Calibrating Real-World City Traffic Simulation
Model Based on Vehicle Speed Data

Seyedmehdi KhaleghianT, Himanshu Neema¥, Mina SartipiT, Toan Tran', Rishav Sen*, Abhishek Dubeyi
t University of Tennessee at Chattanooga, Chattanooga
! Vanderbilt University, Nashville
Tennessee, USA

Abstract—Large-scale traffic simulations are necessary for the
planning, design, and operation of city-scale transportation sys-
tems. These simulations enable novel and complex transportation
technology and services such as optimization of traffic control
systems, supporting on-demand transit, and redesigning regional
transit systems for better energy efficiency and emissions. For
a city-wide simulation model, big data from multiple sources
such as Open Street Map (OSM), traffic surveys, geo-location
traces, vehicular traffic data, and transit details are integrated
to create a unique and accurate representation. However, in
order to accurately identify the model structure and have
reliable simulation results, these traffic simulation models must
be thoroughly calibrated and validated against real-world data.
This paper presents a novel calibration approach for a city-scale
traffic simulation model based on limited real-world speed data.
The simulation model runs a microscopic and mesoscopic realistic
traffic simulation from Chattanooga, TN (US) for a 24-hour pe-
riod and includes various transport modes such as transit buses,
passenger cars, and trucks. The experiment results presented
demonstrate the effectiveness of our approach for calibrating
large-scale traffic networks using only real-world speed data. This
paper presents our proposed calibration approach that utilizes
2160 real-world speed data points, performs sensitivity analysis of
the simulation model to input parameters, and genetic algorithm
for optimizing the model for calibration.

Index Terms—Transit simulation, large-scale traffic simulation,
calibration, microscopic simulation, mesoscopic simulation, trans-
portation planning, SUMO

I. INTRODUCTION

Traffic simulation is used to simulate the movement of
vehicles, people, and other components of the transportation
system in a virtual environment. Traffic simulations provide a
cost-effective, secure, adaptable, and repeatable environment
for evaluating traffic management and safety scenarios, offer-
ing a wide range of conditions for analysis and data collection
while minimizing risks to drivers and passengers. Additionally,
simulations allow for precise data collection and analysis, con-
tributing to the improvement of traffic management and safety.
The planning, design, and operation of these transportation
systems require large-scale city-wide traffic simulations that
mirror real-world operations. Such simulations can also help
with designing and optimizing transit systems for better energy
efficiency and emissions. However, this is computationally
hard due to the immense size and high complexity of the
decision space. Data-driven strategies are also not practical, as
they require large data sets that cover all variations observed in
the real world. In order to deal with these challenges, we pre-

viously developed some dynamic simulation platforms, called
Transit-Gym [1], BTE-Sim [2] and E-transit-bench [3] that
provided a novel intuitive method to specify, generate, execute,
and analyze a variety of transit scenarios through integrated
transit simulations. However, for direct application of these
simulation-based analyses of alternative transit scenarios, the
underlying traffic simulation models must closely mirror the
real world.

Urban planners utilize large-scale traffic simulation to assess
traffic flow and congestion after installing highways or public
transit systems. Small-scale traffic model on the other hand can
help urban planners and traffic researchers optimize traffic flow
in specific places and evaluate traffic management measures
including traffic signal timing and lane arrangement. The
scale of the network is an important consideration in traffic
simulation models and calibration. One key issue related to the
scale of the network is the trade-off between model complexity
and computational efficiency. As the size and complexity
of the network increase, the computational demands of the
simulation also increase, which can lead to longer simulation
times and more difficulty in calibrating the model. This can
be particularly challenging in urban areas, where the network
may be very large and complex. The calibration of large-scale
traffic simulation models is a crucial step adjusts a traffic
simulation model’s parameters and assumptions to approxi-
mate real-world traffic. Despite its importance, there is a lack
of studies in this area, and existing calibration techniques
often focus on small-scale networks. The current academic
literature is deficient in the realm of calibration techniques for
large-scale microscopic traffic models. To address this gap,
the present paper introduces a pioneering methodology for
calibrating such city-wide models.

