the global retrieve,
local retrieve causes longer retrieval latencywhich is due to (1)
longer exploration process to find the target server and (2) lon-
ger founded delivery path between source and target servers.

Fig. 8 illustrates the difference between these two retrieve
methods. Clearly, there is a trade-off between the perfor-
mance (retrieve latency) and the complexity (computing,
storing and updating the global shortest paths). Our pro-
posed data placement method supports both retrieve meth-
ods, and can select the appropriate one based on different
application scenarios.

6 DATA PLACEMENT WITH LIMITED STORAGE

We have introduced the basic data placement strategy
based on data popularity in previous section. However, we
did not consider the storage capacity at edge server yet.
Based on the basic placement strategy some of the edge
servers may be overloaded with data items. If each edge
server vi has specific maximal storage capacity ci ¼ cðviÞ
such that it can only stores data items whose total size is up
to ci. Hereafter, we use ccðviÞ to denote the current storage
usage of server vi. In this section, we propose some simple
heuristics to handle load balancing3 due to storage limits.
All the heuristics use the output (i.e., fðdiÞ) of our basic data
placement (Section 5.1) as their input, but they are different
with each other in (1) the ordering of data placement and
(2) the choice of offloading server. Here, this offloading is
just an additional step during the making of data placement
decision. The real placement of data items on servers hap-
pened after the final data placement decision. In addition,
due to the offloading, data retrieve also needs to be able to
find the offloading server.

6.1 Processing Order for Data Placement

After the basic data placement based on data popularity, we
have a initial placement decision, which can be denoted as a
list place dec which consists of multiple two-tuple ðdi; vj ¼
f1ðdiÞÞ, where di is the data index and vj is the edge server
assigned by the basic data placement for di. However, some
of the edge server may not have enough storage to hold all
assigned data items, therefore, we need make an offloading

Fig. 7. Illustration of basic data placement: (a) Voronoi diagram formed
by all edge servers; (b) a zoom-in view to see examples of locations of
data items based on their popularity. Here, black dots are edge servers,
while other dots are data items whose colors reflect their popularity (the
more red the color, the more popular the data). The numbers inside dots
are popularity values. More popular data is placed nearer to the center
(on the left of the rectangle).

Fig. 8. Illustration of global retrieve versus local retrieve: (a) placement of
d1 to vt based on the placement strategy, (b) global retrieve via the global
shortest path to vt, (c) local retrieve towards location of di at
ðxðdiÞ; yðdiÞÞ. Note that vb is closer to ðxðdiÞ; yðdiÞÞ than va, thus local
retrieve takes a different route than the global shortest path.

2. There are other methods to eliminate the local minimum for
greedy routing via adjusting transmission range [47] or building a
Delaunay graph [48], [49].

3. Later in Section 7 we also consider using multiple replicas to fur-
ther balance loads among servers. In addition, there are other possible
load balancing strategies for edge computing [50], [51], [52], [53].
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decision to assign some of their data items. However, which
item from which server to offload is tricky since moving an
assignment of a data item to a server may cause a chain
effort on other servers. Such effort is also decided by the
processing order of data placement with offloading. Here,
we propose two different methods to process the data place-
ment with offloading consideration.

Algorithm 1.Data Placement in Order of Data Popularity

Input: The placement decision place dec ¼ fðdi; f1ðdiÞÞg
determined by Basic_Placement.
Output: The updated new placement decision place dec.
1: Sort place dec in descending order of popularity pðdiÞ;
2: for each item ¼ ðdi; vjÞ in place dec do
3: if sðdiÞ þ ccðvjÞ > cðvjÞ then
4: vl ¼ Find_Offloading_Serverðdi; vjÞ;
5: Update and confirm item ¼ ðdi; vlÞ, i.e.,f2ðdiÞ ¼ vl;
6: ccðvlÞ += sðdiÞ;
7: else
8: Confirm item ¼ ðdi; vjÞ, i.e.,f2ðdiÞ ¼ vj;
9: ccðvjÞ += sðdiÞ;
10: return place dec ¼ fðdi; f2ðdiÞÞg

Algorithm 2.Data Placement in Order of Server Capacity

Input: The placement decision place dec ¼ fðdi; f1ðdiÞÞg
determined by Basic_Placement.
Output: The updated new placement decision place dec.
1: Sort V in descending order of server capacity cðviÞ;
2: for each vi in V do
3: GenerateDi based on place dec;
4: SortDi in descending order of data popularity pðdkÞ;
5: for each dk inDi do
6: if sðdkÞ þ ccðviÞ > cðviÞ then
7: vl ¼ Find_Offloading_Serverðdk; viÞ;
8: Update/confirm dk’s placement, i.e.,f3ðdkÞ ¼ vl;
9: ccðvlÞ += sðdkÞ;
10: else
11: Confirm dk’s placement, i.e.,f3ðdkÞ ¼ vi;
12: ccðviÞ += sðdkÞ;
13: return place dec ¼ fðdk; f3ðdkÞÞg

Placing Data in the Order of Popularity The first method
processes the data item based on their popularity to confirm
the data item placement or offload it to other server. It first
sorts the resulting list place dec in descending order based
on data popularity pðdiÞ. Next, for each item ðdi; vj ¼ f1ðdiÞÞ
in place dec, if the summation of data size sðdiÞ of di and the
current server storage ccðvjÞ of vj does not exceed the maxi-
mal server storage cðvjÞ, then we confirm this placement
and place this data di to this edge server vj. Otherwise, we
find an available edge server vl to offload this data item
(denoted by a procedure Find_Offloading_Server) and mod-
ify the initial placement decision f2ðdiÞ ¼ vl. Multiple ways
to find such edge server to offload will be discussed in the
next subsection. The detailed algorithm is presented in
Algorithm 1. By performing this algorithm, we can guaran-
tee that each server has sufficient storage to hold all
assigned data items and avoid the overloading of certain
edge servers. The total time complexity of Algorithm 1 is
OðW logW þWXÞ, where OðW logWÞ is from ordering the

data popularity and OðWXÞ is for W rounds of finding off-
loading server for each data item. Here, X is the cost of Fin-
d_Offloading_Server, which is bounded by the number of
neighbors of the server vi or by N depending which method
is used.

Placing Data in the Order of Server Capacity The second
method processes the data placement in a different order
which is based on the maximal edge server storage capacity.
The idea of this strategy is to deal with the edge server that
has bigger maximal storage capacity first. When determin-
ing which data should be placed on the current edge server
and which should be offloaded, we continue to take into
account data popularity, where more popular data is easier
to stay at the current server. The algorithm acts as follows.
First, we sort the list of edge servers V in descending order
according to the maximal edge server storage capacity cðviÞ,
such that cðv1Þ � cðv2Þ; . . . ;� cðvNÞ. For each server vi, we
define Di as a list which consists of all data items assigned
to vi by the basic data placement, i.e., Di ¼ fdkjvi ¼ f1ðdkÞg.
Then we process the edge server in order to confirm or
update the data placement on that server. For each server
vi, Di is sorted based on data popularity in descending
order. We process the data item dk 2 Di. If placing this item
does not exceed the maximal storage of vi, i.e., sðdkÞ þ
ccðviÞ � cðviÞ, its placement is confirmed. Otherwise, we
simply call the procedure Find_Offloading_Server to find a
near server to place it and update its placement f3ðdkÞ. The
whole process is repeated for all data items on all servers.
The detailed algorithm is presented in Algorithm 2. The
major difference with the first method is that the processing
order is based on server capacity (the outer “for” loop in
Algorithm 2). The total time complexity of Algorithm 2 is
OðNlogN þPN

i¼1ðjDijlog jDij þ jDijXÞÞ. Here, OðN logNÞ is
from ordering the server capacity, OðjDijlog jDijÞ is from
ordering the data popularity in Di, and OðjDijXÞ is jDij
rounds of find offloading server for each data item in Di.
Note that

PN
i¼1 jDij ¼ W .