For the calibration of traffic simulations, real-world speed
data is advantageous. By adjusting the simulation to reflect
actual driving patterns and conditions, it enhances traffic flow
and behavior modeling. This can improve simulation forecasts
and assist researchers in finding problems with traffic control
and safety. In addition, speed data calibration enables the
validation of simulation precision. By comparing simulated
findings to actual data, researchers can assess the simulation’s
accuracy and identify errors. This can help the simulation’s
ability to predict traffic patterns and identify issues. Finally,
calibrating the simulation using real-world speed data aids in
taking into account changes in behavior and traffic flow over



time. This aids in improving forecasts by allowing researchers
to modify the simulation to account for seasonal or other
variations in traffic patterns. Overall, a traffic simulation’s
accuracy, dependability, and effectiveness in predicting traffic
patterns and identifying weaknesses are improved by calibrat-
ing it using actual speed data. Calibrating a traffic simulation
model using real-world speed data can be a complex process,
and it requires a good understanding of the underlying traffic
dynamics and the characteristics of the road network being
studied.

Traffic flow models are categorized based on their level
of complexity and granularity as macroscopic, mesoscopic,
and microscopic. Macroscopic models use queuing theory to
analyze traffic at a high level without modeling individual
vehicles. Microscopic models provide precise simulation of
individual vehicles and paths, but are computationally expen-
sive. Mesoscopic models use statistical methods and are a
compromise between macroscopic and microscopic models in
terms of model accuracy and simulation performance. For this
study, we use both mesoscopic and microscopic simulations in
order to accurately model travel demand by all agents and on
all routes. For a realistic calibrated model, it must accurately
reflect the local driver behavior and traffic conditions.

Overall, the contribution of this article has the following
points:

1) We present a city-scale traffic simulation model of
Chattanooga, Tennessee, provide several use cases for
its analysis. The study focuses on implementing micro-
scopic and mesoscopic large-scale (with the total lane
length of 13455 km and 28311 junctions) SUMO [4]
simulations using activity-based OD data.

2) While similar works have used flow and density for
calibration [5],[6],[7], our paper uses real-world speed
data (RSD). Calibration of traffic simulations with real-
world speed data can improve accuracy, validation, and
reliability. This can help predict traffic patterns and
account for changes over time.

3) Using genetic algorithm (GA) to calibrate a traffic
simulation by optimizing its parameters to minimize the
difference between simulated and observed traffic data.

II. RELATED WORK

In this section, we briefly review the existing literature on
the development towards the calibration of traffic simulation
models. The calibration variables for a simulation model are
categorized by the constituent model component whose inputs
and parameters are being considered. In general, there are two
types of simulation model components: demand models for
estimating and forecasting the OD trip volumes and simulating
travel behavior parameters[5],[6],[7],[8] and supply models
for capturing traffic dynamics and traffic flow parameters
estimation [9],[10],[11],[12]. Moreover, traffic assignments are
used in a loop to iteratively calibrate or relax trip generation,
trip distribution, and mode choice models. These models allow
the transportation planner to predict user behavior and traffic
flows in response to changes in transportation infrastructure

or services, containing a complete array of traditional demand
and supply models [13]. However, the accuracy of these
models heavily depends on their calibration, which involves
adjusting the model parameters to match real-world data.
Calibration ensures that the simulation results are reliable and
can be used to make informed decisions.

There have been significant developments in recent years
toward the calibration of traffic simulation models. One ap-
proach is to use machine learning techniques to automate the
calibration process. This involves training a machine learning
algorithm to predict the optimal parameter values based on
historical data[14]. This method has been shown to be effective
in reducing the time and effort required for calibration and
improving the accuracy of the simulation results[15]. [16]
used a deep reinforcement learning approach to calibrate traffic
simulation models. Another approach is to use real-time data
from connected vehicles to calibrate the simulation models.
This involves collecting data from sensors in vehicles, such
as GPS and accelerometers, and using this data to adjust
the simulation parameters [17], [18]. This approach has the
potential to provide more accurate calibration by incorporating
real-time data, but it requires significant infrastructure to
collect and process the data. In this paper, the RSD has used
for the calibration.