6.2 Offloading Choice

Nowwe discuss the two possible methods to implement the
procedure Find_Offloading_Serverðdi; vjÞ to find the offload-
ing server vl for data item di at vj (since vj does not have suf-
ficient storage).

The first method (Nearest_Neighbor) simply finds the off-
loading server from vj’s neighboring edge servers in topol-
ogy G. The selection criteria are (1) vl 2 fvivl 2 Eg; (2)
sðdiÞ þ ccðvlÞ � cðvlÞ; and (3) jjvl; vijj in the virtual plane is
the minimum among all candidates satisfying (1) and (2).
Note that if none of neighbors has sufficient storage,we search
for neighbors’ neighbors instead. This repeats until we can
find a server to host di.Nearest_Neighbor aims to find a nearby
server from vj in the network topology to hold the data.

The second method (Nearest_Server) relaxes the require-
ment of vl to be a neighbor of vj, instead considering all pos-
sible servers in the region. It finds the offloading server
based on (1) sðdiÞ þ ccðvlÞ � cðvlÞ and (2) jjvl; dijj in the vir-
tual plane is the minimum among all candidates satisfying
(1). I.e., it picks the server which has enough storage and a
minimal distance to di instead. Nearest_Server aims to find a
server near to the data item di in virtual plane to hold it.
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Both methods try to offload di to a server nearby. The
time X used to choose offloading server is bounded by the
number of neighbors of the server vi in G for Nearest_Neigh-
bor or byN forNearest_Server. Fig. 9 illustrates the difference
between these two methods.

6.3 Data Retrieve

Since the proposed methods might offload data items from
the original assigned server by vj ¼ f1ðdiÞ to another server,
saying vl ¼ f2ðdiÞ or f3ðdiÞ, we need have a way to let data
retrieve method to find the new server. Note that even
though the network controller may know the location of the
new server, the each individual server when receiving the
data item may not know the global information of server
capability, thus fail to find the offloading decision. Instead
broadcasting all offloading decisions to the whole network,
a simple solution is to let the original server vj host a for-
warding entry to record the path towards the new server vl.
By doing so, the data retrieve methods can stay the same
and the data request of di is still forwarded towards vj.
When it reaches vj, it is then further forwarded to vl. This
will cost additional path length and retrieval latency. How-
ever, since the offloading server is selected to minimize the
distance between vj and vl, the addition cost is minimized.

7 DATA PLACEMENT WITH MULTIPLE REPLICAS

While our proposed offloading methods can balance the
data storage loads based on the maximal server storage, it
does not solve the problem of overloading data requests to
the servers. To address this problem, in this section, we pro-
pose new data placement strategy to balancing data request
loads by leveraging replication. Data replication is the man-
agement of multiple replicas of the same data in the system.
Replication strategies have been widely used in distributed
systems [14], [17], [19], [27], [30], [42], [43] to ensure load
balancing, reliability and data transfer speed as well as to
offer the possibility to access the data efficiently from multi-
ple locations.

In our data placement problem, if we allow multiple rep-
licas of the same data distributed on different edge servers,
it can not only provide load balancing but also improve the
response time of data request and the delay of data delivery.
However, how to design the replication strategy becomes
crucial. Generally, different data characteristics and system

conditions influence the replication strategy. The key chal-
lenge of implementing an effective replication strategy con-
sists of two metrics. First, how to determine the number of
replicas of each data items? Second, how to choose the edge
server to place these replicas? Next we answer these two
questions separately for our data placement design.

7.1 Number of Replicas

Inspired by [30], to efficiently determine the number of rep-
licas, we take data size, data popularity, and the remaining
storage capacity of all edge servers into account. The gen-
eral ideas are (1) more replicas will be given to larger and
more popular data items; and (2) more network storage
available also lead to more replicas. For each of these
aspects (i.e., data size, data popularity, and available stor-
age), we normalize it with its maximal value in the network.
Therefore, the number of replicas for each data di is calcu-
lated as follows.

nðdiÞ ¼
�
a1

sðdiÞ
smax

þ a2
pðdiÞ
pmax

þ a3

P
jðcðvjÞ � ccðvjÞÞP

j cðvjÞ
�
� b�N:

(4)

Recall thatN is the number of edge server, smax and pmax are
the maximal data size and data popularity. ccðvjÞ and cðvjÞ
are the current used storage and maximal storage limit of
vj, thus cðvjÞ � ccðvjÞ is the remaining storage capacity of vj.
a1, a2 and a3 are weights added to these three coefficients,
since the relative importance of three aspects can vary based
on the data characteristics and system conditions. While
a1 þ a2 þ a3 ¼ 1, they can be adjusted to meet different
requirements. For instance, with increasing data popularity,
we can use higher a2 to increase the number of replicas for
the more popular data. Similarly, if our edge network system
has limited storage capacity or low bandwidth, we may
decrease a3 or a1 tomeet the requirement. b is a ratio parame-
ter to control the total number of replicas with respect to the
total number ofN . Larger b leads tomore total replicas.

7.2 Placing Replicas

After we determine the number of replicas nðdiÞ of each data
di, we have to determine where to place these replicas. The
placement strategy of replicas should have the following
goals. First, it should spread the replicas as evenly as possible

Fig. 9. Illustration of two methods for Find_Offloading_Server: (a) placement of di to vj based on the placement strategy but vj does not have suffi-
cient storage; (b) Nearest_Neighbor where only neighboring servers (va, vd, ve) are considered, and vd is selected since it is the nearest one to vj
with sufficient storage; (c) Nearest_Server where all surrounding servers are considered, and vf is selected since it is the nearest one to di with suffi-
cient storage.
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in the region to balance the load. Second, the placement
should still be popularity-aware, such that popular data has
shorter shortest paths. Last, the mapping and placement
methods should be non-randomized so that retrieve can be
easily done. To achieve all of these, we modify our mapping
method which generates the coordinates of data items (Sec-
tion 4-A) to map a data item to nðdiÞ locations in the virtual
plane based on its popularity. Both the placement and retrieve
methods can still be the same,where each replica is just placed
to the nearest server in the virtual plane and data requests are
forwarding towards that server during retrieving.

Calculating Coordinates of Replicas. For each data item di, we
will generate nðdiÞ data items, denoted by d1i ; d

1
i ; . . . ; d

nðdiÞ
i ,

and spread them on the virtual plane. Inspired by the Voronoi
diagram, we spread all replicas using the radius which
depends on the data popularity but different angles. As
shown in Fig. 10a, the Voronoi diagram formed by all replicas
is evenly distributed in the virtual plane. The polar coordi-
nates of kth replica dki in the virtual plane are given by the fol-
lowing equations.

rðdki Þ ¼ 1� pðdiÞ
pmax

; uðdki Þ ¼ 2p
hðdiÞ
232 � 1

þ k
2p

nðdiÞ : (5)

Note that the first copy of data item d1i is mapped to the same
location as di in Section 4.1. The radius and angle are still
deterministically decided by data popularity and data index.
The other replicas are evenly distributed by an angle differ-
ence of 2p

nðdiÞ with the same radius. This solution seems achieve
all desired goals, but it may have a problem when the data
item is very popular. In that case, the radius is small, all repli-
cas will be placed around the center of the network. Though
their Voronoi cells are equal, this is not ideal since multiple
replicaswill be nearby. Therefore,we furthermodify themap-
ping method, by define a threshold t < 0:5. If rðdki Þ < t, we
shift rðdki Þ by adding 0.5, except for the first copy of the data
which is still at original location. Fig. 10b shows such an exam-
ple and the Voronoi cells of all replicas. Then, the new map-
pingmethod is given as follows.

rðdki Þ ¼
� 1:5� pðdiÞ

pmax
; 1� pðdiÞ

pmax
< t and k > 1

1� pðdiÞ
pmax

; otherwise
;

uðdki Þ ¼ 2p
hðdiÞ

ð232 � 1Þ þ k
2p

nðdiÞ :
(6)

In our simulations, we use t ¼ 0:01. After we have the coor-
dinates of all replicas, we can place these replicas to the clos-
est edge server in virtual space. The retrieve procedure is
straightforward too.