Due to the complexity of highway traffic networks, deter-
mining the effects of a large-scale simulation, like the one in
this case study, is frequently challenging. The related existing
studies vary from small-scale traffic simulation models to
medium and large-scale models [19-21]. Each available study
on the calibration of a large-scale traffic simulation network
concentrates on a set of parameters and algorithms[22].

The studies referenced above, calibration was performed
on a small section of a city using available traffic flow data.
However, in the real-world case study, only speed data other
than traffic flow data can be accessed for the calibration of
large-scale models. Therefore, it is necessary to be able to
calibrate the traffic model with the speed data. This paper
reports the calibration of a large-scale traffic network in
Chattanooga, Tennessee, based on the RSD.

III. METHODOLOGY

Our proposed methodology is composed of microscopic and
mesoscopic simulations, which is calibrated based on the RSD.
The calibration procedure employs a measure that minimizes
the difference between the RSD and the one obtained from
microscopic and mesoscopic simulations. Calibration ensures
that the simulation results are reliable and can be used to
make informed decisions. Given the multitude of factors that
influence traffic characteristics and flow, a consensus was
reached to prioritize the parameters with the greatest impact.
The utilization of sensitivity analysis and Analysis of Variance
(ANOVA) test is employed to identify the most significant
parameters of SUMO for the purpose of calibrating the mi-
croscopic and mesoscopic models. Subsequently, a genetic
algorithm (GA) is devised to derive the optimal values of each
of these parameters.



In the following sections, we describe the complete calibra-
tion methodology (simulation environment, the SUMO model,
and the calibration procedure) for both the microscopic and
mesoscopic simulations. Next, we develop a case study to
implement and evaluate the calibration methodology.

A. Traffic Simulation Software

SUMO is a widely-used and open-source traffic simulation
software that can be easily used on different platforms. It
allows for the modeling and evaluation of traffic dynamics
in a network and has both microscopic and mesoscopic sim-
ulation modes. The software also has an API called Traffic
Control Interface (TraCI) which allows for interaction with
the simulation.

B. Demand Data

For this study, the origin destination (OD) matrices are pro-
vided by the Chattanooga-Hamilton County regional planning
agency. The OD matrices describe the demand as well as
the mode choice such as the number of passenger cars, and
trucks per hour from an origin traffic analysis zone (TAZ) to
a destination TAZ.

C. Microscopic simulation

In SUMO microscopic simulation, three dynamical pro-
cesses are considered:

1- Car-following model: It determines the speed of a vehicle
in relation to the vehicle ahead of it.

2- Intersection model: It determines the behavior of vehicles
at different types of intersections with regard to right-of-way
rules, gap acceptance, and avoidance of blocking junctions.

3- Lane-changing model: It determines lane choices on
multi-lane roads and speed adjustments needed for changing
lanes.

1) Calibration Parameters: The calibration process is
conducted to determine the best parameters for car-following
and lane-changing so that our simulation model represents
realistic field measurements. In a microscopic simulation
model in SUMO, several parameters could be adjusted for
model calibration. However, not all of these parameters have
a significant effect on the output of the model. Therefore, we
used an ANOVA test to determine the parameters that result
in statistically significant differences in model outputs.

For the ANOVA test, after selecting a limited part of
our network, we generated a set of 75 samples for each
parameter within its maximal, normal, and real-world range.
Next, we varied the parameters within the ranges to determine
how significantly those variations impact the outputs of the
simulation model. Because our data consists of a single factor
with several levels and multiple observations at each level,
we designed and conducted a novel ANOVA test with a one-
way layout with a significance value o of 0.05. To evaluate
the impact of the controlled parameter on the speed values
obtained from SUMO, we kept all other parameters to their
default values. The parameters that had p-values less than 0.05
were considered statistically significant. Figure 1 lists these pa-
rameters with their associated ranges and their corresponding

p-values obtained from the ANOVA test. We found that the
Krauf} car-following model parameters had significant impact
on the network speed. Therefore, for model calibration, we
chose the parameters related to the Kraul model — which
include the minimum gap allowed between two cars (minGap),
the maximum acceleration, maximum deceleration, road speed
limit, the driver imperfection (sigma), and the driver’s reaction
time (tau).