Our new placement method with replicas make sure that
(1) the more popular data is, at least one copy of the data is
closer to the center; (2) different data replicas are well spread
in the virtual plane; (3) the shortest paths are reduced since
copies of data can be find atmultiple locations.

8 PERFORMANCE EVALUATION

In this section, we report the results from our simulations to
evaluate our proposed data placement strategies.

8.1 Simulation Setup

To test our proposed data placement strategies, we ran-
domly construct a network typology G with 50 edge servers
whose degree satisfies a binomial distribution. The cost on
each network link is set randomly from 1 to 20. Fig. 5a
shows an example of such network topology. Since edge
servers are not the normal servers with enough capacity, so
we assume each edge server has a different limited maximal
storage capacity ranges from 500MB to 1,000MB. In terms of
data set, we randomly generate 100 data items with data
size from 100MB to 150MB. To simulate the data popularity
of each item, we leverage a real-world news popularity
dataset [54] provided by University of Porto and randomly
draw data popularity from it. Based on the simulated data
popularity, we randomly generate data requests for differ-
ent data items at random edge servers either in the whole
region or at the boundary of network. Based on each data
placement strategy, we place data items on corresponding
edge server(s) and then perform data retrieves of all data
items randomly from all edge servers based on their data
popularity. Mainly, three performance metrics are used to
evaluate the performance of proposed methods:

� Average path length. It is the average length of forward-
ing path of data requests from the source edge server
to the target server during the data retrieve process.
The length of a path is the summation of link costs of
all links on the path, which reflects the end-to-end net-
working delay. Obviously, the shorter average path
length the better data retrieve performance.

� Average retrieval latency. It is defined as the average
running time of retrieve strategy during the data
retrieval process. This mainly quantifies the com-
plexity of the retrieval strategies. Here, latency is not
due to the networking delay.

� Distribution of number of data items. To measure the
load balancing of data placement, we also report the
distribution of the number of data items on each
edge server. The goal is to minimize the largest num-
ber of data items on single edge server.

We test seven different versions of our data placement
strategies in the simulations, and they are

� OUR-B. This is the basic data placement strategy
(Basic_Placement) proposed in Section 5. It does not
consider the storage limit at each server and the place-
ment decision is purely based on virtual coordinates.

� OUR-S. This set of four data placement strategies are
from Section 6, where data items exceeding the maxi-
mal storage limit at the assigned server by OUR-Bwill
be offloaded to nearby servers. Since we have two

Fig. 10. Illustration of the virtual coordinates of replicas of data di generated

by our method: (a) when 1� pðdiÞ
pmax

� t and (b) when 1� pðdiÞ
pmax

< t. Here

nðdiÞ ¼ 3 andVoronoi cells of all replicas are shown in dashed lines.
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methods for processing offloading in different orders
(Algorithms 1 and 2) and two methods for different
offloading choices (Nearest_Neighbor and Nearest_-
Server), we have four different OUR-Smethods in total:
– OUR-S1: Algorithm 1 + Nearest_Neighbor,
– OUR-S2: Algorithm 1 + Nearest_Server,
– OUR-S3: Algorithm 2 + Nearest_Neighbor,
– OUR-S4: Algorithm 2 + Nearest_Server.

� OUR-R. This is the data placement strategy from Sec-
tion 7, which places multiple replicas in the network
and the number of replicas nðdiÞ of a data item di
depends its popularity, size and available storage. For
comparison, we also implement and test another ver-
sion OUR-R-fixed where fixed numbers of replicas are
used.

For all of these data placement strategies, both global
retrieve and local retrieve can be used. At last, the simula-
tion runs 100 times to get the average result.