Fig. 1. SUMO parameters with ANOVA test results
Value ANOVA
parameter Minimum | Maximum Model P-value
.. - krauss, SKOrig, :
Sigma 0.5 1 PW2009 1.11E-09
Tau 0 all models 1.04E-08
minGap Value 0 all models 1.05E-05
Krauss, SKOrig, PW2009,
aceel 0 Kerner, IDM, 1.14E-05
EIDM, ACC, CACC
Krauss, SKOrig, PW2009,
decel 0 Kerner, IDM, 1.1E-08
EIDM, ACC, CACC
Krauss, SKOrig, PW2009,
emergencyDecel | 0 Kerner, IDM, 0.504
EIDM. ACC., CACC
speedDev 0 all models 1.09E-12
stepping 0 IDM, EIDM 0.638
adaptFactor 0 EIDM 1.18E-08
tpreview 1 EIDM 0.765
tPersEstimate 1 EIDM 0.9981
treaction 0 EIDM 0.441
ccoolness 0 1 EIDM 7.71E-05
sigmaleader 0 1 EIDM 0.69
sigmagap 0 1 EIDM 0.53
sigmaerror 0 1 EIDM 0.671
jerkmax 1 EIDM 0.66
epsilonacc 1 EIDM 0.815
taccmax 1 - EIDM 0.953
Mflatness 1 0.5 EIDM 0.47
Mbegin 0 1.5 EIDM 0.73
maxvehpreview | 0 - EIDM 1.45E-07
vehdynamics Oorl - EIDM 0.77

When simulating traffic on a large-scale network with
multi-lane roads, parameters related to lane-changing have
a significant effect on the road traffic dynamics. Modeling
and calibrating situation adaptive lane changing and merging
behavior were discussed in [23] and [24]. According to these
studies, there is a hierarchy of change incentives, with strategic
lane changing being the most essential. Therefore, related to
strategic lane changing behavior, cooperative speed adaptions
by surrounding traffic (IcCooperative) in the range of [0,1]
has been considered for the calibration, where 0 implies no
cooperative lane changing and 1 implies fully automatic speed
adjustments.

2) Calibration procedure: In order to find the optimal set
of parameters, we used a GA method, and RMSE compar-
ison. GA is a random search technique inspired by evolu-
tionary biology (i.e., inheritance, mutation, natural selection,
and recombination) and is used in computer science to find
approximate solutions for optimization and search problems.
When the search space is broad and complicated, adopting the
GA technique can significantly reduce the number of search
steps, and the time it takes to finish the search [25]. GAs
are described by agents and genes. A gene is denoted by



a binary digit with value 0 or 1. A single agent is defined
as a set of genes that indicate the value of each parameter.
Furthermore, a generation is defined as the number of agents
supplied. The number of agents incorporated in one generation
is referred to as the population, which is 16 in this paper.
In a GA, crossover, mutation, and selection are three leading
operators required in building the next generation of agents.
Selection is a probability based, and the agents with costlier
fitness values will most likely be picked. When two agents
crossover, a portion of their genes are swapped, resulting in
the creation of two new agents. One agent is mutated to create
a new agent by adjusting one of its genes from 0 to 1. We
use Root Mean Square Error (RMSE) analysis as the fitness
function to test and determine the best set of parameters for
model calibration.

D. Mesoscopic Simulation

It is time-consuming and difficult to calibrate a substantial
urban region in microscopic simulation. Therefore, we have
considered other modeling layers in traffic simulations, i.e.,
mesoscopic traffic simulations. Mesoscopic falls between the
section-by-section basis of the macroscopic model approach
and the unique interplay of the microscopic ones. The meso-
scopic model of SUMO based on queuing theory has been
developed by Eissfeldt [26].