8.2 Comparison With Existing Methods

First, we compare the performance of our proposed data
placement methods with existing methods from [31] and [32].
Recall that both COIN [31] and GRED [32] also use virtual
space based methods to place data indexes or items but did
not consider the data popularity, and their work inspire our
proposed methods. Compared with COIN, GRED uses the
centrodial Voronoi tesselation to handle load balance among
edge servers. We also implement an optimal strategy (OPT)
where the data item is placed to the edge server that has the
overall shortest path length to all other edge servers. In this
set of simulations, we compare our methods OUR-B and
OUR-S1 to COIN, GRED, and OPTwith the same setting. The
number of data requests is set to 1,500 and global retrieve is
applied. Furthermore, in this subsection, we only compare
methods without replica since methods with replica always
have better performance. The results are reported in Fig. 11.

The left plot shows the average path length when the data
requests come from random edge servers. Clearly, when the
data storage limit at each server is not considered, our pro-
posed basic method OUR-B preforms similar to COIN with a
slightly shorter average path length and is close to the OPT.
But when we consider the storage limit, our method OUR-S1
can significantly reduce the path length compared with
GRED. This confirms that the advantage of taking data popu-
larity into consideration during both data placement and

offloading. Compared with OUR-B, OUR-S1 only increases
the average path length a little (while GRED’s path is much
longer than COIN). Recall that offloading data to other servers
will increase the retrieve paths.

The right plot shows the results when the data requests
come from the edge servers near the boundary of the net-
work. Since these requests need longer path to reach other
parts of the network, the path lengths of all methods are lon-
ger than those in left plot. In addition, we can also observe
that our proposed algorithms (OUR-B or OUR-S1) are much
better than the existing methods (COIN or GRED) in this
case. This is mainly due to that our proposed methods con-
sider data popularity and ensure that the more popular
data is closer to the network center where the average path
length to boundary region is much shorter.

Obviously, without considering data storage limit, the
average accessing cost of OPT is better than all other meth-
ods. However, such a optimal method will increase the stor-
age burden of the selected server, because all data items are
placed on the single optimal server. In contrast, our pro-
posed methods spread all data to different servers based on
their data popularity and virtual distances. Thus, our meth-
ods can balance the storage burden among edge servers
while keeping relevantly small accessing cost as shown in
Fig. 11. In addition, if the storage limit and/or request dis-
tribution is considered, finding the optimal server becomes
a very challenging optimization problem.

8.3 Global Retrieve Versus Local Retrieve

We now compare two retrieve strategies: global retrieve and
local retrieve. First, we use OUR-B as the placement strategy,
and vary the number of total requests from 100 to 2,000.
Fig. 12a shows the average length of path travelled by data
requests. Note that the average path length of different num-
ber of requests is almost the same for both retrieve methods.
This is reasonable since the data placement is static. More
importantly, global retrieve strategy has a shorter average
path length than local retrieve strategy. This is due to that the
global strategy always takes the shortest path between source
and target servers. Fig. 12b presents the average retrieve
latency of two retrieve methods. As we can see, the average
retrieve latency of local strategy is far larger than that of global
strategy. This is due to that (1) local retrieve strategy takes
more number of hops during the forwarding; (2) it also may
need to perform random forwarding to escape from local
minimums.

Second, we fixed the number of requests at 1,000 and test
the two retrieve strategies with both OUR-B and four OUR-

Fig. 11. Comparison with existing data placement methods [31], [32].
Left: data requests are randomly generated at random server/location.
Right: data requests are randomly generated at random servers at the
edge of the network.

Fig. 12. Comparison of global retrieve and local retrieve in OUR-B with
different numbers of data requests.
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S placement methods. Fig. 13 present the results. From the
results, we can draw the following conclusions. (1) Similar
to results in Fig. 12, local retrieve takes longer path and
latency than global retrieve does in all cases. (2) For the
average path length in global retrieve, it is clear that those
of OUR-S are longer than that of OUR-B. Remember that in
OUR-S data items may be offloaded to another edge server
rather than the nearest server to the data. Thus, global
retrieve needs an additional path to reach the target server.
(3) For the local retrieve, the average path lengths of OUR-S
are shorter than that of OUR-B. This might be due to that
some of data items are offloaded to servers which are closer
to the request edge server. (4) It is obvious that the average
retrieve latency of OUR-S is longer than that of OUR-B for
both global and local retrieve since the retrieve takes addi-
tional time to find where the data is stored. Interestingly,
even though the average path length of local retrieve for
OUR-S is shorter than that for OUR-B, local retrieve still
needs more time to figure out the location of the data item
thus lead to a much longer retrieve latency than OUR-B.

In summary, local strategy in general leads to longer
average path length and larger retrieve latency than global

retrieve. However, local strategy only utilizes the neighbors’
information to compute the forwarding decision, which
saves the storage of all shortest paths and makes it work
well in scale. Therefore, there is a trade-off between the per-
formance (retrieve latency) and the complexity (computing,
storing and updating the global shortest paths). For all sim-
ulation results in the remaining section, we only report the
results from global retrieve due to space limit.

8.4 Path Length Versus Data Popularity

One of the unique designs of proposed placement methods
is that the placement of a data item depends on its data pop-
ularity. In this set of simulations, we study the relationship
between data popularity and average path length by taking
a close look at the path length for each data item. We ensure
that each edge server requests the same set of 100 data
items, and then measure the average path length of each
method for each data item. We expect that the more popular
is the data, the shorter is the average path length. Results in
Fig. 15 confirm our expectation. In the figure, we group the
data items into five groups based on their normalized popu-
larity (ranging from 0 to 1) and then report the average path
length of each group. Clearly, the overall trend of average
path length decreases when data popularity increases. This
proves the advantage of taking data popularity consider-
ation in data placement. The performances of OUR-B and
OUR-S are not much different, since the offloading does not
happen a lot in this simulation.

8.5 Placement Strategies with Storage Limits

In this set of simulations, we aims to illustrate the power of
offloading in data placement when we consider the maxi-
mal storage limits. Fig. 15 shows the distribution of number
of data items placed at each server for both OUR-B and
OUR-S. The top subplot in Fig. 15a presents the detailed
load of OUR-B at each server which ignores the storage
limit. Clearly, the edge server 32 is overloaded with data
items. The other four subplots are results from four OUR-S,
obviously they can spread the overloaded data items to
other edge servers to make load more evenly. Fig. 15b also
shows the aggregated distribution of number of server over
the number of placed data items. The same conclusion can
be drawn that OUR-S reduces number of servers with high
loads (such as those with more than 6 data items in OUR-B).
These results confirm the advantage of proposed offloading
strategies in Section 6.

Fig. 13. Comparison of global retrieve and local retrieve in OUR-B and
OUR-S with 1,000 data requests.

Fig. 15. Distribution of placed data items among servers for OUR-B and four OUR-S strategies.

Fig. 14. Data popularity versus path length.
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8.6 Placement Strategies With Data Replicas

Finally, we evaluate our proposed placement strategy OUR-
R with data replication. Here, we test the following four
data placement methods:

� OUR-B, the basic placement strategy where only sin-
gle copy of data item is placed.

� OUR-R, the proposed placement strategy with multi-
ple replicas, where the number of replicas is calcu-
lated based on data popularity, data size and available
storage.

� Random-R-fixed, a random placement strategy with
fixed number of replicas, where a fixed number of
replicas of each item are randomly placed at edge
servers.

� OUR-R-fixed, a variation of the proposed placement
strategy with multiple replicas, where the number of
replicas of each item is fixed.

To treat all methods with multiple replicas fairly, we let
the fixed number of replicas in Random-R-fixed/OUR-R-
fixed is equal to the average number of replicas on OUR-R.

First, we display the loads among all servers with multi-
ple data replicas as shown in Fig. 16. As we can see, there
are more data in each edge server compared with the single
replica strategy OUR-B. In addition, the difference of loads
between these three multiple replica strategies is not obvi-
ous due to the data duplication. However, the average path
length is different as shown in the next figure.