1) Calibration parameters: The mesoscopic simulation is
influenced by the following parameters: traffic light system
penalty (tls-penalty), the minimum headway between vehi-
cles, speed deviation factor, and the jam threshold associated
with the main mesoscopic modeling hypothesis. Among these
parameters, tls-penalty, and speed deviation have the highest
impact and is adopted for the calibration procedure. The
tls-penalty represents the quality of signal coordination its
value ranges from O (for near perfect coordination) to 1 (for
uncoordinated traffic lights) [27].

2) Calibration procedure: For the mesoscopic model cal-
ibration, similar to microscopic calibration, GA method and
RMSE analysis were used to find which set of parameters
will result in the optimal value of average speed data.

IV. REAL-WORLD CASE STUDY AND EVALUATION

The Chattanooga SUMO Traffic Simulation (CSTS) sce-
nario uses a large geographical area that includes Hamilton
County in Tennessee, Catoosa County in Georgia, and two
partial counties (Dade and Walker) in Georgia. The model
contains 909 TAZs, where a TAZ is a geographic area that is
used to divide the planning region into small and relatively
homogeneous areas in terms of land use and activity.

A. Data collection

The data sources used in this simulation include the follow-
ing.

1) Time of the Day: Although different trip purposes have
different peaking characteristics, the peak hour periods were
determined based on peaking characteristics of internal (travel
during the selected counties) auto trips since they were the
majority of the trips using the highway facility.

Mode choice models were developed for the following
seven trip purposes: Home-Based Work (HBW), Home-Based
School (HBSC), Home-Based Shopping (HBSP), Home-Based
Social-Recreational (HBSR), Home-Based Pick-up Drop-off
(HBPD), Home-Based Other (HBO), and Non-Home-Based
(NHB). The distribution of the trips by hour for each trip
purpose shows in Figure 2. The criteria used for selecting the
peak periods in the Chattanooga model include:

1) Approximately 20%-35% of the total daily trips should

occur in each peak period.

2) Peak periods should capture the significant peak hours

for HBW, HBSC, and HBPD trips.

3) Selected peak periods should allow for capturing peak

spreading in the future because the same time-of-day
factors will be applied to the base year and future years.
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Fig. 2. Hourly Trip Distribution for Each Trip Purpose
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Fig. 3. Annual Average Speed from INRIX Speed Database

Based on the criteria above in the ODs, 6 to 9 AM was
selected for AM peak period, and 3 to 6 PM was selected for
PM peak period. The midday off-peak period lasts from 9 AM
to 3 PM. The night off-peak period lasts from 6 PM to 6 AM.



2) Empirical data: For the purpose of calibration, we
used the speed-based method. The objective is to match the
simulated and actual average speed. We selected 2160 points
in the study area. These points are spread over the network
and include points on the main street and highways. Owing to
the COVID-19 pandemic since 2020, the traffic patterns have
changed unexpectedly; however, it is assumed that traffic is
getting back to the pre-pandemic level. Therefore, we used
data from 2019 to 2020. We developed the model for 24 hours
with a time interval of 5 minutes. Hence, 288 5-minute-interval
speed data for each point are aggregated from INRIX speed
database [28].

The annual average speed for a 24-hour five-minute interval
is presented in Figure 3. This figure shows the network
speed fluctuates throughout the day. The INRIX date-set speed
diagram is very well aligned with the volume of travel during
the day (Figure 2). It is clearly demonstrated that the average
speed during morning and evening peak hours from 6-9 AM
and from 3-6 PM is 16.98m/sec and 16.10m/s, respectively
(shown as two minimum points in the curve). These two
time periods are morning peak hours and evening peak hours.
However, the morning peak has a more pronounced, shorter
spike, while the evening peak is spread over a longer time
period.

B. Simulation Generation and Execution

The following 1 through 9 steps explains the major pro-
cesses to generate the SUMO model.
1- Network modification: OSMWebWizard is a tool in SUMO
that was used to convert the network directly imported from
OSM. OSM is a community-generated map, and sometimes
important information such as speed limits and traffic signals
needs to be inferred from the road category. To ensure accu-
racy, the study manually checked major road intersections.
2- Vehicle trip generation: od2trips is another tool in SUMO
that converts each OD pair to a trip throughout a large-scale
network.
3- Conversion of TAZ shapefiles to polygon and polygon
to edges: polyconvert is another tool in SUMO that imports
geometrical shapes and converts them to a representation that
can be visualized using SUMO-GUI. With a python script,
edgesInDistricts, we can parse the network and TAZ files with
shapes. This script creates a TAZ file that includes all of the
edges within the appropriate TAZ.
4- Trip assignment: Trip assignment involves assigning traffic
to a transportation network using a static user equilibrium
process. Link travel times are modeled based on their volume-
to-capacity ratio, and trips are assigned to the shortest travel
time path in each iteration. The process is repeated until an
equilibrium is reached, where no user benefits from changing
their path. In SUMO, this process is performed using a
python script called dualterate, which computes a dynamic
user assignment. In SUMO, this process is done by dualterate,
a python script to perform the computation of a dynamic user
assignment (DUA).

5- Define induction loop detectors: In the simulation model,
we defined 2160 induction loop detectors at various locations
that correspond to the exact places in the RSD. Detectors in
the simulation models perform a different role depending on
the direction of traffic flow. The detectors extract the flow
characteristics at the time the vehicle is on the detector. Similar
to RSD, we have set the aggregation period values as 300
seconds. The output of detectors includes times the vehicle
enters and leaves the detector, and average speed during the
interval time, occupancy, flow.

6- Set the parameters into a vehicle distribution file: The
most significant parameters, identified by ANOVA analysis,
were changed around corresponding default values. The opti-
mal set of parameters was determined using a modified genetic
algorithm (GA).

7- Configuration generation: The configuration file is a text
file that contains all the required input information, network
files, trips file, TAZ file, and additional files such as vehicle
distribution file.

8- Simulation run: SUMO can be executed with the command
line or with a generated configuration file. The execution time
is related to the number of vehicles and the scale of the
network.

9- Analyzing the results: The output of traffic simulation
includes detectors’ output data, and trajectories of vehicles
should be processed to obtain traffic data for 2160 points at
every five-minutes interval.

A flow chart showing the whole of the calibration procedure
is shown in Figure 4.

[ l——
v 1
v 1

* Network file

¢ OD matrices

* TAZ shapes

l—

«—— INRIX speed data

Alian

)

Fig. 4. Calibration Procedure



C. Calibration

In this section, first we introduce the microscopic calibration
and then the mesoscopic calibration.

1) Microscopic model calibration : In order to find the op-
timal set of parameters, we used the ANOVA analysis method,
which involved a GA method, and RMSE comparison. GA is a
random search technique inspired by evolutionary biology (i.e.,
inheritance, mutation, natural selection, and recombination)
and is used in computer science to find approximate solutions
for optimization and search problems. GAs are described by
agents and genes. A gene is denoted by a binary digit with
value 0 or 1. A single agent is defined as a set of genes
that indicate the value of each parameter. Furthermore, a
generation is defined as the number of agents supplied. The
number of agents incorporated in one generation is referred
to as the population, which is 16 in this paper. In a GA,
crossover, mutation, and selection are three leading operators
required in building the next generation of agents. Selection
is a probability based, and the agents with costlier fitness
values will most likely be picked. When two agents crossover,
a portion of their genes are swapped, resulting in the creation
of two new agents. One agent is mutated to create a new agent
by adjusting one of its genes from 0 to 1. We use Root Mean
Square Error (RMSE) analysis as the fitness function to test
and determine the best set of parameters for model calibration.
The user’s statement highlights the process of defining agent
and the number of genes, followed by the automatic execution
of the SUMO simulation with the specified parameters. The
resulting output from SUMO consisted of speed data for
vehicles, which was captured at 2160 detectors at regular
intervals of five minutes. When the search space is broad
and complicated, adopting the GA technique can significantly
reduce the number of search steps, and the time it takes to
finish the search. Here, the smaller the RMSE, the higher is
fitness of the chosen parameter.