Fig. 17 shows the results of all methods under either
global retrieve or local retrieve. First, the average path
length of local retrieve is longer than that of global retrieve,
which is the same conclusion from previous simulations.
Second, all methods with multiple replicas perform much
better than the single replica does. Compared to the single
replica strategy, OUR-R reduces the average path length up

to 36 percent. This confirms that data replication can signifi-
cantly reduce the average path length of data request. Third,
both with multiple replicas, OUR-R performs better than
OUR-R-fixed, This shows the advance of using carefully
designed number replica estimation with data popularity
over fixed number replicas (evenly distributed among data
items). Fourth, In global retrieve, OUR-R-fixed performs
better than Random-R-fixed, which shows the proposed
placement with Voronoi diagram is much better than ran-
dom placement. However, OUR-R-fixed performs worse
than Random-R-fixed in local retrieve since Random-R-
fixed method may place multiple replicas near the request
server randomly. In summary, among all methods with
multiple replicas, our proposed OUR-R has the best results.

Fig. 18 plots the number of replicas nðdiÞ and average
path length of each individual data item di for OUR-R in an
instant of our simulation. It is clear that the number of repli-
cas of di in OUR-R increases with its data size and data pop-
ularity as shown in Fig. 18a, which is due to Equation (4).
Then larger number of replicas usually leads to smarter
average path length due to our placement scheme, as shown
in Fig. 18b.

Fig. 19 shows the results of all methods with 1,000
requests when we increase the total number of data replicas.
Obviously, with more data replicas, the shorter the average
path length is. In addition, for global retrieve, when the
number of data replicas is large, the difference among all
replication placements becomes smaller. This is reasonable
since with such large number of replicas, the placement
does not matter anymore. All of other conclusions from
Fig. 17 are consistent here too.

In summary, our proposed data placement strategies
(including offloading and replication methods) can reduce
the shortest path and balance the load among edge servers
by taking the advantage of considering data popularity.

Fig. 16. Loads among servers with multiple data replicas.

Fig. 17. Comparison of placement strategies with multiple replicas.

Fig. 18. Impact of data popularity and data size.

Fig. 19. Impact of the number of data replicas.
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9 CONCLUSION

Data placement has become a critical issue in edge computing
where data is generated from edge units and stored within
edge network. In this paper, we have studied data placement
strategy for edge network which takes data popularity into
consideration. Based on their data popularity, data items are
mapped to a virtual plane where network topology of edge
servers is embedded. The mapping method puts more popu-
lar data closer to the network center in order to shorten its
retrieve path fromall other regions. Corresponding placement
and retrieve strategies can then be easily performed based on
distance measurement between virtual coordinators of data
items and edge servers. We also design several multiples off-
loading and replicationmethods to overcome the storage lim-
its and further improve the performance. Simulation results
confirm the effectiveness and efficiency of our proposed
strategies.

This work is the first step towards more intelligent data
placement in edge computing by demonstrating the power of
considering data popularity. There are a few possible direc-
tions for further study. (1) We mainly consider a static data
placement where placement decision is static. If the edge envi-
ronment is dynamic, one simple way to address it is to update
the virtual coordinates accordingly and then adjust the place-
ment. If there is a new data item or an update of a data popu-
larity, a new calculation of its coordinates in the virtual plane
can be easily performed. If there is an update of network topol-
ogy, the edge servers’ coordinates need to be regenerated,
which can also be efficiently handled by the controller of soft-
ware-defined edge network infrastructure (Fig. 4). Compared
with optimization based solutions, the proposed method is
more agile. If more complex dynamics need to be considered,
new and online placement strategies are needed. (2) We will
also consider other data popularity metrics beyond the num-
ber of accesses (such as life-time) andmore complex data pop-
ularity models, where various user or location specific
preferences may be considered differently. One possible solu-
tion is treating the data preferences from different users/loca-
tions with different weights. Note that in such cases the
optimization based solution might become too challenging to
be solvable. (3) Depending on what type of computing tasks is
applied to placed data items, task scheduling can be jointly
optimized with data placement problem in the edge comput-
ing paradigm. This becomes more challenging but interesting.
We leave studying of these issues as our futurework.
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