For the microscopic simulation, a total of 38 genes are
needed to interpret these seven parameters I. Then, using the
procedure shown in Figure 4 the minimum RMSE calculated
is 1.52m/sec which is about 8.09% of the RSD average
speed of 18.79m/sec. Table III illustrates the results from
the microscopic calibration, in which the criterion is met after
the SUMO runs for 45 generations. The parent list that meets
the constraint of RMSE< 10% is considered the calibrated
parameters of the model, which are listed in Table III. Figure 5
shows the annual average speed of RSD; the results from the
simulation running in SUMO before and after calibration. It
shows that the calibration improves the model, particularly
during the peak hours.

2) Mesoscopic model calibration: Similar to the micro-
scopic simulation calibration, we repeated the entire procedure
with the parameters impacting mesoscopic simulation men-
tioned in Table II. The parameters include speed deviation and
tls-penalty. Figure 7 illustrates the RMSE calculated with the
contribution of speed deviation and tls-penalty. The minimum
RMSE calculated is 1.53m/sec, which is about 8.14% of

TABLE 1
SET OF PARAMETERS FOR MICROSCOPIC SIMULATION
SUMO Parameter | Min | Max
MinGap 1.5 2.5
Tau 1.0 2.0
Sigma 0.0 1.0
Speed Deviation 0.1 0.2
acceleration 2.5 3.5
deceleration 5.0 5.5
TABLE I
SET OF PARAMETERS FOR MESOSCOPIC SIMULATION
Speed Deviation | 0.1 | 0.11 | 0.12 | ... | 0.18 | 0.19
tls-penalty 0.1 | 0.2 0.3 .. | 09 1.0
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Fig. 5. Comparison of speeds obtained from microscopic simulation before
and after calibration against real speed data (RSD)
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the RSD average speed of 18.79m/sec. The lowest network
RMSE value corresponds to SpeedFactor and tls-penalty of
0.17 and 0.7, respectively.

The results presented in Figure 8 show the annual average
speed of RSD and the results from the mesoscopic simulation



TABLE III
CALIBRATED VALUES FROM THE TRIAL-AND-ERROR AND GA METHOD

SUMO Default | Value after
Parameter Value Calibration
tau 1.00 1.2
sigma 0.5 0~0.2
minGap 2.5 1.5
speed deviation | - 0.11
acceleration 2.6 2.5
deceleration 4.5 4.5
IcCooperative - 0.1
| mtis-0.1 +tls-0.2 tls-0.3 Atls-0.4 A Tls-0.5 ‘
5.5 A Tis-0.6 mtls-0.7 tis-0.8 e tls-0.9 tis-1
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Fig. 7. RMSE in mesoscopic simulation

model of SUMO before and after calibration.
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Fig. 8. Comparison of speeds obtained from mesoscopic simulation before
and after calibration against real speed data (RSD)

V. CONCLUSION

This paper investigates the potential of speed-based calibra-
tion methods for microscopic and mesoscopic simulation mod-
els. Based on the OD matrices provided by the Chattanooga-
Hamilton County Regional Planning Agency and the CSTS
network using a dynamic user assignment method, the trips

file was built. We generated microscopic and mesoscopic
simulation models of the wider Chattanooga region in SUMO
by leveraging its tools for developing and evaluating large-
scale traffic scenarios. In our calibration approach, we applied
the ANOVA test method for performing a sensitivity analysis
on model parameters in affecting the simulation model outputs,
designed a novel modified genetic algorithm for optimal value
selection of chosen parameters, and simulated with the refer-
ence real-world speed data derived from the INRIX dataset.
In addition, in order to validate our calibrated models, we
compared the network’s speed predicted by the model with
the real-world traffic counts at each detector. Our experiment
results clearly demonstrate the feasibility and effectiveness of
travel demand calibration using only limited real-world speed
data. All of our software and related calibration documentation
is available freely as open source at url: https://github.com/
smarttransit-ai/transit- gym/tree/master/calibration.
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